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1. Introduction

Let e > 0 be a small real parameter, let y, z be real m-dimensional and
w-dimensional vectors respectively and let /, g be respectively real m-
dimensional and ^-dimensional vector functions of their arguments. This
paper aims to discuss the following two problems in singular perturbations.

(A) Consider first the autonomous system

(i) * r !<*•*•*). {l==dldt)

sz' = g{y, z, s).

Here under the assumption that the degenerate system obtained from (1)
by setting e = 0 has a periodic solution with period T in t, one looks for
suitable conditions which will ensure that (1) also has a periodic solution
with a period which tends to T as e ->• 0. One also discusses the stability
of the closed path of this periodic solution as s -*• 0. Friedrichs and Wasow
[6] were the first to discuss a singular perturbation problem of this nature.
Recently Anosov [1] has also treated this problem (1) and to the best of
our knowledge his results are the most general which have been obtained.
His method of approach is based on the notion of the so-called rapid motion
system associated with (1).

Our purpose here is to establish Anosov's results [1; Theorems 3, 4]
by an entirely different and shorter method. Our method makes direct use
of the concept of orthonormal system of coordinates (cf. Urabe [13]). More
important, we find that we can improve on Anosov's Theorem 5 regarding
the behaviour, as e -> 0, of solutions of (1) which are close to the unique
closed path (see Theorem 4 in the last section).

(B) Consider next the following non-autonomous system

,2) y' = fiy. z. t, e),
sz'= g(y, z, t, e),

where t varies over the entire half-line t ^ 0. Here again one looks for suit-
able assumptions which will ensure that (2) possesses a solution bounded
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for alH ̂  0 in some neighbourhood of a bounded solution of the degenerate
system of (2). Another aspect of the problem is to study the behaviour of
this solution as s -> 0. This problem has already been treated by Butuzov
[2] and Hoppensteadt [8]. Their results aie extensions of the corresponding
results of Levin [10] and Tihonov [12] who had earlier dealt with the initial
value problem with t restricted to a finite ^-interval. We notice however an
important difference between the results of Tihonov-Hoppensteadt and
Levin-Butunov: the former considered the 'stable' case, whereas the latter
allowed conditional stability. (Note also that Tihonov's result has been
shown to be false by Hoppensteadt [9] who has also shown how it can be
corrected.)

We have succeeded (Theorem 2 below) in extending Butuzov's Theorem
1 in two directions. Firstly, his assumption 4, which had earlier appeared
as H3 in Levin's paper cited above, will be replaced by a more natural
assumption, namely, assumption (IV) of section 3. Secondly, instead of his
assumption 3, which implies that a certain linear equation, the equation (9)
below, has uniform asymptotic stability, we simply require that it possesses
an exponential dichotomy.

We also investigate the behaviour as e -> 0 of every solution of (2) and
our results here (Theorem 3) we believe to be new.

The plan of this paper is as follows. In the next section we prove
Theorem 1 which embodies Anosov's Theorems 3, 4. In section 3 we prove
Theorem 2. In section 4 we state and prove a lemma from which Theorem 3
will later be deduced in section 5. In the last section Theorem 4 is obtained
by an application of Theorem 3.

2. Statement and Proof of Theorem 1

In this section and section 6 we assume that the functions /, g of (1)
together with the Jacobian matrices /„, fz, gy, gz are continuous in their
arguments (y, z, s). Order symbols such as 0(e), o(l) refer to e -> 0 and
for any continuous function x(t) we write ||x(£)|| = sup_0O<t<0O|x(<)|.

THEOREM 1. Let the following assumptions hold:
(I) The equation g(y, z, 0) = 0 has a continuously differentiate solu-

tion z — <p(y) defined for y e D where D is some region in y-space.
(II) The equation

(3) y' = /Ey.?(y),o]=/(y)

possesses in D a nonconstant periodic solution u(t) with period T in t.
(Ill) The variational equation of (3)

(4) v'=fv[u(t)]v
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[3] Two problems in singular perturbations of differential equations 35

admits a single multiplier equal to one (or, equivalently, has (m—1) char-
acteristic exponents ^ 0).

(IV) Every eigenvalue of gz[u(t), <p[u(t)], 0] has real part different from
zero.

Then for e sufficiently small, the system (1) has a periodic solution
ye(t), ze(t)

 x with period T-\-o(l) in t such that, as e -> 0, the closed path of
this solution tends to the closed path of the periodic solution u(t), <p[u(t)] of
the degenerate system.

Furthermore there exists p > 0 such that (1) has no other periodic solution
(apart from translations in t) whose path remains in the p-neighbourhood of
u(t), <p[u(t)] and whose period differs from T by less than p.

PROOF. It follows from assumption (II) that/[«(£)] ^ 0 is a periodic
function with period T in t. As is known (Halanay [7]) there exists a change
of coordinates

(5) y = u{0)+S{B)x,

where 6 is a scalar, x an (m— 1) vector and S(d) an mx (m— 1) matrix
function with period T in 6 whose columns are mutually orthogonal. By
this change of coordinates the solution y = u(t) is now defined by x = 0,
6 = t. Also the first equation of (1) is transformed into

f[u(d)]d'+d'(dS(d)ld6)x+S(d)x' = f[u(d)+S(6)x,z,e]

As in Halanay [7; p. 280], by forming the scalar product of this equation
with the columns of S(6) and with an mth vector orthogonal to these
columns, we obtain respectively

x' = X(x, z, 6, s),
6' = 0(x, z, 6, e),

where 0, X are periodic functions in d with period T, are continuous in
(x, z, 6, e) and such that

<9[0, <p[u(d)], 6, 0] = 1,

X[o, <p[u(6)], e, o] = o.

Thus there exists e0 > 0 such that © ^ 0 for \x\, \z—q>[u(6)]\, e fS e0. We
can therefore take d to be the new independent variable and express (1)
in the form

dx X(x, z, 6, e)
=dd 0(x, z, 6, e) s= F(x, z, 6, e),

( 6 ) dz g[u(6)+S(6)x,z,0,e]
e — = = G(x, z, a, e).

dd 0(x,z, 6,e) \ > > > i

1 The subscript here and elsewhere is used simply to denote dependence on e, not partial
differentiation with respect to e.
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For e = 0 the system (6) has the solution x = 0, z = <p[u(8)]. We shall
show that (6) has a unique periodic solution with period T in 8 by verifying
that all the hypotheses (I), (II'), (III") in Chang [3] are satisfied.

First we have

B(8) = G.(fl) = [g,(0)0-ge.]/0B|._o,»_o,.-rt«<»]
= g.{u(B),v[u(6)],0],

since 0 = 1 and g = 0 for e = 0, x = 0, z = 9>[«(0)]. Therefore by (IV) the
real part of every eigenvalue of B(6) has absolute value 2: /i, for some
[i > 0 independent of 0.

Similarly we obtain

MO) = Fm{B)-F.(B)G-H9)Gm(B)

Now under the transformation (5) the equation (3) becomes

dx X[x,<p[u(6)+S(B)x\,B,Q\

dd O[x, <p[u{6)+S{Q)x], 6, 0]

The variations! equation of (7) has the coefficient matrix C(6) obtained by
taking the derivative of the right hand side of (7) with respect to x at the
point x = 0. It is easily verified that in fact

C(6)=A1(d).

Moreover (see [7; p. 285]) the (m—1) characteristic exponents of the linear
periodic equation

are identical with the m characteristic exponents of the equation (4) with 0
omitted. Therefore by hypothesis (III) these characteristic exponents are
different from zero, and so the equation dvjdd = C(d)v = A^djv has no
nontrivial periodic solution with period T in 8.

Thus (6) satisfies all the hypotheses in [3] and it follows that there
exists p0 > 0 such that for all e sufficiently small the system (6) possesses
a unique periodic solution xe(d), zE{B) with period T in 8 such that

Moreover

To this unique periodic solution corresponds a solution

9,(t) = u[8(t)]+S[d(t)]x£[8(t)]
ze(t) = z£[8(t)]
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of the system (1), where 6(t) is obtained by inverting the relation

' dd

,oeixe(6),ze{0),B,e]'
c6

t-t0 =
Jo

An increase in 0 by T corresponds to an increase in t by

dd

o e\xe{9), ze(8), 6,e]
f

Jo
since G[xe(B), zE(d), 6, e] = l+0(\xE\ + \zE\+e) = l+o( l ) .

It follows that the solution ye(t), zE(t) of (1) is periodic in t with period
T. Moreover the closed path of ye(t), ze(t) tends to the closed path of u(t),
q>[u(t)] as e -> 0.

We now prove the last statement of Theorem 1. Assume that (1) has a
periodic solution y(t), z(t) whose path lies in the p-neighbourhood of u(t),
q>[u(t)] and whose period is T = T-\-p where \p\ rg! p. We first show that d
increases by T when t increases by T. In fact, since d' is positive and close
to 1, it follows that

6(t+T) — d(t) is close to T.

On the other hand, since 0 is determined uniquely (mod T) by y, it follows
from y(t+f) = y{t) that

6(t+f) — d(t) is a multiple of T, say kT.

Since T is close to T, k must be 1.
Next it follows from y{t) = «[0(tf)]+S[0(/)]a;(<) that x(t+f) = x{t)

and therefore, as a function of 6, x has period T. Similarly, since
zty+T1) = z(t) it follows that as a function of 6, z also has period T. By
what has been proved earlier the solution x, z of (6) with period T in d
coincides with the solution xe(d), z£(d) already found. Hence, for some real
ô> 2/(0 = 2/E(^+^O)'

 z(t) = 2£(<+<0) and this completes the proof.

3. Theorem 2 and its Proof

In order to state our results we make the following assumptions. In
what follows, fy{t) denotes the Jacobian matrix fv[y(t), z(t), t, 0] and similar
meanings are attached to ft(t), gv{t), gz{t), gf(t).

(I) The degenerate system

(8a) y' = f(y, z, t, 0),

(8b) 0 = g(y, z, t, 0),

has a continuous bounded solution y(t), z(t) for 0 rgl t < oo.
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(II) The function / and the Jacobian matrices /„, fz, ft are continuous
and bounded in (y, z, t, e) for \y—y(t)\, \z—z(t)\, e 5S N and 0 52 t < oo.
Also

\\f[y(t), z(t). t> e]-flS(t). *(*). «. °]H -* 0 as e -> 0,

where ||/|| now denotes sup#ao|/(/)|, and to any d > 0 there exists co = co(d),
0 < co < d such that for |w|, \w\, e ^ co

where C7(<) = g^{t)gy{f) and similarly for /„. The function g also satisfies
similar assumptions.

(III) There exists a constant fi0 > 0 such that the real part of every
eigenvalue of gz(t) has absolute value 5: fi0.

It follows that
|detg.(OI ^t*l for t^O.

Hence g~x{t) exists, is continuous and bounded and so is U(t) = g^itfgyit).
By (8a) y'(t) exists, is continuous and bounded. By (8b) and the implicit
function theorem z'(t) also exists, in fact,

*"'(') = -g-;x{t)[gv{t)y'{t)+gt{t)}-

It follows that if g has continuous and bounded second derivatives in t, y, z
for \y—y[t)\, \z—z{t)\, e^N and t ^ 0, then U'(t) will exist and be con-
tinuous and bounded. Instead of assuming the existence of second deriv-
atives of g we shall simply assume

(IV) U(t) = g^itygyit) has a continuous and bounded derivative on
0 ^ t < oo.

(V) The linear equation

(9) V = [fv(t)-fz(t)U(t)]v

possesses an exponential dichotomy, that is, (9) has a fundamental matrix
V(t), V{0) =Im, such that

, , \V(t)PV-1(s)\<Ke-''»-') for t > s,
(10) ~
v \V{t)(Im-P)V~1(s)\ ^Ke-^'-v for s ^ t,
where P is a projection matrix, Im the mxm unit matrix and K, v are
positive constants.

It follows from (III) that the matrix gz(t) has the same number k of
eigenvalues with negative real parts for every t. We now recall lemmas
1, 2, 3 of [3] by means of which we have established that the linear equation

(11) ew' =gz{t)w = B(t)w

possesses an exponential dichotomy, in fact, for all sufficiently small e > 0,
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(11) has a fundamental matrix W(t), W(0) = In, satisfying

\W{t)P1W-1(s)\^Le-'ti*-')le for t ^ s,
P1)W^{s)\^Le-^a-^lE for s^t,

where [x = /^Q/8, PX is a projection matrix of rank k, In the n X n unit matrix
and L is some positive constant independent of e.

Let

(13) v = y—y{t), w = z~z(t)+U{t)v,

then we have

THEOREM 2. Let the above assumptions (I)-(V) hold. Then given p > 0
there exist positive constants y, s0 such that for any vectors v0, w0 with
v0 = Pv0, w0 = P-iW0, \vo\ ^ y, \wo\ ^ y and for 0 < e ̂  e0, the system
(2) has a unique solution ye(t), ze(t) throughout the interval 0 ^ t < oo which
satisfies

and

(is) \\ye(t)-y(t)\\+\\Zs(t)-m\\ ^P-

The proof of Theorem 2 is based on the following lemma A.

LEMMA A. Suppose that the linear equation

(16) y' = A{t)y

has a fundamental matrix Y(t) with Y(Q) = I such that

\Y(t)PY~l(s)\ <He-a«-*> for t^s,
[Y(t){I-P)Y-1{s)\^He~a<*-» for s^t,

where P and I—P are supplementary projections and H, a are positive
constants. Let b(t) be a continuous bounded function of t. Then for any vector
x0 = Px0 the equation

(17) x' = A{t)x+b(t)

has a unique bounded solution x(t) such that Px(O) = x0. Moreover

\\x(t)\\ ^ H\xo\+C\\b{t)\l

where C = 2Hx~1 is a positive constant depending only on H, a.

PROOF. The function

x(t) = Y(t)xo+ j*Y{t)PY-1(s)b(s)ds- j^aY{t){I-P)Y-1{s)b{s)ds
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exists for all t ^ 0 and it is seen by differentiation that x{t) is indeed a
solution of (17) with the required properties. It is the only bounded solution
of (17) with Px(0) = x0, since the homogeneous equation has no nontrivial
bounded solution with Px(0) = 0.

PROOF OF THEOREM 2. As in [3] the change of variables (13) takes (2)
into the system

v' = A^v+A^w+Fiv, w, t, e),
ew' = B(t)w+G(v,w,t, e)

where
At(t) = /.(*); B(t) =

The functions F, G are continuous in (v, w, t, e) such that

||F(0, 0, t, e)|| + ||G(0, 0, t, e)\\ -* 0 as e -* 0.

Moreover to any d > 0 there is a corresponding eo = co(d), 0 < a> < 6,
such that

\F(v, w, t, e)—F(v, w, t, e)| < d{\v—v\ + \w—w\),
\G(v, w, t, e)—G(v, w, t, e)\ ^ d(\v—v\-\-\w—w\),

for all J ^ 0 if \v\, \v\, \w\, \w\, e ̂  co.
For any pair of continuous bounded functions $(t), rj(t) consider the

system

(19a) v' = A1(t)v+Aa(t)w+F[i(t),v(t),t,e],

(19b) ew' = B(t)w+G[Ht), n(t), t, e ] .

We show first that (19b) has a unique solution w{t) which will then be sub-
stituted into (19a). Since (11) has a fundamental matrix satisfying (12)
it follows by lemma A that for any vector w0 with w0 = P-^WQ the equation
(19b) has a unique bounded solution w(t) such that

PM0) = w0
and

^ , 0, t,

if |||(OII, II»?(OII, £ ^ <°> where Cx = C^L,/i) is a constant. By lemma A
again for any vector v0 with v0 = Pv0 the equation

v' = A^v+A^wiD+Ftfit), n(t), t, e],
has a unique bounded solution v (t) such that

Pv(0) = vo

and
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^ K\vo\ + C2[\\A2(t)\\\\w(t)\\ + \\F(O, 0, t,

where C2 = C2(K, v).
Next choose |vo|, \wo\ so small that

(20) K\vo\+L[l + C2\\A2(t)\\]\wo\

and choose d so small that

and then choose e0 5S a> so small that

Ca||F(0, 0, t, e)|H-(C1+C1Ca||^la(OII)l|G(0, 0, t, e)\\ ^

for 0 < e 5̂  e0. Then if 0 < e ^ e0 we obtain

The set of all pairs of bounded continuous functions (£, tj) is a Banach
space if we define

= W. (h)

Denote by S the set consisting of all pairs (f, rf) with | |( | , r])\\ ^ co. Then
the mapping (£, tj) ->• (i>, z») maps S into itself. We show next that this
mapping is a contraction. Suppose then (^1, rjj) and (|2. Jfe) a r e Pai r s in 5
and {vlt W-L) and (v2, w2) are the corresponding images. Then

y,(t) = v^—v^t) and

are the solutions of

), <, e]-F[£2(t), V2(t), t, e]

It follows, as above, that

Hf(ON ^ c ^

Hence

It follows from the principle of contraction mappings that S has a unique
fixed point. Therefore, for any vectors v0, w0 such that v0 = PvQ, w0 = P-^w^
and (20) holds and for £ sufficiently small, the system (18) has a unique
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bounded solution v(t), w(t) satisfying (14) and ||i>(0ll + IN(0ll ^ a>. Hence
given p > 0 there exist positive constants y, e0 such that for any vectors
v0, w0 with v0 = Pv0, w0 = P-LWQ and |wo|, \wo\ ^ y and for 0 < e ^ e0,
the original system (2) has a unique solution ye(t), zE{t) which satisfies
(14) and (15). This completes the proof of Theorem 2.

In this section we prove the following lemma which may be of interest
by itself. It is an extension of lemma 7 of Coppel [5].

LEMMA B. Suppose that vx{t), v2(t), w^t), w2(t) are continuous vector
functions such that for t }z r 7>t0,

\v2(r)\ ^Ke-'W\vt(t)\+KY fV*<-T>(|i>(

1^(01 ^ Le~ w-^le Iw^l+Lye-1 j e~I'i'-'Ve (\v(s)\ + \w(s)\)ds,

\wt{x)\ ^ Le-^-^/e I

where K, L , y , v, fx, s are positive constants and v = v1-\-v2, w = w1
J
rw2.

Then if y , e are sufficiently small, we have either (i)

1(r)\) for t ^ r ^ t0,
and

K(0l + K(0l ^ l«i(0l + K(0l for t ^ t0,
or (ii) for some tx ^ t0,

|wa(T)| + |w,(T)| ^ {K+L)er*«*-*>(\va(t)\ + \wt(t)\) for t ^ r ^ tlt

and

where A, Xx and rj > I are positive constants depending only on K, L, v.

PROOF. We can assume without loss of generality that K ^ 1, L 3: 1.
Put r] = l+(K+L)2. We shall show that lemma B holds if we choose
y > 0 so small that

and then choose e > 0 so small that

e < 2yv~1K.
In fact it follows that
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e < 1 and 2y(l+r))(K+L) < -^- < n, v.

A fortiori,
±y(K+L) < /x, v.

Moreover
<5i = /x—yL(l+r])—e[v~yK(l+rj)]

)—ev

and hence k± = v
>v-yK{l+r])-yL(l+r])

Similarly
8 = /j,—2yL—s{v~2yK)

and A = v—2yK—

Suppose first that the solution v^t), w^t), i = 1, 2 of the integral
inequalities (21) has the property that

for all < ^ t0.

Then for t 2> T ^ i0 by the first and third inequalities of (21)

(22)

Since v > 2Ky and fi > 2Ly it follows by Gronwall's lemma [4; p. 19] that

(22a) \vx{t)\ ̂ Ke-<"-2Ky)ii-T)\v1(r)\+2Ky j*e-^-MW-'^w^sJlds,

On substituting for |z»1(s)| in (22a) by means of (22b) we get

where

Ix = 2Ky L\WJT)\ Ve-i"
J T

and
/ — 2Kv • ITVF~1 f' /.-("-2K•/)(«-») f fs

 P~(p-zLy){g-e)ie i) (f)\\df)\ d<i
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Since d = fi—2yL—e(v—2yK) > 0 it follows that

72 ^
and

That is,

j * -«) |V l ( s ) \ds.

By Gronwall's lemma again this inequality gives

where A = v—2Ky—4KLy2d~1 > Jv. In a similar manner, we obtain

K(OI ^ L^< ' ->(1^^)1 + 2^^-11^^)[) .

Thus f or t ^ T ^ <0

since e < 1 and b >
If the solution vt(t), w^t), i = 1, 2 of (21) does not satisfy

^ I«»WH-K(OI for all * ̂  /».

then we must have

M'i) l + K( ' i ) l < W i ) l + K(*i)l for some tt ^t0.

Since rj = l-\-(K-\-L)2 > 1 we have throughout some interval tx ^ t ^ t2,

From the second and fourth inequalities of (21) it follows respectively that
for t1 g T ^ t ^t2,

\v2(r)\ <Ke-'i*-*>\
(23)

\u>2(r)\ ^ Ze--"<'-T»/£

Regard — r as variable and — t as fixed. Then (23) is of the same form as (22)
with y replaced by ^y(l+>?), and so by the above argument, we obtain for

(24) K(r)| + K(r) | g (K+L)e~

since y, e have been chosen so small that
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v

dt = u-Ly{l+t])-e[v-Ky{l+rj)] > 0;

Xx = v—Kyil+^—KLy^il+ij)^1 > 0;

and
Now on setting r = t1 in both the first and third inequalities of (21) we
obtain

and, in view of (24),

Thus it follows that for tx^t ^

Therefore

^(OI+KWI < v(M*)\+\«>t(t)\) for

This completes the proof of lemma B.

In this section we deduce from lemma B the following new results
regarding the behaviour as e -> 0 of every solution of the system (2) once
it enters into the neighbourhood of the unique solution of Theorem 2.

THEOREM 3. Let the hypotheses of Theorem 2 hold and let ye{t), ze(t) be
the unique solution of Theorem 2. Then for e and \y{0)—ye(0)\-\-\z(0)—ze(0)\
sufficiently small any other solution y(t), z(t) of (2) is such that either

( i ) |gf(OI + | Z ( O I ^ C « - * « * - " [ | g f ( T ) | + | 2 ( T ) | ] for t ^ r ^ O ,
or (ii) for some tt S> 0,

for t ^ r ^
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where y(t) = y(t)—yE(t), z(t) = z(t)— zE(t) and C, X, lx and r\ > 1 are positive
constants depending only on K, L, v.

Furthermore any solution y(t), z(t) of (2) for which

\y(O)-y(O)\ + \z(O)-z(O)\

is sufficiently small satisfies (i) if and only if it is one of the solutions of
Theorem 2 with p replaced by p > p.

We shall make use of the following

LEMMA C. Suppose that the linear systems

(25) y' = A{t)y, z'= B(t)z

have respectively fundamental matrices Y(t), Z(t) such that

lYOOY-^s)! ^ eal'-s' for O^t,s< oo,
\Z{t)PZ-*(s)\ g Le-0^ for t ^ s,

\Z{t){I-P)Z-l(s)\^Le-fi^t) for s^t,

where P is a projection matrix and L, a, (i are positive constants. If en < ^
then for any continuous bounded matrix function C(t) the system

y' = A(t)y+C(t)z

z' = B{t)z

is kinematically similar (cf. Markus [11] or Coppel [5]) to the same system
(26) with C(t) = 0 i.e. to (25).

PROOF. Let

T(t) = jt
oY(t)Y^(s)C(s)Z(s)(I-P)Z^(t)ds

- j^° Y(t)Y~1(s)C(s)Z(s)PZ-i(t)ds.

Then

Thus T(t) exists, is continuous and bounded. It is easily verified by differ-
entiation that T(t) is a solution of

T = A(t)T—TB(t)+C{t).

Consequently the change of variable y = x-\-T(t)z transforms the first
equation of (26) into x' = A(t)x and the lemma follows.

PROOF OF THEOREM 3. We have seen that the change of variables (13)
transforms (2) into the system (18).
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Now choose a > 0 so that |4x(0l ^ <r for all t ^ 0. If s < \IMJ~1 then
the system

v' = A^tjv+A^tjw
ew' = B{t)w

satisfies the conditions of lemma C. Thus, by the proof of this lemma, there
exists a bounded, continuously differentiable matrix function T(t) such that

T = A^T-e

and \\T\\^4L\\A2\\^e.

The change of variable v = u-\-T(t)w then transforms the nonlinear system
(18) into

u A1(t)
( ' ew' = B{t)w + G{u, w, t, e),

where

F(u, w, t, s) = F(v, w, t, e)—e~1T(t)G(v, w, t, e)

and Q{u, w, t, e) = G(v, w, t, e)

satisfy conditions of the same type as F and G.
Write u = u(t)—ue(t), w = w{t)—we(t), where u(t), w(t) is the solution

of (27) obtained from y{t), z(t) and ue(t), wE(t) is the solution obtained from
ye{t), ze(t). Then M, W satisfy

u' = A{(t)ii+f{u, w, t, e)-P{uE, wE, t, e),
EW' = B(t)u>+Q(u,w,t,e)—&(ue,wB,t,e).

From the variation of constants formula any solution u(t), w(t) of (28)
satisfies

u(t) = V(t)V-i(r)u(r)

+ jt
TV(t)V-1(s){F[u(s), w(s), s, e]-F[uE(s), wE(s), s, e]}ds,

w(t) = W(t)W~i-{r)w{x)

j ^ [ u ( s ) , w(s), s, e]-Q[uE{s), wE{s), s, s]}ds

for t ^ T ^ 0. Set

u{t) == u^+u^t), where u^t) = V{t)PV-l(t)u(t),

w{t) = w^+w^t), where w^t) =
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Then we obtain

ux{t) = F(*)PF-I(TK(T)

+ jt
TV(t)PV'l(s){F[u(s)w(s), s, e]-F[ue(s), we(s), s, s]}ds,

u2(r)=V(T)(Im-P)V-*(t)u2(t)

- JV(r)(/B-P)y-i(S){F[«(s), w(s), s, s]~F[ue(s), w(sE), s, s]}ds,

w^t) = W{t)P1W-1{x)w1{T)

+£-! j * W^P^-^s^luis), w{s), s, s]-Q[ue(s), wE(s), s, e]}ds,

w2(x) = WWn-PJW-^wS)

• {O[u(s), w(s), s, s]—&[us(s), we(s), s, e]}ds.

It follows from (10), (12) that for t in some interval f ^ t ^ x ^ 0,

\u2(x)\ ^

le-^'~Tm (\u(s)\ + \w(s)\)ds.

The functions u^t), il2{t), w^t), w2(t) satisfy all the conditions of lemma B
so that if d, e are sufficiently small, we obtain either case (i)

ib(t)\ ^2 ( |« 1 (0 | + |t81(0l) for t^x^O

1{x)\) for t ^ x ^ 0,

or case (ii), for some tx ^ 0,

for x^
for t^

Since, in addition,
1̂ (01, \u2(t)\^K\u(t)\,

we obtain case (i) and case (ii) of Theorem 3.
We now prove the last statement of Theorem 3. If y(t), z{t) is one of the

solutions of Theorem 2, then it follows that it is bounded for all t 2i 0 and
therefore cannot satisfy (ii), for otherwise it becomes unbounded for t large
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enough. Hence the solution must satisfy (i). Conversely, let y{t), z(t) be a
solution of (2) which satisfies (i) and for which

is sufficiently small. Choose d such that Cd ;£ p'—p and

d[\P\ + \Px\{l
where p, y are as in Theorem 2. Then

\P\3

and by (i)

It follows that y(t), z(t) is indeed one of the solutions of Theorem 2 with
p replaced by p . This completes the proof of Theorem 3.

In this last section we obtain by an application of Theorem 3 the follow-
ing theorem which gives a slightly stronger result than Anosov's Theorem
5[1].

THEOREM 4. Assume, in addition to the assumptions (I)-(IV) of Theorem
1, that (V) the variational equation (4) admits a single multiplier equal to 1
in modulus. Let yE(t), ze(t) be the periodic solution of Theorem 1. Then for e
and \y(0) — ye(0)| + |z(0)— 2e(0)| sufficiently small any solution y(t), z{t) of
(1) is such that either

(i) \y(t)\ + \z(t)\ ^ Ce-^^[\y(r)\ + \z(r)\] for t ^ r ^ 0,
or (ii) for some tx ^ 0,

| 0 ( T ) | + | 2 ( T ) | ^ C i e - * > « - > [ | £ ( O I + | 2 ( * ) | ] for t ^ r ^ t x ,
where y(t) = y(t)—ye(t), z(t) = z(t)—zE(t) and C, Cx, A, Ax are some positive
constants.

PROOF. By the change of variables (5) we have transformed (1) into
(6) which is of the same form as (2) with 6 in place of t. The additional
assumption (V) of the theorem implies that the linear equation
dvjdd = A^djv = C(d)v has a fundamental matrix V{t) such that (10)
holds. It is not difficult to verify that (6) in fact satisfies all the hypotheses
of Theorem 3 so that Theorem 4 follows as a consequence of Theorem 3.

The author is greatly indebted to Mr W. A. Coppel for his guidance
and interest in this work.
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