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Abstract We prove the existence of GSpin,,, -valued Galois representations corresponding to cohomologi-
cal cuspidal automorphic representations of certain quasi-split forms of GSOg2,, under the local hypotheses
that there is a Steinberg component and that the archimedean parameters are regular for the standard
representation. This is based on the cohomology of Shimura varieties of abelian type, of type DM,
arising from forms of GSOg,. As an application, under similar hypotheses, we compute automorphic
multiplicities, prove meromorphic continuation of (half) spin L-functions and improve on the construction
of SO2p-valued Galois representations by removing the outer automorphism ambiguity.
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Introduction

Inspired by conjectures of Langlands and Clozel’s work [18] for the group G = GL,,
Buzzard-Gee [12, Conj. 5.16] formulate the following version of the Langlands correspon-
dence (in one direction) for an arbitrary connected reductive group G over a number field
F. Let Ap denote the ring of adeles over F. Write G (resp. “G) for the Langlands dual
group (resp. L-group) of G over Q,. When g € “G(Q,), let g denote its semisimple part.

Conjecture 1. Let ¢ be a prime number and fix an isomorphism 1: C = Q,. Let 7 be
a cuspidal L-algebraic automorphic representation of G(Ap). Then there exists a Galois
representation

Pr = Pm,u+ Gal(F/F> — LG(@Z)a

such that for all but finitely many primes q of F (excluding q|¢ and those such that w4
are ramified), the G-conjugacy class of p(Froby)ss € LG(Qy) is the Satake parameter of
Ty Via L.
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The conjecture of Buzzard-Gee is more precise (and does not assume cuspidality).
They describe the image of each complex conjugation element and ¢-adic Hodge-theoretic
properties of p.. Moreover, they predict [12, Conj. 5.17] that the compatibility holds
at every q coprime to ¢ such that my is unramified. In fact, pr(Frobg), instead of its
semisimple part, appears in their conjecture. While p.(Frob,) is expected to be always
semisimple, this seems to be a problem of different nature and out of reach. Thus, we
state the conjecture with pr(Frobg)ss.

For most recent results on Conjecture 1 for GL,, (in the regular case), we refer to
[71, 35] and the references therein. Arthur’s endoscopic classification [1] (see [62, 40] for
unitary groups)' provides a crucial input for constructing Galois representations as in the
conjecture for symplectic, special orthogonal and unitary groups by reducing the question
to the case of general linear groups. When the group is SOs,,, however, such an approach
proves only a weaker local-global compatibility up to outer automorphisms (see (SO-i) in
Theorem 6.5 below), falling short of proving Conjecture 1 (even under local hypotheses);
we will return to this point as an application of our main theorem.

Our goal is to prove Conjecture 1 for a quasi-split form G* of GSOs,, over a totally real
field under certain local hypotheses, as a sequel to our work [50] where we proved the
conjecture for GSp,,, under similar local hypotheses. The group GSOay, is closely related
to the classical group SO, just like GSp,,, is to Sp,,,, but the similitude groups may
well be regarded as non-classical groups. An important reason is that the Langlands dual
groups of GSOg,, and GSp,,,, namely, the general spin groups GSpin,, and GSpin,,, 4,
do not admit standard embeddings (into general linear groups of proportional rank). This
makes the problem both nontrivial and interesting. Furthermore, since the groups GSps,,
and GSOa,, appear as endoscopic groups of each other for varying n [81, Sect. 2.1], results
for the one group likely have applications for the other, especially if one tries to prove
cases of Conjecture 1 without local hypotheses.

To be more precise, we set up some notation. Let F be a totally real number field,
and n € Z>3. Let GSOg,, denote the connected split reductive group over F' which is
the identity component of the orthogonal similitude group GOs,. (See §2 below for an
explicit definition.)

Our setup depends on the parity of n:

(neven) E=F, and G* = GSOy, (the split form over F),

(n odd) E is a totally imaginary quadratic extension of F, and G* is a non-split quasi-
split form of GSOg,, relative to E/F (explicitly given as (8.4)).

We write GSOQEn/ F for the F -group G* in either case. The setup is naturally designed so
that there are Shimura varieties for (an inner twist of) Resg/qG*. In particular, G*(Fy)
has discrete series at every infinite place y of F. (Indeed, G*(Fy) has no discrete series if
we swap the parity of n above.) There is a short exact sequence of F-groups

1 SOE/F _, gSOl/F 2 i, 1,

n 2n

I The endoscopic classification is conditional in the following sense. At this time, the postponed
articles [A25], [A26] and [A27] in the bibliography of [1] have not appeared. The proof of the
weighted fundamental lemma for non-split groups has not become available yet either.
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where SOgn/ Fisa quasi-split form of SOs,,, defined similarly as GSOgn/ F, and sim denotes
the similitude character. It is convenient to use the version of L-group relative to E/F,
with coefficients in either C or Q,:

LG* = G* x Gal(E/F) = GSpin,,, x Gal(E/F),

where the nontrivial element of Gal(E/F) acts nontrivially on GSpin,,,. (This identifies
LG* with GPing, if [F: F] =2.) An important feature of the (general) spin groups
GSpin,, (m € Z>2) is their spin representation spin,, : GSpin,, — GLym/2). In case m is
even, this representation is reducible and splits up into a direct sum spin,,, = spin;\, @spin,
of two irreducible representations of dimension 21/21=1_ These representations spinfn are
called the half-spin representations. Two other important representations are the standard
representation and the spinor norm (see Lemma 3.1 for pr®)

std: GSpin,, pry SO,, =+ GL,,, and N': GSpin,, — GL;.

If m is odd, spin is faithful. In the even case m = 2n, none of the representations
spin™,spin~,std or A is faithful, but spin is faithful.
Let 7 be a cuspidal automorphic representation of GSOZER/ F(A r). Consider the following

hypotheses on 7, where |sim| denotes the composite GSO;En/ “(r ®gR) o (F@R)* it
RZ,:

(St) There is a finite F-place qg; such that mq, is the Steinberg representation
of G*(Fys,) twisted by a character.

(L-coh) 7 |sim|~(»~1)/4 is ¢£-cohomological for an irreducible algebraic representa-
tion € = ®y.pscéy of the group (Resp/G*) @oC ~]],.po,c(G*®F,y C).
(std-reg) The infinitesimal character of &, for every y: F' — C, which is a regular Weyl

group orbit in the Lie algebra of G = GSpin,,, (C), remains regular under
the standard representation GSpin,,, = GL2,.

In (L-coh), “€-cohomological” means that the tensor product with ¢ has nonvanishing
relative Lie algebra cohomology in some degree (§1 below). Condition (L-coh) implies
that 7 is L-algebraic. The other two conditions should be superfluous as they do not
appear in Conjecture 1. Condition (St) plays an essential role in our argument and would
take significant new ideas and effort to get rid of. We assume (std-reg) for the reason
that certain results for regular-algebraic self-dual cuspidal automorphic representations
of GLy, N > 2, are missing in the non-regular case. However, we need less than (std-reg)
for our argument to work. The necessary input for us to proceed without (std-reg) is
formulated as Hypothesis 6.11, which we expect to be quite nontrivial but within reach
nonetheless. Thus, we assume either (std-reg) or Hypothesis 6.11 in the main theorem,
hoping that (std-reg) will be removed as soon as the hypothesis is verified.

Let Spaq = Sbad(m) denote the finite set of rational primes p such that either p=2, p
ramifies in F, or 7, ramifies at a place q of F' above p. The following theorem assigns

an f-adic Galois representation to 7 for each prime number ¢ and each isomorphism
t: C :> @e.
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Theorem A. Assume that m satisfies conditions (St) and (L-coh). If (std-reg) does
not hold for m, further assume Hypothesis 6.11 (for an SOz, (Ap)-subrepresentation
of w). Then there exists, up to @—conjugation, a unique semisimple Galois representation
attached to ™ and ¢

pr = pr.: Gal(F/F) — LG,
such that the following hold.
(A1) For every prime q of F not above Sphaq U{l}, px(Frobg)ss is G*-conjugate to
¢, (Frobg), where ¢ is the unramified Langlands parameter of mq.
(A2) The composition

Gal(F/F) 23 LG ™ S04, (Q,) x Gal(E/F)

corresponds to a cuspidal automorphic SOQE,L/F(AF)—subrepresentation 7 con-

tained in T in that pr°(p.(Frobg)ss) is SO2,(Qy)-conjugate to the Satake param-
eter of 7TZ via ¢ at every q not above SpaqU{{}. Further, the composition

Gal(F/F) 5 Lq* X GL,(@,)

corresponds to the central character of m via class field theory and t.

(A3) For every q|l, the representation pr q is de Rham (in the sense that 1o pr g is de
Rham for all representations r of é*} Moreover,
(a) The Hodge-Tate cocharacter of prq ts explicitly determined by &. More
precisely, for all y: F — C such that vy induces q, we have

nn—1) .

MHT(pw,q;Ly) = L,U*Hodge(gy) - TSIIH.

(We still write sim to mean the cocharacter of GSpin,, dual tosim:G* — G,,.
See §1 below for the Hodge—Tate and Hodge cocharacters ppt and podge-~)

(b) If mq has nonzero invariants under a hyperspecial (resp. Twahori) subgroup of
G*(Fy), then either pr q or a quadratic character twist is crystalline (resp.
semistable).

(c) If £ & Svaa, then py q is crystalline.
(A4) For every v|oo, pr,, s odd (see §1 and Remark 12.6 below).

(A5) The Zariski closure of the image of p.(Gal(F/E)) in PSOa, maps onto one of
the following four subgroups of PSOaqy,:
(a) PSOQn,

(b) PSOs,,—1 (as a reducible subgroup),
(c) the image of a principal SLy in PSSOy, or

2More precisely, the Hodge cocharacter is a half-integral cocharacter, but subtracting n(n—1)/4
times sim makes it integral. The two cocharacters in (A3)(a) are well-defined up to conjugacy
(i.e., they are conjugacy classes of cocharacters), but the formula makes sense because sim is
a central cocharacter.
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(d) (only when n=4) Gy (embedded in SO7 C PSOg) or SOz (as an irreducible

subgroup via the projective spin representation).

(A6) If p': Gal(F/F) — LG* is another semisimple Galois representation such that, for
almost all finite F-places q where p' and p, are unramified, the semisimple parts
p'(Frobg)ss and pr(Frobg)ss are conjugate, then p and p' are conjugate.

Remark 0.1. The proof of the above theorem relies crucially on the main results of
Arthur’s book [1], which are currently conditional as explained in footnote 2. In particular,
Theorem A, and in turn Theorems B, C and D, are conditional on the same results
mentioned in this footnote.

As explained below Conjecture 1, the existence of Galois representations
P Gal(F/F) — SO, (Q,) x Gal(E/F) (0.1)

in a weaker form is known for cuspidal automorphic representations 7 of SOQEn/ F(AF)
satisfying (coh®), (St°) and (std-reg®) (see Section 6 for these conditions), and possibly a
larger class of representations though we have not worked it out. The main ingredients are
Arthur’s transfer [1, Thm. 1.5.2] from SOQETL/F(AF) to GLay,(AF), and collective results
on the Langlands correspondence for GLa, (Ar) in the self-dual case. Statements (SO-i)
—(SO-v) of Theorem 6.5 below summarize what we know about p,». A main drawback
of Theorem 6.5 is that the conjugacy class of each p,» (Frobg)ss is determined only up to
Og,-conjugacy, rather than SO,,-conjugacy.

Using Theorem A, we can upgrade Theorem 6.5 and remove this “outer” ambiguity
(coming from the outer automorphism) as long as 7 can be extended to a cohomological
representation 7 of GSOfn/ F o Ifris &-cohomological, then £ must satisfy condition (cent)
of §9, so a necessary condition for such a cohomological extension to exist is the following

condition (which is void for F'=Q):

(cent®) the central character {£1} = uo(F,) — C* of 1, at each infinite place y of F
is independent of .

Theorem B. Let ©° be a cuspidal automorphic representation of SOfn/F(AF) satisfying
(cent®), (coh®), (St°) and (std-reg°). Then Congecture 1 holds (for every £ and u).
The associated Galois representation p.» 1is characterized uniquely up to SOq,(Q,)-
conjugation.

See Theorem 13.1 below for a precise and stronger statement. The crux of the argument
lies in showing that 7” extends to an automorphic representation 7 of GSO2En/ F(AF),
satisfying conditions of Theorem A. As Theorem A has no outer ambiguity, this yields
Theorem B.

Theorem B offers a new perspective on the local Langlands correspondence for quasi-
split forms of SO4,, over p-adic fields. By localizing the theorem at finite places, we get a
candidate for the correspondence, not just up to Os,-conjugacy as in [1]. More precisely,
let H denote a quasi-split form of SO,,, over a p-adic field k, assumed to be split if n is
even. Then we can find E/F as above (depending on the parity of n) and a prime q of F'
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such that Fy ~ k and SOJ;L/, 1: ~ H. If ¢ is an irreducible discrete series representation of

H(k), then a candidate for the L-parameter for o is described by the following procedures.
(1) Find 7” satisfying (cent®), (coh®), (St°) and (std-reg®) such that 7} ~ 0.
(2) Obtain p,» from Theorem B (which relies on Theorem A).
(3) Take WD(pys[rp, ), which can be viewed as an L-parameter for H (k).

The globalization in (1) is possible by a standard trace formula argument proving the limit
multiplicity formula. See §1 below for the definition of WD. The L-parameter resulting
from the above is in the Og,-orbit of the L-parameter in [1] by Theorem 6.5 (SO-i),
but could a priori depend on various choices. It is an interesting problem to relate the
global construction here to the purely local constructions by Kaletha [39, 37] and Fargues—
Scholze [24]. In fact, all this can be mimicked for GSOs,, in place of SOa,,, using Theorem A
rather than Theorem B, so a similar question may be asked in the GSOs,-case.

As another application of Theorem A, we compute the automorphic multiplicities m(7)
for certain automorphic representations m of GSOQEn/ F(AF).

Theorem C. Let m be a cuspidal automorphic representation of GSOQEJF(AF) satisfying

(L-coh), (St) and (std-reg). Then we have m(mw) =1.

To compute m(w) for GSOQEn/ F, we rely on Theorem A, Arthur’s multiplicity formula
[1] and a result of Bin Xu [81] to show that m(7) = m(x") for 7> C 7 a well-chosen
SOQEn/ F(AF)—subrepresentation. We remark that Arthur’s multiplicity formula computes
multiplicities up to an outer automorphism orbit, but m(x) in the theorem is the honest
multiplicity.

Our final application is meromorphic continuation of the (half) spin-L functions. Let 7
be a cuspidal automorphic representation of GSO;EH/ F(A r) unramified away from a finite
set of places S. To make uniform statements, define a set

. {{4—,—}, if n is even (thus E = F),

{0}, ifnisodd (thus [E: F] = 2), (0.2)

with the understanding that spinm = spin. The partial (half-)spin L-function for = away
from S is by definition

L5 (s,m,spin®) := H
pEs

where g, := #(Or/p) and ¢, is the unramified L-parameter of 7,. Consider the following
hypothesis for L-parameters ¢, at infinite places y.

1
det(1— g, *spin® (¢, (Froby)))’

e€e, (0.3)

(spin-reg) spin®(¢y, ) is regular for every infinite place y of F' and every ¢ € e.

When n > 3, (spin-reg) implies (std-reg). This hypothesis ensures that spin®(p,) has
distinct Hodge—Tate weights. Our construction and Theorem A allow us to apply the
potential automorphy theorem of Barnet-Lamb—Gee—Geraghty—Taylor [3] to the weakly
compatible system of spin®(p,) (as £ and ¢ vary). Thereby, we obtain the following.
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Theorem D. Assume n > 3. Let w be a cuspidal automorphic representation of
GSOfn/F (Ap) satisfying (L-coh), (St) and (spin-reg). Then there exists a finite totally real
extension F'/F (which can be chosen to be disjoint from any prescribed finite extension
of F in F) such that spin® opﬂ|Gal(f/F,) is automorphic for each € € e. More precisely,
there exists a cuspidal automorphic representation 11° of GLgn j¢|(Ap+) such that

e for cach finite place q' of F' not above SpaqU{{}, the representation 1~ 'spin® o
prlw,, is unramified and its Frobenius semisimplification is the Langlands
q’

parameter for IIZ,,
e at each infinite place y' of F' above a place y of F, we have ¢ne,|w, ~ spin o
Y

qbﬂ'y‘W(;'

In particular, the partial spin L-function L®(s,m,spin®) admits a meromorphic continu-
ation and is holomorphic and nonzero in an explicit right half plane (e.g., in the region
R(s) > 1 if m has unitary central character).

We now give a sketch of the argument for Theorem A. For simplicity, we put ourselves
in the split case (when n is even) and assume F' = Q to simplify notation. We also ignore
all character twists and duals in the following sketch and keep the isomorphism ¢ : C ~ Q,
implicit. (See the main text for correct twists and duals.)

The basic idea is to construct p, and prove its expected properties by understanding
what should be spin™ o p,, spin~ o p,, stdop, and N op,. One already has access to
stdop, via Arthur’s endoscopic classification and known instances of the global Langlands
correspondence. The seemingly innocuous N o p, is not so trivial to combine with the
other representations, but refer to the proof of Proposition 10.5. Most importantly, we
realize spin™ o p, and spin~ o p, in the cohomology of suitable Shimura varieties; this is
the port of embarkation.

In fact, pr would not be recovered from spin™ o p., spin~ o pr, stdo p, and N op, in
general due to essential group-theoretic difficulties (e.g., GSpin,,, is not acceptable in the
sense of [56, 55]), but condition (St) mitigates the matter. Another important role of (St)
is to remove complexity associated with endoscopy.

Our Shimura varieties are associated with an inner twist G/Q of the split group
GSOsy,, (unique up to isomorphism) which splits at all primes p # psy and whose derived
subgroup is isomorphic to the quaternionic orthogonal group SO*(2n) over R (which is
not isomorphic to SO(a,b) for any signature a+ b = 2n). Concretely, G(R) is isomorphic
to the group GSOj,(R) in §8 below.

The group G admits two abelian-type Shimura data (G,X¢) with € € {+,—}, cor-
responding to the two edges of the “fork” in the Dynkin diagram of type D, (see
Section 9). These two Shimura data are not isomorphic. (The analogous Shimura data are
isomorphic via an outer automorphism when n is odd; see Lemma (ii) below. Even then,
we distinguish the two data as the outer automorphism changes isomorphism classes of
representations.)

Let m be as in Theorem A. Using a trace formula argument, we transfer 7 to
a ¢-cohomological cuspidal automorphic representation 7% of G(A) with isomorphic
unramified local components as 7 such that 7% is Steinberg at a finite prime. Let p>™¢ be
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the Gal(Q/Q)-representation on the 7% >-isotypical part of the (semisimplified) compact
support cohomology of the ¢-adic local system L¢/Sh(G,X*) attached to . Conjecturally,
the two representations p>™¢ should realize spin® o p, up to semi-simplification (and up
to a twist and a multiplicity that we ignore in this introduction) in the non-endoscopic
case. In particular, if ¢, : Wq, — GSpiny, (C) is the unramified L-parameter of 7, at
a prime p # ¢ where 7, is unramified, then P§rh’€|(;a1(@p /Qp) ought to be unramified and

satisfy
Tr pg™ < (Frob)) = Trspin® (¢r, (Frob,)’) € Q,,  j > 1. (0.4)

Employing Kisin’s results on the Langlands—Rapoport conjecture [42] and the Langlands—
Kottwitz method for Shimura varieties of abelian type in the forthcoming work of Kisin—-
Shin-Zhu [43], we prove (0.4) for almost all p.

Let 7 C 7 be an irreducible cuspidal automorphic SOs, (A)-subrepresentation. From
the aforementioned weaker version of Conjecture 1 for SOg,,, we construct (see Theorem
6.5 below)

prv: Gal(Q/Q) — SO, (Qy).
such that

P (Froby )ss ~ pr® (¢x, (Froby)) € SO02,(Qy), (0.5)

for all primes p # £ where 7” is unramified. Here, ~ indicates Og,(Q,)-conjugacy, and

pr° : GSpin,,, — SOy, is the natural surjection.

We expect pr to lift p,» (up to outer automorphism) and to sit inside pSh := pSh+ @
P~ as illustrated below. By spin we mean the unique projective representation of SOy,
that the projectivization of spin factors through.

i
_ N _
Gal(Q/Q) - - - - > GSping, (Q) > GL2n (Q) (0.6)

Pr spin

T

Pob SOy, (@Z)CT PGL2n (@é)

spin

We deduce from (0.4) and (0.5) that the outer diagram commutes, after a conjugation
if necessary. In fact, this is not straightforward because two PGLar-valued Galois
representations need not be conjugate even if they map each Frob, into the same
conjugacy class for almost all p. We get around the difficulty by using a classification of
reductive subgroups of SOs,, containing a regular unipotent element by Saxl-Seitz [70].
This is applicable since (St) tells us that the image of p,» contains a regular unipotent
element. As a consequence, the Zariski closure of the image of p,» is connected mod
center. If it is connected, we have the commutativity of (0.6) after a conjugation, and it
follows that there exists p, completing the diagram. If the Zariski closure is connected
only mod center, then we need a variant of (0.6) as explained in §10. A similar group-
theoretic consideration shows that p. is characterized up to isomorphism by the images
of Frobenius elements at almost all primes, cf. (A6) of Theorem A.
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Having constructed p,, we verify that p, enjoys the expected properties. Let us focus
here on (Al). By construction,

spin(px (Frob,)ss) ~ spin(¢x, (Froby)), for almost all p.

The key point is to refine this, or break the symmetry, by showing the same relation with
spint and spin~ in place of spin (cf. proof of Proposition 10.5 below) with the help of
(0.4). Roughly speaking, we are in a situation

p™ @ p™ T ~ spin® pr @ spin pr

and want to match the + and — parts. The problem is easy enough if spin™ p, ~ spin~ p,
as there is little to distinguish. If spintp, 2 spin~ p,, then the idea is that the + and
— parts do not overlap at sufficiently many places (by a Chebotarev type argument) to
match the + and — parts unambiguously. If spin™ p, or spin~ p, is irreducible, it is quite
doable to promote this idea to a robust argument. In general, the smaller image of p,, the
harder this problem becomes. However, in certain cases where the image is really small,
such as contained in a principal PGLo, the conjugacy classes pr (Frob,)ss are stable under
outer conjugation, and there is no distinction between inner and outer conjugacy. As we
also have a classification of the Zariski closure of the possible images of p,, we can deal
with each case via explicit group-theoretic computation. This finishes the sketch of proof
for Theorem A.

Structure of the paper

The paper splits roughly into four parts consisting of Sections 1-8 (preparation), Sections
9-12 (the core argument), Sections 13-15 (applications) and the appendices. Let us go
over these parts in more detail. In Sections 1-5, we define (variants of) orthogonal groups
and spin groups along with subgroups containing regular unipotent elements and the
outer automorphism. We define the spin groups and their spin representations through
root data as well as Clifford algebras by fixing the underlying quadratic spaces, and
we clarify the relationship between them. The root-theoretic approach is natural in
the context of Langlands correspondence, whereas Clifford algebras have the advantage
that various maps are determined and diagrams commute on the nose and not just up
to conjugation. In Section 6, we construct Galois representations for certain cuspidal
automorphic representations of quasi-split even orthogonal groups. This relies on Arthur’s
book [1] and the known construction of automorphic Galois representations, but a few
extra steps are taken to get the information that we need later on. In particular, we
study what happens to the Steinberg representation under Arthur’s transfer from SOgn/ F
to GLg, (this relies on Appendix B). In Section 7, we list a number of basic results
on comparing representations of SOfn/F with those of GSOQEH/ F. Section 8 discusses
properties of the real points of GSOQEJ ¥ and introduces certain global inner forms G of

GSO2En/ ¥ The core argument starts in Section 9, where we take the cohomology of Shimura
varieties associated with two Shimura data (G,X¥) to find two Galois representations
P+ attached to 7 as in the main theorem. In Section 10 we construct a GSpin,,,-

valued Galois representation p, of Gal(F/E) from pS"* and p,. This representation is
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not quite the one of Theorem A: The image of Frobenius under p, is controlled only
outside an unspecified finite set of primes, and moreover, p, should be extended to
a representation of Gal(F/F). The two problems are resolved in Sections 11 and 12,
respectively. We emphasize that neither of these arguments is formal: the first one relies
on Bin Xu’s work [81] and the second on a subtle global argument. The proof of Theorem
A is also completed in Section 12. Sections 13—15 present applications of our main theorem
to the construction of Galois representations for SOQEH/ F, automorphic multiplicity and
meromorphic continuation of (half)-spin L-functions.

1. Notation and preliminaries

We fix the following notation.

n >3 is an integer.‘3

If k is a field, k denotes an algebraic closure of k.

When X is a square matrix, 8% (X) denotes the multi-set of eigenvalues of X.
When A is a multi-set with elements in a ring R with r € R, write r- A for the
multi-set formed by the elements ra € A as a ranges over A. For n € Z~(, write
A®™ for the multi-set consisting of a € A whose multiplicity in A™ is n times that
in A.

e Fis anumber field. (In the main text, F is a totally real field with a distinguished
embedding into C.)

Op is the ring of integers of F. R

Ap is the ring of adéles of F, Ap:=(FQR) x (FQZ).

If S is a finite set of F-places, then A% C Ar is the ring of adeles with trivial
components at the places in S, and Fg:=]], g Fo; Foo := F®qR.

If q is a finite F-place, we write g4 for the cardinality of the residue field of g.

|-]: Aj — RZ, is the norm character on Ay that is trivial on F*. Denote by
| |o: B — RZ, the restriction of |-| to the v-component. Our normalization is
that |- |4 sends a uniformizer of Fy to g; ', whereas |- |, is the usual absolute value
(resp. squared absolute value) when v is real (resp. complex).

If S is a set of prime numbers, we write S for the set of F-places above S.

If p is a prime number, then F, := F ®q Q,.

£ is a primenumber (typically different from p).

Qy is a fixed algebraic closure of Qp, and ¢: C = Q, is an isomorphism.

For each prime number p, we fix the positive root p'/2 € R C C. From ¢, we then
obtain a choice for p'/2 € Q,. If ¢ is a power of p, we obtain similarly a preferred
choice ¢*/? in Q, and in C.

[ =T :=Gal(F/F) is the absolute Galois group of F.

For a finite extension E of F in F, write 'y := Gal(F/E) and I'g/ := Gal(E/F).
o I'y=Tg :=Gal(F,/F,) is (one of) the local Galois group(s) of F' at the place v;
Wpg, C Ty is the corresponding Weil group.

3We should mention that if n < 3, there are exceptional isomorphisms of GSOa2,, (and its outer
forms) to other simpler groups; for instance, for n = 3, the Shimura varieties that we obtain
are (closely related to) Shimura varieties for unitary similitude groups. In particular, more
general results are already known.
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e For each F-place v, choose an embedding ¢, : F < F,,, which induces I, < I that

is canonical up to conjugation.

Voo := Homg(F,R) is the set of infinite places of F.

¢y € T is the complex conjugation (well-defined as a conjugacy class) induced by
any embedding F — C extending y € Va.

e If S is a finite set of F-places, write I'p g for the Galois group Gal(F'(S)/F) where
F(S) C F is the maximal extension of F' that is unramified away from S. If S is a
set of rational places, we write I'p g := ' gr.

e Frob, at a finite prime q of F' means the geometric Frobenius element in the
quotient of I'y by the inertia subgroup, or the image thereof in I'r g. (The image
in I'r g depends on the choice of ¢q, but its conjugacy class is independent of the
choice.)

e When G is a connected reductive group over F, write G and LG =G x I'r for
the Langlands dual group and the L-group, respectively (with coefficients in C or
Qy, depending on the context). If G splits over a finite extension E/F in F, then
GxT g/F denotes the L-group with respect to E/F. (Namely, such a semi-direct
product is always understood with the L-action of I'g/r on é) Often we use “G
to mean G x FE/F.4

e When H is a reductive group over Q,, we also use H to mean the topological
group H(Q,) by abuse of notation. This should be clear from the context and not
leading to confusion.

e When F is a p-adic field and G is the set of F-points of a reductive group over
F, we write Stg for the Steinberg representation of G (defined in [8, X.4.6], for
instance). Moreover, we write 1¢ for the trivial representation of G. In certain
cases, when G is clear, we write St = St or 1 = 1. We also sometimes write St,,
for Stqr, 7y (in case F' is clear from the context).

If G is an algebraic group, we write Z(G) for its center.
An inner twist of a reductive group G over a perfect field & means a reductive group
G’ over k together with an isomorphism 7 : Gy — G/E such that the automorphism

i~'o(i) of Gy is inner for every o € Gal(k/k). There is an obvious notion of
isomorphism for inner twists (G',i), cf. [38, 2.2]. We often say G’ is an inner
twist of G, keeping ¢ implicit. If we forget ¢ and only remember the k-group G’
and the existence of i, we refer to it as an inner form of G.

Fix G and E/F as above. We introduce some notions on the Galois side. By an (¢-adic)
Galois representation of I'r (with values in G xI'g,p), we mean a continuous morphism
p:Trp = G(Q) % Ty/p

which factors through I'r g for some finite set S and commutes with the
obvious projections onto I'g,p. Similarly, we define a Galois representation with the
source I'y or with values in “G(Q,). Two Galois representations are considered isomorphic
if they are conjugate by an element of é(@g) We say that p as above is (totally) odd if

4This is harmless for us as the inflation map induces a bijection of isomorphism classes of
L G-valued Galois representations when I'p /F is replaced with I'r in the semi-direct product.
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for every real place y of F, the following holds: writing Ad for the adjoint action of G
on LieG(Q,), which preserves the Lie algebra of the derived subgroup Gger, the image of
¢y under the composite

I, =T %26(Q) % GL(LieGaer (@)

has trace equal to the rank of Gae,. (Compare with [27].)
An FG-valued Weil-Deligne representation of Wp, is a pair (r,N) consisting of a
morphism

T WFq %é(@() NFEv/an

which has open kernel on the inertia subgroup and commutes with the canonical
projections onto I'g, s, , and a nilpotent operator N € Lie (A}'(@g) such that Ad(r(w))N =
|w|N for w € Wg,, where |-|: Wg, — ||q||* is the homomorphism sending a geometric
Frobenius element to |/q||~!; here, ||q|| € Z~o denotes the norm of q. The Frobenius-
semisimplification (%%, N) is obtained by replacing r with its semisimplification. We say
(r,N) is Frobenius-semisimple if r = r%.

Let p: I'p — @(@4) x'p/r be a Galois representation. Write p for the prime of F
induced by ¢4 : F'— Fy. Then the restriction (via ¢q)

plry: T'r, — G(Qy) x I'e,/F,

gives rise to an “G-valued Weil Deligne representation, to be denoted by WD(plrp, )-
The construction follows from the case of G = GL,, by the Tannakian formalism via
algebraic representations of G(Q,) x T B,/F,- (The case q|¢ is more subtle than q{ /. In
the former case, a detailed explanation is given in the proof of [50, Lem. 3.2], where G is
denoted by H. In loc. cit. I'g /g, is trivial but the same argument extends.) When q{/,
one can alternatively appeal to Grothendieck’s ¢-adic monodromy theorem to construct
WD(plrp, ) directly (without going through general linear groups).

A local L-parameter ¢ : Wr, x SL(2) — G (Q)xT EB,/F, 18 associated with a Frobenius-
semisimple ©G-valued Weil-Deligne representation (r,N) given by the following recipe:

rt=o(n (") ) ma w=s(1 (5 5)).

This induces a bijection on the sets of equivalence classes of such objects [28, Prop. 2.2].
In practice (where only equivalence classes matter), we will use them interchangeably.

We introduce some further notation and conventions in representation theory. If 7 is a
representation on a complex vector space, then we set 1m:=m ®C)L@[. Similarly, if ¢ is a
local L-parameter of a connected reductive group G over a nonarchimedean local field so
that ¢ maps into “G(C), then t¢ is the parameter with values in G(Q,) obtained from ¢
via ¢. If G is a locally profinite group equipped with a Haar measure, then we write H(G)
for the Hecke algebra of locally constant, complex valued functions with compact support.
We write H@[(G) for the same algebra but now consisting of Q,-valued functions. We
normalize every parabolic induction by the half power of the modulus character as in [7,
1.8], so that it preserves unitarity.
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Let G be a real reductive group, K a maximal compact subgroup of G(R), and K :=
K-Z(G)(R). Let £ be an irreducible algebraic representation of G over C. An irreducible
admissible representation 7 of G(R) is said to be &-cohomological if H*(LieG(C),K,n ®c
&) #0 for some i > 0. If this is the case, we assign a Hodge cocharacter over C (well-defined
up to @—conjugacy) as in [50, Def 1.14]:

HHodge (g) Grn — é

Let L be a finite extension of Q. Let H be a possibly disconnected reductive group over
Qy (e.g., an L-group relative to a finite Galois extension), and p: Gal(L/L) — H(Q,) a
continuous morphism. If p is Hodge-Tate with respect to each Qg-embedding i: L — Q,,
we define a Hodge-Tate cocharacter over Q, (well-defined up to H-conjugacy) as in [12,

§2.4] (cf. [50, Def 1.10]):

uur(p,i) : G, — H.

We recall the following lemma that can be easily deduced from the Chebotarev density
theorem, as it will be needed in §10. Let F' be a number field. The density of a set S
consisting of primes of F is defined to be the limit d(S) = lim, o0 an(S)/an(F), where
ay,(F) is the number of primes q with bounded norm ||q|| < n and a,(S) is the number
of g€ S with ||q]] <n [72, Sect. 1.2.2]. Depending on S, the limit d(S) may or may not
exist — in the former case, we say S has density d(S), and otherwise we leave the density
undefined.

Lemma 1.1. Let S be a finite set of places of a number field F. Let G/Q, be a linear
algebraic group and let r: Tr g — G(Q,) be a Galois representation with Zariski dense
image. Let X C G be a closed subvariety that is invariant by G-conjugation and such that
dim(X) < dim(G). Then the set of F-places q & S with r(Froby) € X(Q,) has density 0.

Proof. Let u be the Haar measure on I's = I'p g with total volume 1. We write X to
also mean X (Q,) to simplify notation. Then Y = r~!(X) is a closed subset of I's (hence
measurable) and stable under I's-conjugation. If we further have that u(Y) =0, then the
Chebotarev density theorem [72, I-8 Cor. 2b] implies that the set of places q ¢ S such
that Frobg € Y has measure 0, so we will be done.

So it suffices to prove that u(Y) = 0. We induct on dim(X) € {0,1,...,dim(G) —1}. We
may assume that X is irreducible by induction. When dim X = 0, then X is a point and
the preimage Y of X is a torsor under ker(r). We then have vol(Y) = vol(ker(r)) = 0,
since ker(r) C T'g is a closed subgroup of infinite index by hypothesis. Now assume that
the assertion is known whenever dim(X) < d and consider the case dim(X) =d < dim(G).
There exists an infinite sequence 71,72, ... € ['s such that the subset r(v;)X are mutually
distinct. (If the choice were impossible after ¢ = r, then multiplication by r(g) preserves
Uico, 7(7:)X for every g € I's. This cannot happen because r has Zariski dense image,
and the union has dimension d < dim(G).) Consider

I'sD U’yl-r_l(X).
i=1
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The volume of I'g is finite. Each term on the right-hand side is closed (so measurable),
and the volumes of ;77 1(X) are all equal. We claim that their pairwise intersections
have volume 0. If this is true, then we deduce that vol(y;r~1(X)) = vol(r~1(X)) = 0,
completing the proof.

It remains to verify the claim. Observe that the intersection

(*) v HX) Ny (X)), i # ]

maps into the intersection r(y;)X Nr(v;)X in G, which has dimension less than d, so
indeed (*) has measure 0 by induction hypothesis. This completes the proof. O

We also record a lemma on projective algebraic representations, which will be useful
later on.

Lemma 1.2. Let G be a connected simply-connected semi-simple group over C. Let T C
G be a mazimal torus. Let r1,79: G — PGLN be two projective representations whose
restrictions to T are conjugate. Then ry,79 are conjugate.

Proof. We claim that any r: G — PGLy can be lifted to a representation 7: G — SLy.
Let H := (G xpaLy SLy)?. Then f: H — G is a central isogeny and hence is an
isomorphism as G is simply connected [61, Prop. 18.8]. The composition G — H — SLy
is the desired lift.

After conjugating, we may assume that 71| = ro|r. By the preceding paragraph, we
can choose lifts 7; of r; for ¢ = 1,2. Define a morphism of varieties x : G — SLy by
x(g9) :==71(g9)72(g)~*. The image of x|r lies in px since r1|r = ro|7. Hence, the image is
trivial as T is connected, that is, 7|7 = r2|r. Hence, 71, 72 are GLy-conjugate because
the trace functions coincide on semisimple elements. It follows that rq, ro are PGLy-
conjugate. O

2. Root data of G5Oy, and GSpin,,
Let GOs,/Q be the algebraic group such that for all Q-algebras R, we have

GOz (1) = {3 € GLos (1) | Isim@y e £+ g+ (| 1) cg=simie)-(, 1) }.
(2.1)

(In the above formula, 1,, is the n x n identity matrix.) The group GOs,, is disconnected,;
its neutral component GSOg,, C GOgy, is defined by the condition det(g) = sim(g)”. The
groups GOs,,, GSOg,, are split and defined by a quadratic form of signature (n,n). An
element ¢ of the diagonal torus Tgso C GSOsy, is of the form

t = diag(t;)?", = diag(t1,ta, ... tn,tot] toty 5. . stotnt),  to:=sim(t). (2.2)

i=

Hence, Taso ~ G by sending t to (to,t1,...,tn). We identify X*(Tgso) = D Z-e;
and X, (Taso) =@ Z- e} accordingly. We let Bgso be the Borel subgroup of GSOa,
of matrices of the form
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g= (161 c;;lt’Bil) , A€BgL,, BEM,, B'=—-B and c=sim(g), (2.3)
where Bgr,, C GL,, is the upper triangular Borel subgroup. (To see that Bgso is indeed
a Borel subgroup, notice that any block matrix g = (4 8)with C' =0 is of the above form
if and only if g € GSOs4,,, and moreover, the displayed group is solvable of dimension
n?+1).

We realize the split forms of even (special) orthogonal groups in GOs,,/Q. Namely, we
write Ogy, (resp. SOg,,) for the subgroup of GOs,, (resp. GSOs,,) where sim is trivial.

Lemma 2.1. The root datum of GSOsq,, with respect to Bgso is described as follows.
(i) The set of roots (resp. coroots) consists of +(e; —e;) and *(e; +e; —eg) (resp.
+(ef —e}) and £(ef +ef)) with 1 <i<j<n.
(ii) The positive roots are {e; +e; —eoti<icj<n U{e€i —€;jti<icj<n, and the positive
coroots are {ef £ e} }1<icj<n-
(iii) The simple roots are ay =e1 —ea, ..., Ap_1 = €n_1— €y, and a, = €,_1 +e, —e€p.

3 ; \ VvV __ % * VvV __ % * Vv %k *
(iv) The simple coroots AV are af =ef—el, ay =es—ek, ..., a)_ 1 =e_;—ef and

n
V % *
o, =€, _1+e,.

Remark 2.2. The root datum of SO, is described similarly. Putting Tso := Tgso N
SO2, and Bgo := Baso NSOs,, we have Tgo = {t €Tgso :tg = 1} as well as X*(Tso) =
@7 e;-Z and X, (Tso) = @] e} - Z. To describe (positive or simple) roots and coroots,
we only need to formally set eg =0 in the lemma above.

Proof. The standard computation for SOs, as in [25, 18.1] can be easily adapted to
GSOay,. O

We define the following element (over any Q-algebra point of Os,,)°

1n—1

9 = — € Osn. (2.4)
ilnfl

1| 0

Since det(9°) = —1, we have ¥° ¢ SOa,,. We write §° € Aut(GSOs,,) for the automorphism
given by ¥°-conjugation.

Lemma 2.3. The automorphism 0° stabilizes Baso and Taso and acts on Taso by
(tost1,--+stn) = (to b1, tn—1,toty, ).
Furthermore, 0°(a;) = «; fori<n—2, 0°(an_1) = an, and 0°(ay,) = ap_1.

Proof. By a direct computation, 8°(Tgso) = Taso and 6°(Baso) = Baso- Since 6° only
switches t, and tg, = tot; !, its action on Tggo is explicitly described as in the lemma.

n

5The minus sign for ¥° makes it compatible with ¥ € GSpin,,, to be introduced above
Lemma 3.6.
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Thus, 6°(e;) =¢; for 1 <i<n-—1 and 6°(e,) = ey — e,, from which the last assertion
follows. O

We define GSpin,,, to be the Langlands dual group (ﬁ@n over C (or later over Q, via
t:C~Q@Q,). That is, GSpin,, is the connected reductive group over C, equipped with a
Borel subgroup Baspin and a maximal torus Tggpin, whose based root datum is dual to
the one of GSO,,, that we described above. In particular,

X (Taspin) = X" (Taeso) and  X*(Tgspin) = X«(Taso)-

Via the identification X*(Tgso) = Z"*', we represent elements s € Tgspin as
(80,81,---,8,). In Section 3, we will also define an explicit model of GSpin,, over Q
using Clifford algebras.

Lemma 2.4. There is a unique 6§ € Aut(GSpin,,) that fizes Tqspin and Baspin, switches

ay_; and o), leaves the other o invariant, and induces the trivial automorphism of the

cocenter of GSpin,,,. We have 02 =1, and on the torus Tgspin, the involution 6 is given by
(50,81, ++,8n) > (508my81, -+ 3 8n_1,5, ). (2.5)

Proof. We have 0(ej —ef, ) =ef —ej,, (1<i<mn)andf(e;_;—e};)=ey_+e;. Thus,

Oef)=e (1<i<n) and 6(e))=—e. (2.6)
The center of GSOg,, is the image of G, 3 2+ (22,2,...,2) € Taso. The dual map is

Taspin = Gm, (80,81, ..,8n) sgslmsn. (2.7)
Thus, 0(2ef+ef+---+e) =2el+ef+---+ek, so 0(2ef) —er =2ef +el and 0(ef) =
ey +en- O
Lemma 2.5. We have Z(GSpin,,,) = {(S0,.--,8n) : $1 = S2 = -++ = s, € {£1}}, which is
isomorphic to Gy X {£1} via (So,...,Sn) + (S0,51). In the latter coordinate, 0(sg,s1) =
(s081,51)-

Proof. Let s € Tgspin. Then s € Z(GSpin,,, ) if and only if &V (t) =1 for all «¥ € AY. From
Lemma 2.1(4ii), we obtain s;/s;4+1 =1 (i <n—1), and s,_15, = 1. Hence, s € Z(GSpin,,,)
if and only if s =--- =s, € {£1}. By (2.5), we get 0(s¢,51) = (S081,81). O

The Weyl group of GSOs,, (and GSpin,,,) is equal to {+1}™’ x &,,, where {41}’ is the
group of a € {£1}" such that []} a(¢) = 1. The action of Wgso on Tgso is determined by

(2.8)

O’-(to,tl,...,tn) :(to,ta(l),...tg(n)) ceG,
a-(to,ti,. .. tn) = (to,toty toty Htsyeytn) a=(—1,—1,1...,1) € {£1}™".

We define, for € € {£1}, the following cocharacter:

(L1,...,1,1) ife=(—1)" )
= € 2" = X,(Teso) = X*(Taspim). (2.9
fe {(1,1,...,1,0) ife = (—1)nt1 (Taso) (Taspin).  (29)

Then . is a minuscule cocharacter of GSOg,, with (o, i) =1 if and only if ¢ =n (for
e=(-1)") and i =n—1 (for e = (—1)"*1).
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Definition 2.6. For ¢ € {+,—}, define the half-spin representation spin® = spinj,, to
be the irreducible representation of GSpin,, whose highest weight is equal to p. in
X*(Taspin)- By the spin representation of GSpin,,,, we mean spin := spint @spin~.

These representations will be realized explicitly via Clifford algebras. Our sign
convention is natural in that spin® (resp. spin~) accounts for even (resp. odd) degree
elements. See (4.2) and Lemma 4.1 below.

The minuscule z. has 277! translates under the Weyl group action. Thus, each half-spin
representation has dimension 27~ !. More precisely, the weights of spingzl)n are

Taspin 3 (50,51,--58n) = (80 I1 51) € 2" = X, (Taso) = X*(Taspin),
ieU UC{;,‘Z ..... n}
(2.10)

_q\n+1
and spin(znl) has similar weights, except that the cardinality of U is now required to

be odd. By computing the f-action on weights, we verify that (see Lemma 4.4 for an
explicit intertwiner)

spinT 0 ~spin~ and spin~ 0 ~spinT.

Lemma 2.7. The kernel Z¢ of spin® is central in GSpin,,, and finite of order 2. The
nontrivial element z. of Z° equals (¢, —1) € Gy, x {£1}. The spin representation of
GSpiny,, is faithful.

Proof. Since GSpin,,, is simple modulo the center, the kernel Z¢ C GSpin,, must
be central. The central character is the restriction of jio: Tggpin — Gm to the center
Z(GSpiHQn) C TGSpin~ Let s = (50,81,...,Sn) = (a,b) € Z(GSpinQn) C TGSpin- Then (see
proof of Lemma 2.5)

S0S1 - Sp = ab™ ife = (—1)"
pe(s) =

2.11
5081+ Sp_1 = ab""l ife = (—1)"*1, (2.11)

The first assertion follows by considering the 4 different cases where n even or odd and
e = +1. For the second point, it suffices to observe that ZTNZ~ = {1}. O

Later on, the following fact on SOs,_; will be needed, so we record it here.

Lemma 2.8. Let n > 3. Up to isomorphism the group SOs,_1 has exactly one faithful
representation of dimension 2n, namely, stda, 1D 1.

Proof. We use the root system notation and conventions from [10, Ch. 4, p. 253]. Assume
V) is a nontrivial irreducible representation of SOs,_; with highest weight A #£ w;. We
show that dim(V)) > 2n. Write A = Z?:_ll xiw; with ; > 0. If 2; #£ 0 for some i with
n—1>i>1, then dim(V}y) > dim(V,,,), and dim(V,,,) = dim(A’std) > 2n. We thus assume
A =xziw1 + Tpo1wp—1. If -1 =0, then, as A\ # w;y, we have dim(V)) > dim(Va,,) =
(n—1)(2n+1) > 2n by the Weyl dimension formula. Assume z,_; # 0. We cannot have
Zn—1 = 1 because then, V) does not descend to SOg,,_1. Thus, dim(Vy) > dim(Va,, ),
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which equals 10 if n =3, 35 if n =4, and if n > 4, then dim(Va,,,_,) > dim(V,,, _,)
2n=1 > op,

Ol

3. Clifford algebras and Clifford groups

We recall how GSpin,,, is realized using the Clifford algebra, and we define a number of
fundamental maps such as istq : GSpin,,,_; < GSpin,,, and the projections from GSpin,,
to GSOs2, and SOs,. We also give a concrete definition of outer automorphisms 6 of
GSpin,,, and 6° of GSOg,. Our main reference is [4], which introduces Clifford algebras
over arbitrary commutative rings (with unity). Other useful references are [9, §9] and [25,
§20].

Let V be a quadratic space over Q with quadratic form @, giving rise to the groups
O(V), GO(V), SO(V) and GSO(V). The Clifford algebra C(V') is a universal map V —
C(V) which is initial in the category of Q-linear maps f: V — A into associative Q-
algebras A with unity 14 such that f(v)? =Q(v)-14 for all v € V. (See [4, (2.3)] or [9,
§9.1].)

We define (z,y) := Q(x+y) — Q(z) — Q(y) for x,y € V, and similarly, (z,y) = (z+y)? —
22 —y? for 2,y € C(V). In particular, (x,y) measures if # and y anti-commute in C(V):

() = (x+y)? —2? —y?> =zy+yx c C(V). (3.1)

The map V — C(V) induces a map V — C(V)°PP (sending each v € V' to the same
element), where C(V)°PP is the opposite algebra. The latter factors through a unique Q-
algebra map B: C(V) — C(V)°PP. It is readily checked that (52 is the identity on C'(V).
By the universal property, S is the unique involution of C'(V') that is the identity on V.

The universal property also yields a surjection from the tensor algebra

P vel—cw).

dGZzo

Define C*t = C(V)T (resp. C~ = C(V)™) to be the image of ®gez.,V®%¢ (resp.
Daez-,VE?*1) so that C(V) = C(V)T @ C(V)~. In fact, the discussion of Clifford
algebras so far works when V is replaced with a quadratic space on a module over an
arbitrary commutative ring, in a way compatible with base change: in particular, if R is
a (commutative) Q-algebra, then C(V ®gR) =C(V)®qg R [9, §9.1, Prop 2]. By scalars
in C(V®gR), we mean R times the multiplicative unity. We keep using 8 to denote the
main involution of C(V ®g R).
The Clifford group GPin(V) is the Q-group such that for every Q-algebra R,

GPin(V)(R) = {z € C(VegR)* :2(V®g R)z™' =V ®g R,z is homogeneous},

where homogeneity of z means that € C(V ®q R)® for some sign ¢. The special Clifford
group GSpin(V) is defined similarly with CT in place of C. The embedding of invertible
scalars in C'(V ®g R) induces a central embedding

Gy, — GSpin(V). (3.2)
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Since zf5(z) € R for z € C(V ®q R) by [4, Prop 3.2.1 (a)], we have the spinor norm
morphism

N: GPin(V) = Gy, x> zf(z)

over Q. (The involution in loc. cit. differs from our 8 by C(—1p) in their notation, so
our N does not coincide with their N, but N and N have the same kernel.) Evidently,
composing N with (3.2) yields the squaring map.

Define Spin(V') by the following exact sequence of algebraic groups:

1 — Spin(V) — GSpin(V) N Gy — 1.

Lemma 3.1. The following are true, where kernels and surjectivity are always meant in
the category of algebraic groups over Q.

(i) The map pr° = pry: GPin(V) — O(V), z+— (v avax™!) is surjective for dimV
even, and pr°: GPin(V) — SO(V) is surjective when dimV is odd.
(ii) We have ker(pr®) = Gy, via (3.2).
(iii) pr: GPin(V) — GO(V), z — (v 2vB(z)) is a surjection, and simopr = N2.

(iv) The map pr factors as GPin(V) (pr”AV) O(V) x GL4 kg GO(V), where the latter

is the multiplication map. The map (pr°,N') has kernel pio (scalars {£1} in C(V'))
and image O(V) x GL; (resp. SO(V) x GL1 ) for n even (resp. odd).

(v) The multiplication map Spin(V) x G, — GSpin(V) is a surjection with kernel
{£(1,1)} (diagonally embedded ), where {1} — Spin(V') via (3.2).

Proof. (i) The surjectivity can be checked on field-valued points. This is proved in [9,
§9.5, Thm. 4].

(ii) As V C C(V) generates the Clifford algebra, the identity axvz~! = v implies
zyr~t =y for all y € C(V), and the analogue holds for C(V ®g R) for Q-algebras R.
Thus, ker(pr®)(R) consists of invertible elements in the center of C(V ®q R). Let W C V
be an isotropic subspace. Then C(V ®g R) ~ End(A(W ®qg R)) as super R-algebras by
[4, (2.4) Thm.], so the center of C'(V ®g R) is R, implying that ker(pr®) = Gyy,.

(iii) We observe that pr(z) preserves V: as x(V ®q R)z~! =V ®@g R and z(z) € R*
imply that z(V ®q R)B(x) = V ®g R. Moreover, pr(z) € GO(V) as

Q(zv8(2)) = zvB(x)zvp(z) = N (2)*Q(v). (3-3)

Moreover, pr and pr° coincide on Pin(V'), so (S)O(V) is in the image of pr. However, N/
is seen to be surjective by considering scalar elements, telling us that the image of pr also
contains G, (scalar matrices in GO(V)). Since Gy, and (S)O(V') generate G(S)O(V), the
surjectivity of pr follows. The equality sim o pr = N2 follows from (3.3).

(iv) The first part follows from pr(z)(v) = 2v83(z) = zvr~1zB(x) = pr°(z)(v)N (x) when
xz € GPin(V) and v € V. The second part is easily seen from (i) and (ii).

(v) This readily follows from the preceding points. O

If V is odd dimensional, then SO(V) x {£1} = O(V), and the group GO(V) is
connected. For convenience, we define GSO(V) := GO(V) in this case. If dim(V') is even,
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then O(V) (resp. GO(V)) has two connected components but does not admit a direct
product decomposition into O(V') (resp. GSO(V)) and {£1}.

Assume that we have an orthogonal sum decomposition ¢: Wy @ Wy = V of nondegen-
erate quadratic spaces over Q. As super algebras, we have ([4, (2.3)] or [9, §9.3, Cor. 3,
Cor. 4])

C<p: C(Wl)®C(W2) 5 C(V), w1<§>w2 = wiWs.

By definition, the algebra given by @ on the left side has underlying vector space C' (W) ®
C(W3) and product
(a®b) - (c®d) := (—1)*"*cacRbd,

if a,c € C(W1), b,d € C(W3) are homogeneous elements of degree kq,kp, ke, kq € Z/27. The
sign is there to make C, compatible with products since be = (—1)***<cb in C(V).
In fact, C, intertwines the involution § on C(V') with the involution

B': C(W1)&C(Wa) — C(W1)RC(Wa), B'(a®b) = (—1)"* B, (a)B2(b),

for homogeneous elements a € C(W7), b€ C(Ws) of degree kg, ki, € Z/2Z, where (1,3, are
the involutions of C'(W7) and C(Ws) (see below (3.1)). To verify that /3 is compatible with
B', observe that 8 on C(V) restricts to (1,02 via the obvious inclusions C'(W;) — C(V)
and C(W3) < C(V) induced by W7 C V and Wa C V (since § acts as the identity on both
W1 and Ws), and use the property that 81, 82, and § are preserving degrees. It follows
that

B(ab) = B(b)B(a) = (~1)*" B(a) B(b) = (~1)*** B1(a) B2(b).

Lemma 3.2. The mapping C, induces a morphism GSpin(W;) x GSpin(Ws) —
GSpin(V).

Proof. We check that the image of C, is in GSpin(V). Let g € GSpin(Wy), h €
GSpin(Ws). Note that C,(g®h) = gh € CT(V). Let wy +ws € V with w; € W;, i = 1,2.
To verify that gh € GSpin(V'), since homogeneous elements of even degree commute with
each other if they are perpendicular, we see that

gh(wy +w2)h ™' g™" = guwig™" +hweh ™' € V. H
Lemma 3.3. The diagram
Cop .
GSpin(W1) x GSpin(Wy) ——  GSpin(V)
pr?,v1 ><pr‘€,v2 i ipr%
LWy, Wy
SO(W7) x SO(Ws) SO(V)
commutes, where iy, w, s the block diagonal embedding.
Proof. Immediate from the computation in the proof of the preceding lemma. O
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In later chapters, we will carry out explicit computations. It will then be convenient to
work with fixed bases and quadratic forms. For this reason, we now fix quadratic forms on
the vector spaces Vo, = C?" and Va,,_1 = C?"~!. We take the following quadratic forms:

Qon: T1Tpy1 +ToTnio+... +TpT2,0nC?"
Q2n—1: Y1Ynt1+--- +Yn—2Y2n—2 +y3,_0onC>" L. (3.4)

Using them, we write SO,, = SO(V,,), GSO,, = GSO(V,,), and likewise for O,,, GO,,,
for m = 2n and m = 2n — 1. This is identical to the convention of §2 for m even. Similarly,
we write pry,_; =pry,  and pr3, =pry, .

Now we claim that GSpin(Va,) is isomorphic to GSpin,,, of §8, that is, the Clifford
algebra definition is compatible with the root-theoretic definition as the Langlands dual
of GSOg,,. (An analogous argument shows that GSpin,,, _; is dual to GSps,,_,.) As this is
a routine exercise, we only sketch the argument. First, pr® restricts to a connected double
covering Spin(V,,,) — SO(V;,,) ([25, Prop. 20.38]), which must then be the unique (up to
isomorphism) simply connected covering. This determines the root datum of Spin(V;,).
From this, we compute the root datum of GSpin(V;,,) via the central isogeny Spin(V;,) x
Gy, — GSpin(V;,) of Lemma 3.1. Finally, when m = 2n, we deduce that the outcome is
dual to the root datum of GSOs,, in Lemma 2.1. Therefore, GSpin(Va,,) is isomorphic to
GSpin,,, of §8. Henceforth, we identify

GSpin(Va,) = GSpin,,, . (3.5)

In fact, we may and will choose Bggpin and Tggpin to be the preimages of Bgo and Tso
via pr° : GSpin,,, — SOs,. We fix pinnings of GSpin,,,, GSOs,, and SO, (which are
I'p-equivariant if (Vay,,Q2,) is defined over F') compatibly via pr and pr°.

Lemma 3.4. Via (3.5), the central embedding of scalar matrices cent® : G,;, — GSOa,
and sim : GSOq,, = G, are dual to N : GSpin,,, — G,, and the central embedding cent :
Gy — GSpin,,, of (3.2), respectively.

Remark 3.5. The dual map of cent® was made explicit in (2.7). According to the present
lemma, (2.7) gives an explicit formula for N restricted to Tgpin-

Proof. Write Z° for the identity component of the center of GSpin,,, consisting of
(s0,1,...,1) with sg € G, in the notation of Lemma 2.5. The dual of sim : GSOg,, — G, is
calculated as the central cocharacter G,, — Z° C GSpin,,,, 2+ (2,1,...,1). The inclusion
cent : G,,, — GSpin,,, identifies G,,, with Z°. Thus, cent is dual to sim.

Both N ocent and simocent® are the squaring map on G,,. Using the hat symbol to
denote a dual morphism, we see that

N ocent = cent® o 5im = cent® o cent
and that they are all equal to the squaring map. It follows that A is dual to cent®. [J
We have the morphism of quadratic spaces

0 (C" 1 Qan—1) = (C*™",Q2n), Y+ (Y1,Y2- s Yn—1,Y2n—1,YnsYnt 1s - - - Y2n—1)-
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Indeed, Q2 = Q2,—1 as readily checked. We have the complementary embedding:

=0 k#mn, 2n

¢':C—C?, wuwsx, where .
= (=1 if k=nor k=2n.

Write U := ¢/(C) = (e, — €2y) - C for the image. The induced quadratic form on U is
then a- (e, — eay,) — —a?. This gives us an orthogonal decomposition of quadratic spaces
C?>" =C?>"18U. Let PO,, denote the adjoint group of O,,. The decomposition induces
morphisms (cf. Lemmas 3.2, 3.3)

Z.s.td = CLP,Lp,: GSpinQn—l X Gsplnl - Gspin2n7

igtd = tc2n-1,ct O2p—1 X O1 = Og,, and

@ = POanl — POQna (36)
where igq is induced from igq: GSpin,,_; x GSpin; — GSpin,,, —» PSO2, C POs,. By

Lemma 3.3, we have proigq = i%4 0 (pr5,_1 X pryy).
Let 1a, 1,1y denote the identity map on C2"~1 U. Then (cf. (2.4))

1n71

iga(—lon—1,1v) = — i =19° € Og,.
PoAn—

Fix v/—1 € G,,, = Z(GPiny, ). Define
Y= vV —1- istd(lc(czn—l)é(en — €2n)) =V —1(6n — €2n) (S GPingn\GSpiDQn. (37)
Lemma 3.6. We have

(i) prs,, (9) =9° and 9% =1.

(ii) The conjugation action of ¥ (resp. 9°) fizes the subgroup istqa(GSping, ; X
GSpin, ) C GSpin,,, via igta (Tesp. SO2,—1 X SO1 C SOg,, via i%y) and induces the
identity automorphism on that subgroup.

(iil) The conjugation action of ¥ (resp. ¥°) defines the outer automorphism 60 of
GSpin,,, (resp. 0° of GSOa,) in Lemmas 2.3 and 2.4.

Proof. (i) Let w; € C>*~1 and wsy := e, — ez, € U. All of wy,wy,9 have degree 1 in
C(C?). In either C(C?") or C(U), we have w3 = Qa, (w2) = —1 and ¥? = —w3 = 1. Thus,
Yw19~ = —w 997 = —w; and Ywe? ! = we. Hence, pr,, (V) = 9°.

(ii) This is obvious for 9¥°. The conjugation by ¥ is the identity on C*(C?"~!) and
C*H(U), since ¥ L C?"~! and CT(U) is commutative, respectively. The assertion for ¥
follows.

(iii) This is true by definition for §°. Since 6 and the conjugation by ¥ act trivially on
the center of GSpin,,,, it suffices to check that their actions are identical on the adjoint
group. This reduces to the fact that 6° is given by the ¥°-conjugation, as 8 and 6° (resp.
¥ and 9¥°) induce the same action on the adjoint group (thanks to part (i)). O
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We have fixed pinnings of GSpin,,,, GSOs2, and SO, compatibly via pr. They are
fixed by 6 € Aut(GSpin,,,) and 6° € Aut(GSOs,). It is easy to see that 6 and 6° induce
automorphisms of based root data, which correspond to each other via duality of the two
based root data. Thus, letting E/F be a quadratic extension of fields of characteristic 0,

and GSO;EH/F an outer form of GSOg,, over F with respect to the Galois action I'g,/p =
{1,c} = {1,0}, we can identify

L(GSOE/T) = GSpiny,,, x {1,c} = GPingy,

where the semi-direct product is given by cgc™! = 6(g). (Of course, ¢ = ¢~1.) The second

identification above is via ¢ — 1. Similarly, for SO2En/ F an outer form of SOs, with respect
to I'g/p = {1,c} = {1,0°}, we have

LSO/ Y =800, x {1,c} =04y via ¢ 0°.

Let us describe the center Z(Spin,,,) of Spin,,, = Spin(Va,) explicitly as this is going
to be useful for classifying inner twists of (quasi-split forms of) SOs, and GSOa,, in §8.
In what follows, we identify Z(GSpin,,,) = {(s0,51) : S0 € G, s1 € {£1}} as in Lemma
2.5 and write 1, —1 for (1,1),(1, —1) € Z(GSpin,,, ).

Lemma 3.7. Let (4 be a primitive fourth root of unity. Recall the elements z4 defined in
Lemma 2.7. Then we have Z(Spin,,,) C Z(GSpiny,,) via Tspin C Taspin explained above,
and the following are true.
(i) If n is even, Z(Spiny,) = {1, —1,z,,2_} and is isomorphic to (Z/27)*. If n is odd,
Z(Spiny,,) = {1, = 1,¢, = ¢ = (1} and is isomorphic to Z/AZ, where { = ({4, — 1).
(ii) The action of 0 is trivial on {1, —1} and permuting {z4,z_} (resp. {¢,—(}).
Proof. We have Z(Spin,,,) = Z(GSpin,,, ) NSpin,,, = {z € Z(GSpin,,,) : N'(z) = 1}, where
N is described by (2.7) (Remark 3.5). It follows from Lemma 2.5 that

Z(Sping,) = {(s0,51) : 55 = 51},

which is alternatively described as in (i). Assertion (ii) is also clear from that lemma. O

4. The spin representations

We recollect how to construct the spin representations via Clifford algebras, and we show
that they coincide with the highest weight representations in Section 2. We also check
some compatibility of maps that will become handy.

Consider the quadratic space Va, := C?" from (3.4) with standard basis {ei,..,ean}
and quadratic form Qa,. Define Wy, := @7, Ce; and W3, := ®2”, ., Ce;. We often omit
the subscript 2n to lighten notation, when there is no danger of confusion. Since W is
isotropic, we obtain a morphism AW = C(W) < C(V). Through this injection, we view
AW as a subspace of C(V'). The space AW carries an C(V')-module structure

spin: C(V) — End(/\ W)
that is uniquely characterized by the following:
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o we W CV acts through left multiplication,
e and w' € W/ CV acts as
w (wy Awa A+ Awy) = Z(—l)”l(w’,wi}(wl Awa A AW A+ Awy)  (4.1)

i=1
onwy A Aw,. € N"W C AW.

The subspaces A TW := /\i62220 W and AW := /\i€1+2ZZO W of AW are stable under
C* (V). By restriction, we obtain the spin representations

spin: GPins, — GL ( A W) and  spin®: GSpin,, — GL ( /\iw) L (42)

We recall that the representations spin® are irreducible. In (4.5) and (4.6) below, we will
choose (ordered) bases for A W and /\i W coming from {ey,...,e,} to view spin and spin™
as GLgn and GLgn-1-valued representations, respectively. We had another definition of
spin® as the representation with highest weight . (Definition 2.6), € € {+,—}. Let us
check that the two definitions coincide via (3.5).

Lemma 4.1. The highest weight of the half-spin representation spin® of GSpin,,, on
AW is equal to ..

Proof. We may compare p. and the highest weight of spin® after pulling back along
Spin,,, X G, — GSpin,,,. They coincide on Spin,, by [25, Prop. 20.15] and evidently
restrict to the weight 1 character on G,,. The lemma follows. O

Let us introduce a bilinear pairing on AW which is invariant under the spin
representation up to scalars. Let pr, : AW — C denote the projection onto A" W,
identified with C via e; A---Ae, +— 1. Write 7: AW S AW for the C-linear anti-
automorphism wq A --- Aw, — w, A---Awy for r > 1 and wy,...,w, € W. Define

((tir,t2)) 1= pr, (7(1in) Atia), 1y tig € [\ W.

We write spin” and spin®" for the dual representations of spin and spin®. By the preceding
lemma, the highest weight of spin®" is in the Weyl group orbit of (u.)~*'.

Lemma 4.2. The pairing (( , )) is nondegenerate; it is alternating if n = 2,3 (mod 4)
and symmetric if n=0,1 (mod 4). The restriction of ((, ) to each of N*W and N~ W
is nondegenerate if n is even, and identically zero if n is odd. We have

((spin(g)tb,spin(g)iba)) = () (th1,1b2)), g € GPing, (C), by € AW,  (4.3)
In particular, we have spin® ~ spin(*l)ne’v QN.

Proof. The first two assertions are elementary and left to the reader. The last assertion
follows from the rest. For the equality (4.3), we claim that

(ctbr,in) = ((r,B(c)in)), € O(V), iz € \W. (4.4)
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Since GPing,, C C(V), this implies (4.3) as

((spin(g)w1,spin(g)ws)) = ((w1,spin(B(g)g)w2)) = B(g)g((w1,1w2)).

It remains to prove the claim. The proof of (4.4) reduces to the case ¢ € V', then to the
two cases ¢ € W and ¢ € W’ by linearity. In both cases, (4.4) follows from the explicit
description of the C'(V')-action as in (4.1). Indeed, (4.4) is obvious if ¢ € W. When c € W',
it is enough to show that for 0 <r,s<n, 1 <i; <--- <%, <n, 1 <j; <--- <js <n, and
1<k<n,

T(entrlei Ao Aei ) Aejy Ao Nej ) =T(eiy A Aei, ) Aengr(ej, Ao Aej. ).
(This implies (4.4) by taking pr,,.) The equality is simply 0 =0 unless k = ry = s¢ for
some 1 <79 <7 and 1 < sy <s. In the latter case, the equality boils down to

(=17 % e, A A&, A Aeiy Aeg, A Ney,
= (—1)°* e, Ao ANeg, Nej, A= A€y, A Aej,,

which is clear. The proof is complete. O

We also discuss the odd case. Equip Va,_1 = C?>"~! with standard basis {fi,...,fon_1}
and quadratic form Qa,—1 of (3.4). As in [25, p.306], we decompose

‘/271—1 = C2n71 = WQn—l @Wén_l ©® U2n—17

where Wo,,_1 := @?;f@fi, Wi, 1= @?LL;Z(C]}, and Us,_1 := Cfa,_1. Again, we omit
the subscript 2n —1 when it is clear from the context. Then W and W' are (n—1)-
dimensional isotropic subspaces, and U is a line perpendicular to them. As in the even
case, each of AW and AT W can be viewed as a subspace of C(V) and has a unique
structure of left C(V)-module where

o weW CV acts on AW through left multiplication,
o w €W CV acts as in (4.1) (cf. [25, 20.16]),
e fon_1 acts trivially on AT W and as —1 on A~ W.

Consider the bijection

wi A Aw. ANey, 1T odd

~ +
’L/)Z /\W2n71—>/\ Won, wiA---ANw, —
wi A ANwy, 7 even.

Lemma 4.3. For all g € GSpin,,,_; and all w € A Way,_1, we have isq(g9)Y(w) = ¥(gw),
where isq(g) and g act by spin™ of GSpin,,, and spin of GSpin,,, ;, respectively.

Proof. We keep writing W =Wa,_1, W =W}, U =Us,_1. We identify V5, = (W &
UleW' e U? via Wa, = W e U and W), = W @ U? with U! = Ce,, and U? = Cey,,
mapping the basis of W (resp. W’) onto the first n — 1 elements in the basis of Wa,
(resp. W3,,). This also gives the embedding Va,,_1 C Va,, with U diagonally embedded in
U'@U? (30 fan,_1 maps to e, +ea,), as in the formula below (3.4).

There is an obvious embedding ™ : AW — A(W @ U?'). We also have (= : AW <
AW e U?') by (-)Ae,. Both o+ and ¢~ are C(W @ W')-equivariant, by using that left
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and right multiplications commute and that e, is orthogonal to W & W’. Furthermore,
¢~ intertwines the fo,_1-action on A~ W, which is by multiplication by —1, and the
en + eay,-action on /\+(W® Ul), since wAe, = —e, Aw if we A\~ W and since W L es,
with respect to Qap,.

Now we claim that ¢ is CT(W @ W' @ U)-equivariant, which implies the lemma by
restricting from CT(W & W' @& U) to GSpin,,,_;. It suffices to verify equivariance of
¢ under CH(W @W’) and C~(W @ W) ® fop_1. But ¢ is 7 on ATW and ¢~ on
/A~ W. Thus, the claim is deduced by putting together the equivariance in the preceding
paragraph. O

Lemma 4.4. Let ¥ € GPiny, be the element from (5.7). We have /\+W2n SN Wap,, v
Yz. We have spin® o = spin~ wia this isomorphism (i.e., 9(spin™ (g)z) = spin~ (6(g))Vz
for each g € GSpin,,, ).

Proof. Henceforth, we omit the symbol A for the wedge product in Ws,,. Consider v =
€k, "€k, € /\+VV2m with k& < ke <... <k, and r is even. Then

- '/*1(6n€k1 ceek, — €2 €y -~~ekr) € /\Wzm

where ey, acts by (4.1). Thus, the isomorphism follows from the following computations.

0, k. =n,
enekl . 'ekr =
€ky €k Eny kpFMN,

r
. . —ek, €l _ k.=n
€an€ky €, = E (*]—)Z+1<€2m€ki>ek1 R R {O 1 1) kr 7& 3
) r 7 M.

=1

act through the C(V)-module structure on x € A Wa,. But this is clear since 6(g)

The last assertion comes down to showing that vgx = 0(g)Jz, where ¥g,0(g)9 € C(V)
Hg9—1. O

Consider the basis {by} of A Wa,, with
bU = (_1)#U6k1 'ekz o 'ekr S AW2717 (45)

where U = {k; < ko < --- < k,.} ranges over the subsets of {1,2,...,n}. The U of even size
form a basis for /\+W2n, and the U with odd size form a basis for A~ Wa,. Order the
by for U odd, and the by for U even, in such a way that the ordering of {bu }|u:cven
corresponds to that of {by}|y|.caa Via by = Yby /v/—1. Then these orderings of the by
give us two identifications

GL ( /\+W2n> X QLye s and GL ( /\*W%) 2 Glgn 1, (4.6)

such that the following proposition holds.
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Proposition 4.5. The following diagram commutes

GSpiny,,

istd spint
0

GSpiny,,_; - GLgn—1

GSpin,,,

Proof. This follows from Equation (4.5), Lemmas 4.3 and (proof of) Lemma 4.4. O

5. Some special subgroups of GSpin,,,

In this section, the base field of all algebraic groups is an algebraically closed field of
characteristic 0 such as C or Q,. We begin with principal morphisms for GSpin,,, ; and
GSpin,,,. (See [64, Sect. 7] and [29, 73] for general discussions.) The following notation
will be convenient for us. Denote by

Jreg: Gm x SLo — GSpin,,,

the product of the central embedding G,, — GSpin,,,_; and a fixed principal SLo-
mapping. Note that j.e, has the following kernel:®

{<(1, (H 2, i n(n—1)/2is odd,

(L, (%" %)), if n(n—1)/2The following are true: is even.

We write Gpri C GSpin,,,_; for the image of jies. The group Gy, is isomorphic to GLo if
n(n+1)/2 is odd, and to Gy, x PGLy otherwise. Using igq from (3.6), we define

ireg = istd Ojreg5 Gm X SL2 — GSpinzn.
The map pr° oiyeg : Gy X SLa — SO4, factors through PGLy — SOs,,, to be denoted i;’eg,
via the natural projection from G, X SLy — PGLq (trivial on the G,-factor). We see that
the preimage of i%,,(PGL3) in GSpin, is ista(Gpri). Denote by jreg : PGLa — PSOg,—1

reg
the map induced by j.ce on the adjoint groups.” We also introduce the map

ireg = mO@Z PGL2 — PSOQn

Recall that we have fixed earlier the group SOg in (2.1) (cf. below (2.3)). Let Taspin, C
GSpin; be as in [50, §Notation] and put Tspin, = Taspin, N SPing.

We will now fix a convenient basis for X, (Tspin,). We have X, (Taspin,) = X*(Tasp,) =
69?:0 Ze;, the center Zagsp, C Tasp, equals {(t2,t,t,t)[t € Gy} (use the roots a; listed in

5To see this, one can use Proposition 6.1 of [30], where the SLa-representations appearing in
spin

the composition SLo LN GSpin,,,_; — GLgn-1 are computed.
"When denoting the group standing alone, we prefer SOz, _1 to PSO2,—1. When thinking of a
projective representation or a subgroup of PSOz,, via 154, we usually write PSO2p,—1.
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[loc. cit., p.10]), and so X*(Tasp,) = X *(Zasp,) identifies with Z* — Z, (x;) — 2a¢+a1 +
az +az. Thus, X, (Tspin,) = {(a;) € Z*|2ag + a1 +az +az = 0}. By projecting (a;) € Z*
onto (ay,as,as3), we obtain

X+(Tspin,) = {(a1,a2,a3) € 73 :a1+az+a3=0 mod?2}. (5.1)

We write Tso, C SOg for the maximal torus corresponding to (2.2) (so with to = 1).
The spin representation of Spin, is orthogonal ([50, Lem. 0.1]), yielding an embedding
spin® : Spin, < SO(q), for some quadratic form ¢ in 8 variables. We fix an isomorphism
u: SO(q) = SOsg, in such a way that the composition

spin® := wospin®: Spin, < SOg

maps Tspin, into Tso, and such that

spin®(a) = (3(r{a1 +7das +1ia3)) € X.(Tso,) C Z8, (5.2)

for some choice of numbering 77 = (7, 7J,7]) € {£1} for j = 1,...,8, such that 77 = —77+*

for j =1,2,3,4. In (5.2), the embedding X, (Ts0,) C Z® comes from (2.2).

We write spin® : Spin; < PSOsg for the projectivization of spin°®. Fixing a non-isotropic
line in the underlying 8-dimensional space, the stabilizer of the line in Spin, is isomorphic
to a group of type Ga, cf. [31, p.169, Prop. 2.2(4)]. Thereby, we obtain an embedding
Jspin : G2 — Spin,. Alternatively, an embedding G2 < Spin; can be constructed using the
octonion algebra [16, Sect. 2.5]. The conjugacy class of jspin is unique (thus independent
of choices) by [loc. cit., Proposition 2.11]. Denote by

ispill: G2 — Spins (53)

the composite istq © jspin. The restriction of spin® : Sping — GLg via igpin is isomorphic
to 1@ std, where 1 and std are the trivial and the unique irreducible 7-dimensional
representation of Ga, respectively. (This is easy to see by dimension counting, as the
other irreducible representations have dimension > 14.)

Lemma 5.1. The representation spin® : Spin, < SOg is Og-conjugate to 6°spin® but
not locally conjugate (thus not conjugate) as an SOg-valued representation. In fact, there
exists an open dense subset U C Spin, such that spin®t and 6°spin°t are not conjugate
for any t € U. Moreover, spin°(Spin;) and 6°spin°(Spin;) are not SOg-conjugate. The
analogous assertion holds for spin : SO7 < PSOs.

Proof. Evidently, spin® and #°spin°® are Og-conjugate since ° = Int(9°) with ¥° € Os.
Let Tgrs C GLg be the diagonal torus. Let Qgpin.,{2504,{2cLs denote the Weyl groups
corresponding to Tspin,, 750, TaLs- In view of the weights of the spin representation [25,
Prop. 20.20], we know that

std(spino(al,ag,ag)) c QGLs((slal “+€&2a9 +€3CL3)/2 1 E; € {:l:].})

(The Qgrg-orbit of 8-tuples is simply an unordered 8-tuple.) When e1a1 + €2a2 + £3a3
are all distinct, the right-hand side breaks up into exactly two Qgo4-orbits, which are
permuted by 6°. Similarly, if Ur is the open dense subset of Tspi,, consisting of
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t = (t1,t2,t3) € Tspin, with ¢7',52,¢5% all distinct, then spin®(t) and 6°(spin°(t)) are not
SOsg-conjugate. This implies the existence of U as in the lemma by taking U to be the
set of regular semisimple elements whose conjugacy classes meet Ur.

Now assume that spin®(Spin;) = g#°spin®(Spin,)g~—! for some g € SOg. Then the
composition ¢4 = spin® ! oInt, 06°spin® is an automorphism of Spin;, which is hence
inner and of the form x +— haxh~! for some h € Spin,. Thus, spin® and #°spin® are
conjugate by g~ 'spin°(h), a contradiction. Thus, spin®(Spin,) and §°spin°(Spin,) are
not SOg-conjugate. The projective analogue for spin: SO; < PSOg also follows. O
Lemma 5.2. Write H := pr~!(spin®(Spin,)) C Sping. The restriction of spin® to H is

irreducible if and only if e = —. More precisely, we have spin™ ospin® ~std @ 1 and spin~ o
spin® ~ spin®.

spin®

Proof. We compute the composition spin® ospin®: Spin, spiy SOg — PSOg — PGLg
on Tspin, - For a € X, (Tspin, ), spin®(a) is given by (5.2), and for b € X, (Tso,) = Z*, we
have spin®(b) = (%(lel + 7obo + T3b3 +T4b4))fe{i1}47 T, ri=e (both up to the Weyl group

actions). From this, it follows that spin® ospin®|ry,,, is conjugated to std & 1|z, and

spin® |TSpin7 for e = + and € = —, respectively. The lemma now follows from Lemma 1.2. [

Lemma 5.3. Let n > 3 and H C SO, be a proper connected reductive subgroup
containing a regular unipotent element. Then H is isomorphic to a quotient of Spin,,, 1,
SLs or Gy (the last can occur only if n=4).

Proof. We begin with some preliminaries. When G is a reductive group, write X(G) for
the set of maximal proper connected reductive subgroups M of G that contain a regular
unipotent element of G. From [70, Thms. A,B], we have the following:®

(a) Case G ~ SO, (n > 3), then every M € ¥(G) is isomorphic to a quotient of
SpinQn—l'

(b) Case G ~S0g,_1 (n >3, n#4), then every M € 3(G) is isomorphic to a quotient
of SL2

(¢) Case G ~ SOy, then every M € ¥(G) is isomorphic to Gs.
(d) Case G ~ G5, then every M € (@) is isomorphic to a quotient of SLo.

We prove the following claim: If H is a connected reductive subgroup of some connected
reductive group G (over C or Q,), such that H contains a regular unipotent element u of
G, then u is also regular unipotent in H. To see this, write B, C G for the unique Borel
subgroup that contains u. Now let By 3 u be a Borel subgroup of H that contains u. Then
By is a connected solvable subgroup of G and hence is contained in a Borel subgroup B,
of G. As u € By, we must have By = B,,. Hence, By C B,,N H. Since (B,,N H)" is connected

8The statements of [70, Thms. A B] are not entirely clear on whether the list describes H° or H.
We interpret it as the former since that is what their proof shows. For instance, regarding (i)(a)
of their theorem, a maximal reductive subgroup of type Bp—1 in SOg, is not igq(SO2n—1)
but Z(SO2x) X i5,q(SO2n—1), which is disconnected.
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solvable and contains By, we must have (B, N H)" = By by maximality of By. This shows
that in H, the element u is contained in exactly one Borel subgroup. Therefore, u € H is
regular unipotent.

Now let H be as in the statement of the lemma. Let u € H be regular unipotent in SOs,,.
Let M € X(SO3,) such that H C M. If H= M, we are done by (a) above. So assume
H # M. Again by (a), M is a quotient of Spin,,, ;, and hence Muq ~ SOg,,—1. Then Hyoqg
maps to SOg,—1 (since the center of H commutes with u, it is contained in Zgo,, by
[75, Thm. 4.11] and thus also in Zjs), and by the claim, we can find an M’ € 3(SOq,,_1)
that contains the image of H,q in SOsgy,_1. If Hyqg = M’, we are done by (b) or (c¢) if
n=4.If Hyq # M’, then again M’ is either G5 or a quotient of SLo, and we can argue
similarly. O

If H is an algebraic group, we write Y(H) for the set of SOs,-conjugacy classes of
morphisms H — SOs,, that have a regular unipotent element in their image. By abuse of
notation, we often identify Y(H) with a set of representatives for the conjugacy classes.

Lemma 5.4. We have

T (Sping,,_1) = {igq: Sping,_; — SO2, } (n>3,n#4)
Y (Spin;) = {igq,spin®,0°spin®: Spin; — SOg} (n=4)

YT (SL2) = {ireg: SLa — SO2,} (n>3)
Y(G2) = {ispin: G2 — SOs} (n=4).

Proof. Let f: H— SO3, be a morphism with a regular unipotent element in its image,
where H is one of the 4 groups in the lemma.

Case H = Spin,,,_;. We have ker(f) C {£1}. Assume first ker(f) = {£1}. Then r :=
stdo f, 7’ :=std 0%, are two faithful representations of dimension 2n. By Lemma 2.8, r
and ' are isomorphic. By acceptability of Os,, we find a g € Os, that conjugates r to
r’ [50, Prop. B.1]. The element g might have negative determinant. In this case, we can
replace g by g-9°, as ¥° centralizes % 4(SO2,—1) by Lemma 3.6(ii).

Now assume ker(f) = 1. Then r =stdo f is a faithful 2n-dimensional representation of
Spin,,,_;. The smallest such representation by dimension is the spin representation, and
therefore, 27~! < 2n, and n < 4. We distinguish in subcases n =3 or n = 4:

(When n = 3.) We show that this subcase (H = Spin,,,_;, ker(f) =1,n=3) does not
occur. Assume f: Sping — SOg is injective with a regular unipotent element in its image.
Recall SOg ~ SLy /{#1}. Write H C SLy for the pre-image of f(Spins) in SLy. Let M C SLy
be a proper maximal connected reductive subgroup of SL4 that contains H. Then M is
isomorphic to Sp, by [70, Thm. B]. By dimension consideration, we must have H=M.In
particular, the image of f in SLy/{=1} must be isomorphic to PSp,. Hence, Spin; — PSp,,
a contradiction.

(When n =4.) We want to classify all conjugacy classes of injections f: Spin, — SOg
with a regular unipotent element in their image. In this case, they do exist, as spin® is
an example. The representations stdo f and std ospin® are both faithful representations
of Spin, of dimension 8. Hence, they are isomorphic. By acceptability of Og, there exists
a g € Og that conjugates f to spin®. This implies that f is SOg-conjugate to either spin®
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or 6°spin®. By Lemma 5.1, the representations spin® and 6°spin® are not SOg-conjugate.
Observe finally that ker(ig4) = {£1} while spin® and 6°spin°® are injective. Hence, i%,, is
not conjugate to either spin® or §°spin°. This verifies the description of Y (Spin,) in the
lemma.

Case H = SL,. We want to classify the morphisms f: SLy — SO, with a regular
unipotent element in the image. In fact, such a morphism is called the “principal
morphism” in the literature, and it is well-known that it is unique up to conjugacy.
However, we could not find a precise reference, so we give some detail for a general
connected reductive group G.

We first note that the natural map Hom(SLy,G) — Hom(Lie (SL3),Lie(G)), equiv-
ariant for the adjoint action of G, is a bijection. To construct the inverse, let
g € Hom(Lie (SL3),Lie (G)). The composition Rep(G) — Rep(Lie(G)) — Rep(Lie (SLg))
<Rep(SLy) is a ®@-functor preserving the underlying vector spaces, where the last arrow
is an equivalence (e.g., see [11, VIIL.1.5]). Thus, the composition arises from a morphism
of groups f: SLy — G by [21, Cor. 2.9], and one checks directly that g — f and f — Lie(f)
are inverse to each other. By the Jacobson-Morozov lemma, Hom(Lie (SLy),Lie (G)) is in
bijection with the set of nilpotent elements in Lie (G) via g — ¢ (8 §). Above, we consider
f such that f(§1) is regular unipotent; thus, g (9 §) is regular nilpotent in Lie(G) and
hence unique up to conjugacy. The same statement follows for f then as well.

Case H =G5 and n=4. Let f: Gy — SOg be a morphism with a regular unipotent
element in its image. Recall igpin: G2 — Sping from (5.3); it induces a morphism
ispin: G2 — SOs. The representations stdo f and std o ispi, are both faithful and of
dimension 8 and hence isomorphic (they are both isomorphic to r7 @ 1, where r7 is the
unique representation of Gy of dimension 7). By Os-acceptability, we can find a g € Og
such that f = gisping™*. If det(g) = 1, we are done. The element 9° € Og centralizes the
subgroup SOg,,_1. The map igpin factors over the map jspin : G2 — Spin; (see above (5.3)).
In particular, ¥°ispin> ! = ispin, and we can replace g by gi°. O

Proposition 5.5. Let n > 3. Let H C PSOy, be a (possibly disconnected) reductive
subgroup (over C or Q,) containing a regular unipotent element. Up to conjugation by an
element of PSOaq,,, the following holds (in particular, H is connected in all cases):

(i) if n#4, then H=PS0s,, H =ixq(PSO2;,—1) or H = iyes(PGL2);
(ii) if n =4, then H is either as in (1), H = spin®(SO7), H = 0°spin°(SO7) or H =
ispin(G2)'
If H C SOy, is a (possibly disconnected) reductive subgroup containing a regular unipotent

element, then H® C H C H°- Z(SO0a,,) and H surjects onto H C PSOa,, as in the list
above. (See the proof for the list of possible H.)

Proof. We first focus on the classification of reductive subgroups H C SOs,, containing
a regular unipotent element. If H = SOy, there is nothing to do, so we assume H is
proper. By Lemma 5.3, the group H" is isomorphic to a quotient of Spin,,, ;,G2 or SLo.
Using Lemma 5.4, we conjugate so that f: H° < SOg is one of the maps listed in that
lemma. So
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(a) When n #4, f equals i 4 OF ireq.

(b) When n =4, f equals %, ireg, Lspin, SPIn° or 6°spin®.
From this list, we see that if std(H?) is reducible (so f # spin®,#°spin®), then std(H)
is contained in a parabolic subgroup of GLs, with Levi component GLs,_1 X GL;. By
reductivity, std(H) is contained in GLy,_1 x GL1, and it is an irreducible subgroup. We
see that HY C HT :=i24(SO2,-1) X Z(S02,), and by Schur’s lemma, the centralizer of
H° in H* is Z(S0a,). Since H® has no nontrivial outer automorphism, the conjugation
by each h € H on H° is an inner automorphism. Thus, there exists h’ € H° such that
h'h=1 centralizes H?. It follows that H C H? x Z(SOa,,). If std(H") C GLag,, is irreducible,
the centralizer of H? in SOy, is Z (SO2,,) again by Schur’s lemma, with no nontrivial outer
automorphism for H°. As in the reducible case, we deduce H° C H C H® x Z(SOs,,).

Finally, if a reductive subgroup H C PSO,, contains a regular unipotent element, then
so does its preimage H in SOs,. By the previous argument, we may conjugate so that
HO is of type (a) or (b), and moreover, we find H° ¢ H C H° x Z(SO,,). In particular,
H is connected and of the type listed in (i) and (ii). O

In the next lemma, and also in the later sections, the following group will play a role:

Hy,,—1 := GSpin,,,_ Z(GSpin,,,) C GSpin,,,. (5.4)

Recall 2¢ € Z(GSpiny,,) is such that (z°) = ker(spin®). We have Has,_; = GSpin,,,_; X
(7). By projecting, we obtain a quadratic character

k: Hap 1 — (27) C Z(GSping,,_;) (5.5)

such that the composition spin® ok is trivial if € = + and otherwise equal to the
composition

Ko - Hgnfl £> <Z+> ~ {:l:l} (56)

In the definition of k, we could have also used z~; in that case, the convention would be
slightly different. But notice that ko does not depend on this choice as this character is
simply the canonical map of Hs,_; onto its component group. Observe also that 6 acts
trivially on GSpin,,,_; and on z* via 2t — —zT. This gives the simple formula

0(g) = ro(g)g for all g € Hap—1. (5.7)
Lemma 5.6. Let r: I' — GSpin,,, (Q,) be a semisimple representation containing a
regular unipotent element in its image. Let x: T' — @; be a character and € € {+,—}.
(i) If x ®spin®(r) ~ spin®(r), then x = 1.

(i) If x®spin™ (r) ~spin~ (r), then r has image in the group Ha, 1 C GSpin,, up to
conjugation, and x is equal to kgor.

(iii) If xTspin™ (r) @ spin~ (1) ~spin(r) for two characters x*: T — @Z , then x* are
both trivial, or r has image in Ha,_1 up to conjugation and xT = x~ = kgor.

Proof. (i) Write 7: I' = PSO,,,(Q,) for the projectivization of r. By Proposition 5.5, we
can distinguish between two cases for the Zariski closure of the image of 7 in PSOa,(Q,).
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If the Zariski closure of 7 is either PSOg,, or igq(PSO2,_1), then spin®r is strongly
irreducible, and the statement follows from [50, Lem. 4.8(i)]. In the remaining cases,
the Zariski closure of Im(7) is spin°®(SO7), 6°spin°®(SO7), ireg (PGL2) Or ispin(G2). In the
last two of these, Im(7) C istq(SO2,_1(Qy)), so Im(r) is contained in Q,-points of Hy,,_,
(which is the preimage of istq(SO2p,—1) in GSpin,,, ). Then we show x = 1 by the argument
exactly as in Cases (i), (ii), (iv) in the proof of [50, Lem. 5.1, Prop. 5.2], noting that spin®
restricts to spin on GSpin,,_; by Proposition 4.5. Finally, if the Zariski closure of the

image is spin®(SO7) (resp. 6°spin®(SO7)), then spin® o7 is irreducible if ¢ = — (resp.
€ =+) and isomorphic to std®1 if e = + (resp. € = —) by Lemma 5.2. In particular, the
representation spin®r satisfies the conditions of [50, Prop. 4.9], and so x =1 in this case
as well.

(ii) If the Zariski closure of the image of r contains Spin,,,, then (ii) cannot occur. Thus,
r has either image in Ha,_1, or it has image in pr—!(spin®(Spin,)). In the latter case,
spin~r is strongly irreducible while spin™r is not by Lemma 5.2, which is a contradiction.
Thus, Im(r) C Hay,—1. For g € Hy,,—1, we have

spin™ (g) = spin~ (0g) = spin™ (ko(g) - g) = Ko(g)spin~ (g).

Put ¢t = kg or. Then t ®spintr ~spin~r and tx~! @spinTr ~ spin'r, and t = x by (4).

(iii) Write H for the Zariski closure of the image of r. By the proof of (7), we see that
either Spin,,, C H, or H C Ha,—1 or H C pr~!(spin°(Spin;)) up to conjugation. Assume
that H ¢ Ha,,_1 (even after conjugation), so that Spin,,, C H or H C pr~*(spin®(Spiny)).
In this case, we need to show that x™ = x~ = 1. Suppose Y~ # 1 to the contrary. Since
spin~ (r) is strongly irreducible by assumption on H (cf. Lemma 5.2), we have

Hom(x~ ®spin™ (r),spin~ (r)) =0 (5.8)

by [50, Lem. 4.8(i)]. In particular, x*spin®(r) @ x“spin~(r) = spin(r) induces an
isomorphism x~ ®spin~ (r) = ker(spin(r) — spin~ (r)) = spin* (r). As H ¢ Ha,_1, this
contradicts (4). Therefore, x~ = 1. From x*spin*r@ x~spin~r 2 spin(r), we then obtain
xFspintr 2 spintr, which implies x* = 1 by item (i).

Now assume H C Hsy,_1 up to conjugation. We obtain a character t = kgor: I' —
{£1}. Write ['g := ker(t). We have x*spin™ (r) @ x~spin~(r) ~ spin™ (r) @ spin~ (r). By
Proposition 4.5, we have spin™ (r|r,) ~ spin,,, _;(r|r,), where spin,, ; denotes the spin
representation of GSpin,,, ;. By the proof of [50, Prop. 5.1], spin,,,_; (r|r,) decomposes as
a direct sum ri* @---@r*, such that k,e; € Z>1, r; is irreducible, and dim(r;) # dim(r;) for
i # j. Moreover, the projective image of spin,,, _;(7|r,) in PGLyn-1 is Zariski connected.
This implies that the r; are strongly irreducible T'g-representations [Proposition 4.8(ii),
loc. cit.].

Suppose x~|r, # 1. We again claim that (5.8) holds. To see this, assume f: x~ ®
spin” (r) — spin” (r) is a nontrivial I'o-morphism. Since the dim(r;) are distinct, the
morphism f induces an isomorphism from x~ ®r; to one of the copies of r1 in spin™ (r).
Since r is strongly irreducible by [Proposition 4.8(i), loc. cit.], this implies x~|p, = 1.
Thus, x~ € {t,1}.
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Arguing with + instead of —, we find similarly x* € {¢,1}. If x* =1, then we have
spin™ (r) @ x " spin~ (r) ~ spin™ (r) @ spin~ (7),

which implies x“spin~ (r) ~spin~ (r), and thus x~ =1 by (4). By the same argument, if
x~ =1, then YT = 1. Thus, x™ = x~. The statement follows. O

Lemma 5.7. Let 7,7 € GSpin,,, be two semi-simple elements. Then 7,7 are GPing,,-

conjugate if and only if they are conjugate in the representations N,std and spin.

Proof. This follows from [50, §1] and the fact that GPing, has {std, N, spin} as a
fundamental set in the sense thereof, which follows from the fact that {std,\,spin™,spin~}
is a fundamental set for GSpin,,, as checked therein. O

Proposition 5.8. Let E/F be a quadratic extension of characteristic zero fields. Let H
be one of the following algebraic groups

SOQn,GSpiHQ,n,SOQn X FE/FvGSPIHQn X FE/F7

where U'g,p acts through 6° or 6 in the semi-direct products. We write HY for the neutral
component of H. Let

ri,re: Tp — H(Qy)
be semisimple Galois representations such that

e 71 and ro are locally conjugate and
o the Zariski closure of r1(T') contains a regular unipotent element.

Then r1 and ry are H°-conjugate.

Proof. For simplicity, we abbreviate H(Q,) as H if there is no danger of confusion.

The case H = SOs,. Write 71,75 : I' = PSO,,, for the projectivizations of r1,72. Write
I; for the Zariski closure of 7;(T") in PSOa,,, for ¢ = 1,2. Since O, is acceptable [50, Prop.
B.1], r1 and rg are conjugate by an element of w € Og,, (i.€., 12 = wnw‘l). In particular,
the Zariski closure of ro(I') also contains a regular unipotent element. We are done if
w € SOg,,, so we may assume that w ¢ SOs,, henceforth.

There are now three cases by Proposition 5.5: either (A) Iy = PSOs,, (B) I is SOg,_1,
PGLg, or G2 (the last case when n=4) or (C) n =4 and I; is spin(SO7) or #°spin(SO7).

Case (A). Since r; has Zariski dense image in SO, there exists q such that 7 (Frobg)
and wry (Frobg)w™! are not outer conjugate by Lemma 1.1. This contradicts r2(Frobg) =
wry (Frobg)w ™! since w € 02,\SO2;,.

Case (B). The image of r; is contained in i3 4(SO2,—1) X Zs0,,, which is centralized by
9° € 02, \SO3,. Since ¥° and w belong to the same SOy,,-coset, it follows that r1 and ry
are SOsq,-conjugate.

Case (C). Without loss of generality, we may assume I; = spin(SO7). Since r; = Int(w)o
ro for w € Og\SOg, we see that I is PSOg-conjugate to #°spin(SO7).

We claim that this case does not arise. By assumption, r; and 7o are locally conjugate
representations with values in SOg.
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We may assume, after replacing ro with a suitable SOg-conjugate, that ri(vy) = 0°ra(7)
for all v € I". There exists a representation 7: I' — Spin; such that r1(y) = spin(7(7)),
ro(y) = 0°spin(7(7y)). However, by Lemma 1.1, there exists an F-place q where 7 is
unramified and 7(Froby) € U with U is as in Lemma 5.1. Then spin(7(Froby)) and
6°spin(7(Froby)) are not SOg-conjugate. This contradicts the assumption that r and
ro are locally conjugate. The claim is proved.

The case H = SO, xI'g,p. By the preceding case, we may assume that r; Irp =72|rg-
(Strictly speaking, we proved the SOg,-case for I' = I'r, but the proof goes through
without change for I'g.) Since SOz, X I'g/p =~ Oy, via g x ¢+ g¥°, we identify the two
groups. In particular, H is acceptable, so there exists w € Oy, such that ry = wriw™!.
We are done if w € SOg,,, so assume that w ¢ SO,,,. Depending on the projective image
of r1|r,, we have Cases (A), (B), (C) as above. The arguments there tell us that Cases
(A) and (C) are impossible when w ¢ SOg,,. In Case (B), we know r1(I'g) is contained in
1%q(SO2n—1) X Z50,, - The normalizer of the latter in Oy, is Oz,—1 X O1 (embedded in
O2,, via ig4), which is centralized by 9°. Hence, if we write w = wo?¥° with wg € SOap,
then ro = worlwal. Namely, 71 and 7 are H°-conjugate.

The GSpin,, -case. Write r{,r5 for the composition of ry,r2 with pr®: GSpin,,, —
SOg,,. Then r{ and r5 are conjugate by the SOg,-case treated above. Hence, we may
assume that ro = x7r; with a continuous character x : I' — @Z, where @@X = ker(GSpin,,, —
SOs,) via Lemma 3.1 (ii). Since r; and xy ® r; are locally conjugate by the initial
assumption, we have

spin®(r1) ~ spin®(x ® r1) ~ x ® spin®(r1), ee{£1}.

It follows from Lemma 5.6 that y = 1.

The GSpin,,, x I'g,p-case. By the GSpin,,,-case above, we may assume that 7|, =
ro|r, . Writing r9 := pr®or; for i = 1,2, we have r{|r, =r3|r,. By the preceding argument,
we deduce that r{ = r§. However, ri|r, = r2|r, implies that ry =79 or 1 =79 ® x by
Example A.6, with y as in that example. If r; =75, then we are done so suppose r; =r;® x.
Then 7} =r5 @ xg/p for xg/r:I'r = T'g/rp = {£1}. Set R; :=stdor{ for i = 1,2, so that
Ry = Ry ® xp/r- Since r; and rp are locally conjugate, the GL2,-valued representations
Ry and Ry are locally conjugate and thus conjugate. So Ry ~ Ry ®@ xg,p. By [50, Lem.
4.8], Ry is not strongly irreducible. Considering the projective image of r1|r, as in the
SOg,-case above, we see that Case (A) is excluded and only Case (B) or (C) occurs. In
either case, again because R; is not strongly irreducible, the only possibility is that Ri|r
decomposes into two strongly irreducible representations of dimensions (2n —1) and 1.
Then it is easy to see that Ry = R} @ RY already on I'p, with strongly irreducible R} and
RY of dimensions (2n —1) and 1. It follows from R; ~ R1 ® xg/p that Ry ~ R} @ Xg/F
(and similarly for RY), but this contradicts strong irreducibility of R} [50, Lem. 4.8]. O

6. On SO,,-valued Galois representations

In this section, we construct Galois representations associated with automorphic repre-
sentations of even orthogonal groups over a totally real field F. More precisely, we will
derive a weaker version of Conjecture 1 for such groups from the literature. Let either
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e F=For
e F be a CM quadratic extension of F.

In the latter case, write ¢ for the nontrivial element of I'g/p := Gal(E/F'). Write SOi{F
for the split group SOs, if £ = F, and the quasi-split outer form of SOs,, over F relative
to FE/F otherwise. To be precise, in the latter case,

03/ (R) :={g € GLan(E®r R) | ¢(g) = 0°99°,0" (2 ) 9= (2 )} (6.1)

for F-algebras R, and SOQEn/ " is the connected component where det(g) = 1. We can
extend the standard embedding std : SO2,,(C) < GL2,(C) to a map (still denoted std)
std : L (SO5/ ) = S0, (C) ¥ T gy < GLig (C), (6.2)

n

whose image is SO2,(C) if E=F and O2,(C) if E # F. More precisely, when E # F,
we fix the extended map std by requiring ¢ +— 9¥°. (We defined O, explicitly in the last
section, and ¥° was given in (2.4).)

Let 7 be a cuspidal automorphic representation of SOfn/ F(AF). The following
will be key assumptions on m”. (Recall from §1 that Stso, g, denotes the Steinberg

representation.)

(coh®) ﬂgo is c/ohomological for an irreducible algebraic representation £ = Ryevo. fzb;
E/F
of SOy, Fec-
(St°) There exists a prime qgs¢ of F' such that WZSt ~ Stg0,qs, UP to a character twist.

Condition (coh®) implies that the infinitesimal character of 5; is given by pso + )\(55) at
each y € Vy; see [8, Thm. 1.5.3]. In particular, 7° is C-algebraic in the sense of Buzzard—
Gee [12, Lem. 7.2.2], and thus also L-algebraic as the half sum of positive (co)roots
is integral for SOQE,L/F. In (St°), characters of SOfn/F(FclSt
factoring through the cokernel of Spinf,l/F(FqSt) — SO2ETL/F(FqSt). (This is a special case of
the general fact [49, Cor. 2.3.3].) Such characters are in a natural bijection with characters
of FqXSt/(Fq);t)Q = Hl(FqS“{il}),

Write Tgo := Taso NSO, over C and choose the Borel subgroup containing Tso in

SOQEn/ F asin the preceding section. For each y € V,, the highest weight of 5; gives rise to a
dominant cocharacter )\(52) € X.«(Tso). Let (bw; :Wg, — L SOQETL/ F denote the L-parameter

of 775 assigned by [53]. Recall std : SO, < GLa, denotes the standard embedding. We
also consider the following conditions:

) are exactly the characters

(std-reg®) stdo¢ﬂz|wfy is regular (i.e., the centralizer group in GLs,(C) is a torus)
for every y € Vo.
(disc-00) If n is odd, then [E : F]=2. If n is even, then E = F.

Since E is either F' or a CM quadratic extension of F, condition (disc-00) is equivalent to

requiring SOQEn/ F(Fy) to admit discrete series at all infinite places y of F' (or equivalently,
to admit compact maximal tori). Condition (std-reg®), when (coh®) is imposed, amounts
to requiring that stdo (pso + )\(EZ)) should be a regular cocharacter of GLo,, for every
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Y € Voo, since gb,rz \ny encodes the infinitesimal character of 7, according to [78, Prop.
7.4].

When v is a prime of F, write ¢7rg¢ Wg, — LSOQER/F for the L-parameter of WZ as
given by [1, Thm 1.5.1]. (By the Langlands quotient theorem, ﬂ'{) is the unique quotient
of an induced representation from a character twist of a tempered representation on a
Levi subgroup. Apply Arthur’s theorem to this tempered representation.) Note that Prs
is well-defined only up to Os,(C)-conjugacy in loc. cit. (This does not matter for the
statement of (SO-i) in Theorem 6.5 below.)

Let Unr(n’) denote the set of finite primes q of F such that ¢ is unramified in E
and ﬂ'z is unramified. In this case, the unramified L-parameter d)ﬂz is determined (up to
SO3,,(C)-conjugacy, not just up to outer automorphism) by the Satake isomorphism.

Thanks to Arthur, we can lift 7” to an automorphic representation of GLo, as follows.
The Hecke character F*\A} — {£1} corresponding to the Galois character x g/ p: I'r —
I'g/p = {£1} is still denoted XEe/F- Let Xg/r q denote its local component at g.

Proposition 6.1 (Arthur). Assume that ©° satisfies (St°). Then there exists a self-dual
automorphic representation 7 of GLa, (Ar), which is either cuspidal or the isobaric sum
of two cuspidal self-dual representations of GLa,—1(Ar) and GL1(Afr), such that

(Arl) Wg is unramified at every q € Unr(7”).

(Ar2) wg& ~ Ston_1BXE/ P qs up to a quadratic character of GLay,(AF).

(Ar3) ¢ s ~stdod, at every F-place v.

If ©° satisfies both (St°) and (coh®), then we furthermore have
(Ard) wg and wg are tempered for all infinite F-places y.

If ©° has properties (coh®), (St°), and (std-reg°), then the following strengthening holds:
(Ard)+ 7t and ° are tempered for all F-places wv.

Remark 6.2. In fact, (Arl) is implied by (Ar3) since ¢ is an unramified parameter at
every q € Unr(7”), but we state (Arl) to make (SO-ii) below more transparent.

> satisfying (St°). For notational convenience, we assume 7’ o~

Proof. Consider m dse

Stso,qs, (nOt just up to a quadratic character twist) as the general case works in the
same way. By [1, Thm. 1.5.2] (using the notation there),” we have a formal global
parameter v (as in [1, 1.4]) such that 7% appears as a subquotient of a member of the
packet ﬁ(’l/)v) at every place v of F, where 1, denotes the localization of ¢ at v as in

loc. cit. (A priori, members of 1:1(1/)1,) may be reducible due to possible failure of the

Ye.g., @(SOSX%) means the set of isomorphism classes of L-parameters for G = SOQET{’I;CI modulo

the action of the outer automorphism group évutzn(G) as defined in [1, 1.2]. Similarly, the

packet II(thq) of [1, 1.5] consists of finitely many Outay, (G)-orbits of isomorphism classes of
representations of G(Fy). By abuse of terminology, a representation will often mean the outer
automorphism orbit of representations in this proof.
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generalized Ramanujan conjecture. Only from the argument below it follows that ¢ is
a generic parameter (i.e., its SU(2)-part is trivial). Then II(¢,) consists of irreducible
representations by [81, Appendix A].)

Since Stso, 5, appears as a subquotient of a member of f[(qut), Proposition B.1 implies
that vqg, ™~ sy, qs,, Where 9g; is defined above that proposition. Thus,

djStvﬂSc = wsbn—hQSt EBXE/F,C[SH (63)

where ¥st,, 1 qs. (T€SP. ¥1,q,) denotes the A-parameter for the Steinberg (resp. trivial)
representation Sto,—1 of GLa,—1(Fye,) (vesp. GL1(Fyg,))- It follows that either 1) = 7% or
P = 7r:1# EEWf , where 77 Wf{:, and 74 are cuspidal self-dual automorphic representations of
GLan(AF), GLa,_1(AFr) and GL; (AF), respectively. In the second case, we take 7% to be
the isobaric sum of 7 and 7 . Now (Ar2) follows from (6.3). We define ¢q € i(SOfn/l;q)

as the restriction of 14 € \i/(SOQEn/,l;q) from Lp, x SU(2) to Lp,. Then Properties (Arl)
and (Ar3) with ¢4 in place of ¢ns are part of Arthur’s result already cited.

To complete the proof of (Arl) and (Ar3), it suffices to verify that ¢, = ¢, in d(Gp,).
In the notation of [1] (between Theorems 1.5.1 and 1.5.2), ¢,, gives rise to

e a [-rational parabolic subgroup P, C GF, with a Levi factor M,,
e a bounded parameter ¢, € P(M,),
e a point A in the open chamber for P, in X,.(M,)r, ®zR,

such that ¢, comes from the A-twist ¢pr, » of ¢ps,. (This is the counterpart of the
Langlands quotient construction for L-parameters.) The statement of [1, Thm. 1.5.2]
tells us that 7° is a subrepresentation of the normalized induction Indﬁf?ﬁj)(% ) for
some o, € IZI(MD), where o, denotes the A-twist of o, since ﬂz appears in the packet
of ¥, in loc. cit. According to the same theorem, Indiffﬁb(au ») must be completely

reducible since it appears in the L?-discrete spectrum. This means that 772 is irreducible
and the Langlands quotient of Indg(f};))(av, ») (thus, 7 is isomorphic to the latter). Since
the formation of Langlands paramétriuzation is compatible with the Langlands quotient,
it follows that ¢, is the L-parameter of m”, namely, that ¢, = P> -

It remains to check (Ar4) and (Ar4)+. Assume (coh®) in addition to (St°). Thanks
to (Ar3), 7% is L-algebraic since L-algebraicity is preserved by std. Applying [18, Lem.
4.9] to 7# @|det|/2 if 7# is cuspidal, and 77" and 77 otherwise, to deduce that 7# is
essentially tempered at all y|oo. Since 77 is self-dual, 7@* are a fortiori tempered. Now
suppose furthermore that 7rz has property (std-reg®). Then 7# is regular L-algebraic.
Arguing as above but applying [13, Thm. 1.2] to 77 at finite places, in place of [18, Lem.
4.9] at infinite places, we deduce (Ar4)+. Finally, whenever 77 is tempered (for finite or
infinite v), this implies that 1, is bounded and hence that 7T1b) is tempered by [1, Thm.

1.5.1]. 0

Corollary 6.3. Assume (disc-oo). If n° satisfies (St°) and (coh®), then wz is a discrete
series representation for every infinite place y.

Proof. The condition (disc-0o) guarantees that SOQEn/ F(Fy) contains an elliptic maximal
torus at infinite places y so that it admits discrete series. In this case, a tempered
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&-cohomological representation is a discrete series representation by [8, Thm. IIL1.5.1].
Thus, the corollary follows from (Ar4) of the preceding proposition. O

Under the assumptions of the corollary, let us describe d’ﬂ; |ny explicitly. Fix an R-
isomorphism £y ~ C once and for all, so that we can identify ny =C*. We noted that the
infinitesimal character of §Z is pso+ /\(§Z). The half sum of positive coroots pso € X.(Tso)
is equal to (n—1)e; +(n—2)ea + -+ e,—1. It follows from the construction of discrete
series L-packets in [53, p.134] that possibly after SOQEH/ F(C)-conjugation, we have

b (2) = (2/2)P50TNE) 2 e Wy . (6.4)

Continue to assume (St°) and (coh®) for 7° as well as (disc-co). We noted that 7 is
L-algebraic thanks to (coh®). Then Conjecture 1 predicts the existence of an LSOQEn/ F
valued Galois representation attached to 7°. When (std-reg®) is also assumed, Theorem
6.5 below proves the conjecture modulo outer automorphisms in that (SO-i) is weaker
than what is predicted. (This is to be upgraded by (SO-i+) in §13; also see Remark 13.2.)
The proof is carried out by reducing to the known results for 7# on GLy,. We will get to
the theorem after observing that (disc-00) is automatically satisfied under the additional
hypothesis (std-reg®); this observation is related to (SO-v) of the theorem.

Lemma 6.4. Suppose there exists a cuspidal automorphic representation w° of
SO;’;{F(AF) such that (St°),(coh®) and (std-reg®) hold. Then (disc-00) is satisfied.’?

Proof. For each y € V,, Proposition 6.1 tells us that ¢_» is tempered. From this and
y
(coh®), we obtain a decomposition of the form
w
stdo ¢7TZ = @Indwgi Xa; D @ wir, Qi € Z>07
iel irer
where x,, : C* — C* is given by z — (z/Z)% using the identification Wy, = C* above, and
wyr is a quadratic character of W, . (In fact, a; are mutually distinct.) By the dimension
reason, |I’| is even. However, (std-reg®) implies that |I’| < 1. Hence, I’ is empty and
|I| = n. Now the image of j € Wg, in GLa,(C) under stdo ¢ has determinant (=™

since the determinant of j is —1 in each induced representation. In view of (6.2), we
deduce that E = F if n is even and E # F otherwise. That is, (disc-oc) holds true. O

Theorem 6.5. Let 7 be a cuspidal automorphic representation of SOgn/F (Ap) satisfying
(coh®), (5t°) and (std-reg°). Then there exists a semisimple Galois representation
(depending on ()

P = Pro: Tp = 802, (Q)) X T,

whose restriction to T'r, at every F-place q|¢ is potentially semistable, such that the
following hold. Here, ~ means Oa,(Q,)-conjugacy.

10ywe heartily thank the referee for pointing out this lemma and explaining its proof.
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(SO-i) For every finite F-place q (including q|¢), in the convention of §1, we have
ths ~ WD (e |1, )T

(SO-ii) Let q € Unr(x). If 4, then Prv.q 18 unramified at q, and for all eigenvalues
a of std(p,» (Frobg))ss and all embeddings Q, — C we have |a] = 1.

(SO-iii) For each q|¢, and for each y: F — C such that ty induces q, we have
UHT (P> g 1) ~ LibHodge(€7Y)-

(SO-iv) If wg is unramified at q|¢, then p.» o is crystalline. Ifwz has a nonzero Iwahori
fized vector at q|¢, then Prb,q 1 semistable.

(SO-v) p» is totally odd. More explicitly, for each real place y of F and the
corresponding complex conjugation ¢, € I'r (well-defined up to conjugacy),

diag(1,...,1,—1,...,—1,1,...,1,—=1,..., = 1), n: even,
—— —— ———
n/2 n/2 n/2 n/2
pﬂb(cy)N .
diag(1,...,1,—1,...,—1,1,1,...;1,—=1,...,—=1,1) x¢, n:odd
—— —_—— ———

—_————
(-1/2  (-1)/2  (-D/2  (n-1)/2
Condition (SO-i) characterizes p,» uniquely up to O, (Q,)-conjugation.

Remark 6.6. Since Wgo is a discrete series representation, the conjugation by ¢.» () on
y

Tgo is the inverse map, where j denotes the usual element of the real Weil group. Thus,
(SO-v) and (6.4) imply Buzzard—Gee’s prediction on the image of complex conjugation
in [12, Conj. 3.2.1, 3.2.2]. When n is odd, we also observe that (SO-v) is equivalent to

prs(cy) ~diag(1,...,1,=1,...,—1,a,1,....1,—1,...,—1,a ") x¢, VaeQ, .
—— —— Y—— Y— —
(n-1)/2  (n-1)/2  (n-1)/2  (n-1)/2

Remark 6.7. Without (St°), an analogous theorem can be proved only under (coh®)
and (std-reg), but in a weaker and less precise form. The strategy is similar: transfer
7” to a regular algebraic automorphic representation of GLa,, (Afr), which is an isobaric
sum of cuspidal self-dual automorphic representations, and apply the known results on
associating Galois representations.

Proof of Theorem 6.5. Let 7# be as in Proposition 6.1 so that

Case 1: 77 is cuspidal or

Case 2: 77 = 7'('# Bﬂﬂ';ﬁ , with 771&’é (resp. ﬁf ) a cuspidal automorphic representation of
GLQn_l(AF) (resp. GLl(AF))

As in the proof there, we know that 77 is L-algebraic.

In Case 1, consider the C-algebraic twist IT := 7f @ | det |(!=2")/2_ which is regular by
(std-reg), and essentially self-dual (“essentially” means up to a character twist). Applying
the well-known construction of Galois representations (see [3, Thm. 2.1.1] for a summary
and further references) to II, we obtain a semisimple Galois representation (recall'=T"p
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by convention)

p: I — GLo, (Qy),

satisfying the obvious analogues of properties (SO-i) through (SO-iv) for GLa,, with pr
and GLa, in place of p» and Os,; call these analogues (GL-i), ..., (GL-iv). By “obvious”,
we mean, for instance, that (GL-ii) is about the eigenvalues of prr(Frobgy) having absolute
value 1. We also spell out (GL-i), which states that

L¢Hq®|det\§1172")/2 NWD(PH‘FFC, )Fissa qug (65)

In particular, for all q € Unr(7’), since II, is unramified by (Arl), we see that pr is
unramified at q as well and that

pri(Frobg)ss ~ Ld)nq@‘det|2172n)/2(FI'Obq) ~ L¢7rq# (Frobg) ~ LStd(ﬁbwg (Froby)). (6.6)

Since each ﬂ'# is self-dual, we see that pr is self-dual. By (Ar2) and (6.5) at q = qs; as
well as semisimplicity of pr, we see that either

e pp is irreducible, or
e pr = p1® ps for self-dual irreducible subrepresentations p; and py with dimp; =
n—1 and dimp; = 1.

Either way, it follows from [6, Cor. 1.3] that every irreducible constituent of pr is
orthogonal in the sense of loc. cit. (As we are in Case 1, apply their corollary with
n=|-*""1, in which case )(c) = —1 in their notation.)

Now we turn to Case 2. Take ITy := 77 |det|'" and II, := 77. Each of II; and II, is
cuspidal, regular C-algebraic and essentially self-dual, so the same construction yields
pm, and prr,, which are 2n —1 and 1-dimensional, respectively. Then put pr := prr, P prr, -
As before, (GL-i), ..., (GL-iv) hold true for pr. Moreover, an argument as in Case 1
shows that pr, and pr, are self-dual and orthogonal. It follows from (Ar2) and (6.5) at
v = qg¢ that pr, and pr, are irreducible.

From here on, we treat the two cases together. Since pyy is self-dual and orthogonal,
after conjugating pr by an element of GL2,(Q,), we can ensure that pr(T') C O2,(Qy).
Write

Prv i I'— OZn(@Z)

for the Oy, (Q,)-valued representation that pr factors through. (In case pry is reducible,
we even have pr(I') C (Og,_1 x O1)(Qy).) Let us check that this is the desired Galois
representation and deduce properties (SO-i) through (SO-v) from (GL-i) through (GL-
iv).

We start with the case /= F. Then ¢, (Frobg) € SO2,(C) in (6.6), so we deduce via
the Chebotarev density theorem that p., has image in SOg,(Q;). Note that (GL-ii) is the
same statement as (SO-ii). The Hodge-theoretic properties at ¢ in (SO-iii) and (SO-iv)
may be checked after composing with a faithful representation, so these properties hold.
One sees from [50, Appendix B] (for Os,,) that (GL-i) implies (SO-i). (Alternatively, one
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can appeal to [26, Thm. 8.1].) The assertion on the cocharacters in (SO-iii) also follows
(GL-iii) that the two cocharacters become conjugate in GLg,,.
We now prove (SO-v), namely, that p_» is totally odd. The following claim

(E) The element std(p,»(c,)) € GL2,(Q,) has eigenvalues 1 and —1 with multiplicity n
each, for every y € V,

follows from [14] (in fact, it can also be deduced from Taibi’s theorem [76, Thm. 6.3.4]
when 7# is cuspidal, and from Taylor [77, Prop. A] when 7% is not cuspidal).
As p(cy) € SO2, (Qy) has order 2, we have

pro(cy) ~diag(l,...,1,-1,...,—=1,1,...,1,=1,...,=1), ay+b,=n, ayb, €Z>o.
H/_/%,_/H,_/%b,_/ =
Ay y Ay Y

So (E) implies that a, = b,; this is possible as n is even, which follows from Lemma 6.4
and the running assumption that E = F. Now one computes the adjoint action of p,(cy)
on LieSOs,(Q,) to be —n. (A similar computation is done in the proof of [50, Lem. 1.9
for GSp,,,.) Thus, p,» is totally odd.

It remains to treat the case E # F. In this case, the standard embedding SOz, (Q,)
I'g/r < GLay, identifies SO2,(Qy) x Le/r = 02,(Qy). The composition of p,» with this
isomorphism is still to be denoted by p,». Since qu;(Frobq) € 02,(C)\SO2,(C) (resp.
Ot (Frobg) € SO2,(C)) in (6.6) when q is inert (resp. split) in £ by the unramified
Langlands correspondence, we see that

Prb* F—>802n<@5) NFE/F

commutes with the natural projections onto I'g,p. (By continuity, it suffices to check
the commutativity on Frobenius conjugacy classes.) Thus, p,» is a Galois representation
valued in L(SOfn/F). Properties (SO-i) through (SO-iv) follow from (GL-i) through (GL-
iv) in the same way as for the F = F case.

We now prove (SO-v). The argument for claim (E) still applies, and since n is odd by
Lemma 6.4, we have

stdp,s (¢y) ~ diag(l,...,1,—-1,...,—1) (6.7)
N—— N ——
~diag(1,...,1,—1,...,—1,1,...,1,—1,..., — 1) -std(c) in GL2,(Qp). (6.8)
n—1 n+1 n—1 n+1
2 2 2 2

(Recall that std(c) = 9° is the 2n X 2n permutation matrix switching n and 2n.) Therefore,

pro(cy) ~ diag(1,...,1,—1,...,—1,1,....1,=1,..., = 1) xc in ©SO,(Q,).
n—1 n+1 n—1 n+1
2 2 2 2

From this, it follows that the adjoint action of p,s(c,) on LieSOs,(Q,) has trace equal
to —n. Hence, p,» is totally odd. O

The following corollary allows us to apply Proposition 5.5 to identify the Zariski closure
of the image of p».
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Corollary 6.8. In the setup of Theorem 6.5, the image of p» (thus also p»(Tg) contains
a regular unipotent element of SO, (Qy).

Proof. Suppose that qg¢ 1 ¢. Then o = WD(pﬁb|qu)F’SS by (SO-i), where the two
St
sides are compared through [28, Prop. 2.2] by the convention of §1. Since (bﬂg contains
St
a regular unipotent element in the image, so does WD(ps |1, ). Therefore, pr»|r, has a

regular unipotent in the image. If gst¢|¢, then the same is shown following the argument
of [50, Lem. 3.2]. O

The next corollary is solely about automorphic representations but proved by means of
Galois representations. Interestingly, we do not know how to derive it within the theory of
automorphic forms. The corollary is not needed in this paper, as (disc-00) will be imposed
in the main case of interest.

Corollary 6.9. Let 7” be a cuspidal automorphic representation of SOQEJF (AF) satisfying
(coh® ), (St°), and (std-reg®). If (disc-00) is false (i.e., nis odd and E=F, or n is even and
[E:F]=2), then % in Proposition 6.1 (the functorial lift of ©° to GLa, ) is the isobaric
sum of cuspidal self-dual automorphic representations of GLoy,_1(Afr) and GL1(AF).

Proof. Fix a real place y of F. Up to conjugation, we may assume that
pav(cy) = diag(ty, ... tn,t 7 Yt h) Xy,

where the latter ¢, means its image in I'g/p; so std(c,) = 1 if F'= F and std(c,) = v° if
[E : F] =2. The proof of Theorem 6.5 shows that std(p,»(cy)) € GL2,(Qy) is odd for every
real place y. That is, std(p,»(cy)) has each of the eigenvalues 1 and —1 with multiplicity
n. It is elementary to see that this is impossible when (disc-c0) is false. Indeed, if n is
odd and FE = F, then the number of 1’s on the diagonal of p,(c,) is obviously even (so
cannot equal n). If n is even and [E : F] =2, this is elementary linear algebra. O

Remark 6.10. The corollary suggests that in that setup, #° should come from an
automorphic representation on Sps,_o(Ap), where Sp,, , is viewed as a twisted

endoscopic group for SOfn/ " (see the paragraph containing (1.2.5) in [1]).

If we assume (coh®) and (St°) but not (std-reg®), then some expected properties to be
needed in our arguments are not known. We formulate them as a hypothesis so that our
results become unconditional once the hypothesis is verified. (In the preceding arguments
in this section, (std-reg®) allowed us to apply the results on the Ramanujan conjecture
and construction of automorphic Galois representations for regular algebraic cuspidal
automorphic representations of GL,, which are self-dual.)

Hypothesis 6.11. Assume (disc-00). When 7° satisfies (coh®) and (St°) but not (std-
reg®), the following hold true.

b
q

(2) There exists a semisimple Galois representation p.s : I'p — SO2,(Q)) x I'g/p
satisfying (SO-i) at every q where wz is unramified as well as (SO-iii), (SO-iv)
and (SO-v). Moreover, p,.»(I'r) contains a regular unipotent element.

(1) 772 is tempered at every finite prime q where 7, is unramified.
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The hypothesis readily implies (SO-ii) for p,». We expect that this hypothesis
is accessible via suitable orthogonal Shimura varieties. If one is only interested in
constructing the GSpin,,,-valued representation p, without proving its f-adic Hodge-
theoretic properties, then (SO-iii) and (SO-iv) may be dropped from the hypothesis.

Remark 6.12. Corollary 6.8 (or the above hypothesis, if (std-reg®) fails) tells us that
the Zariski closure of p.»(I'r) belongs to the list of subgroups of SOg, in Proposition
5.5. In the list, the PGLg, G5 and PSOsg,,_1 cases can only occur when (std-reg®) is not
satisfied. Since PGLy and G9 are contained in PSOs,_1 (up to conjugation), we only
need to observe this for PSO9,,_1. In this case, ,uHT(pﬂb,q,Ly) of Theorem 6.5 must factor
through i, ; : SO2,—1 < SO2, and thus cannot be regular as a cocharacter of GLa,. By
(SO-iii) of the theorem, std(imodge(£°,y)) is not regular either, contradicting (std-reg®).

7. Extension and restriction

In this section, we study how the local conditions (St), (coh) on a cuspidal automorphic
representation of GSOE/ ¥(Ar) (introduced in the introduction and §10 respectively)

compare to conditions (St°), (Coh®) on an irreducible SOfn/ F(Ap)-subrepresentation
(given in §6).

Lemma 7.1. Letq be a ﬁmte place of F. Let 7 be an irreducible admissible representation
of GSOE/F( F,), and let ™ C 7 be an irreducible SOE/F(F )-subrepresentation. Then 7

o (Fy)

is a character twist of the Steinberg representation of GSO if and only if ™ is a

character twist of the Steinberg representation of SOE/F(Fq),

Proof. Write G = GSOE/F( F,) and Gy = SOE/F( F,). To lighten notation, when H is an
algebraic group over Fy, we still write H for H(Fy) in this proof when there is no danger
of confusion.

(=) Let P C G be a parabolic subgroup, and write Cp for the space of smooth functions
on P\G. Fixing a Borel subgroup B and taking P D B, we may view Cp C Cp as those
functions on G/B that are P-invariant. These spaces Cp define a (non-linear) filtration
on Cp, and the Steinberg representation Stg is the quotient of Cp generated by all
subrepresentations Cp with P C G proper [8, X.4.6]. There is a natural bijection between
the parabolic subgroups of G with those of Gg by P — Py := PNGy. Applying loc. cit. now
to Gg, we take By := G9N B and consider the spaces Cp, D Cp, for By C Py C G and Stg,
as before. The inclusion Gy < G induces an isomorphism Py\Go — P\G for each parabolic
P (injectivity is clear; surjectivity can be seen by using the Bruhat decomposition, for
instance). Thereby, we have a Gy-equivariant filtration-preserving isomorphism Cg = Cp,
restricting to Cp = Cp, for each P. Therefore, Stg|a, =~ Stg, -

(<) Write G’ = GSpinfn/F(Fq) and Gj = SpinQEn/F(Fq). By abuse of notation, write
Go/Gj, := coker(pr: G, — Gy) and likewise for G/G’. These are finite abelian groups. We
claim that every smooth character Go — C* extends to a smooth character G — C*.
Since such characters factor through Go/G{ and G/G’, respectively (see e.g., [49, Cor.
2.6]) the claim would follow once we verify that Go/Gjy — G/G' is injective. So let gg € Gy
and suppose that gy = pr(g) for g € G’. Then 1 =sim(go) = sim(pr(g)) = N(g)? by Lemma
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3.1 (iii). If N(g) = —1, then we replace g with zg using z € Zggpin such that N(z) = —1
and pr(z) =1 (in the coordinates of Lemma 2.5, choose z = (1, — 1) if n is odd, and
z2={((4, — 1) if n is even); so we may assume that A (g) = 1. But this means that gq is
trivial in Go/Gj. The claim has been proved.

Thanks to the claim, we may assume 7 = St after twisting by a character. Since 7|g,
contains Stg,, we can twist 7 such that the central character of 7 is trivial. (The central
character is a character y of F'*/{#1}, so there exists a smooth character x/?: F* — C*
whose square is y. Then we twist by simox~/2.) By assumption,

0 7é HOHIG0 (StGO,TF) = HOHlG0 (StG,ﬂ') = HOmZ(G)GO(Stg,W),

where the first equality is from the implication (=) and the second from the triviality
of central characters. By Frobenius reciprocity, this realizes m as a constituent of
Indg(G)G »Sta, which is the direct sum of twists of Ste by characters of the finite abelian

group G/Z(G)Gy. O
Let y be a real place of F' so that E,/F, =C/R if n is odd and E, = F, =R if n is

even.

Lemma 7.2. Let m be an irreducible admissible representation of GSOQE;;‘/Fy (Fy) with

central character wy. Let ©° be an irreducible SOf;;‘/Fy
irreducible algebraic representation of GSO%’/F“

(Fy)-subrepresentation. Let £ be an

, and & its pullback to SO2ETf/F”. Then,

(1) The representation 7 is essentially unitary if and only if 7° is unitary.

(2) The representation  is a discrete series representation if and only if 7° is a discrete
series representation.

(3) Assume 7 is essentially unitary. Then m is &-cohomological if and only if =
is £ -cohomological and w, = wgl, where we s the central character of £ on

2(GS05™)(Fy)
Proof. Write G = GSij/Fy(Fy), Go = SOQE,f/Fy(Fy) and F¢ C G for the image of
G (Fy).

(1) The “only if” direction is obvious. For the “if” direction, assume 7 is unitary. We

may assume w, = 1. Choose a Hermitian form h(-,-) on 7, extending the Go-equivariant
one on 7. Choose representatives {gy, ..., g, } for the quotient G/F,fGo and define h'(-,-) =
>y h(gi-,gi). Then R'(-,) is a G-equivariant Hermitian form on 7.

(2) This follows directly from the characterization of discrete series representations
through square-integrability (modulo center) of their matrix coefficients.

(3) This is implied by the fact that a unitary representation is cohomological if and
only if its central character and infinitesimal character coincide with those of an algebraic
representation. The “only if” direction is true without the unitarity condition by [8,
Thm. 1.5.3.(i1)]. We explain the “if” direction in the case of interest. (This argument
adapts to the general case.) For Gy, this follows from [69, Thm. 1.8], which applies to
connected semisimple real Lie groups. The case of G follows from that of G, by applying
[8, Cor. 1.6.6] to m®¢ by taking H there to be Z(G), and similarly to (7|q,) ®&” with
H=7(Gy). O
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8. Certain forms of GSO,, and outer automorphisms

In this section, we introduce a certain form of the split group GSOs,, over a totally real
field F, to be used to construct Shimura varieties. We start by considering real groups.
Let GOSP' 052" SOSP PSOSP" and GSO5" be the various versions of the orthogonal
group defined by the quadratic form x% + 3 +---+ 2%, on R?". Consider the matrix
J=({ ¢") € SOP'(R). We define the group GSO3, over R to be the inner form of

GSO;E:R obtained by conjugating the Gal(C/R)-action by J (using that J? is central).
Namely, for all R-algebras R, we have

GSOy,(R) = {g € GSOP (C@r R) | JgJ = g}. (8.1)

For g € GSO* (C @k R), we have g*Jg = sim(g)J if and only if JgJ~! =g, and thus
GSO3, (R) is the group of matrices g € GLa, (C) preserving the forms

—T1Tp41 T Tn+12T1 — L2Tnp+2 + Tnt2T2 — - — TpTon + TonTn

up to the scalar sim(g) € R* (the scalar is required to be the same for both forms), and
such that ¢ satisfies the condition det(g) = sim(g)".

Similarly, we define the inner forms GO3,,,S03,,,04,, PS03, of GOS>* SOP* 0P PSOSP".
Then SOj,,(R) is the real Lie group which is often denoted SO*(2n) in the literature (e.g.,
[36, Sect. X.2, p.445]). Note that SO3,, (R) is not isomorphic to any of the classical groups
SO(p,q), where 2n = p—+q (see [44, thm 6.105(c)]). The group SO(p,q) with 2n =p+gq is
quasi-split if and only if |n—p| < 1, giving rise to two classes of inner twists (recall that
SO(p,q) and SO(p’,¢’) lie in the same class if and only if p = p'mod 2). The group SOgn7
and hence the group GSOgn, is not quasi-split since SOgn is not isomorphic to any group
of the form SO(p,q).

We pin down the isomorphisms

Cx: GSOPH(C) 3 GS0an(C), g X 'gX, X=(1 1),
GSOP'(C) 3 GS07,(C), g+ (9,7 'gJ) € GSOLEPH(C)? = GSOLTP' (C @& C). (8.3)
Lemma 8.1.
(i) The group GSOY,, is an inner form of the split group GSO(n,n) over R if n is even,
and an outer form otherwise.
(ii) Explicitly,
A,B € M,,(C) such that
GOY (R) = (_A§ g) € GLo, (C) |A'A+B'B = A 1,,(where A =sim(g) € R¥)
A'B=B'A

(iii) The following are true:

(a) The groups SOy, (R) and O (R) are connected and equal to each other.

(b) The map sim: GOy, (R) — R is surjective; sim: GSOy, (R) — R* is surjective
if and only if n is even.
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(c) We have GSO3, (R) = GOy, (R) if and only if n is even.
(d) If n is even (resp. odd), then |mo(GSO3, (R))| equals 2 (resp. 1).
(iv) The mapping

07: GSOJ,(R)  GSOJ,(R), g=(45)mTor = (47F)
for T=1i-(9%) € GOy, (R) is an automorphism of GSO3, over R. It is outer if
and only if n is odd.

(v) The group SO, (resp. GSOy, ) has a nontrivial outer automorphism defined over
R that acts trivially on the center if and only if n is odd.

(vi) The groups SO’ (R) and GSOSLY(R) are connected.

Proof. (i). The group SOy, is an inner form of SO;‘ZE]R7 and the compact form lies in the
split inner class if and only if n is even.
(ii). Let g = (4 B) € GL2,(C). Write A = sim(g). We compute

Jg=97 = () () =@M e (LF)=(E8) e9=(%3)

t =t —t—
A B A B\ _ At — A B\ _ (A'"A+B'B A'B-B'A
(—EZ) (_Ez) =AM e A= (Bf g ) (—§Z> = (BtAtZ”E BtB+ZtZ) '
These identities are equivalent to the stated conditions on g.
(iii.a) By [83, Cor. 6.3], det (_AE %) >0 for all A,B € M,,(C). By Lemma 8.1(ii), any

g € 04, (R) has det(g) >0 and thus det(g) = 1. Thus, O, (R) = SOy, (R). By [44, prop
1.1.145], the group SOy, (R) (and hence OF, (R)) is connected.
(iii.b) By restricting to the center, we see that the image of the similitudes factor

contains RZ, in all stated cases. The element g = (g %) with A = i1, lies in GOy (R)

and has sim(g) = —1, proving the first part. Since det(g) = 1, we have g € GSO3,, (R) if n is
even, proving the second part in that case. Assume for a contradiction that GSO3,, (R) —
R* is surjective when n is odd. Take some g’ € GSOj, (R) with sim(g') = —1. Then
sim(gg’) = 1, thus g¢’ € 0, (R) = SO, (R) and hence g € GSO3, (R): Contradiction.

(ifi.c) For n odd, the element g = (A %) from (iii.b) shows GSO3,.(R) # GOy, (R).
Assume n even. If h € GOy, (R), choose g € GSOy, (R) with sim(g) = sim(h)~! using
(ii.b). Then hg € OF, (R) = SO3 (R) and hence also h € GSO3, (R). Thus, GO7, (R) =
GSOy,, (R).

(iii.d) Write ¢ := #m(GSOy,(R)). As H'(R,zi2) has 2 elements, we have ¢ < 2. If n
is even, then sim is surjective and hence ¢ > 2 and ¢=2. If n is odd, we have RZ, x
SO7 (R) = GSOJ, (R); hence ¢ =1.

(iv) We have T*T' = —1 and JT.J~' = J, so indeed, T € GOy, (R). As sim(T) = —1 and
det(T) = i?"(—1)" = 1, we have sim(T)" # det(T) if and only if n is odd.

(v) By the example in (iv), we may assume n even. Any R-automorphism 6 €
Aut(GSO‘QIn) acting trivially on the center is given by 6: g — YgY ! for some Y €
CO3,(C). Replacing Y with tY for some ¢t € CX, we may assume that sim(Y) =1 (as
0 does not change, it is still defined over R). Write o: GOS*(C) — GOSPY(C) for the
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automorphism g — JgJ ', so that GOy, (R) = GOSPY(C)7=19. As 6 is defined over R,
0(og) =00(g)  Yg€GO3,(C),
and therefore, YJ-g-J 'Y 1 =JY.5. Y e ,s0Y Iy g g= -771J_1YJ. Thus,
A-YJ=JY  forsome A€ Z(GSOy, (C))=C*.
We have Y'Y = 1, so we compute as follows using J*.J = 1:
1=Y'V = AW YD AT Y T) = N2 (JYHY J) = A%

Therefore, A € {£1}. If A =1, then Y € OF,(R) = SO, (R), and 6 is inner. If A = —1,
then o(Y) = —Y so iY € GOZ, (R) = GSOY, (R) (n is even). Thus, 8 = (g — (iy)g(i¥) 1)
is inner.

(vi) Tt is standard that SOSP*(R) is connected. Let us show that GSOS*(R) is connected
from this. The multiplication map SOSL*(R) x R* — GSOSL*(R) has connected image since
SOSP*(R) meets both connected components of R*. So we will be done if we check the
surjectivity. This is equivalent to the injectivity of H'(R,{£1}) — H'(R,SO" x GL,),
which follows from the fact that there is no g € SO (C) with g~'g= —1. (Via h=+/—1g,
the latter is equivalent to non-existence of h € GLa,, (R) with h*h = —1, which is clear.) O

Now we turn to the global setup. Let n and E/F be as in §6 and impose condition
(disc-00) from now on. In analogy with the SOs,-case, we introduce a quasi-split form
G* of GSOg,, over F. If n is even, we have I = F' and take the split form G* := GSOg,,
(or simply written as GSOagy,). If n is odd, then E/F is a totally imaginary quadratic

extension. In this case, let G* be the quasi-split form GSOfn/; of GSOgzp r (up to

F-automorphism) given by the l-cocycle Gal(E/F) — Aut(GSOg, g) sending the
nontrivial element to 6° = Int(¥°). Since ¥° € Os,(FE), this cocycle comes from the

Aut(SOq,, g)-valued cocycle determining SOfn/F as an outer form of SOs,,; thus, we have
SOE/F — GSO2En/F. Concretely, in analogy with (6.1),

N X
GSOQE,{F(R) _ {g € CLon(E®r R) there exists A € R* such that - }7

c(g)=0°g9°, g () ¢ )g=A(L §), det(g) =

and GOQE,L/F(R) is defined by removing the condition det(g) = A™.
We write G* = GSO2En/F for both parities of n, understanding that £ = F' if n is even,
for a streamlined exposition. In both cases, we have an exact sequence

1 S0E/F  asol/f 5 G,, > 1, (8.5)

where the similitude map GSOQEJF — Gy, is the usual one if E=F, and g — X in (8.4)
it £ # F. Note that G, *4 1s isomorphic to Spiny, (C), on which I' acts trivially (resp.
nontrivially via Gal(E/F) as {1,0}) if n is even (resp. odd).
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Write (-)P for the Pontryagin dual of a locally compact abelian group. Let v be a place
of F. By [46, Thm 1.2], we have a map"'
ay: HY(F,,G2y) — mo(Z(Gr)™)P,

which is an isomorphism if v is a finite place (but not if v is infinite).

Lemma 8.2. We have

(u2)?, nis even,
Z(Grg)' =4 o, n is odd,v is non —split in E/F,
14, n is odd,v is split in E/F.

Proof. This follows from Lemma 3.7. O

By [46, Prop. 2.6] and the Hasse principle from [68, Thm. 6.22], we have an exact
sequence of pointed sets

1— HY(F,Ghy) = @H (F.,Grq) =% mo(Z(Gr)")P — 1. (8.6)

Since Z(é;\d) is finite, we may forget mo(-) in (8.6) and the proof of the lemma below.
From now until the end of §9, we fix a finite place qs¢ and an infinite place yo, of F.

Lemma 8.3. Let qst (Tesp. Yoo ) be a fized finite (resp. infinite) place of F. There exists
an inner twist G of G* such that for all F-places v # qst, we have

GSOY, ., V=Y
Gy q GSOP 1 0 € Vo \{Yoo} (8.7)
G}v v ¢ Voo U{qss}-

This inner twist G is unique up to isomorphism if either n is even or (s¢ is non-split in
E/F; otherwise, there are two choices for G. (Recall the notion of inner twist from §1.)

Proof. Put

o J
Aqgy "= —Qy (Gsozn,F

Yoo

)= > au(GSOP' ) € (Z(Gr)T)P. (8.8)

VF Yoo

By duality, the inclusion Z(éj;)r C Z(éj;)rv induces a surjection (Z(é;\d)F“)D —
(Z(@)F)D. Hence, we can choose some invariant aqg, € (Z(@)F'”)D mapping to the
expression on the right-hand side of (8.8). Let G4, be the inner twist of G* over Fyg,
corresponding to aqg, . Then, by (8.6), the collection of local inner twists { Gy }placesy cOmes
from a global inner twist G/F, unique up to isomorphism. Conversely, any G as in the
lemma satisfies g, (G) = aqg, by (8.6). Therefore, the number of choices for G equals

the number of choices for agg,, which can be computed using Lemma 8.2. O

T his map has been computed explicitly by Arthur [1, Section 9.1] for all inner forms of
classical groups of type B, C' and D.

https://doi.org/10.1017/51474748023000427 Published online by Cambridge University Press


https://doi.org/10.1017/S1474748023000427

Galois representations for even general special orthogonal groups 51

Remark 8.4. The group Gy, in the lemma is never quasi-split, regardless of the parity
of [F: Q]. It is always a unitary group for a Hermitian form over a quaternion algebra.
This corresponds to the “d =2 case” in [1, §9.1]. In this case, the rank of Gy, is roughly
n/2 (see [1] for precise information).

9. Shimura varieties of type D corresponding to spini

We continue in the same global setup, with an inner form G of a quasi-split form G* of
GSOs, over a totally real field F, depending on the fixed places qs; and y, of F. We are
going to construct Shimura data associated with Resp,oG by giving an R-morphism S :=
Resc/rGm — (Resp/gG) ®g R. Our running assumption (disc-oo) is clearly a necessary
condition for the existence of such Shimura data. We define

h_1yn:S—GSOL,, +yirs ( “In y1">

-yl, xl,
; In diag(yl,—1, —
h(—1yn+1: S — GSO3,, z+yi— (diag(—mylnl " 1ag(yx1n1 y)) .

We will often omit 1,, in the cases similar to the above if a matrix is clearly 2n x 2n in
the context.

By slight abuse of notation, we write Ad for either the natural map from GSOgn —
GSO‘QInyad or the adjoint representation of GSOj, on LieGSO3,,.

Lemma 9.1. Let ¢ € {+,—} and put K. := Centggoy (w)(he). The following hold.

(i) In the representation of C* on LieGSOy, (C) via Adoh., only the characters z —
272, 2+ 1 and z — 22~ appear.

(ii) The involution on Gsogmd given by Ad h.(7) is a Cartan involution.

(iii) Ky and K_ are GSO3, (R)-conjugate.

Proof. For (i) and (ii), we only treat the case of e = (—1)" as the argument for —e is
the same. Let z =z +yi € C* and consider the left-multiplication action of the matrix

he(z+iy) = (2, ¥) on My, (C). The matrix (%, ¥) is conjugate to (”yi z_yi) via (§ ).
1

Hence, only the characters 2z~ ', Zz~! and 1 appear in the representation of S on My, (C)
via conjugation by he (z +iy). Since Lie GSO3,, (R) is contained in My, (C) via the standard
representation, (i) is true for he(z). Since J~! = h_(i), the inner form of GSOy,, defined
by he(4) is the compact-modulo-center form GSO;?:H@ so part (ii) follows.

Let us prove (iii). Write h. := Ad o h.. Clearly, Ad(K.) C CentGSO‘Q’n,ad(R) (he). The

Lie algebra Lie(K<) (resp. the Lie algebra of Centggos (m)(he)) is the (0,0) part of
Lie(GS03,,) (resp. Lie(GSOgmad)) via he, in the sense of [20]. In particular,

ad: Lle(K&-) — Lie (Centhog d(R) (h/g))

is surjective. Therefore, Ad(K.) D Centggoys d(R)(hE)O. Since Centggos — (r)(he) is

2n,ad

connected by [20, proof of Prop. 1.2.7], we have Ad(K.) = Centgsoy () (he). The latter
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is the identity component of a maximal compact subgroup of GSO‘anvad(R) by loc. cit. so
Ad(K_) and Ad(K ) are conjugate in GSO‘QImad(R). Since K. = Ad~'(Ad(K.)) and since
Ad: GSOy, — Gsogmd is surjective on real points by Hilbert 90, we lift a conjugating
element to see that K, and K_ are conjugate in GSO3, (R). O

Recall the cocharacters pq,pu— from (2.9), which are outer conjugate as py =
¥2pu_(9°)~t (but not inner, cf. (2.8)).

Lemma 9.2. Let e € {+,—}.

(i) Consider the inclusion of C* in (C®rC)* = (C*)GC/R) indexed by the identity
idc/g € Gal(C/R). Then Cx he,clex = fie.

(ii) The complex conjugate morphism z — h.(Z) is GSOy, (R)-conjugate to h(—1yne.

Proof. In the proof, put e = (—1)™. (i). Recall C'x from (8.3), which induces GSO3, (R) <
GSOPE(C) & GSO2,(C). The morphism Cxh. equals z+ yi — (wﬁ(—)w 0 ) The

T—yi
holomorphic part of this morphism is z — (3 {), which is g.. Then h. = 9°h_.9°, where ¥°
is as in (2.4). Write 9° = (*126“1 2) Note that Cx (9°) = 9°, so ¥°-conjugation becomes
¥°-conjugation under Cx. As ¥° swaps p. and p_., we obtain Cxh_.|cx = pi—e.

(ii). Write z =z +yi € C. We compute

he(Z) = (; wy) = Th.(2)T~,
where T =i(9}) € GOy, (R). By Lemma 8.1(iv), T € GSOj,,(R) if n is even, which proves
(ii) in that case. For n odd, the above identity shows z — h.(%Z) and h. are conjugate under
an outer automorphism. Thus, by (i), the cocharacter attached to h.(Z) is conjugate to
H—e-

By Lemma 9.1, the conditions of [20, Prop. 1.2.2] on (PSO3, ,h(z)) and (PSOy,,,h+ (%))
are satisfied. By this proposition, there exists a g € PSOy (C) that conjugates
(PSOgn)R,hE(E)) to (PSO2Jn7R,h_E(z)). This implies that for all z € PSO3, (C), we have
gZg~ ' =gxg~!. Thus,alsog ‘g =g ‘gandg ‘g€ Z(PSOy,(C))={1}, and thusg=g,
which means g € PSO3, (R). By Hilbert 90, we may lift g to an element § € GSO3, (R).
Then the map C* 2 z — x(2) := hZ1(2)gh_-(2)g~! is a continuous homomorphism to
Z(GS0y,(R)) = R*. It suffices to show that x is trivial. The subgroup x(U(1)) € R*
is connected and compact and hence trivial. Since h. and h_. agree and are central on
R* C C*, we have x(R*) = {1} as well. So x is trivial as desired. The proof for h_. is
similar. O

Let G be as in Lemma 8.3. Let X° be the (Resp/gG)(R)-conjugacy class of the

morphism
he: S — (RespgGlr, 2+ (he(2),1,....1) € ] Gr,, (9.1)
YEVoo
where the nontrivial component corresponds to the place yoo. Then p® = (ue,1,...,1) €

X, ((Resp/gG)c) = X, (GSOgp,c)V= is the cocharacter attached to he, in the same way
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as in Lemma 9.2 (i). The reflex field of (Resp/qG,X®) means the field of definition for
the conjugacy class of u°, as a subfield of C.

Lemma 9.3. Let e € {1}. Then

(i) The pair (Resp/oG,X?) is a Shimura datum of abelian type.
ii) The Shimura data (Resp/oG, X ™) and (Resp,0G,X ™) are isomorphic only if n is
/Q /Q
odd.
iii) If F # Q, the Shimura varieties attached to (Resp,oG,X¢) are projective.
( ) ’ /Q% proj

(iv) The reflex field of the datum (Resp/qG,X°®) is equal to E, equipped with an
embedding o : E — C extending Yoo : F' — C.

Remark 9.4. About (7): When F' = Q, the Shimura datum (G,X¢) can be shown to be
of Hodge type, but we do not need this fact. About (it): If n is odd and gg; is inert in
E/F, then one can show that (Resp/qG,X ")~ (Resp/G, X ).

Proof. (i) Clearly, (Resp/gG)aqa has no compact factor defined over Q, which is one of
Deligne’s axioms of Shimura datum [20, 2.1]. The remaining two axioms follow from
Lemma 9.1, and hence, (Resp/qG,X®) is a Shimura datum. In the terminology of loc.
cit., (Resp/@G,X*) is of type D®. By [20, Prop. 2.3.10], a datum (G’,X") of type D is of
abelian type if the derived group of Gf is (a product of) SOg,, c. (Not all Shimura data
of type D¥ are of abelian type.)

(ii) If n is even, then every automorphism of (G, _ )aa (isomorphic to GSO‘2]n7a(1) is inner
by Lemma 8.1 (v). However, it follows from Lemma 9.2 (i) that no inner automorphism
of Gsogmd takes Adoh, to Adoh_, since Adopu, to Adopu_ are not conjugate by
GSO2p,24(C). Hence, no automorphism of (Resp,gG)r (thus also of Resp,oG) carries
X onto X~

(iii) If F # Q, there exists some real place y., € Vo of F different from yo.. Since
Gy is compact modulo center, Resp /oG is anisotropic modulo center over Q. Hence, the
associated Shimura varieties are projective by Bailey-Borel [2, Thm. 1].

(iv) Assume that n is odd (thus, [E : F| = 2). Suppose that o € Aut(C/Q) stabilizes
the conjugacy class of p€. Since o(u®) ~ u®, we have 0(Yoo) = Yoo, 50 0 € Aut(C/F) with
respect to Yoo : F'— C. If ¢ has nontrivial image in Gal(E/F'), then Lemma 9.2 (ii) tells us
that o(u®) ~ (p—e,1,...,1), which is not GSOgy, (C)-conjugate to u°. Thus, o is trivial on
E (embedded in C extending yo,). Conversely, if ¢ € Aut(C/E), then o(u®) = pu°. Hence,
the reflex field is E. When n is even (thus F = F'), the preceding argument shows that
the reflex field is F. O

We introduce the following notation. Let € € {+,—}.

Taking an algebraic closure of F in C via 2o : E < C, we fix F = F — C.

We fix an isomorphism GQp AR ~ G* @p AL

7 is the center of G.

§ = ®y|ooby is an irreducible algebraic representation of (Resp/qG) xq C =

Hy‘DOG XF’y (C
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o T ig the set of isomorphism classes of (irreducible) discrete series represen-

tations of G(Fs) which have the same infinitesimal and central characters as £V.
K&, is the centralizer of h® in (Resp/oG)(R) = G(Fu).
For irreducible admissible representations 7., of G(F. ), put

n(n—1)
ep (T @&) 1= Y (—1)'dimH'(LieG(Fis ), K5,i Too ® §). (9.2)

i=1
Let 7% be a cuspidal automorphic representation of G(Ap) such that

° ng is a Steinberg representation up to a character twist,
e 7 is &-cohomological.

The latter condition implies via (the proof of) [50, Lem. 7.1] the following condition:

(cent) There exists an integer w € Z, called the central weight of £, such that for every
infinite F-place y|oo, the central character of &, is of the form z +— z*.

We also make the following assumption:
(temp) 7TE| is essentially tempered at every finite F-place q where 74 is unramified.

This may seem strong, but (temp) will be satisfied in practice; see the paragraph
above (10.4). Let A(m%) be the set of (isomorphism classes of) cuspidal automorphic
representations 7 of G(Ap) such that

(i) Tqs ﬂElSt ®¢ for an unramified character § of the group G(Fyg,),
(i) 7o ast ~ oo dst gand
(iil) Teo is &-cohomological.
By (temp), 74 is essentially tempered at every q where 7, is unramified. Define
af(n") = (=" VNS N m(r) epf(Tee ®€) € Q, (9.3)
TEA(mH)
where m(7) is the multiplicity of 7 in the discrete automorphic spectrum of G, and
27=1.2  if n is even,

9.4
on—t if n is odd. (0.4)

N = |H§(Fm)| m0(G(Fx)/Z(Fy))| = {

Here, |70(G(Fx)/Z(Fx))| € {1,2} depending on the parity of n from Lemma 8.1 (iii),
(vi).

Lemma 9.5. The groups K+ and KI are G(Fx)-conjugate. In particular, a~ (%) =
at(rh).

Henceforth, we will write a(r®) € Q for the common value of a®(7%).

Proof. The y,-components of K is K., which are conjugate to each other by Lemma
9.1. The components of K¢, at the other real places y equal G(F,) ~ GSOSL*(R), which is
connected. Therefore, K1 and K are connected and G(F.)-conjugate. It then follows
that ept (7o ®&) = ep™ (Too @) for all 74. Thus, at (7)) = a~ (7%). O
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Since condition (cent) holds, we can attach to ¢ a lisse Q,-sheaf £,¢ on Shy as in [50,
below Lem. 7.1] and [15, Sect. 2.1, 2.1.4]. We have a canonical model Sh% over E for
each neat open compact subgroup K C G(A%) (see [66, §0] for the definition of neat
subgroups) and a distinguished embedding E C F (compatible with E C C and the fixed
embedding F < C). We take the limit over K of the étale cohomology of with compact
support

Hi(ShE,ﬁLf) = h%ané(Shi( XEF,ELg),
K

equipped with commuting linear actions of 'y = Gal(F/E) and G(A%). The two
groups act continuously and admissibly, respectively. Write H’(Sh%,L,)* for the
semisimplification as a I'p x G(A¥)-module. (No semisimplification is necessary for
the G(A$)-action if F # Q, in which case Sh} is projective. This can be seen from
the semisimplicity of the discrete L?-automorphic spectrum via Matsushima’s formula.)

We construct Galois representations of I'g by taking the (7*°-isotypic part in the
cohomology as follows. We consider 71,7 € A(7?) are equivalent and write 71 ~ 7o if
790 ~ 75°. Let A(n%)/~ denote the set of (representatives for) equivalence classes. Let
7 € A(n%). Define

Hi(ShE,EE)[LTOO] := Homgas) (LTOO,Hi(ShE,ﬁLE)SS), (9.5)

n(n—1)
D DI DI )L HC Y ) 0.

TE€A(m?)/~ =0

A priori pil;’g is an alternating sum of semisimple representations of I'p and thus a virtual
representation (but see Theorem 9.6 below). Fix a neat open compact subgroup

K =[] K,CGAF) suchthat (%) 0,
qfoo

and also such that K is hyperspecial whenever 71'5 (or equivalently mq) is unramified. Let

Sbad be the set of rational primes p for which either

* p=2,
e Resp/oG is ramified over Q, or
o K,= qup K is not hyperspecial.

We write S, (vesp. SE ) for the F-places (resp. E-places) above Spaq. We apply the
Langlands—Kottwitz method at level K to compute the image of Frobenius elements under
po¢ at almost all primes.

Theorem 9.6. Consider 7% satisfying condition (temp); see below (9.2). There exists a
finite set of rational primes S containing Spaq, such that for all p not above S and all
sufficiently large integers j (with the lower bound for j depending on p), writing q:=pNF,
we have

Trpi};’e(Frob{;) = La(7rt')q]]3'n(n_l)/4 -Tr (spin®" (¢« ))(Frob%), ee{+ -} (9.7)
q
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Moreover, the summand of (9.6) is nonzero only if i = n(n —1)/2. In particular, the
virtual representation pi};’s s a true semisimple representation.

Proof. We mimic the proof of [50, Prop. 8.2] closely. Note that our pi?’g corresponds to
p3™ there. Another difference is that we use S to denote a set of primes of Q (not F
or F). It is enough to find S as in the theorem for each e separately, as we can take the
union of the set for each of + and — (and take the maximum of lower bounds for j). We
suppose that F # Q so that our Shimura varieties are proper. The case F' = Q will be
addressed at the end of proof.

Let foo = N!fe, where fe is the Euler-Poincaré (a.k.a. Lefschetz) function for £ on
G(F) as recalled in [50, Appendix A]. Then

Tr oo (foo) = Nog'ep® (oo ©€) = 12 )’ dimH' (g, K55 Too ® ).

Choose a decomposable Hecke operator st =TT, fq € H(G(AL ) J) K9t) such
that for all automorphic representations 7 of G(Ar) with 7% £ 0 and Tr 7. (fso) # 0,
we have

1 if 79st ~ ﬂ—haOO’CISt

Ty 70 9st (fOCaCISt) — {

0 otherwise.

This is possible since there are only finitely many such 7 (one of which is 7). Let fas. be
a Lefschetz function from [50, Eq. (A.4)]. There exists a finite set of primes ¥ D Spaq U{l}
such that f, is the characteristic function of K/ (which is hyperspecial) for every p’ not
above ¥. We fix ¥ and f>* = H'Ufoo fv as above.

In the rest of the proof, we fix an E-prime p not above X U{¢}. Write q:=pNF, and
p for the rational prime below p. To apply the Langlands—Kottwitz method, we need
an integral model for Sh; over Og,. Thus, we choose an isomorphism ¢, : C = @p such
that the valuation on Q,, restricts to the p-adic valuation via 1,70 : £ < Q,. (Recall x4,
from Lemma 9.3 (iv).) The (Resp;oG)(Q,)-conjugacy class of tpu: Gy — (Resp/QG)@p
is defined over Ej,.

For j € Z>1, let f(J ), denote the function in the unramified Hecke algebra of G(F))
constructed in [47, §7] for the endoscopic group H = G*, which is isomorphic to G over
F, = F®pQyp. (This is the function h, in loc. cit. We take s and t;’s on p.179 there to
be trivial, so that h, is the image of ¢; under the standard base change map on p.180.)
The L-group for (Resp/oG)g, (with coefficients in C) can be identified as

L(RGSF/QG)Ep = ( H é) ><1FEP,

oEHom(F,@p)

where I'g, acts trivially on the factor for o = ¢,y (The Galois action may permute the
other factors via its natural action on Hom(F',Q,,), but this does not matter to us.) The
representation of L(ResF/@G)E|D of highest weight ¢j, 1t is the representation (spin®,1,...,1).
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Here, spin® is on the factor for o = 1y, Where we identify

via LpToo

GxroQ,=GS02 " xr,Q, GSO

2n,@p

(in the ambient group GLo,(F ®p @p) ~ GLQn(@p) X GLgn(@p) of the left-hand
side, we project onto the (px-component) and thus identify G = GSpin,, on
the ¢pyoc-component. Now let 7, = [[;,,7¢ be an unramified representation of
G(Fp) = (Resp/G)(Qp) = [14/, G(Fy), and denote by ¢, : W, — L(Resp/gG)q, its
L-parameter. Then the ¢,y~-component of ¢Tp|WEF is given by ¢, ‘WEF' All in all, we

can explicate [45, (2.2.1)] in our setup as'?

Trr, (f) = g4/ Tr (spinV (¢, ) (Frobi)). (9.8)

As in the proof of [50, Prop. 8.2] (where our f,gj) is denoted by hf*), the Lefschetz
functions f and fqq, allow us to simplify the stabilized Langlands-Kottwitz formula [43,
Thm. 8.3.11] (recalled in [50, Thm. 7.3]) and obtain a simple stabilization of the trace
formula for G; the outcomes are formulas (8.8) and (8.9) of [50]. Combining them, we
obtain

LT (0f %P f, x Frobd, He(Sh, Log)) = TSap (P f foo), G 1. (9.9)

Note that f, is the characteristic function of the hyperspecial subgroup K, = lep K.
Following the argument from Equation (8.10) to (8.13) in [50], we compute

(9-8)

oMl (Frob) = a(af) Tl (£7) == a(n?)gp™ " ™" T (spin®Y (12 )) (Froby).

(9.10)

Shee s a true representation by showing that only the middle degree

cohomology contributes to pS}Js Since the canonical smooth integral model of Shf,

constructed by Kisin is proper as shown in [82, Thm. 2.1.29] (extending the analogous
result for Hodge-type Shimura varieties by Madapusi Pera [58, Cor. 4.1.7]), the action
of Frob, on H!(Shg,L¢) is pure of weight —w +1 by [22, Cor. 3.3.6] since L¢ is pure of
weight —w [67, §5.4, Prop. 5.6.2]. (To obtain purity from Pink’s result, we enlarge the
set S if necessary; cf. [63, 1.3], especially the proof of (7) in Proposition 1.3.4 there.)
The argument for Part (2) of [50, Lem. 8.1] (replacing Lemma 2.7 in the proof therein
with our condition (temp)) implies that 7,|sim|*/2 = 7r2|sim|w/ 2 is tempered and unitary.
Combining with (9.10), we conclude that H:(Sh®,L¢)[t7°°] = 0 unless i = n(n —1)/2.

Let us show that p_;

12 A word on the sign convention is appropriate here. The sign of [45, (2.2.1)] was flipped on
[47, p.193], meaning that the highest weight —tpue (up to the Weyl group action) should be
used in (9.8). This was caused by the arithmetic vs geometric convention for Frobenius and
explains why spin® is dualized, cf. the paragraph above Lemma 4.2. (It may appear that the
sign has to be changed once again when going from [47] to [48], since the latter paper asserts
that (G,h™') in its notation, not (G,h), corresponds to the canonical model of [20]. However,
we think the sign change is unnecessary; it should be (G,h) as long as we fix the sign errors
in [20] as pointed out at the end of §12 in [60].)
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Finally, the case F = Q is handled via intersection cohomology as in the proof of [50,
Prop. 8.2]. Thus, we content ourselves with giving a sketch. For each 7 € A(x!), one
observes as in [50, Lem. 8.1] that H%(Sh®, £¢)[t7°°] is isomorphic to the ¢:7>-isotypic part of
the intersection cohomology as I' g-representations. The point is that 7°° does not appear
in any parabolic induction of an automorphic representation on a proper Levi subgroup of
G(A). (If it does appear, then restricting 7 from G(A) to its derived subgroup G9*(A) and
transferring to the quasi-split inner form SOfn/F(A) via [50, Prop. 6.3], we would have a
cohomological automorphic representation 7° of SOQEH/ F(A) with a Steinberg component
up to a twist that appears as a constituent in a parabolically induced representation.
Then the Arthur parameter for 7% cannot have the shape described in Proposition 6.1,
leading to a contradiction.) The rest of the proof of [50, Prop. 8.2] carries over, via the
analogue of part 2 of [50, Lem. 8.1] (the latter is justified using condition (temp) in our
case), bearing in mind that the middle degree is n(n —1)/2 for us (which was n(n+1)/2
for the group GSp,,,). O

Corollary 9.7. Let 7% be as above. If T € A(r?), then

(1) 7o belongs to the discrete series L-packet H?(F“),

(2) 77/ € A(r?) and m(r) = m(r°°7.) for all 7! € Hg(F"O).
Moreover, a(r?) = > reA(ny~MUT) € Lso.

Proof. This is the exact analogue of [50, Cor. 8.4, Cor. 8.5] and the same proof applies.
(Since a(n%) = a*(7%) = a~ (n%), we adapt the argument there to either £ € {4+, —} to
compute.) O

Proposition 9.8. Assume that F #Q. Let x, : E < C and Yo : F'<— C be as in Lemma
9.3. Then

MHT(pi};’E’LxOO) ~ Z.a(‘n't‘) Ospins’v © (ﬂHodge(gyoo) - %Sim>’ €c {il}
Proof. We start by setting up some notation. Let p be a prime of E above ¢, and o :
E < Q, an embedding inducing the p-adic valuation on E. Let r be a de Rham Galois
representation of I'; on a Q,-vector space. Write Dy, »(r) for the filtered Qy-vector space
associated with r|r, ~with respect to o (as on p.99 of [33]). Define HT;(r) to be the
multi-set containing each j € Z with multiplicity dimgr’(Dag,,(r)). (So the cardinality
of HT,(r) equals dimr.) When a € Z~( and A is a multi-set, we write A®® to denote the
multi-set such that the multiplicity of each element in A®? is @ times that in A.

Write A(§) = {A(&y)}y|oo for the highest weight of { = ®,o&,. In the basis of §2 for
X*(Taso) = Xu(Taspin) = Z™ 1, we write &, and the half sum of positive roots p for
GSOs,, as

A(fy(x,) = (a‘Ovala"'van)v aj 2 as 2 Z ‘an‘ 2 0;
p=(—nn—-1)/4n—1n—-2,...,1,0).
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Let £2¢(n) denote the collection of subsets of {1,2,...,n} whose cardinality has the same
parity as n if e = (—1)" and different parity if ¢ = (—1)""!. Put

(bo,bl, e 7bn) = (ao — "("2_1),a1 +n—Llas+n—2,....an_1+ l,an)
=&y )+p—(n(n—1)/4,0,0,...,0),

which equals prodge (§xo. ) — @sim. Via the description of weights in the representation

spin® in (2.10) (which gives the weights in spin®"), the proposition amounts to the
assertion that

T (52 = { b0 =S| re 2200} = a0 =S ait S0 re 72} ™

el el i¢I

(9.11)

We prove this assertion using a result from [52]. Let us introduce some more notation.
Write Sh (C) for the complex manifold obtained from Shf; by base change along . :
E < C, and EEOP for the topological local system on Sh% (C) coming from &. Writing
K¢ (Lemma 9.1) as K¢ =[] K, we have K = K. and K} = G(F) ~ GSOSP'(F,) for
Y # Yoo- Restricting hg to the first factor of S¢ = Gy, X Gy, ¢ (labeled by the identity
C — C, not the complex conjugation), we obtain a cocharacter G, c — K§g, which we
denote by uf; this is consistent with the definition of p® below (9.1). We also have a
parabolic subgroup @ C (Resg/qG)c with Levi component K& as [23, p.57] (such that
the Borel embedding goes into (Resy/oG)(C)/Q). Fix an elliptic maximal torus T, C K*®
and a Borel subgroup B C (Resp/gG)c contained in @ such that B contains T,. Let R*
denote the set of positive roots of T, in B. By R~ we denote the set of roots of T, in
the opposite Borel subgroup. Write 2 for the Weyl group of T ¢ in (Resp/gG)c, and
Q¢ for the subset of w € Q such that wA is BN K&-dominant whenever A € X*(T) is
B-dominant. Let €2 denote the Weyl group of T ¢ in K&. The inclusion £, C € induces
a canonical bijection Q. ~ Q/Q.. We parametrize members of the discrete series L-packet
HS(F‘”) as {m(w)|w € Qp} following [34, 3.3]. (Our 7(w) is T(wA,wR™) in their notation.)
Even though Q,Tw,B, ). depend on ¢ (since they do on K*¢), we suppress it from the
notation for simplicity.

Write pg € X*(T) for the half sum of all roots in R*, and define w* g := w(Aog +
pc) — pa for \g € X*(T). Every irreducible representation Vy, of K¢ of highest weight
Ao € X*(T) gives rise to an automorphic vector bundle, to be denoted by &),. Write
A=A(§) € X*(Tw) for the B-dominant highest weight of ¢.

For a finite multi-set A, write mult(a|A) € Z>¢ for the multiplicity of ¢ in A. For each

J €Z, define Q,,.(j) to be the set of w € Q¢ such that the composition G, —)> Tw,c wxr

G, equals z — 27. Then,

mult (j|HT,,_ (p20°))

rh
= Y mult(j|HT,, (H"""/2(Sh%,L)[1r™]) by Theorem 9.6 and (9.6),
TEA(nH) [~

S Y dimHTT T O(ShE(C),En)[r], by [52, Theorem 6.2.9).
TEA(mH) [/~ wEnc(H)
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From [34, §3], we have an isomorphism of G(A%)-modules:

H*(Sh(C),&.4.) @m ® @ H*(Lie Q, K%, 700 @ Viyen ).

For each 7 € A(n%), we pass to the 7>-isotypic parts (with notation as in (9.5)) to obtain

H*(Sh(C),E..0) @m ! VH® (LieQ,K5,7. @ Vi),

where the sum runs over irreducible unitary representations of G(F). By [34, Prop.
4.4.12], if the cohomology on the right-hand side is nonzero, then 77 is -cohomological, so
T @71, € A(m™). It follows from Corollary 9.7 that 7. € 11$%>) and that m(T* 7)) =
m(7). Moreover, [34, Thm. 3.4] implies that H*(LieQ,K® 7., ® V,,x») is nonzero for a
unique 77, in which case the cohomology is one-dimensional. We use this to resume the

computation of mult(j|HT,,__ (p>%)) and obtain

b

mult (j|HT,o (050%) = >oom ) | Qe (5)]-

TEA(T!) [~ wEne(4)

To conclude (9.11), it remains to prove the following claim: that |Q,.(j)| is precisely
the number of ways j can be written as —ag —3_;c;ai+>_,¢;(n—1) with I € 2¢(n).

As a preparation, we fix an isomorphism between the pairs (Teo,¢,B) and (Taso,Baso)
induced by an inner twist (Resp,oG)c ~ (Resp/gG*)c. So the Weyl action of € is
identified with the Wggo-action in (2.8), while Q. is identified with &,, therein if
e=(—=1)" (If e = (—1)"*!, then €. is the #°-conjugate of &,,.) For a subset I C {1,...,n},
let w} denote the action on (to,t1,...,tn) € X*(Tagso) by t;+—t; for i € I, t; — —t; for
i¢ I, and to—to+ ) ;c;ti- Then wj € Q if and only if n— || is even.

Let us prove the claim, starting with the case € = (—1)™. Then n—|I| is even for each
I € 2¢(n). Write wy € 2, for the unique intersection of the §2.-orbit of w; with Q.. We
have bijections

P (n) = Q/Qe < Qe I'—wi—wy.
Since € = (—1)", we have from (2.9)
ue= (2 (2,2,y...,2,2)) € Xu(Taso) ~ Xu(T),

a priori up to the Q.-action, but u® is (l.-invariant. From this, we compute for \ =
(ao,al, ... ,an) € X*(TOO) ~ X*(Tgso):

(wrxA)o ()™t = (wr*X)o(uf) faon(aqunfz)JrZ(nfz 7@07Zai+z(n7i).

i€l all ¢ i€l i¢I

Thus, the claim for € = (—1)™ follows.

Keep € = (—1)™ and let us prove the claim for P~¢(n). Since n — |I| is odd, we no
longer have w} € Q but instead have wy := 0°w} = w;0° € Q. Replacing w} with w/ in the
previous paragraph, we obtain w; and analogous bijections

PE(n) 5 Q/Q & Qe I— W} —uwr.

https://doi.org/10.1017/51474748023000427 Published online by Cambridge University Press


https://doi.org/10.1017/S1474748023000427

Galois representations for even general special orthogonal groups 61

It follows from p=° = 0°u® and ).-invariance of p® that

(wrxA)o (n™%) = (0°(wr* A)) o (4) = (wr*A) o ().

The proof is now done since the computation of (wj*A)o (uf)~! in the preceding case
goes through verbatim. O

10. Construction of GSpin,,,-valued Galois representations

We continue in the setting of §8 and §9. The goal of this section is to attach
GSpiny,,-valued Galois representations of I' to the automorphic representations of G* =
GSOfn/ ¥ under consideration. The main input comes from the cohomology of Shimura
varieties studied in the last section. Write std: GSpin,,, < GLg,, for the composite of
pr: GSpin,,, = GSOg, and the inclusion GSOg, C GLgy,.

Let m be a cuspidal automorphic representation of G*(Ar). Let ¢, denote the L-
parameter of m, for y € V. Throughout this section, we assume that

(St) for some finite F-place qg¢, the local representation mqe, is isomorphic to the
Steinberg representation up to a character twist,

(coh) the representation 7o is cohomological for some representation & of

(Resp/G*) ®q C (then ¢ satisfies condition (cent) by [50, Lem. 7.1] as before).

® a cuspidal automorphic representation of SO2En/F(AF) contained in

W‘SOE/F(AF) (see [51]). We observe that 7” satisfies conditions (St°) and (coh®) of §6
2n
thanks to Lemma 7.1 and 7.2. Consider the following analogue of (std-reg®) for m:

Choose w

(std-reg) stdo¢,, |Wﬁy is regular at every y € V..

In addition to (St) and (coh), the following is also assumed throughout:
e Either (std-reg) holds for 7, or Hypothesis 6.11 is true for 7.

So Hypothesis 6.11 comes into play only when (std-reg) does not hold.

Condition (std-reg) is equivalent to the one given in the introduction via local Langlands
for real groups (e.g., see [12, §2.3]). If (std-reg) is imposed on 7, then (std-reg®) follows
from (coh®). By [53, §3, (iv)], we have that ¢,» , = pr°o¢r , at each y € V.. We can also
see (std-reg®) from this and (std-reg).

Lemma 10.1. In addition to (St) and (coh) for w, assume either (std-reg) for m or
Hypothesis 6.11 for ©°. Then ©° is tempered at all places, and 7 is essentially tempered
at all places.

Proof. This follows from Proposition 6.1 if (std-reg) holds. Otherwise, the same
proposition implies 7° is tempered at infinite places, and Hypothesis 6.11 asserts that

7 is tempered at finite places. The last assertion easily follows from the temperedness of

7. (See the proof of [50, Lem. 2.7].) O

The right-hand side of (8.4) is easily extended to a model of GSOQEH/ F over Op (by
replacing E, F' with Og,Op). Similarly, we have a model of SOQETL/F closed in the model of
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GSOgn/ F, defined by the condition A = 1. At each F-prime q not above 2 and unramified

in F, we have the hyperspecial group H, := GSOQEJF(OF‘]), whose intersection with

SOfn/F(Fq) is the hyperspecial subgroup Hy q := SOfn/F(OFq) in the latter. We will fix

these choices of hyperspecial subgroups for GSOfn/ F and SOQEn/ F At each q € Unr(m) (so
that 75 ® is nontrivial), we can thus find an irreducible SOfn/ F(Fq)—subrepresentation in
m, with nonzero Hy 4-fixed vectors. Consequently, after translating 7° inside of 7 by a
suitable g € GSOfn/ F(AF), we may assume that 772 is unramified at every ¢ not above
Shad (With respect to the hyperspecial subgroups above).

Thanks to Theorem 6.5 if (std-reg) is assumed, or instead by Hypothesis 6.11, we have
a Galois representation

Pro i T 5, — S020(Qg) x Gal(E/F),
whose restriction to I'g g,,, satisfies, writing q :=p N F for each p,

P (Froby )ss ~ L (Froby) € SO2,(Qy), (10.1)

for all E-places p ¢ S . Here, ~ indicates Os,-conjugacy (instead of SOs,-conjugacy).

Let H C SOs, denote the Zariski closure of the image of p.»: I'p s, — SO2,(Qy).
By Proposition 5.5, either H is connected or H = H? x Z(SOs,,). Therefore, via {£1} =
Z(S03y,), we can find a Galois character

n: Te, 5.0 = {21} (10.2)

such that the product morphism 7np,» has Zariski dense image in H°. In particular, if
H°® = H, we take n = 1. We define the character

77: FE,Sbad — <Z+> - GSpinQn (103)

to be the character so that the composition 7: I'g g,., — (27) Spre {£1} is equal to 7.

Recall that G is an inner form of G* = GSOfn/ F giving rise to the Shimura data
(ResF/QG,Xi) studied earlier. By [50, Prop. 6.3], there exists a cuspidal automorphic
representation 7f of G(Ar) such that

o 71'5/ ~ g at every finite prime g’ where 7y is unramified (we have G4 ~ Gy, at
such q'),
. ﬂgSt is a character twist of the Steinberg representation,

e 7 is ¢&-cohomological.

The first condition and Lemma 10.1 imply that 7 satisfies condition (temp) of §9.

Theorem 9.6 yields semisimple representations pi};’e of I'g g for € € {£1} such that its
Sh, e,V
ot

dual p has the following property:

P2 =Y (Froby)ss ~ egy "V (i, 05pin® (¢, (Frobp))) € GL, on1(Qy),  p¢ S%,
(10.4)

where S is a finite set of rational primes containing Sy.q, large enough, so that Theorem
9.6 holds for both € = + and € = —. We define pS¢ := pi};’s for e € {} (which depends
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not on the choice of 7% but only on 7 by (10.4)), and

55h,v Sh,+,\/@(

Y i=p vy,

n® Py

Then p ASh Vis a I'g, s-representation of dimension a,2", where a, := a(w”). We set

spin(-) := spin” (-) & (y @spin™ ()

when the input is a GSpin,,,-valued Galois representation or a local L-parameter, and
write spina(~) for the a-fold self-direct sum of spin(-). (So spin = spin if n = 1.) We have

PV (Froby )ss ~ ¢4y S D/Agpin ™ (¢r, (Froby)) € GLq, 2n (Qy), pg ST, (10.5)
Then pStV, 550V are a T'g g-representation of dimension a,2", where a, := a(n?).
When * is a map (resp. an element), we use % to denote the composition with the

adjoint map (resp. the image under the adjoint map) that is clear from the context.

Proposition 10.2. There exists a continuous semisimple representation

pS : T g, s — GSpiny,, (Qy)

(with C standing for a cohomological normalization) such that we have

Vp ¢ SE sp1n(p7r (Froby)ss) ~ vy nin= 1)/zlspln(gbw (Froby)) € GL2» (Qy), (10.6)

Vp & St props (Froby)ss ~ tprley, (Froby) € SO2,(Qy). (10.7)

Proof. Consider the diagram

ﬁih,\/
T T T
I'gs GSPinn(Qz)C—>Spina,r GLa,27(Qf) (10.8)
prOJ/ J/
NP5 SO%(@”W PGL,, 2n (@4)

At each prime p of E not above S, we obtain from (10.1) that

spin®” ((11p ) (Frobp)ss) ~ tspin (¢ ) (Froby))
= Lspin“"((f]qﬁﬂz )(Froby)) ~ o Y (Froby)ss € PGL,_ 20 (Qy). (10.9)

Recall that np,» has connected image. So (10.9) implies, via [50, Prop. 4.6, Ex. 4.7], the
existence of g € GL,_2(Q,) such that

ﬁsrh’v = g(spin“’r (npﬂb))gfl :T'g s = PGL, on Q).
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~Shv

1558V 50 that p =spin®~ (np,» ). From Diagram (10.8), we deduce

Replace pS*V by g
that

P (Tp,s) € pr®~H((1ps)(TE,s)) C GSping, (Qy),
where GSp1n2n is viewed as a subgroup of GL, o via spin®". That is, there exists a
representation p< : 'y ¢ — GSpin,,, (Q,) such that

“(p) =P and  propy =N .

Define p¢ :=7jp¢. Then it follows that

spin

——an

spin " (p) = p3Y and  propf = pp.

Thanks to (10.1) and (10.5), p¢ satisfies (10.7) and (10.6). The proof is complete. O

Remark 10.3. The bottom row in (10.8) cannot be replaced with PSOaq,,. (If it did, since
P has connected image in PSOsg,, by Proposition 5.5, the argument above would work

without introducing the n-twist.) For instance, observe that GSpin,,, spiy GLon — PGLagn
does not factor through PSO,, since spin®™ and spin~ have different central characters.

We can refine (10.6) by separating spin™ and spin~, which is a key intermediate step
towards the main theorem. Our argument is quite delicate and sensitive to the underlying
group-theoretic structures.

Proposition 10.4. Up to replacing pS by nd(pS) if necessary, we have the following.
For every p ¢ ST and e € {+,-},

Vp ¢ SE . spin®pC (Froby)ss ~ Lq;"("_l)/4spin€¢57rq (Froby) € GLgn-1(Q,),  (10.10)

Vp ¢ Sfad : propTCr(Frobp)SS ~ tpr°er, (Froby) € SO, (Qy), (10.11)

where we write q for the prime of F below p.

Proof. Recall from §1 that we often write Gy to mean Go(Q,) when Gy is a reductive
group over Q,. Moreover, we assume p ¢ S throughout, without repeating this condition.

The assertion (10.11) follows from (10.7) (and it is invariant under conjugation by an
element of GPiny,). The main thing to prove is (10.10). For simplicity, write p := p<,

pIe = eV oo = propl and a := a,. From (10.5) and (10.6), we have

« ~ . - Da
P @ (n@p*™ ) ~ (spintp@ (n@spinp)) . (10.12)

Write Z := Z(GSpin,,,) and H for the Zariski closure of im(p°) in SOsg,. Then H
contains a regular unipotent element by Corollary 6.8. We divide into two cases based on
Proposition 5.5

Case 1. Assume spinEpTCr is irreducible for ¢ = —. This happens when H° is SOs,,
i2,4(SO25,—1), or n =4 and H® = spin°®(Spin;) (possibly after conjugation in GSpin,,, ). In
the first two subcases, spin™p is also irreducible; for irreducibility in the third case, see
Lemma 5.2.
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If spintp ~ n®spin~p, then it is clear from (10.12) that S+ ~ p S~ ~
(spint p)®¢ ~ (n®@spin~ p)®2. So the proposition follows from Theorem 9.6.

Henceforth, assume that spin™p % 1 ®spin™~ p.

We claim that spin™ p(7)ss is regular in GLgn—1 on a density 1 set of v € I'. Define
X~ to be the subset of h € H(Q,) such that the semisimple part of spin (h) is non-
regular in PGLgn-1. Then X~ is Zariski-closed and conjugation-invariant in H. To
show H # X, let H C GSpin,,, be the preimage of H, so that HO equals Spins,, ,
ista(Sping,_1), or spin(Spin,) in the three cases, respectively. Then the restriction of
spin~ via H? — GSpin,,, is an irreducible representation with distinct weight vectors.
(When H° = igq(Spin,, ,), the restriction is the spin representation of Spin,, , by
Proposition 4.5.) So some element hg of H° maps to a regular element of GLgx—1 under
spin” . It follows that some element of H Y maps to a regular element of PGLgyn—1. We know
that H is a subgroup of Z (GSplnzn)H C GSpin,,,, thus by multiplying ho by elements in
the center, we obtain in each connected component of H an element with regular image
in GLgn-1. In particular, for each connected component C of H, we have X~ NC # C,
and thus dim X~ < dim H. Therefore, the set of v such that p°(v) ¢ X~ has density 1
according to Lemma 1.1, and in this case, spin™ p(7)ss = spin™ (p°(7)ss) is regular. The
claim is verified.

Given a square matrix g, let &% (g) for the multi-set of its eigenvalues. Since spin™ p %
n®spin~ p, there exists v € I' such that

e spin~ p(v) has distinct eigenvalues,

o EV(n(y)spin”p(y)) # EV (spin” p(7)).
In particular, there exists an eigenvalue « of n(v)spin~ p(v) which is not an eigenvalue
of spintp(y). Then a appears as an eigenvalue with multiplicity a on the right-hand
side of (10.12). We know from Theorem 9.6 that each eigenvalue of ™% () and
n(v)p°™ ~ () appears with multiplicity divisible by a. Thus, « is an eigenvalue of either
P (y) or n(y)p>™~(v), but not both. This implies, together with Theorem 9.6 and
the irreducibility of spin~p, that (i) (n®spin™ p)®* ~n® p°~ and (spin™ p)®® ~ pSh+,
or (i) (n®spin~ p)®* ~ S+ and (spintp)®* ~n® %~ In case (i), Equation (10.10)
follows from Theorem 9.6. If (ii) occurs, replace p with n® (9pd~1), where ¥ € GPing,
is as in (3.7). (Here, im(n) = {£1} is viewed as the subgroup of ker(pr®) = G,,.) Then
equations (10.6) and (10.7) are still true (as pr°(n) = 1). Hence, if we run the current
proof again, we will be in Case 1(i). We are done in Case 1.

Case 2. We now assume H° C i24(SO2y,_1), which covers the cases HY = ig,, (PGLy),
H° =% ,(G2) and n = 4. By Proposition 5.5, we have H C H°Z(S02,), and p has image
in the group Ho, 1 from (5.4). By (10.2), np° has dense image in H°, and by (10.3), p
has image in GSpin,,,_; C Hap—1. In particular, n is equal to kg o p, with ko from (5.6).
From (5.7), we obtain

Opp ~ nppp € GSpin,,,, (10.13)

where we write p, := p(Froby)ss and 7, := n(Froby). Similarly, we write 7, := 7(Frob,)
and ¢y, := Lqp*n("fl)/zl@rq (Froby). We claim
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By Equation (10.1), we have pr°p, N prl¢, € SOy, Multiplying 7, we obtain pr® (7, ¢,) N
pr®(Mppp). By assumption, pro(7,pp) € i%q(SO2,—1). Hence, 7,¢, = grg~" for some g €
GPing,, and z € istqa(GSpin,,, ;). We have §(z) = z, and thus,

0(7ppp) = 0(9)x0(9) " = (0(9)g™ ") Tpdp(90(g) ).

As 6(g)g~' € GSpin,,,, this implies that 0(7y¢p) ~ Npdy. Since O(7,) = npiy, (10.14)
follows.
In (10.6), we established

T (pp) ®mpspin (py) ~ spint (¢p) B npspin (¢y),

which implies by (10.13) and (10.14) spin™®2(p,) ~ spin™®?(¢,). It follows that
spin™ (pp) ~ spin™(¢p), Similarly, we deduce spin~(pp) ~ spin~ (¢y). O

spin

From now on, we replace, if necessary, p¢ by 76(pS) so that the conclusion of
Proposition 10.4 holds for p¢.

Proposition 10.5. We have that (writing q:=pNF)

Vp ¢ ST pC(Froby)s ~ Lq;n(nfl)/zl@rq (Froby) € GSpin,,, (Q,). (10.15)

Proof. We first establish the claim that XZ("_I)/QMW = Np¢, where ; is the cyclotomic
character and we view w, as a Galois character via class field theory. In view of Lemma
5.6(i), it suffices to check that

Xp D21 spin® (p9) = NpC -spin® (p9), e € {+1}. (10.16)
By Lemma 4.2, we have
spin®(pS) ~ (spin~V"%)¥ (o) @ N (10.17)

Let p ¢ SE, and write shorthand py, := p< (Froby)ss and ¢y := Lq;"("_l)/‘lgbﬂq (Frob,). We
apply (10.10) and compute using Lemma 4.2 again (but now locally)

spin®(pp) = spin®(¢p) = (spin'~V")¥ (¢y) @ N (¢p) = (spin'~V"*)" (pp) @ N ().
(10.18)

We now appeal to functoriality of the Satake isomorphism (unramified local Langlands
correspondence) with respect to Gn < GSOgzy, (dual to N : GSpin,, — Gy,), to get

N(pp) = X?("_l)/z(Frobp)Lw,,(Frobp). Therefore,

spin (p¢) = (spin ")V (pS) @ x; "V o

Comparing with (10.17), we obtain (10.16). At this point, we have established that

spin®py, ~ spin®ey, € GLgn—1(Qy) (Proposition 10.4),
prepp ~ predy € SO, (Qy) (Proposition 10.4),
Npp =Noy € G, (Qy) (claim above). (10.19)
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By [50, Lem. 1.1, table], a semi-simple element v of GSpin,, (Q,) is determined up to
conjugacy by the conjugacy classes of spin™~,spin~ 7 € GLgn-1, stdy € GLg, and Ny €
Gm. We complete the proof by noting that the two sides of (10.15) become conjugate
under spin™, spin~, std and N by (10.19). O

11. Compatibility at unramified places

We continue in the setup of §10 with the same running assumptions. We determined
the image of Frobenius under p¢ at each prime away from some finite set S. Now we
compute the image at the finite places p{ ¢ above S\Spaq. The argument follows that of
[50, §10], but there are new technical difficulties due to half-spin representations and the
automorphism 6.

Proposition 11.1. Let p be a prime of E not lying above SpaqU{f}. Then p< is
unramified at p. Moreover, writing q :=pNF,

p¢ (Froby )ss ~ Lq;"(n_l)/4¢,rq (Froby) € GSpin,,, (Q).

Proof. Fix p as in the statement. Let p denote the prime of Q below p. Let 7% be a
transfer of 7 from G*(Ar) to G(Ar) as in the paragraph above (10.4). Let B(7?) be the
set of cuspidal automorphic representations 7 of G(Ar) such that

Tyse and 7TE|St are isomorphic up to a twist by an unramified character,
7004862 gand %% 95:P are isomorphic,

Tp is unramified,

Too 18 €-cohomological.

We define an equivalence relation =~ on the set B(n?) by declaring that 7 ~ 75 if and
only if 75 € A(m1). (Recall the definition of A(7) from above (9.3); notice that 7 ~ 7o if
and only if 7y 4 ~ 72 4.) To simplify notation, we will write B for a set of representatives
for B(r?)/~.

For € € {+,—}, define (true) representations of I'g by pgl’a =3 cpPac (see Theorem
9.6). Put b(r%) :=>"__ g a(r) € Zso. Since pSt=V satisfies (10.4) for each 7 € B, we deduce
the following on the dual of pSBh’g by comparing the images of Frobenius conjugacy classes
at all but finitely many places via (10.4) and (10.10):

P 2y eay ospin® o pS. (11.1)

We adapt the argument of Theorem 9.6. Consider the function f on G(Ap) of the form
= foofas 1k, foO950P, where fo and fqq, are as in that argument, and f°*9©? is such
that, for all automorphic representations 7 of G(Ax) with (7°°)% 3£ 0 and Tr7(fs) #0,

we have

1 if 7099s6P ~ 00, d56.P,

Ty 70 986:P( £09,45t:P) — 11.2
(f ) {O otherwise. ( )
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Arguing as in Theorem 9.6, we obtain

T (Frobd, 05 = Y a(n) Ter(£90) = 3 a(r)gd" " T (spin® Y (¢, )) (Frobi).
TEB TEB
(11.3)

Define p3 := p%h’Jr @pjsgh’f. Applying (11.3) for both ¢ = + and taking the sum, we obtain

v~ Tr (Frobf, p') = Z a(r)qﬁ"(nfl)MTr (spin” (¢, ))(Froby). (11.4)
TEB

Since Xu [81, Thm. 1.8] describes global L-packets for (not only GSp,, but) quasi-
split forms of GSOs,, the argument for [50, Lem. 10.2] goes through unchanged,
except Corollary 9.7 replaces [50, Cor. 8.4]. This argument shows that 7% and 7® w
belong to the same global packet in Xu’s paper for an automorphic quadratic character
w: GSO;En/F(AF) — C*. Since each member of the packet in [81] is a #-orbit of
representations, this tells us that either 72 ~ 7, ® w, or 0(775:) ~ 7, ®w, at almost all
places = (where both 7%, 7, and w, are unramified). Since 7 ~ 7, at almost all z,

7l ~ 7 @weorf(nl) ~ 7l Qw,. (11.5)

Let us define characters x°: 'y — {£1} from w via spin® as follows. Via class field theory
and Galois cohomology (applying [54, Lem. A.1] to GSOQEJF; see also [79]), we assign to
w the continuous character

WF — Z(GSPIHQTL) A FE/Fa
whose restriction to Wg factors through a character ¢: I'y — Z(GSpin,,, ). We then define
X© :=spin®(c). We deduce
+aminT (o€ —arnin=(rC\ ~ crin(nC
X Tspin™ (o7 ) @ x " spin” (p7 ) ~ spin(pz), (11.6)

by using (11.5) to verify that the semisimplfication of the image of Frobenius matches at
almost all places.

By Lemma 5.6(iii), we have x™ = x~. Set x := xT. The same lemma tells us that x =1
or that p¢ has image in the group Ha, 1 from (5.4) and x = koo p<.

First case. Suppose that y =1 for every 7 € B. Then, for each 7 € B, there is some
1 €7Z/2Z, and we have

spin”" (r,) = spin™" (0 (wqr, ) = X7 spin™ VY (6, ) = spin" "V (g, ).
As [ does not depend on e, we obtain from (11.4) that
L_lTI‘pSBh(FI“Ob{;) = b(ﬂ'h)qgn(nfl)MTr (spin” ((;Sﬁq))(Frobf;)7 i>1.

Thus, p (Froby )ss ~ ng(n71)/4ib(7rh) ospin"(¢r, )(Froby). Comparing the dual of this with
(11.1), we deduce that

spinpC (Froby )ss ~ Lqp_"(n_1)/4$pin(g25,rq )(Froby).
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Since we also know the conjugacy relation with std and A in place of spin from (10.11)
and Proposition 10.5 (and the argument at (10.16) in its proof), we use Lemma 5.7 to
conclude that

p< (Froby )ss ~ Lq;n n=1) /49k¢ﬂ (Froby) € GSpin,,, (Q,), for some k€ Z/2Z. (11.7)

If k=0, then (11.7) implies the theorem. So we assume k =1 in the rest of the argument.
We now distinguish between those 7 € B according to whether or not their Satake
parameter at q becomes conjugate to that of 7 under spin™ and spin™: Write

Bgood := {7 € B|spin®(¢-,) ~ spin®(¢n, ), € € {+,—}} (11.8)
and Bpad := B — Bgood. Thus, (11.3) implies
gp " (rE) Trspin® (o) (Frobd) = Y a(r) Tr (spin (¢, ))(Frob?)

T€Bgood

+ Z 7)Tr (spin~ (¢ﬂq))(Frobf;). (11.9)

TE€Bpad

Equation (11.7) and (11.9) imply that spin*E((bﬂq)b(”h) ~ spin®(¢r, ) ®spin~*(¢r, )", as
W, -representations, where by = ZreBgood a(t), by = ZreBbAd a(t) and b(7%) = by +by.
Thus,

spin”~® (¢, )" 7" =~ spin® (¢, ). (11.10)

As 7% contributes to Bgood, we have by = b(r?) — by > 0. Thus, spin~° (¢, ) ~ spin®(én, ),
and ¢r, ~ 0¢r,, in which case the pr0p051t10n follows from (11.7). Here, we applied
Lemma 1.1 of [50] and the fact that spin®, std, A" are fundamental representations (see
table above Lemma 1.1 in [loc. cit]).
Second case. Suppose that x # 1 for some 7 € B. As explained, then p¢ has image in
the group Ha,—1 from (5.4). We obtain from (11.4) and (11.1) that
()T (spin(p) @ xspin(pC)) (Frob) =

=" a(r)(1+ x(Froby )/ )gg" "~/ *Tx (spin(¢y, (Froby)?)).  (11.11)
TEB

For each 7 € B, there exist a,b € Z/27 such that for both € € {#1}, we have spin®(¢-,) ~
szpin(*l)as((bﬂp). Thus, we have
(1) @spin(dr,) = (" © X" ® [spin ™" (¢r,) @spin~ V" (6,)] = (1@ ) @ spin(6s,)

as Wg,-representations. In particular, on the right-hand side of (11.11), we may replace
¢z, by ¢x,. We have xspin®(p¢) ~ spin~ (p¢) by Lemma 5.6(ii) and so xspin(p$) ~
spin(p¢). By removing the multiplicity b(7?) on both sides of (11.11), we thus find that

spin(pS) % w,, =~ [16x] @spin(6n,) @ |- [ D%, (11.12)

We claim that, in fact, also xspin™ (¢, ) ~spin™ (¢r, ). If true, (11.12) would imply that

spin(pQ)w, = spin(gr,) @ |- |57 "D, (11.13)
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We check the claim. As pr® surjects Z(GSpin,,) onto Z(SOxz,), we see that pr® induces
an isomorphism from the component group of Hs,,—1 to the component group of H3, | =
SO2,-17Z(S03,). Consequently, x (which equals ko p¢ by Lemma 5.6(iii)) is equal to
the composition

P Cb

I'e & Hj,_ 4 — {1}
We know that pr® (¢, (Froby)) ~ pr°(pS (Froby)ss) € SO2, since they become conjugate
after applying std. Therefore, X‘WE‘, equals

[o3
WE _9 H2On71 - {il}

b
and hence equals Wg, (blf Hyp—1 — {£1} (the argument is similar to the one below
(10.14)), which, in turn, implies that yspin™(¢x,) ~ spin” (¢, ). Hence, the claim is
proved, and (11.13) holds true as observed above.

We thus find (11.7) again. If £k =0 in that equation, we are done. Now assume k = 1.
Define Bgood, Bhad as in (11.8). As XspinJr((bﬂq) >~ spin” (¢r, ), it follows from (11.6) that
for each 7 € Bpaq, we have spin®(¢,, ) ~ spin™“(¢n,) for both signs e € {£1}. Thus, we
obtain (11.9) with #Bgooa > 0 again. By the same argument as in (11.10), we deduce
that ¢r, ~ 0¢,, in which case the proposition follows from (11.7). O

12. The main theorem

In this section, we prove Theorem A (Theorem 12.5), the main result of this paper. Before
doing this, we switch the normalization for 7 from (coh) to (L-coh), and extend the Galois
action from I'g to I'p.

As in Theorem A, let m be a cuspidal automorphic representation of G*(A ) satisfying
(St) and (L-coh). Fix a cuspidal automorphic representation 7° of SO;E,L/ F(Ap) which
embeds in 7T|SO§‘H/F as it is possible by [51]. Assume either (std-reg) for m or Hypothesis
—n(n—1)/4

(Ar)
6.11 for an SOg, (A f)-subrepresentation 7 of 7. Define 7 := r|sim| Then 7 is
&-cohomological and will play the role of 7 in Sections 10 and 11. Naturally, 7° is a
subrepresentation of 7|so,, (a,) since [sim| is trivial when restricted to SOa,(Ap).

Let ST (resp. S¥) be the finite set of places of F (resp. E) above S := Sp.q U{¢}. Fix
an infinite place Yo € Vs and also fix a finite place q as in (St). (Recall that the group
G, Shimura varieties, and the resulting GSpin,,,-valued Galois representations in earlier
sections depend on the choice of y and q.) From Propositions 10.2 and 11.1, we obtain

pS i Tp,s — GSpiny,, (Qy)
such that for every p ¢ S¥, writing q:= p|r, we have
pS (Froby )ss ~ Lqp_"("_l)/élcbﬁq (Froby) = t¢r, (Froby). (12.1)

Let us explain the definition of pr on I'p g. If n is even (thus E = F'), then we simply
take pr = pS. In case n is odd (so [E: F] =2), write ¢, €I for the complex conjugation

corresponding to ¥y (canonical up to conjugacy). In order to apply Lemma A.1, we check
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Lemma 12.1. When n is odd, we have v~ p$ ~ 6o p<.

Proof. In light of Proposition 5.8, it is enough to check this locally, namely, that
% (cy.. Frobyc, ! )ss ~ 6o p% (Froby )ss in  GSpin,, (Q,)

for almost all primes p of E. For each p, write q :=pN F. Firstly, if q splits in E as pc(p),
then we use (12.1) to deduce that

pg(cym I*jrob,gc;:i)sS ~ pg (Frobep))ss ~ @, (Frobe(yy) ~ t0(dr, (Froby)) ~ H(pg(Frobp)).

(To see the third conjugacy relation, we argue as follows. From (8.4), we see that an
element of GSO:,En/’iﬂq has the form (g,0(g)) with g € GSO2,, g, and that GSOQEn/’I;q is

isomorphic to GSO2,, g, and GSOay, . ,, by the projection map onto the first and second

e(®)
components, respectively. Likewise, the dual group of GSOQEH/ I; is naturally the subgroup
of GSpin,,, x GSpin,,, consisting of elements of the form (g},@(g)), the two components
corresponding to p and c(p). It follows that ¢, (Frob.)) ~ 0(éx, (Froby)).)

Secondly, if q is inert in FE, then cyocFrobpc;; ~ Froby,. Thus, we need to check
that the conjugacy class of p§ (Froby)s is 6-invariant. Writing 6(¢x, (Frobg)) =sxc €

GSpin,,, (Q¢) ¥ Tk,
0(¢r, (Froby)) ~ 0(¢n, (Frobi)) =50(s) ~0(s)s in GSpin,,, (Q,).
This implies the desired f-invariance via (12.1). The proof is complete. O

We are assuming that n is odd. By Lemmas 12.1 and A.1, we extend p¢ to a Galois
representation to be denoted p,:

pr:I'ps— GSpin,,, (Q,) Cg/p. (12.2)

There are two choices up to conjugacy (Example A.6). We choose one arbitrarily and
possibly modify the choice below.

We return to treating both parities of n. We fixed 7” above. Theorem 6.5, or Hypothesis
6.11 if (std-reg) is not assumed, supplies us with

pro i Lrs =802, (Qp) ¥ Ty,
such that p,, (Frobg)ss ~ L (Frobg) for q,p as above. Thanks to (12.1) and the unramified
Langlands functoriality with respect to SOs,, — GSOgn/ F (whose dual morphism is pr®),

v (Froby )ss ~ quﬂz (Froby) ~ ¢t pr®(¢x, (Froby)) ~ pr®(px (Froby)ss).

Thus, the conjugacy classes at the left and right ends are Os,(Q,)-conjugate, under
the identification SO2,(Q;) X '/ = 02, (Qy). Since Og, is acceptable, ps|r, o and
pr°o prlry s are O2,(Qy)-conjugate. Replacing p,» by an Oa,(Q,)-conjugate, we may
and will assume that

Prb |FE,s =pr° opT(‘FE,S
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without disturbing the validity of (SO-i) through (SO-v) in Theorem 6.5. When n is odd,
we take an extra step as follows. Observe that p.» and preop, are two SO, (Q,) xI'g /F-
valued representations of I'p g extending (12.3). If they are not equal, then pr°op, =
pr» @ Xp/p by Example A.5 with g/ : Ip — g/p = {£1}. Then we go back to (12.2)
and replace p, with p; ® x, where x is as in Example A.6; this does not affect the
discussion between (12.2) and here. Since pr°ox = xg,/F, this ensures that

Par =Pr°opr. (12.3)

As in §2, let (s0,51,...,5,) € (@, )" denote an element of Taspin(Q) C GSpin,, (Qy).
This element maps to diag(sh...,sn,sfl,...,sgl) € S02,(Q,) under pr°, and maps to
$38182 8, under the spinor norm N.

Lemma 12.2. At every infinite place y of F, the following are GSpin,,, (Q,)-conjugate:

(a,1,...,1,—1,...,—1), a€{£l}, n:even,
/2 /2
x(Cy) ~ " " 124
prlcy) (1,1,...,1,—1,...,—1,1) ¢, n :odd. (124)
—— ——

(n—1)/2 (n—1)/2
where the right-hand side lies in Tgspin(Q) x Gal(E/F).

Proof. In light of (12.3) (which is valid for both odd and even n as discussed above)
and Theorem 6.5 (SO-v) (or Hypothesis 6.11) which describes p.»(cy), the following are
GSpin,,, (Q;)-conjugate:

diag(1,...,1,—1,...,—1,1,...,1,—=1,..., = 1), n:even,
—— ——— e N —
prO(pﬂ_(c ))N n/2 n/2 n/2 n/2
Y diag(1,...,1,—1,...,—1,1,1,...,1,—1,...,—1,1) %6, n:odd.
—— —_—— ——

—_—————
(n—1)/2 (n—1)/2 (n—1)/2 (n—1)/2

Therefore, p,(c,) is a lift of the right-hand side (up to GSpin,, (Q,)-conjugacy) via pr°.
Moreover, pr(cy)* = px(c) = 1. We claim that these two conditions imply (12.4).

This is straightforward when n is even. Now suppose that n is odd. Evidently the
right-hand side of (12.4) satisfies the two conditions. Any other lift of order 2 can only
differ (possibly after conjugation) from the right-hand side of (12.4) by scalars {£1}.
(Use Lemma 3.1 (ii) and the order two condition.) This implies (12.4) since every g €
GSpin,,, (Q;) x ¢ is conjugate to —g; indeed, —g = (g¢ ™t if ¢ € Zgpin(Qy) is an element of
order 4, noting that 6(¢) = ¢~ 1. O

Let wy : F*\AX — C* denote the central character of w. By abuse of notation, we
still write w, (depending on the choice of ¢) for the ¢-adic character of I'p corresponding
to wy via class field theory (as in [33, pp.20-21]). To make w, explicit, recall that 7 =
m|sim|~™(»=1)/4 is ¢-cohomological. By condition (cent), the central character of ¢ is
z+ 2" on IS at every real place y of F, for an integer w independent of y. Therefore,
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(recalling sim is the squaring map on the center)
W y(2) = 27“’\2|"(”71)/2 = sgn(z)“’|z|7“’+"("71)/2, z€ F).

Then w,|-[*~"("=1/4 is a finite-order Hecke character which is sgn at every real place.

Hence, w, = Xc}fé“’"("_l)/ %Xo, where Xeye 1s the f-adic cyclotomic character, and xo a
finite-order character with xo(c,) = (—1)" at each real place y. The upshot is that
wr(ey) = (=1)7wrnn=D/2(_yw — (_)n(n=D/2 4 yeal place of F. (12.5)

We are ready to upgrade (12.1) to a compatibility at places of F for odd n (thus, [E :
F]=2).

Corollary 12.3. We have N o pr = w,. Moreover, at every finite place q of F not above
Sbaa U{l},

pr(Frobg)ss ~ tdr, (Frobg).

Remark 12.4. The corollary is certainly not automatic from (12.1) since the unramified
base change from G*(Fy) to G*(E,) is not injective when q does not split in E. Curiously,
our proof crucially relies on the image of complex conjugation. We have not found a local
or global proof only using properties at finite places.

Proof. Via the unramified Langlands functoriality with respect to the central embedding
Gm — GSOfn/F, (12.1) implies that N'o pr|r, =wx|r,. If n is even, then E = F, so there
is no more to prove as the latter assertion is already true by (12.1).

Henceforth, assume that n is odd (so [E : F] =2). Then either N op, =w, or No
pr =Wz ®XE/F, Where xp/p: I'r = Tg/p = {#£1}. To exclude the latter case, let y be
a real place of F. We have N(p,(c,)) = (—1)*~1/2 from Lemma 12.2, and w,(c,) =
(—1)"=1/2 from (12.5), but clearly, xp,r(cy) = —1. Then the only possibility is that
Nopr = wy.

We prove the second assertion. If q splits in F, this follows immediately from (12.1) for
pr|rp - Henceforth, assume that q is inert in £. We have seen that pr®opr|r, ¢ = prv|rs. s -
Theorem 6.5 (SO-1) (or Hypothesis 6.11) tells us that

Prs (Frobg)ss ~ L (Frobg) = tpr°®(¢n, (Froby)).

(Note that the outer automorphism ambiguity disappears as it is absorbed by the SOag,,-
conjugacy on the nontrivial coset of SOz, XI'g,p; since q is inert in E, the image of Frob,

in T'g/p is nontrivial.) Therefore, p(Frobg)ss ~ zt¢x, (Froby) for some z € Q, . Taking
the spinor norm,

N (z) = (N o pr(Frobg)ss )N (1, (Frobg)) ™! = wr (Frobg )ws (Frobg) ™! = 1.

It follows that z € {£1}. Since every g € GSpin,, (Q,) x ¢ is conjugate to —g (proof of
Lemma 12.2), we conclude that p.(Frobg)ss is conjugate to t¢, (Frobg). O

Theorem 12.5. Theorem A is true.
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Proof. Let 7 be as in the theorem. We fix an automorphic representation 7’ of

SOQE,{F(AF) in 7T|SOE/F(AF), take prs : p — SO02,(Q,) T/ to be as in Theorem 6.5,
2n

or Hypothesis 6.11 if (std-reg) is false, and define

pr: D — GSpin,,, (Qy) X Tgyp, (12.6)

such that p,» = pr°op, as explained at the start of this section. We can inflate p, to a
representation I'r — GSpin,,, (Q;) x ['r of Theorem A, but we work with p, in the form
of (12.6) as this is harmless for verifying the theorem.

The equality p,» = pr°®op, and Corollary 12.3 imply (A2). Corollary 12.3 exactly gives
(Al). Item (A4) is straightforward from Lemma 12.2. To see (A5), note that the image of
pr in PSOg2,(Q,) is the same as the image of p,» in the same group. The Zariski closure
of the image is (possibly disconnected and) reductive since p,» is semisimple and contains
a regular unipotent element by Corollary 6.8. Hence, (A5) is implied by Proposition 5.5.
Now p, also contains a regular unipotent in the image, so (A6) and the uniqueness of p,
up to conjugacy are consequences of Proposition 5.8.

It remains to verify (A3). We begin with part (b). If 74 has nonzero invariants under
a hyperspecial (resp. Iwahori) subgroup, then 7rg and wy 4 enjoy the same property.
Therefore, (b) follows from (A2) and Theorem 6.5 (SO-iv). To prove part (c), write p
for a place of E above q. Since p is unramified over E, it suffices to check that pr|r, is
crystalline at p. Moreover, we may assume that F' # Q by the automorphic base change of
[50, Prop. 6.6] and (A6). (If F =Q, then replace F' with a real quadratic field F’ in which
¢ is split, and E with EF'. By (A6), px|r,, =~ pr,,, where mp is the base change of 7 to
F’ constructed in loc. cit. Thus, the question is now about pr,,.) Now that I # Q, the

© is crystalline at all places above £ by [57].

Shimura varieties in §9 are proper, and pi};
Since spino p,|p, embeds in pi};’+ @pi};’* (which is isomorphic to the a(m?)-fold direct
sum of spino p,), and since spin is faithful, we deduce that p,|r, is crystalline at p as
desired.

Finally, we prove (A3), part (a). We first claim that if two cocharacters pq,us €
X.(Taspin) become conjugate after composition with each of spin™V, spin™", std® and
N, then uy and ps are GSpin,,,-conjugate. To see this, note that a semi-simple conjugacy
class 7 in GSpin,,, (C) is determined by the conjugacy classes spin®(v), A'(7) and std(y)
by [50, Lem. 1.3] (thus also determined by spin®V (), () and std(y)) and the table
above Lemma 1.1 therein. The same statement holds for the cocharacters via the Weyl
group-equivariant isomorphism X, (Taspin) ®z C* — Taspin(C), proving the claim.

Our second claim is that for every y: F'— C,

spin® (uut (pr,q,ty)) ~ spin® (LpHodge (Ey) — "(RT_USim), ee{£}. (12.7)

Accept this for now. The representations std® and A factor over the isogeny (N,pr°):
GSpin,,, = Gy, X SOa2,, so it follows easily from (A2) and Theorem 6.5 (SO-iii) that (12.7)
holds with std® and A in place of spin®. Thus, we can conclude by the first claim.

To complete the proof of (A3)(a), we check the second claim (12.7). A base-change
argument as in the preceding paragraph allows us to assume that F' # Q. Recall that
we chose an embedding y., : ' — C in the definition of G and the Shimura data
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(Resp/G,X¢). It follows from Proposition 9.8 (applicable as F' # Q) that

paT (Spin®Y 0 pr,tyyss) ~ spin®Y o (LMHodge(gym) — @sim) . (12.8)

We can repeat the construction from the beginning of §12 up to now, with y: F —
C in place of yoo. Write pr(y) : T'r — GSpin,, (Q,) x I'g/p for the resulting Galois
representation. From (Al) and (A6) of Theorem A (which have already been verified)
to pr and pr(y), we deduce that pr ~ pr(y). Applying Proposition 9.8 to p.(y), we see
that (12.8) holds with y in place of yoo.

Now the left-hand side of (12.8) equals spin®" o ugr(px,ty) by construction of Hodge-
Tate cocharacters, so we are done with proving (12.7) as desired. O

Remark 12.6. Lemma 12.2 tells us that p, is totally odd. Our result also shows
that pr(c,) is as predicted by [12, Conj. 3.2.1, 3.2.2] for every infinite place y of F.
Indeed, as explained in §6 of their paper, their conjectures are compatible with the
functoriality. Considering the L-morphism LGSO2En/ F, LSOgn/ ¥ dual to the inclusion
SOfn/F — GSOfn/F, we reduce the question to the case of SOQEn/F in view of the
characterization of p.(c,) in terms of pr®(px, (cy)). The latter is conjugate to p,», which
is as conjectured by loc. cit. by Remark 6.6.

Remark 12.7. It was easier to determine the Hodge—Tate cocharacter in the GSp-case
[50], thanks to the absence of nontrivial outer automorphisms. In particular, we did not
need to prove the analogue of Proposition 9.8. Compare with the proof of Theorem 9.1
(iii.a”) of loc. cit.

13. Refinement for SO,,-valued Galois representations

As an application of our results, we improve upon Theorem 6.5 in this section by removing
the outer ambiguity in the images of Frobenius conjugacy classes.

Let E/F be a quadratic CM extension of F' in case n is odd, and F := F for n even. Let
SOfn/F be the corresponding group defined above (6.2). If ©° (resp. 7) is an automorphic
representation of SOJQE?{F(AF) (resp. GSOQE/F(AF)), we write Spaq(7”) (resp Spaa (7)) for

n
the set of rational prime numbers p, such that p =2, p ramifies in E, or 71'; (resp. mp) is
a ramified representation. For other notation, we refer to Section 1.

In order to extend a given cohomological representation 7” of SOfn/ F(AF) to a
cohomological representation 7 of GSOfn/ F(Ap), the following condition on the central
character w,s : pa(F)\pu2(Ap) — C* is necessary in view of condition (cent) of §9. (If
is &-cohomological with w € Z as in (cent), then all wys ,, are trivial, resp. nontrivial,

according as w is even, resp. odd.)

Y

(cent®) The sign character w, , : pa(Fy) = {£1} — C* does not depend on y|oo.

Theorem 13.1. Let ©° be a cuspidal automorphic representation of SOQETL/F(AF) satis-
fying (cent®), (coh®), (St°) and (std —reg®) of §6. Then there exists a semisimple Galois
representation (depending on t)

P> = Pt T = 802, (Qp) X Ty o
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satisfying (SO-i)-(SO-v) as in Theorem 6.5 as well as the following.
(SO-i+) For every finite prime q of F not above Spaq(7°)U{},

s ~ WD(plr,, )T,

as SOa,,(Q,)-parameters.

(SO-iii+) For every q|¢, the representation p,» 4 is potentially semistable. For each
y: F'— C such that 1y induces q, we have put (o g ty) ~ UtHodge (€7,Y).

Condition (SO-i+) characterizes p.» uniquely up to SOay,(Qy)-conjugation.

Remark 13.2. Statement (SO-i+) is stronger than (SO-i) in that the statement is up
to SO, (Qy)-conjugacy, but also weaker as it excludes the places above Spaq(7”)U{(}.
Clearly, (SO-iii+) strengthens (SO-iii). If we drop (std-reg®) from the assumption, then
the theorem can be proved by the same argument, but conditionally on Hypothesis 6.11.

Proof of Theorem 13.1. We have p = Z(SOQEn/F). We claim that the central character

w,» extends (via pa(Ap) C Af) to a Hecke character
x: FX\AxX —C*

such that x,(z) = 2" at every infinite place y, where w =0 (resp. w =1) if w» , is trivial
(resp. nontrivial) at every y|oo.

To prove the claim, let E’ be a quadratic CM extension of F. We start by extending
wye to a (unitary) Hecke character x': F*\Aj% — C* whose infinite components are
trivial if w =0 and the sign character if w = 1. If w =0, then such a X’ exists since
po(F )2 (Foo)\ 2 (AF) is a closed subgroup of F'*X FS\A ., where the bar means the closure
in Aj. If w=1, consider the quadratic Hecke character xp /F associated with E'/F
via class field theory. Then w.s(Xg//F|u,(ar)) extends to a Hecke character with trivial
components at oo by the w =0 case. Multiplying x s/, we obtain a desired choice of
X'. Whether w =0 or w =1, we now see that y := x'| - |* has desired components at oo,
where |-| is the absolute value character on Aj. The claim is proved.

Consider the multiplication map f: GL1 X SOQE/F — GSOQE/F. Let &€” be such that «° is

n n

£’-cohomological. Write ¢ for the algebraic character z +— z* of GL; over F. Then (s,£?)

descends to an algebraic representation £ of GSOfn/ F via f
Let us extend 7” to an irreducible admissible GSOQEn/ F(Ap)-representation, by decom-
posing 7 = @/ 7, and taking an irreducible subrepresentation 7, of

Gsoy/ " (Fy) b

Ind(}L1 (F,)SOLZ/ T (F,) XoTy)

which is semisimple [80, pp.1832-1833]. Take m, to be unramified for almost all v, and
define 7 := ®/ m,. Lemma 5.4 of [81] states that

Z m(rQw) = Z m((ﬂb)g),

wEX/Y X () geGSOE/F (Ap)/G(m)GSOY/F (F)
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where X is the set of characters of GSOfn/F(AF)/SO;E,L/F(AF)Z(GSO;EH/F)(AF), and w
in the formula is represented by such characters. We refer to loc. cit. for some undefined
notation that is not important for us but content ourselves with pointing out that both
sides are finite sums. Since m(7) > 0, the right-hand side is positive. Thus, the left-hand
side is positive, and thus we may (and do) twist 7 so that it is discrete automorphic.
We now check that 7 satisfies the conditions of Theorem A. Since 7’ is &’-
cohomological, by construction, m,, is cohomological according to Lemma 7.2. By Lemma
7.1, 7 satisfies (St), thus also cuspidal. Condition (std-reg) is implied by (std-reg®) on 7.

Hence, we have a Galois representation
pr: T — GSpin,,, (Q) x Tg/r
such that for every finite F-place q not above Spaa(m)U{£},
pr(Frobg)ss ~ t¢x, (Frobg) € GSpiny,, (Q) x T'g/p. (13.1)

As in the preceding section, we can arrange that p,» = pr°op, (not just up to outer
automorphism). The Satake parameter of 7Tg is equal to the composition of the Satake
parameter of 4 with the natural surjection (cf. [81, Lem. 5.2])

(pre,id) : GSpin,,,(C) X I' = SO2,(C) x T.

In particular, (SO-i+) follows from (13.1) for the places not above Spaq(7)U{¢}. Similarly,
(SO-iii+) follows from Theorem A (A3)(a).
At this point, we have not yet completely proved (SO-i+), as the inclusion Spaq(7°) C

Shad () is strict in general. Thus, it remains to treat q above a prime p € Sbad(w)\Sbad(wb).
Consider for n odd (resp. even) the obvious hyperspecial subgroup (recall q12)

{(9.)) € GL2n (O ®0, OF,) x Of, | §=090°¢" (1}, '§) 9= A (1), '), det(g) = \"}
Kq := { resp.
{(g,)\) S GLQn(OFq) X (’);q ’ gt (1" 1'”) “g=A- (1” 1"),det(g) =\" }

of GSOQEn/F(Fq). Define Koq to be the kernel of the similitudes mapping Ky — (’);q,

(9:A) = A. Then 74 is a ramified representation of GSOQEH/F(Fq) but has nonzero Koq-fixed

vectors, on which K acts through nontrivial characters of Kq/Koq >~ O;q . We fix one such
character x§j of Ky and do this at every q above p. Now we globalize {xq}q|p to a Hecke
character x : F*\A} — C* whose restriction to each (’);5q is X and whose archimedean
components are trivial. (This is possible by [17, Lem. 4.1.1].) Define 7’ := 7 ® x~'. Then
7’ also satisfies the conditions of Theorem A. Moreover, p ¢ Shaq(7’) by construction.
Therefore, (13.1) is true at each q|p, with " in place of 7. Then (SO-i+) for q follows as
before. O

14. Automorphic multiplicity one

Let E/F be a quadratic CM extension of F in case n is odd, and F := F for n even.
Let SOQEH/ F and GSOfn/ " be as before. If 7 (resp. #”) is an automorphic representation
of GSOfn/F(AF) (resp. SOQETL/F(AF)), we write m(r) (resp. m(n”)) for its automorphic

https://doi.org/10.1017/51474748023000427 Published online by Cambridge University Press


https://doi.org/10.1017/S1474748023000427

78 A. Kret and S. W. Shin

multiplicity. In this section, we will show that m(7”) and m(7) are 1 for certain classes of

automorphic representations of SO, £/ F(AF) and GSOE/ F( r) (and some inner forms of
those groups). To do this, we combine our results with Arthur’s result on multiplicities

for SO2n/ and with Xu’s result on multiplicities for GSOE/ .

Let 7° be a discrete automorphic representation of SOE/ F( Ap). Arthur gives in the
discussion below [1, Thm. 1.5.2] the following result towards the computation of m(7”).
Let 1) =1y B--- B4, be the global (formal) parameter of ° [1, §1.4] (cf. Section 6).
Technically, ¢ is an automorphic representatlon 7 of GLa, (AF) given as an isobaric sum
of discrete automorphic representations 77 of GL,,, (AF), with 77? representing the formal

parameter ;. In terms of these parameters, Arthur proves a decomposition of the form

L3 (SO3/ " (FNSO/ " (AF) S P P myr

YW, (505 ) TElLy ()

as an H(SOE/F) Hecke module. It takes us too far afield to recall all the notation here,
but we emphasize that ’H(SOE/ F) is the restricted tensor product of the local algebras
H(SOE/F( F,)) consisting of #°-invariant functions [1, before (1.5.3)]. Similarly, the local
packet IIy, () consists of §°-orbits of representations.

Assume 7° % 7° 06° for the moment. Both 7” and n° 06° map to the same global
parameter ¢ and are isomorphic as ﬁ(SOQEn/ F)—modules. Arthur proves my, <2 for all 1.
Thus,

m(r”) +m(r’ 06°) < my < 2. (14.1)

dlgc(SOQETL/F(F)\SOzEn/F(AF))7 so if 7 appears, then 7 06° also
appears. Hence, m(7”),m(n* 06°) > 1, forcing m(n”) = 1 and m(n”06°) = 1.

From now on, we impose the assumption (std-reg®) on 7°. At the infinite F-places v,
the infinitesimal character of 7° is then not fixed by #°. In particular, 7° % 7° 06°. By
the preceding paragraph, we have m(7”) =1, m(n”06°) =1 and my = 2.

However, 6° acts on L2

Proposition 14.1. Let ® be a cuspidal automorphic representation of GSO?,L/F(AF)
satisfying (L-coh), (St) and (std-reg). Then m(w)=1.

(cf. [50, Thm. 12.1]). Let 7° be a cuspidal automorphic representation of SOQEn/F(AF)
contained in 7. Then 7° satisfies (coh®) and (St°) as explained at the start of §10. Let

Y (7) be the set of continuous characters w: GSOE/ F(A ) — C* which are trivial on the
subgroup GSOJQE”/F( )AXSOfn/F(AF) of GSOE/F( r) and such that 7 ~ 7 ®@w. Xu [81,
Prop. 1.7] proves that

m(m) =mg|Y(m)/a(Ss)l; (14.2)

where 1 is the global parameter of 7 as defined in [81, Sect. 3] (IZ is denoted ¢ there),
and a(S,) will not be important for us.

We claim that Y(m) = {1} in (14.2). Let w € Y(7) and let x: T —>@; be the
corresponding character via class field theory. As xp, and p, have conjugate Frobenius
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images at almost all places, we obtain yp, ~ p. by Proposition 5.8, and thus y =1 by
Lemma 5.6. Hence, Y (7) = {1}.

Let 1 denote the Arthur parameter of 7. In [81, Cor. 5.10], Xu states that m; =
My /#Xy (1), where Xy (1) := Xo /3o (7,Y"), where g is the 2-group {1,6}, and 3¢ (7,Y")
is the group of 0’ € ¥y such that 7 @w ~ 7% for some w € Y (r). We saw below (14.1)
that my = 2. It is enough to check that #Xy () =2, which would imply m; =1. As
Y (7) = {1}, this reduces to 7 22 7%. Again by (std-reg), the infinitesimal character of m,
for v|oo is not fixed by 6, so this is indeed true. O

Let G be the inner form of GSOQEn/ " which was constructed in (8.7) and used in our
Shimura data. We close this section with computing automorphic multiplicities for this
G. In particular, we prove that the multiplicities a(-) appearing in Section 9 are in fact
equal to 1.

Proposition 14.2. Let w be a cuspidal automorphic representation of G(Ar), satisfying
(coh), (St) and (str-reg). Then m(m) = 1.

Proof. The proof is the same as the argument for [50, Thm. 12.2]. The main point is that

automorphic representations 7 of G*(Ap) = GSO;E,L/ F(Ap) contributing to the analogue
of [loc. cit., Equation (12.2)] have automorphic multiplicity 1. Notice that [81, Thm. 1.8]
may be used again, together with the existence of Galois representations (our Theorem
A), to prove that for all 7* and 7* contributing to [50, Eq. (12.2)], we have 7}, ~n* O

qst qst”
15. Meromorphic continuation of spin L-functions

Let n € Z>3, and ¢ be as in (0.2). Let m be a cuspidal automorphic representation of

GSOfn/ F(AF) unramified away from a finite set of places S satisfying (St), (L-coh) and
(spin-reg). This implies (std-reg) for 7. Indeed, if the image of (so,51,...,5n) € TGspin
under spin® is regular for some ¢ € ¢, then sy,...,s, must be mutually distinct, as the
weights in spin® are described as the Weyl orbit(s) of (2.9).

Proposition 15.1. Assume that m satisfies (St), (L-coh) and (spin-reg). Let n € Z>3.
There exist a number field M, and a semisimple representation

Riy)\ I'— GL27L/|2|(M7T7)\)

for each finite place \ of My such that the following hold for every e € e. (Write £ for the
rational prime below X.)

(1) At each place q of F not above Spaq U{L}, we have
char(R; ,(Frobg)) = char(spin®(t¢., (Froby))) € M [X].
(2) R \Ir, is de Rham for every q|€. Moreover, it is crystalline if m, is unramified and
¢ Spad-
(3) For each q|¢ and each y: F' — C such that y induces q, we have unr (R y|r,,ty) =

1(spin® o piHodge (¢r,)). In particular, ,U/HT(R;)\‘Fq,Ly) 18 a reqular cocharacter for
each y.
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(4) R, is pure.

(5) Rs \ maps into GSpgn)o(Mx,x) if n =23 (mod 4) (resp. GOgnje|(Mr,5) if
n =0,1 (mod 4)) for a nondegenerate alternating (resp. symmetric) pairing on
the underlying 2" /|e|-dimensional space over M, . The multiplier character Hs
I — GLy(Mq,») (so that R, , ~ (R; )Y ®@pu3) is totally of sign (=1)n(n=1/2 gpd
associated with wy via class field theory and vy .

Proof. Let M be the field of definition of £, which is a finite extension of Q in C. We can
choose M, to be the field of definition for the 7>°-isotypic part in the (compact support)
Betti cohomology of H*(Sh™ (C),L¢)® H*(Sh™ (C),L¢) with M-coefficient. Then M, is a
finite extension of M in C. For each prime ¢ and a finite place A of M, above /¢, extend
M < C to an isomorphism M ) ~ C. Identifying M, » ~ Q,, we have ¢) : C = Q,. Take

g e artn &
R\ :=spin“opr,,.

Then (1), (2) and (3) follow from (A2) and (A3) of Theorem A, respectively. Part (4)
follows from (SO-ii) of Theorem 6.5 via (A2). The first part of (5) holds true since
spin® : GSpin,,, — GLgn—1 is an irreducible representation preserving a nondegenerate
symplectic (resp. symmetric) pairing up to scalar if n is 2 (resp. 0) mod 4, and since spin :
GPiny,, — GLan is irreducible and preserves a nondegenerate symplectic (resp. symmetric)
pairing up to scalar if n is 3 (resp. 1) mod 4. Indeed, the irreducibility is standard and
the rest follows from Lemma 4.2 (with the pairing given as in the lemma). Lemma 4.2
also tells us that u§ =Nop,,,. By (A2), wr =Nop,, so u5 is associated with w,. As
in the proof of part 5 of [50, Prop. 13.1], wy @ |- |~ 1/2 corresponds to an even Galois
character of I'. (We change n(n+1)/2 in [50] to n(n—1)/2 here due to the difference in
the definition of (L-coh).) It follows that uy ,(c,) = (—1)""~1/2 for every y|oc. O

Now we apply potential automorphy results to the weakly compatible system of R .
Theorem 15.2. Theorem D is true.

Proof. This follows from [65, Thm. A], which can be applied to the weakly compatible
system {R; } thanks to the preceding proposition. O

Remark 15.3. We cannot appeal to the potential automorphy as in [3, Thm. A], as
R\ may be reducible. The point of [65] is to replace the irreducibility hypothesis with
a purity hypothesis (guaranteed by (iv) of Proposition 15.1). We take advantage of this.

Appendix A. Extending a Galois representation

Here we investigate the problem of extending a G-valued Galois representation to an
L G-valued representation over a quadratic extension.

We freely use the notation and terminology of §1. Let E be a CM quadratic extension
over a totally real field F' in an algebraic closure F. Set I' = 'p := Gal(F/F), I'g :=
Gal(F/E), and T'g/p := Gal(E/F) = {1,c}. Let G be a quasi-split group over F which
splits over E. Let 0 € Aut(é) denote the action of ¢ on G (with respect to a pinning over
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F). By é(@e) xT'g/p, we mean the L-group relative to E/F, namely, the semi-direct

product such that cge = 0(g) for g € @(@4)
Fix an infinite place y of F. Write ¢, € I'p for the corresponding complex conjugation
(well-defined up to conjugacy). Let p' : 'z — G(Q,) be a Galois representation. Define

@' (7) = p(eyrey )

-1

(Of course, c;

=¢,.) We will sometimes impose the following hypotheses.

(H1) Centg(im(p')) = Z(G).
(H2) The map Z(@) — Z(@)e given by 2+ 26(z) is a surjection on Q,-points.
Lemma A.1. Consider the following statements.
(1) p' extends to some p:T'p — G(Q,) » I'e/p.
(2) wp'=bop'.
(3) there exists g € G(Q,) such that g6(g) =1 and p(eyyey, ') =g0(p'(7))g™" for every
vyel'g.

Then (3)(1)=(2). In particular, if p is as in (1), then the element g such that p(cy) =
g X ¢ enjoys the property of (3). If (H1) and (H2) are satisfied, then we also have (2)=(3),
so all three statements are equivalent.

Remark A.2. We recommend [5, Section A.11] as a useful guide to similar ideas.

Remark A.3. Often, (2) is the condition to verify to extend a Galois representation, as
we did in Lemma 12.1 of this paper.

Proof. (3)<(1): First we show (3)=-(1). Define p by plr, :=p" and p(yc,) = p’'(7)gc
(v €T'g). Then
pl(c) = gege=gb(g) =1,

pleyye, ) =p'(v) = gb(p'(7))g ",

and using this, one checks that p is a homomorphism on the entire I'. A similar
computation shows (1)=-(3) for ¢ such that p(c,) =g xc.
(1)=>(2): Write p(c,) = gc with g € G(Qy). For every v € I',

vp'(v) = pleyye, ') = gep' (V) g =900’ (7))g "

(2)=(3), assuming (H1) and (H2): There exists g € G(Q,) such that

pleyre, ) =900 (Mg~ ~veTg. (A1)
Putting ¢,ye, Lin place of 7, we obtain

p'(v) = p'(cive,?) = gb(gb(p' (7)g g = 90(9)p' (7)(98(g)) "
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~

Hence, gf(g) € Z(G) as Cents(p') = Z(G) by (H1). As a central element,
90(9) = g~ (90(9))g = 0(g)g = 0(90(9)),

namely, g6(g) € Z(é)‘g. By (H2), g6(g) = 20(z) for some z € Z(é) Replacing g with gz—1,
we can arrange that

90(9) =1.
This does not affect (A.1), so we are done. O

Lemma A.4. Assume (H1). Then the set of @—conjugacy classes of extensions of p' to
I is an H' (T g p, Z(G))-torsor if nonempty.

Proof. Fix an extension pg of p’, which exists by Lemma A.1. If p is another extension
of p/, then set z := po(c,)p(c,)~t. Writing po(c,) = go @ ¢ and p(c,) = g X ¢, we have
zg = go, and both go,g satisfy the condition of Lemma A.1 (3). It follows that z centralizes

O(im(p')), hence z € Z(G), and also that z0(z) = 1. Thus, z defines a Z(G)-valued 1-

cocycle on '/, and by reversing the process, such a cocycle determines an extension of
/

0.
Let p. be the extension given by z € Z(G) such that 26(z) = 1. It remains to show that

pz ~ po if and only if z = 0(z)/z for some z € Z(G). If p, ~ po, then p, =Int(x)py for some
z € G. By (H1), z € Z(G). Evaluating at ¢,, we obtain 2~ ! pg(c,) = zpo(c, )z . Therefore,
z=0(x)/x. The converse direction is shown similarly by arguing backward. O

We illustrate assumptions (H1), (H2), and the lemmas in the following examples.

Example A.5. Consider G = SOs, (n > 3) with 0 being the conjugation by ¥° €
02,(Q;) — SO2,(Qy) as in (2.4). Assume that im(p’) contains a regular unipotent of
SO, (Q,). In this case, Z(G) = Z(G)? = {£1}. Then (H2) is trivially false but (H1) is
true. To see this, by assumption, stdop’ is either irreducible or the direct sum of an
irreducible (2n — 1)-dimensional representation and a character. In the former case, (H1)
is clear by Schur’s lemma. In the latter case, again by Schur’s lemma, a centralizer of
im(p’) in SO, (Q,) is contained in (‘“20"*1 2) with a,b € {£1} up to Oa,(Q,)-conjugacy.
Since the determinant equals 1, we deduce that a =b (i.e., the centralizer belongs to
Z(@Q)). R R

We easily compute Z'(Cg/p,Z(G)) = H (U p.Z(G)) ~ Z/2Z, the nontrivial element
sending ¢ to —1. In fact, if p extends p’ in the setup of the preceding lemmas, the other
extension is easily described as p® xg/r, where xg/p:I' = T'g/p 5 {1}

Example A.6. The main case of interest for us is when

o G= GSpin,,, (n>3), B B
e 0 is the conjugation by an element of GPins,(Q,) — GSpin,,, (Q,),
e im(p’) contains a regular unipotent.

Since Z(@)? = G,,, (identified with invertible scalars in the Clifford algebra underlying G
as a GSpin group; see §3), assumption (H2) is satisfied. (The squaring map G,,, — G,,
is clearly surjective on Q,-points.) To check (H1), Cents(im(p’)) is contained in the
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preimage of Centgo,, (im(p”°)) via pr®: GSpin,,, — SOq,. Since the latter centralizer is
{£1} € S02,(Qy), we see that Centg(im(p')) C pr"-~!({£1}) = Z(G).

In the coordinates for Z(G) of Lemma 2.5, Z* (FE/F,Z(G)) ={(s0,81) : 81 € {£1}, 81 =
53} ~ 4, of which coboundaries are {(4:1,1)} =~ us. (The first identification is given by
taking the image of c¢.) Hence, Hl(FE/F,Z(é)) ~ 7)27. Let ¢ = (¢4, — 1) € Z(G), where
(4 is a primitive fourth root of unity, cf. Lemma 3.7. If p is an extension of p’, then the
other extension (up to (A;—conjugacy) is described as p® x, where x : ' — Z(CAY') x{1,c} is
inflated from I'g /5 5 {1,¢ x c}. Notice that pr°oy = XE/F, for xg,r as in the preceding
example.

Example A.7. When studying Galois representations arising from automorphic repre-
sentations on a unitary group U, in n variables, two target groups appear in the literature:
the group G, in [17, §2.1] and the C-group of U,, in [12]; the two are isogenous as explained
in [12, §8.3]. The latter is the L-group of a G,,-extension of U,; it does not satisfy (H2).
The former is not an L-group but still a semi-direct product (GL, x GL1) xI'g,p, with
c(g,p) = (pg~tp) for an anti-diagonal matrix ®,, € GL,. As such, the discussion in this
appendix goes through for G,. An easy computation shows that G, satisfies (H2) and
that Hl(FE/F,Z(GLn x GL;1)) = {1} for the given Galois action. Thus, provided that p’
satisfies (H1) (e.g., if p’ is irreducible), an extension of p’ exists if and only if v p' ~ o/,
and the extension is unique up to conjugacy. Compare this with [17, Lem. 2.1.4] (which
allows a general coefficient field of characteristic 0).

Appendix B. On local A-packets of even special orthogonal groups

In this appendix, we study the A-packets of the trivial and Steinberg representations of
quasi-split forms of SO, with n > 3, often following the notation and formulation of [1].

Let F' be a finite extension of Q,. Suppose that E'= F' or that E is a quadratic extension
of F. Let xp/p : F* — {#1} denote the quadratic character associated with E/F via class

field theory. Let G := SOQEn/ F denote the quasi-split form of the split group SOs,, over F'
twisted by x/r. Write Ottty (G) := 02,(C)/SO2,(C) for the outer automorphism group
of SO2,(C). Denote by 1 and St the trivial and Steinberg representations of G(F'). We
aim to identify local A-packets containing 1 or St.

Let Lr := Wr x SU(2) denote the local Langlands group. Let |-|: Wr — RZ denote
the absolute value character sending a geometric Frobenius element to the inverse of the
residue cardinality of F. By abuse, keep writing || for its pullback to Lp via projection.

Denote by U+ (G) the set of isomorphism classes of extended A-parameters, that is,
continuous morphisms ¢ : Lz x SU(2) — LG such that v|., is an L-parameter. (Two
A-parameters are considered isomorphic if they are in the same a—orbit.) An extended
A-parameter 1) € UT(G) gives rise to an L-parameter:

by Lr— LG,y (v, diag(ly]Y2 v 7Y2)).

Write (@) for the subset of ¥F(G) consisting of ¢ € UF(G) such that the image
of ¥(Lp) in SO2,(C) xT'g,p is bounded. (Such a property is G-invariant.) The set of
Outa, (G)-orbits in UH(G) (resp. ¥(G)) is denoted by ¥ (G) (resp. ¥(G)). The group
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Lr x SU(2) admits the involution permuting the two SU(2)-components (acting as the
identity on Wy). This involution induces an involution

Y1 on each of U (@) and U(G).

We say ¢ € \I/+(G) is square-integrable if giyyg~! = 1) for at most finitely many elements

g € G. Then ¢ lies in T(G). To see this, let w € W be a lift of (geometric) Frobenius. Then
1 (w)™ centralizes the image of 1 for some m € Z>1 as in [19, proof of Lem. 8.4.3]. It follows
that, replacing m with a suitable multiple, 1)(w)™ has trivial image in SO2,(C) xI'g/p.
Write Ir C Wg for the inertia subgroup. Since Ir x SU(2) x SU(2) C Lr x SU(2) has
already bounded image in SO2,(C) xI'g,p under 1, we see that ¢ € ¥(G). Denote by
U5 (G) the subset of ¥(G) consisting of square-integrable members.

Define 9y : L X SU(2) — LG as follows. On L, it is the composite map Lp —»
Wrp—Tg/p C LG through the natural projections. On SU(2) (outside Lr), iy is a
principal embedding ip,;: SU(2) — G that is #°-invariant (i.e., ipri commutes with the
L-action of '/ on é) (Such an ipy; into G can be realized as the SU(2)-representation
Sme”_2 ®1 into GLa,_1 X GLy, where the latter is identified with the centralizer of
the element 9° € GLs,, from §3. Write tg; := @triv. Then Yiriv, st € U(G) and they are
Outgy, (G)-stable.

To every 1 € U(G), Arthur [1, Thm. 1.5.1] assigned an A-packet II(1)), which is a certain
finite multi-set consisting of Outa, (G)-orbits of irreducible unitary representations of
G(F). Below loc. cit. he also defines TI(1) for ¢ € U+ (G), consisting of Outy,, (G)-orbits of
parabolically induced representations of G(F') (which need not be irreducible or unitary).

By a globalization (E/F,q,G) of (E/F,G) as above, we mean an extension of number
fields E/F , a finite place g, and a quasi-split form G of the split SO,, over F such
that E ~ [ F ~ [ and G ~ G. It is an elementary fact that such a globalization
always eX1sts Recall that a (formal) global parameter 1/} € U(@) gives rise to a parameter
), € U (G ) and a packet I1(¢),) at each place v of F.

Proposition B.1. Let 1) € U (G). The following are true.

(1) (i) = {1} and () = {St}

(2) Assume p € U(G). If 1 (resp. St) is a member of TL(v)), then ¥ = yiy (resp.
Y= ¢St)-

(3) Assume that ) =1hq € UH(Q) for global data (E/F,q,G) and v as above. If 1 (resp.
St) is a subquotient of a member of TI(v)), then 1 = by (Tesp. 1 =1t ).

Remark B.2. We use (3) in the main text. Part (3) would be subsumed by (2) if the
generalized Ramanujan conjecture for general linear groups was known, cf. proof of (3)
below.

Proof. (1) According to [1, Lem. 7.1.1] (and the discussion following it), the involution
(N 12 changes members of A-packets by the Aubert involution, which carries 1 to St
and vice versa. So it suffices to treat the case of 1) = Y¢yiy.

We know that Sy, = {1} and that the L-packet TI(¢y) embeds in TI(¢)). Hence, TI(3)) =
fI((;Sw) and it is a singleton. Clearly, ¢y, is a spherical parameter in the sense of [1, §6.1].
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Hence, II(¢y) contains the irreducible spherical representation corresponding to ¢, via
the spherical local Langlands correspondence recalled in loc. cit.'?

Hence it boils down to observing that ¢s,,,, corresponds to 1. (This is easy to see from
the fact that 1 is a subquotient of Ind$ (551/2).)

(2)=(3). Before proving (2), let us assume (2) and verify (3) for each (E/F,G). We
fix a Borel subgroup B and a maximal torus T of G over F such that 7" C B. Since
¥ comes from a global parameter, ¥|,, is constrained by what local components of
cuspidal automorphic representations of general linear groups can be. Following the same
observations as in [81, App. A], we can express ¢ concretely as follows:

1/J=¢G,@@(I-\“%@I-\‘“%}L 0<a,<--<a; <1/2
=1

where g € \i/(SO;En/f) and 1; € ¥(GL,,) such that n_ +>"'_, n; =n, and if we take
M =805 x [[ GLn, (B.1)
i=1

to be a Levi subgroup of a standard parabolic subgroup P, we have
U =va_ % ([T=yvi) € B(M).

(Namely, ¥ is not just an “extended” parameter of M.) Actually in loc. cit., a weaker
inequality a, < --- < a; holds for the exponents, but this is because he wants ; to
be simple parameters. We only require v; to be bounded parameters, so the simple
parameters with the same exponent will go into a single 1; in our case.

Our goal is to show that M = G. Indeed, it would immediately imply that 1) belongs to
U(G) (not just Ut (G)) so we can conclude by (2). If M # G (i.e., if r > 1), we will show
a contradiction.

By construction (see [1, §1.5]), the packet II(1) consists of (Outa,(G)-orbits of) the
normalized induced representations

md%(o® x) (B.2)

for o in the A-packet II(¢as) for M, where the character x : M (F) — C* is defined to be
trivial on SOJQET{?(F) and |det|* on GL,, (F).

13 This assertion is stated on p-304 of [1] in the spherical case (not just the unramified case)
without proof. Although this may be obvious to the experts, let us verify the assertion for
the L-packet constructed in loc. cit. If ¢ is generic and spherical, then the L-packet II(¢)
consists of all irreducible constituents of the principal series representation determined by
¢; see [1, Prop. 2.4.3]. The principal series representation contains exactly one-dimenisonal
space of spherical vectors (the dimension is at most one by the Iwasawa decomposition, and
a nonzero vector is easily exhibited, cf. [32, §3]). Now the assertion results from exactness of
the functor taking spherical subspaces. For spherical non-generic ¢, the construction of IT(¢)
in loc. cit. is reduced to the generic case via Langlands quotients as usual. Therefore, the
assertion follows from [74, Lem. 7.10. (a)].
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Now suppose that 1 or St is a subquotient of a member of II(¢). Then for some o €
II(¢pr), the irreducible subquotients of (B.2) have the supercuspidal support (T ,5;1/ 2),
which is the supercuspidal support of both 1 and St (up to the Weyl group action).
Write 0 = 0_ ® (®]_,0;) according to (B.1). Then o is a subquotient of a principal series
representation. The unitary representation o; of GL,,, (F') corresponds to an A-parameter
in ¥(GL,,), so it has the form

o =B x|, e €52, (B.3)

where X; ; is a unitary character, and B denotes the operation corresponding to the direct

sum under the local Langlands correspondence. If we write T’ = SOzEJOF x [Th_1° GLy (if

E = F, then ng = 0; otherwise ng = 1), then accordingly (up to the Weyl action)
05" = 1@ (@07,

However, (B.3) tells us that the supercuspidal support of (B.2) is represented by a
character
G ® (Rksk)

of T(F) such that each x; ;|-|°*/T* appears in the multi-set {c;}. Comparing the two
supports, we must have that e; ; +a; € %Z since the half-integrality of exponents is
invariant under the Weyl action. However, this is impossible since e; ; € %Z and 0 < a; < %
(and the index set for 4,5 is nonempty). This proves that M = G as desired.

(2) As in the proof of (1), it is enough to consider the case 1 € II(x)) by Aubert

involution. We deduce ¢ = vy, by dividing into two cases.

Case 1: when G is unramified. Let sy € G denote the image of —1 € SU(2) (outside
L) under v. Let us show that |y, is unramified, using the fact that II(3)) contains
an unramified representation, namely, 1. In fact, we induct on rank for unramified even
special orthogonal groups to prove the unique existence of an unramified representation
in II(¢), where we allow more general v € \TI(G), for the moment, which are unramified
on Wg. The base case of induction is obvious. Next, we recall the character identities
from [1, Thm. 2.2.1], which have the form (cf. the second and last displayed formulas in
the proof of [59, Lem. 5.4] for the analogues for unitary groups)

> k(o) =Tgen(fyen),  if sy € Z(G), (B.4)
o€ll(y)

Y k(o) =1x(@),  if sy ¢ Z(G), (B.5)
o€ll(v)

where the setup and notation are as in [1]. We partly explain the notation.
?" is the A-parameter for GLjy,, obtained from 1 via the standard embedding.
Ty2n is the unique representation of GLo, (F') in the A-packet of P2,
e When sy ¢ Z(G), we can find an unramified endoscopic group G’ such that (G’,s)
is part of an elliptic endoscopic datum for G. (In particular, G’ is a connected

centralizer of s, in (A?) Then G’ is a product of two even special orthogonal groups
[1, p.14]; ¢’ is a parameter on G’ giving rise to .
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° :K'zn, K, K’ are hyperspecial subgroups of GLa, (F), G(F), G'(F), respectively.
o lpon(Ty2n) is a twisted trace.

The existence of an unramified member in ﬁ(¢) tells us that the left-hand side is nonzero.
The resulting nonvanishing of the right-hand side implies 9|y, is unramified: if s, € Z (@ ),
then 7,2n is unramified from (B.4) so this follows; if s, ¢ Z (@), we conclude by induction
via (B.5).

We have shown 1|y, to be unramified. Next, we observe that II(1) contains a unique
unramified representation by a similar induction. If s, € Z (é), then this is true because
the right-hand side of (B.4) is 1 in the normalization of loc. cit. If s, ¢ Z(@), this follows
since the right-hand side of (B.5) is equal to 1 by induction hypothesis.

As in the proof of (1), we have the embedding II(¢y) < I1(¢)). Since ¢y, is unramified,

(¢¢) contains an unramified representation. Now we appeal to the special property that
1le H(z/}) By the uniqueness shown above, 1 € H(i/)) belongs to H(¢¢) Therefore, ¢y, is
the (unramified) L-parameter of 1. It follows that ¥ = tiyiy.

Case 2: when G is ramified. Although it might be possible to give a local proof, our
strategy is to make use of Case 1 via globalization. Our first claim is that v € \ifg(G) if
1e ﬁ(’(/)) If the claim was false, then there exists a proper Levi subgroup M of G such
that 1 is the image of some ¥y, € Uy(M). According to Arthur’s construction of II(1))
(see [1, Prop. 2.4.3]), 1 (as well as the other members of II(G)) appears as a subquotient
of a parabolic induction Indg(a), where P is a parabolic subgroup of G with Levi factor
M, and o € TI(1/7). Since o is unitary, IndIG)(a) is also unitary and thus semisimple. From
this and Frobenius reciprocity,

0+# HOIng(F)(].,IHdg(O')) = Homps(py (Jac61,0),

where Jac% denotes the normalized Jacquet module with respect to P. Since Jac®1 =
5_1/ % is a non- unitary character, this is a contradiction. The claim is proved.

As (NS \Ilg( ), we may mimic [1, Prop. 7.2.1] to globalize (E/F,G,¢) to (E/F,G,w)
with 9 € (e ) such that the latter triple specializes to (F/F,G,v) at q, and 81/3 5 Sy
We may further arrange (possibly by choosing a new globalization) that there exists
another prime g’ # q such that (E/F,G,1)) specializes to (E/F,G,1) at ¢ as well. Since
1 € TI(3)) = TI(¢)4), we can find a discrete automorphic representation 7 such that 7y ~1
by Arthur’s multiplicity formula [1, Thm. 1.5.2]. (Let x : Sy — C* denote the character
corresponding to 1 in [1, Thm. 1.5.1]. We can find 7 € 1:[¢ such that 74 =1, 7, corresponds

to the trivial character of S, at v # q,q’, and 74/ corresponds to ed-)x_l. Then 7 € ﬁwb(%)
by the choices.) As 74 =1, it follows from [41, Lem 6.2] that 7 is one-dimensional (up to
outer automorphism).

Then 7, is trivial on the image of Spin2En/ F( F,) by [49, §2.3] for each finite place v.
By bounding the Galois cohomology of e = ker(Spin,,, E/F_, SOE/ ) uniformly across all
finite places, we see that 7 is a finite order character. This implies that there exists a finite
prime p # q,q" such that G is unramified at p and that 7, = 1. Hence, % is determined
by part (3); in particular, 1/}p\SU(2) (outside L) is principal. (Part (3) is applicable to
1) thanks to Case 1 above combined with our proof of (2)=(3) for unramified groups.)
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Thus, the SU(2)-part of ¥ is Sym* 2 @1, and the same is true for ¢ = ¢p. Therefore,

% =x1®Sym*"~?
for quadratic characters xi1,x2 : Wg — {£1}. This tells us that Sy, = {1}. As the dual
parameter is tempered, we see, using compatibility with the Aubert involution, that
II(¢) is a singleton and coincides with II(¢,). The latter is the Langlands quotient of the
principal series arising from ¢, (which factors through the L-group of a minimal Levi).
However, 1 € II(¢)) by hypothesis. We conclude that 1) = ¥y O
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