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1. Introduction. A Hadamard matrix H is an orthogonal square matrix of order m all
the entries of which are either +1 or - 1 ; i.e.

HH' = m/m,

where H' denotes the transpose of H and Im is the identity matrix of order m. For such a
matrix to exist it is necessary [1] that

m = 1 or 2, or m = 0 (mod 4).

It has been conjectured, but not yet proved, that this condition is also sufficient. However,
many values of m have been found for which a Hadamard matrix of order m can be constructed.
The following is a list of such m (j> denotes an odd prime).

(ii) m = pk +1 = 0 (mod 4),

(iii) m = h(pk + \), where h §: 2 is the order of a Hadamard matrix,

(iv) m = n'{n' — 1), where «' is a product of numbers of the forms (i) and (ii),

(v) m = 92, 116, 156 and 172,

(vi) m = nln2p
k(pk+1), where nx ^ 2 and n2 ^ 2 are both orders of Hadamard matrices,

(vii) m = nin2h(h+'S), where «t ^ 2 and n2 ^ 2 are both orders of Hadamard matrices
and h and A+ 4 are both of the form/7fc+1,

(viii) m = «'(«'+ 3), where ri and «' + 4 are both products of numbers of the forms (i)
and (ii),

(ix) m = (n-l)2, where « + l is a product of numbers of the forms (i) and (ii) and
n-2= p",

(x) m = (h-1)3 +1 , where h is a product of numbers of the forms (i) and (ii),

(xi) m is a product of numbers of the forms (i)-(x)-

These results are given in [1], [2], [3], [4], [5], [6], [7] and [8].
The only values of m ^ 400 that are not covered by this list are 188, 236, 260, 268, 292,

356, 372 and 376.
The following theorem, which we shall prove, adds another set of values.
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THEOREM 1. If the primes p,p1,p2, — ,pr and the positive integers <x, «t ar are such that

p"=l (mod 4), pi* = - 1 (mod 4) (1 g i ^ r),

m = 1 +/>" +/?2a + . . . +pha (h ̂  2) is a prime congruent to 3 (mod 4) or a product of twin primes,
and

f/iere exists a Hadamard matrix of order qm.
That there are integers satisfying the conditions of the theorem is seen by taking p = 5,

a = 1 and h =2. Then m = 31 and ̂ = 1 2 = 11 + 1. It follows that there exists a Hadamard
matrix of order 372, a number which is not of the forms (i)-(xi).

r
2. It was shown in [2] that if q = 2s Y[ (/>;' +1) (s ̂  0), then there exists a Hadamard

>=i
matrix / / j of order q such that

where / , is the identity matrix of order q and S is skew-symmetric. Since H1H[ = qlq, it is
immediate that

SS' = (q-\)Iq. (1)

Now let X and 7 be square matrices of order m and denote the direct product of two
matrices A and B by A • B. If the qm x qm matrix K is defined by

K=Iq-X+S-Y, (2)

then

KK' = (Iq-X+S-Y)(Iq-X' + S'-Y') = Iq-{XX' + (q-l)YY'} + SiYX'-XY'),

by (1). It follows that if X and 7 can be chosen so that

XX' + (q-l)YY'=qmIm, (3)

XY' = YX', (4)

and the entries of X and 7 are + 1 or - 1 , then K is a Hadamard matrix of order qm.

3. Perfect difference sets. By a perfect difference set (or simply a difference set) is meant a
set D = {dud2,..., <4} °f distinct integers modulo u such that every d^O (mod u) can be
expressed in exactly X ways in the form

di-dj = d (mod v),

with dit dj e D. The parameters v, k, X clearly satisfy
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Associated with such a difference set we define the v x v circulant matrix A = [ay] by

_ f + l if j-ieD,
fly-{_l if j-ifD.

Then it is straightforward to verify that

AA' = 4nI0+(v-4n)Jv,

where n = k—A, and JB is the square matrix of order t; all the entries of which are +1.
We require the following

LEMMA. If B is av x v circulant matrix andP = [ptJ] is the permutation matrix of order v
defined by

f l V
(0 oi

if i+j = 2 (modi;),
PiJ ' n otherwise,

then PB is symmetric.
Forifthefirstrowof-Bis^!,^. ••• > £>„), then they'th column of 2?is {bj,b^u ...,bj.v+1},

the subscripts being reduced modulo v. Consequently, [PB]iJ = bi+j_1 = [PB]ji, which
completes the proof.

Suppose now that there exist two difference sets (modu) with parameters {v,kuk^),
(v,k2,X2) and corresponding matrices A^ and A2, as described above. Since Ay and A2 are
both circulant matrices, so also is A^2 and we deduce from the lemma that

^ ) and PAX

are symmetric. Consequently

A2{PA,) = (PAMi- (5)

Also, from the fact that

AiA[ = 4n1/B + (i>-4n1)./1, (/ij = k^-X^),

it is clear that (PA^PA,)' = AtA[. Writing

X = PAU Y=A2, (6)

we see that the entries of X and Y are +1 or — 1, that

XX' + (q-l)YY' = {4n1 + (q-\)4n2}Iv+{v-4n1 + (v-4n2)(g-\)}Jv,

and from (5) that

AT' = YX'.

The matrices X and Y therefore satisfy conditions (3) and (4), with m = v, if and only if

4ni + (.q-l)4n2=qv. (7)
If now t; is chosen so that

t;= l+p*+p2"+.
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where h ^ 2 and p is a prime, it is well known [9] that there exists a difference set with para-
meters (v, ki, Aj), where kx = 1 +/>" + . . . +p<h ~1 )a and Ax = 1 +/>" + . . . +/>(/l" 2)a.

Moreover, if />, a and A are chosen so that

v = 3 (mod 4),

and u is a prime, or a product of twin primes p^ and p2 =pt+2, there exists [10], [11],
a difference set with parameters

Since Hj = /><*" 1)O, «2 = i ( f + 0 . (7) »s satisfied if and only if

Taking m = D shows that, if the conditions of the theorem are satisfied, then the matrix K
defined by (2), where X and Y are given by (6), is a Hadamard matrix of order qm. This
completes the proof of Theorem 1.

Finally, since the direct product of two Hadamard matrices is again a Hadamard matrix,
we obtain

THEOREM 2. If N is a product of numbers of the forms (i)-(xi), there exists a Hadamard
matrix of order qmN, where m andq are as in Theorem 1.
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