A NEW CLASS OF HADAMARD MATRICES

by E. SPENCE

(Received 20 June, 1966)

1. Introduction. A Hadamard matrix H is an orthogonal square matrix of order m all the entries of which are either +1 or -1 ; i.e.

$$
H H^{\prime}=m I_{m},
$$

where H^{\prime} denotes the transpose of H and I_{m} is the identity matrix of order m. For such a matrix to exist it is necessary [1] that

$$
m=1 \text { or } 2, \quad \text { or } m \equiv 0(\bmod 4)
$$

It has been conjectured, but not yet proved, that this condition is also sufficient. However, many values of m have been found for which a Hadamard matrix of order m can be constructed. The following is a list of such m (p denotes an odd prime).
(i) $m=2^{k}$,
(ii) $m \equiv p^{k}+1 \equiv 0(\bmod 4)$,
(iii) $m=h\left(p^{k}+1\right)$, where $h \geqq 2$ is the order of a Hadamard matrix,
(iv) $m=n^{\prime}\left(n^{\prime}-1\right)$, where n^{\prime} is a product of numbers of the forms (i) and (ii),
(v) $m=92,116,156$ and 172 ,
(vi) $m=n_{1} n_{2} p^{k}\left(p^{k}+1\right)$, where $n_{1} \geqq 2$ and $n_{2} \geqq 2$ are both orders of Hadamard matrices,
(vii) $m=n_{1} n_{2} h(h+3)$, where $n_{1} \geqq 2$ and $n_{2} \geqq 2$ are both orders of Hadamard matrices and h and $h+4$ are both of the form $p^{k}+1$,
(viii) $m=n^{\prime}\left(n^{\prime}+3\right)$, where n^{\prime} and $n^{\prime}+4$ are both products of numbers of the forms (i) and (ii),
(ix) $m=(n-1)^{2}$, where $n+1$ is a product of numbers of the forms (i) and (ii) and $n-2=p^{k}$,
(x) $m=(h-1)^{3}+1$, where h is a product of numbers of the forms (i) and (ii),
(xi) m is a product of numbers of the forms (i)-(x).

These results are given in [1], [2], [3], [4], [5], [6], [7] and [8].
The only values of $m \leqq 400$ that are not covered by this list are $188,236,260,268,292$, 356, 372 and 376.

The following theorem, which we shall prove, adds another set of values.

Theorem 1. If the primes $p, p_{1}, p_{2}, \ldots, p_{r}$ and the positive integers $\alpha, \alpha_{1}, \ldots, \alpha_{r}$ are such that

$$
p^{\alpha} \equiv 1(\bmod 4), \quad p_{i}^{\alpha_{i}} \equiv-1(\bmod 4) \quad(1 \leqq i \leqq r)
$$

$m=1+p^{\alpha}+p^{2 \alpha}+\ldots+p^{h \alpha}(h \geqq 2)$ is a prime congruent to $3(\bmod 4)$ or a product of twin primes, and

$$
q=m+1-4 p^{(h-1) \alpha}=2^{s} \prod_{i=1}^{r}\left(p_{i}^{\alpha_{i}}+1\right) \quad(s \geqq 0)
$$

then there exists a Hadamard matrix of order qm.
That there are integers satisfying the conditions of the theorem is seen by taking $p=5$, $\alpha=1$ and $h=2$. Then $m=31$ and $q=12=11+1$. It follows that there exists a Hadamard matrix of order 372, a number which is not of the forms (i)-(xi).
2. It was shown in [2] that if $q=2^{s} \prod_{i=1}^{r}\left(p_{i}^{\alpha_{i}}+1\right)(s \geqq 0)$, then there exists a Hadamard matrix H_{1} of order q such that

$$
H_{1}=I_{q}+S
$$

where I_{q} is the identity matrix of order q and S is skew-symmetric. Since $H_{1} H_{1}^{\prime}=q I_{q}$, it is immediate that

$$
\begin{equation*}
S S^{\prime}=(q-1) I_{q} \tag{1}
\end{equation*}
$$

Now let X and Y be square matrices of order m and denote the direct product of two matrices A and B by $A \cdot B$. If the $q m \times q m$ matrix K is defined by

$$
\begin{equation*}
K=I_{q} \cdot X+S \cdot Y \tag{2}
\end{equation*}
$$

then

$$
K K^{\prime}=\left(I_{q} \cdot X+S \cdot Y\right)\left(I_{q} \cdot X^{\prime}+S^{\prime} \cdot Y^{\prime}\right)=I_{q} \cdot\left\{X X^{\prime}+(q-1) Y Y^{\prime}\right\}+S \cdot\left(Y X^{\prime}-X Y^{\prime}\right)
$$

by (1). It follows that if X and Y can be chosen so that

$$
\begin{align*}
X X^{\prime}+(q-1) Y Y^{\prime} & =q m I_{m} \tag{3}\\
X Y^{\prime} & =Y X^{\prime} \tag{4}
\end{align*}
$$

and the entries of X and Y are +1 or -1 , then K is a Hadamard matrix of order $q m$.
3. Perfect difference sets. By a perfect difference set (or simply a difference set) is meant a set $D=\left\{d_{1}, d_{2}, \ldots, d_{k}\right\}$ of distinct integers modulo v such that every $d \neq 0(\bmod v)$ can be expressed in exactly λ ways in the form

$$
d_{i}-d_{j} \equiv d(\bmod v)
$$

with $d_{i}, d_{j} \in D$. The parameters v, k, λ clearly satisfy

$$
k(k-1)=\lambda(v-1)
$$

Associated with such a difference set we define the $v \times v$ circulant matrix $A=\left[a_{i j}\right]$ by

$$
a_{i j}= \begin{cases}+1 & \text { if } j-i \in D \\ -1 & \text { if } j-i \notin D\end{cases}
$$

Then it is straightforward to verify that

$$
A A^{\prime}=4 n I_{v}+(v-4 n) J_{v}
$$

where $n=k-\lambda$, and J_{v} is the square matrix of order v all the entries of which are +1 .
We require the following
Lemma. If B is $a v \times v$ circulant matrix and $P=\left[p_{i j}\right]$ is the permutation matrix of order v defined by

$$
p_{i j}= \begin{cases}1 & \text { if } i+j \equiv 2(\bmod v) \\ 0 & \text { otherwise }\end{cases}
$$

then $P B$ is symmetric.
For if the first row of B is $\left(b_{1}, b_{2}, \ldots, b_{v}\right)$, then the j th column of B is $\left\{b_{j}, b_{j-1}, \ldots, b_{j-v+1}\right\}$, the subscripts being reduced modulo v. Consequently, $[P B]_{i j}=b_{i+j-1}=[P B]_{j i}$, which completes the proof.

Suppose now that there exist two difference sets $(\bmod v)$ with parameters $\left(v, k_{1}, \lambda_{1}\right)$, (v, k_{2}, λ_{2}) and corresponding matrices A_{1} and A_{2}, as described above. Since A_{1} and A_{2} are both circulant matrices, so also is $A_{1} A_{2}^{\prime}$ and we deduce from the lemma that

$$
P\left(A_{1} A_{2}^{\prime}\right) \text { and } P A_{1}
$$

are symmetric. Consequently

$$
\begin{equation*}
A_{2}\left(P A_{1}\right)=\left(P A_{1}\right) A_{2}^{\prime} \tag{5}
\end{equation*}
$$

Also, from the fact that

$$
A_{1} A_{1}^{\prime}=4 n_{1} I_{v}+\left(v-4 n_{1}\right) J_{v} \quad\left(n_{1}=k_{1}-\lambda_{1}\right)
$$

it is clear that $\left(P A_{1}\right)\left(P A_{1}\right)^{\prime}=A_{1} A_{1}^{\prime}$. Writing

$$
\begin{equation*}
X=P A_{1}, \quad Y=A_{2}, \tag{6}
\end{equation*}
$$

we see that the entries of X and Y are +1 or -1 , that

$$
X X^{\prime}+(q-1) Y Y^{\prime}=\left\{4 n_{1}+(q-1) 4 n_{2}\right\} I_{v}+\left\{v-4 n_{1}+\left(v-4 n_{2}\right)(q-1)\right\} J_{v}
$$

and from (5) that

$$
X Y^{\prime}=Y X^{\prime}
$$

The matrices X and Y therefore satisfy conditions (3) and (4), with $m=v$, if and only if

$$
\begin{equation*}
4 n_{1}+(q-1) 4 n_{2}=q v . \tag{7}
\end{equation*}
$$

If now v is chosen so that

$$
v=1+p^{\alpha}+p^{2 \alpha}+\ldots+p^{h \alpha}
$$

where $h \geqq 2$ and p is a prime, it is well known [9] that there exists a difference set with parameters (v, k_{1}, λ_{1}), where $k_{1}=1+p^{\alpha}+\ldots+p^{(h-1) \alpha}$ and $\lambda_{1}=1+p^{\alpha}+\ldots+p^{(h-2) \alpha}$.

Moreover, if p, α and h are chosen so that

$$
v \equiv 3(\bmod 4)
$$

and v is a prime, or a product of twin primes p_{1} and $p_{2}=p_{1}+2$, there exists [10], [11], a difference set with parameters

$$
\left(v, k_{2}, \lambda_{2}\right) \equiv\left(v, \frac{1}{2}(v-1), \frac{1}{4}(v-3)\right) .
$$

Since $n_{1}=p^{(h-1)^{\alpha}}, n_{2}=\frac{1}{4}(v+1)$, (7) is satisfied if and only if

$$
q=v+1-4 p^{(h-1) \alpha} .
$$

Taking $m=v$ shows that, if the conditions of the theorem are satisfied, then the matrix K defined by (2), where X and Y are given by (6), is a Hadamard matrix of order qm. This completes the proof of Theorem 1.

Finally, since the direct product of two Hadamard matrices is again a Hadamard matrix, we obtain

Theorem 2. If N is a product of numbers of the forms (i)-(xi), there exists a Hadamard matrix of order $q m N$, where m and q are as in Theorem 1.

REFERENCES

1. R. E. A. C. Paley, On orthogonal matrices, J. Math. Phys. 12 (1933), 311-320.
2. J. Williamson, Hadamard's determinant theorem and the sum of four squares, Duke Math. J. 11 (1944), 65-81.
3. J. Williamson, Note on Hadamard's determinant theorem, Bull. Amer. Math. Soc. 53 (1947), 608-613.
4. L. Baumert, S. W. Golomb and Marshall Hall, Jr, Discovery of an Hadamard matrix of order 92, Bull. Amer. Math. Soc. 68 (1962), 237-238.
5. L. D. Baumert and Marshall Hall, Jr, Hadamard matrices of the Williamson type, Math. Comp. 10 (1965), 442-447.
6. K. Goldberg, Hadamard matrices of order cube plus one, Proc. Amer. Math. Soc. 17 (1966), 744-746.
7. L. D. Baumert, Hadamard matrices of orders 116 and 232, Bull. Amer. Math. Soc. 72 (1966), 237.
8. H. Ehlich, Neue Hadamard-Matrizen, Arch. Math. 16 (1965), 34-36.
9. J. Singer, A Theorem in finite projective geometry and some applications to number theory, Trans. Amer. Math. Soc. 43 (1938), 377-385.
10. H. J. Ryser, Combinatorial mathematics, Carus Mathematical Monographs No. 14, 1963.
11. A. Brauer, On a new class of Hadamard determinants, Math. Z. 58 (1953), 219-225.

University of Glasgow

Glasgow, W. 2

