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1. I n t r o d u c t i o n . Let H0 be the mth power (m a positive integer) of the 
self-adjoint operator defined in the Hilbert space L 2 (0 , w) by the differential 
operator — (d2/dx2) and the boundary conditions ^(0) = u(ir) = 0. The eigen
values of Ho are [xn = n2m and the corresponding eigenfunctions are <f>n = 
(2/7r)1/2 sin nx, n = 1 , 2 , . . . . 

Let p be a (2m — 2)-times continuously d i f ferent ia te real valued function 
defined over the interval [0, ir] satisfying the conditions pU)(0) = pU)(w) = 0 
for j odd and less than 2m — 4. (This condition is vacuous in the cases m = 
1, 2.) Let Hi be the mth power of the operator defined in L 2 (0 , r) by the dif
ferential operator — d2/dx2 + p{x) and the boundary conditions u(0) = U(T) = 
0. Then Hi and H0 are self-adjoint operators with a common domain. We define 
V as Hi — Ho. 

Let X̂  be the eigenvalues of Hi arranged in increasing order. Let juft
(1), 

fjLn
{2), . . . be the coefficients in the per turbat ion series 

nn(e) = Mn + e^D + eV2) + . . . 

for the eigenvalue r]n(e) of H0 + e Vcorresponding to \in. 
In (2, Theorem 7) it is s ta ted t ha t if all odd order derivat ives of p vanish a t 

0 and 7T, 

(1) 2 {K — Vn — Mw(1) — . . . — Vn'S)} = 0 

for all 5 sufficiently large. T h e only cases considered in the proof are m = 1, 
5 = 1 or 2, and m = 2, s = 2. In Section 3 of this paper we present a simple 
proof which is valid for each m and for all s > 2m. T h e conditions on p are 
those given above in the definition of Hi. T h e method offers the prospect of 
wider application, and generalizations are under s tudy. In Section 4 other 
methods are used for the cases m = 1, 5 = 1 and m = 2, s = 2. Addit ional 
conditions on p are necessary in this section. 

Dikii (2) uses equat ions very similar to (1) to obtain approximate values for 
the first few eigenvalues of Hi for p(x) = cos 2x and m = 1. Also (1) m a y be 
regarded as an extension of the result (true in some cases) t h a t the average 
value of the per turbat ion terms is zero. 
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2. A c o n t o u r integral f o r m u l a t i o n . In this section we shall be con
cerned with operators in a Hilbert space § . The uniform norm of a bounded 
operator H will be denoted by \\H\\. For H in the Schmidt class S we denote 
the Schmidt norm of H by \\H\\2. For H in the trace class T we denote the 
trace norm of H by ||i7||i and the trace of H by S{H}. For H in S we have 
\\H\\ < \\H\\2 and for H in T we have ||if|| < | | i ï |[2 < \\H\U. If H is in S [or 
in T ] and A is any bounded operator, then AH and HA are in S [or in T ] and 
both \\AH\\2 and \\HA\\2 are less than or equal to \\A\\ .\\H\\2 [or both | |4 f f | | i 
and ||iiL4||i are less than or equal to \\A |[ • | | # | l i ] . The product of two operators 
A,B'mS is in T and \\AB\\i < \\A\\2 \\B\\2. 

From the ident i ty 

A(y)B(y) - A(z)B(z) = A(y){B(y) - B(z)} + {A(y) - A(z))B(z) 

we see tha t the product of two operators continuous in the Schmidt norm is 
continuous in the trace norm. Also, if A is continuous in the Schmidt [or trace] 
norm and B is continuous in the uniform norm, then the product is con
t inuous in the Schmidt [or trace] norm. 

For further information we refer the reader to Schat ten (4). 
The resolvent set of an operator will be denoted by A(H) and its domain by 

D(H). 
Note tha t if H0 and V are operators with D(H0) C D ( F) such t ha t H0 and 

HQ + €oV(e0 9e 0) are self-adjoint and VR0(œ) is bounded for some a> in A (Ho) 
then Ht = Ho + eV is self-adjoint for all e sufficiently small. I t is easily seen 
tha t Ht is symmetric for all e. From the resolvent equation 

Ro(œ) - Ro(z) = (a) - z)Ro(u)Ro(z) 

it follows tha t VRo(z) is bounded for all z G A(H0). Tak ing z = i and z = — i 
in the equation 

Ho + eV - zl = (1+ eVRo(z))(H0 - zl), 

one sees tha t He is self-adjoint for all e sufficiently small. 
The following lemma is a modification of a result of Ka to (3). 

LEMMA 1. Let Ho and V be operators such that D(H0) C D ( F ) and He = 
Ho + eV is self-adjoint for e = Oande = e0 j * 0. Suppose Ro(oo) = (H0 — w / ) _ 1 

and VRo(œ) are in S for some co in A(H0). Let fx be an isolated simple eigenvalue of 
Ho, let T be a closed contour in A (Ho) which surrounds /JL but no other point of the 
spectrum of Ho. Then for sufficiently small e, T is in A(He), surrounds precisely 
one simple eigenvalue 77(e) of He and 

v(e) - M + eM
(1) + eV2 ) + . . . 

where 
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(2) M
0) = s\-(27ri)-1 j zRo(z)[-VR0(z)]jdz} 

= sj-^Tri)-1 J (z - riRo(z)[-VRo(z)]3dz] . 

Proof. From the resolvent equation it follows that 

||22O(Û>) - Ro(z)\\s < |a> — £f| po(co)!|2 P?o(*)l|. 

and 
\\VRo(a>) - VRQ(z)\\ <\œ - z\ \\VRQ{œ)\\2 \\RQ(Z)\\ 

for any z in A(H0). Therefore Ro(z) and VRo(z) are in S and are continuous in 
the Schmidt norm (as well as in the uniform norm). For any positive integer t, 
Ro(z) [VRQ(Z)Y will be in T and continuous in the trace norm. It follows that 
the series 

CO 

£ e'i?o(z)[-Fi?0(z)r 

converges in the trace norm to Rt(z) — Ro(z), uniformly for z on T and for 
|e| < €0, where 0 < e0 < min2 on r || VR0(z)\\2~1. (We consider the difference 
R€ — Ro because neither Re nor R0 is necessarily in T.) Since the same is true 
in the uniform norm, we have that F is in A(He) for |e| < €0, and 

(-2iri)~l f Re{z)dz 

= -(27r i ) - 1 J R0(z)dz+ Ë ^ | ( - 2 7 r i ) - 1 JR0(z)[-VRo(z)Ydzj. 

It follows that 

Ee = Eo+ £ 6 f | ( - 2 7 r i ) - 1 J RQ(z)[-VRo(z)Ydz\ , 

where Ee is the projection corresponding to that part of the spectrum of Ht 

which is enclosed by T, and E0 is the similar projection for i70. Hence by 
Kato (3, Corollary to Lemma 1.2), dim Ec = dim E0 = 1. Thus for |e| < e0, 
He has one simple eigenvalue 77(e) within T. 

From 

R,(z)-Ro(z) = Ë e'i?o(2)[-Fi?0(2)]', 

the series converging in the trace norm, uniformly for s on T, it follows that 

(3) (-27ri)_ 1 f zRt(z)dz + (2Tri)~1 f zR0(z)dz 

= ê ( - 2 ™ ) - 1 f t'zRa{z)[-VRQ(z)]'dz. 
!-i J r 
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The first term on the left is the operator H€ Ee. Thus this term is in T and its 
trace is 77(e). Similarly the trace of the second term is —/x. Taking the trace of 
both sides of (3) and using the fact that the series converges in the trace norm 
we obtain the first equality of (2). If we multiply by z — /z instead of z, we 
obtain the second. 

LEMMA 2. Let H0, V, /z, T be as in the previous lemma except that /z is to be of 
multiplicity w. Then for sufficiently small e, Y contains precisely w eigenvalues 
{counting multiplicity) ^(e) , n = 1, . . . , w, of He. Each rjn(e) is an analytic 

function of t: 

Vn(e) = M + e/z^) + e V 2 ) + . . . , 
where 

(4) £ jun
0,) = s { - ( 2 « r x J zRo(z)[- 7Ro(s)]'dsj . 

The proof of (4) is essentially the same as that of (2). Kato (3) gives a similar 
lemma. 

THEOREM 1. Let H0 and V be operators such that D(H0) C D(F) and R0(CÙ) 

and VRo(oo) are in S for some cc in A(Ho). Suppose He = Ho + eV is self-
adjoint for e = 0 and e = 1. Let 12 be a closed contour in A (Ho) O A(H±). 
Suppose that 0 surrounds k eigenvalues ixx < /z2 < . . . < /x* of H0 and k eigen
values Xi < X2 < . . . < \jc of Hi and no other spectral points of either operator. 
Then for sufficiently small e, the operator He has k eigenvalues 

Vn(e) = Un + W 1 } + *W2) + . • . 

inside Y and for s > 0, 

É {X, - ixn - /xn
(2) - . . . - Mn

(s)} = - ( 2 ^ ) ~ 1 f S{zR1(z)[-VRo(z)]s+l}dz. 

Proof. Note first that we have no assurance that the conclusions of Lemmas 
1 and 2 hold for e = 1. The operator Ht is used only to define the perturbation 
coefficients. 

The equation 

(5) Rx(z) = Ro(z) + Ro(z)[- VRo(z)] + . . . + £«>(*)[- W * ) ] ' 

+ i ? 1 ( * ) [ - ^ o ( * ) ] s + 1 

holds for all z in A(H0) O A (Hi) and therefore on all points of 0. It follows 
that 

-(2Tri)"1 f zRx(z)dz 

= -(2Tri ) - 1 f *ze0(2)<fe - (2Tri)"1 f z{R0(z)[-VR0(z)]}dz . . . 

- ( 2 7 r i ) - 1 f 2 | f t ( 2 ) [ - F f t ( 2 ) ] s | ^ - ( 2 « ) " 1 f «{iîiWl-VKoW]*4"1}^. 
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The term on the left is the operator Hi reduced by the projection on the sub-
space corresponding to the eigenvalues Xi, . . . , Xk. Hence the trace of this 
term is the sum Xi + X2 + . . . + Xfc. Similarly, the trace of the first term on 
the right is pti + (JL2 + . • • + Vk- Each remaining term on the right except the 
last can be replaced by a sum of contour integrals over contours Th . . . , Tr 

each surrounding an isolated eigenvalue of H0. By (4) the trace of the sum of 
all such terms is 

k 

|Mn + Mn + Mr* + . . . + Mn }• 

We obtain 

k 

E (A (1) ( * ) } 

[An — lXn — fXn — w = l 

- ( 2 7 r i ) - 1 5 [ j z{R1(z)[-VRQ(z)Y+l}dz 

The integrand in the last term is continuous in the trace norm. Thus we can 
interchange the two operations, integration and taking the trace, to obtain 
the desired result. 

3. Applications to powers of a Sturm-Liouville operator. Let H0 

and Hi be the operators defined in the Introduction. In this case VR0(z) is an 
integral operator with kernel : 

H(x,y;z) 

2 v^ ao(x)n sin nx + aAx) n cos nx + . . . + a2™-2(x) sin nx . 
= - 2-J m sm ny, 

IT n=i n — z 
where a0(x), ai(x), . . . , a2w_2(^) are polynomials in p and its derivatives up to 
order 2m — 2. If z is in A(ifo), then VRo(z) is in S ; indeed, we may estimate 
\\VRo(z)\\2as follows: 

\VRo(z)\\2
2= f r \H(x,y;z)\2dydx 

t / 0 t / 0 

00 

< A E 
\m— 4 

2 i 2 ' 

where 4̂ is a constant. 

LEMMA 3. If z lies on a circle Yk with centre at the origin and radius pk — 
(k + | ) m , where k is a positive integer, then 

00 4m—4 

I r i 2 = 0 ( 0 and \\VR0(z)\\t = O0T1) as * ->« , . 
n=\ \n z\ 
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Proof. Since \n2m - z\ > \n2m - Pk\, 

°o ^ 4 w — 4 oo 4m—4 

T~2m ~T2 < Z*t TZ2m i~2 

n=i \n — z\ fcl \n — pk\ 
k—l 4m—4 oo 4m—4 

^ - - ' \ M
l m (l* _!_ l \ 2 m i 2 n / ^ / I 2m / 7 , i \ 

„=1 |» — (fc + 2) | rc=*+2 I» — (k + i) 
r 4m—4 / 7 I i \ 4m—4 

kim~q (k + iy 
\k2m - (k + h)2m? + \(k + D2m - (* + i ) 2 

Clearly each of the last two terms is 0(k~2). The first sum on the right is 
dominated by the integral 

r 
4m—4 

i \'*m, (U \ l \ 2 m i 2 < 

F0 \X — (k + %) I 

The subst i tut ion x = (k + §)z/ and the inequality 

4m—4 /~t 

( V 2 m _ 1 } 2 < ( v _ 1 ) 2 , 

where C is a constant , shows tha t this integral is 0(k~2). Similarly 

°o „ „ 4 w - - 4 r ' o o 4m—4 

V ^ W I X , 
" ^ I | 2m / 7 . i \ 2m 12 # # ^ \ ^ 2 m (h I l \ 2 m i 2 ^ I i 2m t-, , i \ 2 m i 2 < 

J
»co 4m—4 

~Tim TT2 dv 
(k-

1 / z m 1 \ 

4m—4 
y  

/ z m -< \ 

This completes the proof of the lemma. 

r»2 4m—4 

= (* + i ) ~ 3 71ÎI—7T2 + o (^ - 3 ) = o ( r 2 ) . 

LEMMA 4. / / s Zies #w the circle Tk of Lemma 3 and | / ( s ) | > k2m~a for some 
a > 0, *Aew || Ffio(z) j| = 0 ( ^ " 2 ) as k -> oo. 

Proof. We can express V7?o(s) as a sum of operators of the form 

oo 2m— ff 

a(X) Z ) ~~2™ 1 (• > <i>n)tn{x), 
n=i n — z 

where q is an integer such tha t 2 < q < 2m, ^w(x) is either (2/7r)1/2 sin nx or 
(2/w)1/2 cos wx, and a(x) is a bounded, continuous function. T o prove the 
assertion of the lemma we must show tha t 

4m-2q ) 1/2 

for all 2 satisfying the conditions. I t is clearly sufficient to show this for the 
case q = 2 and 2 = 2* = c* + ir*, where r* = k2m~a and cr* = (pk

2 — rk
2)112. 
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Let/(x) = xim 4[(x2"* — crfc)
2 4- T*2]-1. Then by elementary methods 

jmax/(*)[ 1 / 2 = ! |[2 - m + (m2 + é(m - I K T » / ^ ) 2 ) 1 " ] } 1 - " * 0 

( 0<z<co ) 

X [\[-m + {m2 + 4(ra - l)(rk/ak)
2}1/2)2 + ( r ,M) 2 }" 1 / 2 X ak~

1,f\ 

Since r* /^ = &-*[l + 0(k~l) + 0(&-2«)H, we obtain 

| m a x / ( x ) | 1 / 2 <Mka~2 

for all k sufficiently large, where M is a constant. This completes the proof of 
the lemma. 

For the case m — 1 it is well known that \n = n2 + 0(1) ; see, for example, 
(1, Chapter VI). Then for any ra, \n = n2m + 0(n2m~2) and consequently for 
z on Tk, 

!|2?i(z)|| < max {|\* - pk\~\ \\k+1 - pk\~
l\. 

Therefore, \\Ri(z)\\ = 0(k1~2m) as k -» °°. 

THEOREM 2. Let H0 be the rath power (ra a positive integer) of the operator 
defined in L2(0, w) by the differential operator —d2/dx2 and the boundary con
ditions u(0) = U(TT) = 0. Let p be a real valued, (2m — 2)-times continuously 
differentiate function defined on the interval [0, T] such that pU)(0) = PU)(T) = 0 
for j odd and less than 2ra — 4. Let Hi be the rath power of the operator defined by the 
same boundary conditions and —d2/dx2 + p(x). Let \xn = n2rn be the eigenvalues 
of H0, and let Xn be the eigenvalues of Hi arranged in increasing order. Let /xn

(1), 
ixa

{2\ . . . be the coefficients in the perturbation series 

X»(«) = Un + W 1 } + * V 2 ) + . • . 

for the eigenvalue \n(e) of H0 + eF corresponding to fxn. Then, if s > 2ra 
CO 

] C ( X — Mrc — M» 1 — • • • ~ Vn S)) = 0. 

Proof. By Theorem 1, for k sufficiently large, 

Z (*» - M. - M„a) - . . . - M„<S)) = - ( 2 « ) - x f 5{aRi(«)[- Fi?o(2)] s + 1}^ 

We shall show that the integral tends to zero as k —» °°. 
Since s > 2ra, there exists a positive a: such that 2ra — s < a : < 2 ( s — ra)/j 

or 2ra — a — s < 0 and 2ra + (a — 2)s < 0. For s on Tk such that 

|I(s)| < k2m~«, 
we use the estimate 

I S ^ i W t - F R o O O r 1 } ! < |z| ||i?i(2)|| ||Fi?o(2)||l+1 

= 0(A2,")-0(fe1- ,*)-0(*-( '+1)) 

= 0 ( 0 -
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Since the length of this part of the contour is 0(k2m~a), its contribution to the 
integral is 0(k2m~a~s), which tends to zero as k —» <». 

For z on Tk such that \I(z) \ > k2m~a we use the estimate 

iSizRiWl-VRob)]*1}] < \z\ \\Ri(z)\\ WVRoizW1 \\VRo(z)\\l 

= 0(*2w)0(*- (2 , ,M))0(* ( '-1) (a~2))0(*-2) 

= 0(k{a-2)s). 

Since the length of this part of the contour is 0(k2m), its contribution is 
0(k2m+{a~2)s), which also tends to zero as k —» oo. This completes the proof 
of the theorem. 

Remark 1. It is a trivial consequence that 

£ »n
{s) = 0 for 5 > 2m. 

n=l 

Remark 2. By similar methods with a circle centred at nk as our contour and 
with the second of equations (2), we may show that for all k sufficiently large 

|X* - Hit ~ M*(1) - . . . - M*<0| < C!(C2/*)'+1*2W, 

where C\ and C2 are constants independent of 5 and k. This expression shows 
that for all k sufficiently large, 

oo 

.7=0 

Further, if 5 > 2m — 1, 

lim | A* - M* ~ M*(1) ~ . . - -M, ( s° | - 0 ; 
#->oo 

and if ^ > 2m, 
oo 

(Afc — MA- — M/t — . . . — M* ) 
*=i 

converges absolutely. 

4. Other methods. In this section we shall show by other methods that 
the conclusion of Theorem 2 can hold for smaller values of s provided p satis
fies additional restrictions. The section is intended only to illustrate the 
methods involved. 

The conditions and notation of the previous section are retained without 
further comment. 

LEMMA 5. If s + 1 > 4ra/3, then 

(6) lim T2S{2?I(*T) - Ro(ir) - Ro(ir)[- VR0(ir)] 
T-»OD 

- ...-Ro(iT)[~VRo(iT)]s\ = 0. 
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Proof. By the est imate given in the previous section, 

oo 

||V7?o(*Y)||22<,4 £ -£ 4ra . 2 

„-i n + T 

Using methods similar to those used for Lemma 3, we can show this sum is 
0 ( r e _ 3 / 2 m ) where e is an arb i t ra ry positive number . F rom equat ion (5) it 
follows t ha t the trace of the expression within braces in (6) is of order 

£ ) ( r - ( 3 / 4 » i ) ( s + l ) - l + e(M-l)\ 

This is sufficient to establish (6). 

LEMMA 6. Each term within the braces in (6) is in the trace class. In particular, 
CO 1 

S{RST)} = £ T-±-r-, 
n=l Aw — IT 

OO 1 

S{Ro(ir)} = £ — ^ — , 
n=i /xw — tr 

(1) 

5{i?o(iT)[FRo(iT)]2} = - Z 

»=i (MW — irY ' 

2 Z-^ / • \ 3 • „=i (M« — ^V) ri=i On — ir) 

Proof. I t is easily seen t h a t each of the te rms is in the t race class. T h e first 
two equations are obvious and the third follows from the relation 

Mn(1) = ( F * , , * , ) . 

If 7]n(e) is the eigenvalue and x«(e) is the eigenfunction of the operator 
Ho + eV corresponding to the unper turbed eigenvalue /zn, then for all suffi
ciently small e, 

Vn(e) = /xn + W 1 } + e V 2 ) + . . . , 

and 

X»(«) = <t>n + «î>n{l) + 620,(2) + . . . . 

If we replace Re(z), r}n(e), and Xn(t) in the equat ion 

(rjn(e) - z)Re(z)xn(e) = Xn(c) 

by their series expansions in powers of e and identify coefficients of like powers 
of e, we obtain a set of equations, one of which is 

U , - z)Ro(z)[- VR0(z)nn + »n^Ro(z)[- VR0(z)]$n 

+VLn™R,(z)<f>n + (ixn - z)Ro(z)[- VK0(*)]*»(1) 

+^RQ(zW1) + (/*» - z)Ro(z)ct>n^ = 0n(
2>. 

Taking the inner product of both sides with <f>n and using the relation 

r = l M« — Mr 
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we obtain 

S{Ro(z)[VRo(z)]2} 

= y ^ __J£n , ^y (V<t>ny 4>nY _i_ V ^ V V (V<t>n, <ftr)(<ftr» ^<fr;i) 

„=1 (MTI — ^ ) 2
 n „ i (jU„ — zf n „ i r = i ( / i r — 2)(jm, — 2 ) ( / i r — /in) ' 

where the prime indicates the omission of the term corresponding to r = ». 
The last sum is zero by vir tue of the ant i -symmetry of the summand in n and 
r. This completes the proof of the lemma. 

T H E O R E M 3. If p is in C2, then 

OO 

]C (K — Vn — Mrc(1)) = 0 
n=l 

when m = 1. If p is in C4 and p'(0) = P'(TT) = 0, then 

oo 

S (X» — V>nl) — Mn(2)) = 0 

when m = 2. 

Proof. For m = 1, (6) is vaiid for 5 > 1. From (6) for s = 1 and Lemma 6, 
we obtain 

hm T 

OO I OO J OO ( 1 ) I 

n=\ K — IT n=i \Xn — IT w = i (lJLn — IT) J 

which may be transformed into 

V* ^_i_if.w: iJhlL _L V" (^n ~ Xw) _ ç> 
n=i (^n — ir)2

 n=i (Xw — i r ) (/xn — i r ) 2 J 
(7) lim r | ^ ( . yi i ^ ^ /x • w • N2 

The condition p in C2 is sufficient to establish the estimates 

Mn(1) = - f P(x)dx + 0{n~2) 
7T Jo 

and 

Therefore, 

1 C* 
K = M« H— I p(x)dx + 0(n~2). 

TT Jo 

S |XW — Mn — M»(1)| < °°, 

I (D \ 
V ^ 2 MM T Mrc — Arc 

converges uniformly for r > 0, and 

(i) OO 1 ^ \1) \ OO 

l i m 2 ^ T / TV2 = 2^ \An — Un — Vn ) • 
n=l {Vn — IT) w = i T->0O 

Similarly, since 
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S ( / in — An) 
< oo, 

the contribution of the second term in (7) to the limit is zero. This establishes 
the first conclusion of the theorem. 

For m = 2, (6) is valid for s = 2 and yields 

(8) lim r 
T->00 

Vn 
(1) oo -j co -j co 
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= 0. 

If we impose the additional condition that 

J p(x)dx = 0, 
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then it can be shown that p in C4 and p'(0) = P'(T) = 0 implies (V>w, <£„) = 0(1), 

Xn = M» + 7T- p\x)dx + 0(w~2), 

and that \n — \xn — nn
(1) — idn

{2) = 0(n~2). The first estimate allows us to 
conclude that 
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so that (8) may be rewritten as 
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The remaining two estimates applied to (9) yield the desired conclusion 

^ (Xw — Un — MTI(1 — Mn (2 )) = 0 . 

An auxiliary argument allows us to dispense with the condition 

p(x)dx = 0. f 
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