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Further results on an integral

representation of functions

of generalised variation

A.M. Russell

In this paper we present further properties of the kth

variation of a function, and obtain an integral representation for

a function having tiounded kth variation and an absolutely-

continuous (fc-l)th derivative. The absolute continuity

requirement replaces a previous stronger condition that required

the kth derivative of a function to be continuous except on a

set of Lebesgue measure zero.

1 . Introduction

It is a well known result that if / is an absolutely continuous

function on [a, b] , then / is of bounded variation, and its variation

is given by

V±(f; a, b) = \ \f'(t)\dt .

In [3] the author extended this result to functions which have bounded

kth variation and which have the additional restriction that the fcth

derivative is continuous except on a set of Lebesgue measure zero. In this

paper we weaken the additional restriction by showing that the feth total

variation of a function f can be written in the form
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408 A.M. Russel I

-l)\Vk(f; a,b) = \ \f{k\t)\dt ,(k

(fe-1)
when f is absolutely continuous on [a, b] .

In order to arrive at the more general result just outlined it was

found expedient to work with two definitions of bounded kth variation,

one defined with quite arbitrary subdivisions a = x~, jr. , ..., * = b of

[a, b] , and the other using subdivisions in which all subintervals

[x . , x .1 are of equal length. We show first that provided continuous
•J-—X X>

functions are used, we obtain the same class of functions irrespective of

which subdivisions are used.

2 . N o t a t i o n and p r e l i m i n a r i e s

DEFINITION 1 . We shall say that a set of points xQ, x , . . . , x is

a it-subdivision of [a, b] when a < x < x < . . . < x = b .

Before introducing the two definitions of bounded kth variation, we

need the definition and some properties of kth divided differences, and

for this purpose we refer the reader to [2] .

DEFINITION 2. The total kth variation of a function f on [a, b]

is defined by

n-k
Vk(f; a, b) = sup V [x^^-x^] \Qk{fi x^, . . . , ̂ + f c ) I •

TT i = 0

If 7, (f; a, b) < °° , we say that f is of bounded kth variation on

[a, b] , and write / € BVAa, b] . The summations over which the supremum

is taken are called approximating sums for 7̂,(/j a> b) .

We now concern ourselves with subdivisions of [a, b] in which all

sub-intervals are of equal length. More formally, if h > 0 , then we will

denote by ir, a subdivision x~, x , ..., x of [a, b] such that

a = xn < x < . .. < x 5 2 > , where x. - x. = h , i - 1, 2, .. ., n , and

0 5 b-x S h . In order to introduce the second definition of bounded kth
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variation we make use of the difference operator A, defined by

and

DEFINITION 3 . If / i s continuous on [a, fc] , then we define t o t a l

feth variation of / on [a, b] ( res t r ic ted form) by

n-k
VAf; a, b) = sup

If V, (/; a, b) < <*> we say that _f is of restricted bounded kth
K.

variation on [a, b] , and write f € BV-A.O., b] .

If we denote, for brevity, C[a, b] by C , B7,[a, fc] by BV , and

BF, [a, &] by BV, , then we show subsequently that

We point out at this stage that the restriction to continuous

functions is not nearly as severe as it first may appear, because functions

belonging to BV,[a, b] when k > 2 are automatically continuous. (See

Theorem h of [2].)

Our final definition deals with synchronized sets of points.

DEFINITION 4. Let xQ, x±, ..., xn and yQ, y^, ..., y^ be two

sets of points belonging to [a, b] such that x < x < . . . < x and

y o < y x < ... < y n - i f

yi =xi+i ' l = ° ' 1> • • • ' n " x '

o r

xi = yi+l ' i = °' ll •••' n"1 '

we say that the two sets of points are synchronized; otherwise, we say
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4 10 A.M. RusseI I

that the two sets of points are not synchronized.

The following theorem will be a useful result. Since it is well

known, and appears in the literature, for example, in §18 of [I], a proof

will not be given.

THEOREM 1. Let F be absolutely continuous on [a, b] , written in

rx
the form F(x) = f{t)dt , a 5 x < b . Then F is of bounded variation

'a

on [a, b] , and

VX{F; a, b) =\ \f{t)\dt .
•"a

We now direct our attention to establishing the result

C n BVk =~BVk , & > 1 .

LEMMA 1. Let I., !"„, ..., I be a set of n adjoining closed

intervals on the real line having lengths p./q , pjq9, •••, p Iq

respectively, where p , p~, ..., p , q , q , ..., q are positive

integers. Then it is possible to subdivide the intervals I , J ? , ..., I

into sub-intervals of equal length.

The proof i s easy and wil l be omitted.

LEMMA 2. If k > 1 , then C n BV. c W, , using abbreviated

notation.

Proof. This i s easy and wil l not be included.

LEMMA 3. If k > 1 , then C n BV^ nflFfe .

Proof. Let us suppose that f i s continuous, belongs to BV,[a, b] ,

but f $ BV,[a, b] . Then for an a rb i t r a r i l y large number K , and an

arb i t r a r i ly small posit ive number z , there exists a subdivision

•n [xQ, x , . . . , x ) of [a, b] such that

n-k

111 i=0
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If not a l l the lengths [x. -x.) , i = 0, 1, . . . , n-1 are rational, then

because f is continuous we can obtain a subdivision IT {y , v , . . . , y ]
J 2^0 a l n'

of [a , fc] i n which a l l t h e l eng ths {y-,-,-y-) , £ = 0 , 1 , . . . , w-1 a re

r a t i o n a l , and such t h a t \S -S \ < e , S be ing the approximating sum
1 ^2 ^2

of VAf; a, b) corresponding to the i\ subdivision. Consequently,

S > S - \S -S I

In the TT subdivision, all sub-intervals have rational length, so we can

apply Lemma 1 to obtain a •n. subdivision of [a, b] in which each sub-

interval has length h . If S is the corresponding approximating sum

for VAf; a, b) , then it follows from Theorem 3 of [2] that

, j1. , S > S > K ,

since for any IT, subdivision, and each i = 0, 1, ..., n-k ,

Thus 5 > (k-l)lK , and this is a contradiction to the assumption that

/ € W , [a, b] . Hence f 6 ST. [a, fc] , and so sF. c C n K .

THEOREM 2. 1/ fc > l , tfeen C n BV^ = BFfe ; and if f is a

continuous function on [a, b] , then

(1) VAf; a, b) = (k-l)<VAf; a, b) , k > 1 .

Proof. The first part follows from Lemmas 2 and 3. For the second

part we first observe that

(2) VAf; a, b) S (k-l)lVAf; a, b) .

Let e > 0 be arbitrary. Then there exists a IT subdivision of [a, b]
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and the corresponding approximating sum S to VAf; a, b) such that
71 -. K.

> a>b) - ififcfer •
If not all the sub-intervals of ir have rational lengths, then we can

proceed as in Lemma 3 -to obtain a IT, subdivision of [a, b] in which all

sub-intervals are of equal length h . Then, if S is the corresponding

approximating sum to VAf; a, b) , we can show that

> VAf; a, b) - ̂ j p .

Consequently,

Vk(f; a, b) > S^

> (k-l)lVk(f; a, b) - e ,

from which it follows that VAf; a, b) > (k-l)lVAf; a, b) . This

inequality together with (2) gives (l).

We now proceed towards an application of the result, C n BV-, - BV, .

3. Main r e s u l t s

Let the set of points a = xQ, x , . . . , x , x = b be a TT

subdivision of [a, b] , and l e t t be a real number such that 0 5 fc 5 1

We shall have need to consider the two related sets of points

x. . + t[x -x. ) , where s = £+2, . . . , i+k ,

(3) and

x. + t{x -x.) , where s = i+1, ..., i+k-1 .

In relation to the sets of points (3) we shall consider the sum
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n-k

XQ \Qk_2[f; *i

Normally, the sum (h) would be an approximating sum for V, ,(/; a, b) ,

but since the two sets of points (3) are not synchronized subdivisions,

further investigation is required to determine the relationship between (h)

and V* ,(/; a, b) . In view of Theorem 2, we simplify our procedure by

considering IT, subdivisions in which each sub-interval \x. , , x .1 is of

length h . When k 2 2 and f € BVAa, b] , f is continuous, and so by

Theorem 2, there is no loss of generality in considering u,

subdivisions. Thus we can write (3) in the more convenient form

xi+l+th' xi+i
+Zth> •••' *i+1

+(k-l)th ,

and

x.+th, x.+Zth, ..., x.+(k-l)th .

The relative distribution of these two sets of points depends upon the

value of t , so we now discuss various cases, starting with the simplest.

The case t = 0 • This is trivial as each divided difference in (h)

is zero when t = 0 .

The case 0 < t 5 -*—^r . This gives rise to the distribution

x.+th < x.+2th < ... < x.+(k-l)th
7s 1r If

That (k) is again dominated by Vt,_-Af' a, 2>) follows readily. The cases

— < t 5 — — , p = k-3, ..., 2 are similar in character, with the "over-

lap" of the two sets "increasing" as p decreases. We discuss in some

detail the situation when p = 2 .

The case h < t S 1 . First of all if t = 1 , (h) is clearly

dominated by V. ,(/; a, b) . Hence we suppose that % < t < 1 , and

present the following:
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4 14 A .M. Russe I I

THEOREM 3 . If % < t < 1 3 then

n-k

Proof. Suppose that t is irrational, so that points of different

sub-divisions do not coincide.

Let n - k - 1 , so that we consider the three sets of points

x.+th, x.+2th, ..., x.+{k-l)th , i = 0, 1, 2 .

The sets, of points corresponding to i, - 0 and i = 1 are distributed

relative to one another as follows:

xQ+th < xQ+2th < x±+th < xQ+3th <

^ xQ+{k-l)th < x^ik^th < x± + (k-l)th.

In other words, after the first two points x n + th and a; + 2th , the

points alternate until xQ + {k-l)th , and this is finally followed by

a; + (k-2)th and x + (k-l)th . However, when the third set of points is

added some ambiguity occurs because x^ + th , definitely greater than

X-. + 2th , may be either greater than or less than x. + hth , depending

upon the value of t in (%, l) . To be definite, let us assume that

x.+2th < Xp+th < x~+kth , and proceed. An analysis similar to the follow-

ing will apply if we assume x^+th > x^+hth . Accordingly, relabel the set

of (3fe-3) points y±, y£, ..., 2/3J!,_3 , where

yx = xQ+th, y2 = xQ+2th, y^ = x±+th, y^ = xQ+3th,

y = xJ+2th, j/g = x2+th, y^ = xQ+hth, ..., y3k_3 = x2+{k-l)th .

Consequently, using Theorem 1, Corollary of [2], and writing

Qk_2{yv ..., yi+kj instead of Q^tf; ^ , ..., y^J , we obtain
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n-k

where the a's, 3's » and y's are all non-negative, and

After some re-ar rangement , the summation can be shown to equal

\&1{Q{y1, . . . , y k _ ± ) - Q { y 2 ' • • • > y k ) } +

, . . . , yk)-Q{y3, •••, yk+1)\

, . . . , y k + 1 ) - Q { y k , • • • »

3 + . . . + e ^ - a3 - ak

, . . . , yk+J)-Q{yk, ..., yk+2}} +

J / f c + 2 ) - « ( y 5 , • • - , yk+3)}

, . . . , y k + 3 ) - Q { y 6 , ••.,

+ a 2 f e _ 3 - y 5 - Y6 - •••

- Y6 -
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Q[yr •••» yk+3) I + ••• +

+ (i _ a3 _ % _ ... _ a2k_h + a3 + a^ + ... + a ^ - Y 5 - Y6 -

\Q{yzk_h, ....

" Y6 -

- f
"i-—U

A similar, "but longer, analysis applies for higher values of n - k .

Finally, let t "be a rational number. Then, since / is continuous,

sets of points x. + st'h and x. + st'h , s = 1, 2, ..., k-1 , where

t' is irrational, exist such that the sums {h) corresponding to t and

t' differ by an arbitrarily small specified e . Thus (5) is still valid,

and we conclude the proof.

THEOREM 4. If k > 3 , and f € BV^.a, b] , then f< f BV^la, b]

and

(6) vk-i{f<> a' h) - (k-^V/; a' h) •

Proof. That / ' € BV, [a, b] follows from Theorem 12 of [Z]. How

2
see Theorem 9 of [2 ] , "but observe that the "k " in the second las t l ine

of the proof of that theorem can be replaced "by "k" .

THEOREM 5. If k 5; 3 3 and ft BVk[a, b] , then f t BV^la, b]

and

7 k - l ( f ' ; a ' h) ~ {k-l)Vk{f> a> h) •

Proof of inequality. It follows from Theorem 11 of [2] that /' is

continuous in [a, b] , so we can write

f(x) = f(a) + f f(t)dt .
•'a
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Hence, using a property of kth divided differences,

(7)

"k-2 x-x..

= | L
-Qk_2[f ^

Therefore, using Theorem 3, we obtain

' i+fc-1

xi+kj }dt

k_x(f; a, b) _i_ '; a, J) .

We can now conclude that

(8) (k-l)Vk(f; a, b) 5 V^f ; a, b) ,

as required.

Combining (6) and (8) gives us

THEOREM 6. If k 2 3 , and f € BVk[a, b] , then f € 57fc_1fa, b] ,

and

(9) Vk-l{f>'> a> b) = (7c"l)^(^ a' b) •

We now treat the case k = 2 separately, this case requiring the
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4 18 A.M. Russe I I

extra hypothesis that f exists throughout [a, b] .

THEOREM 7. If f € EV2[a, b] and f exists in [a, b] , then

f d BV[a, b) and

V2(f; a, b) = V^f; a, b) .

Proof . It follows from Theorem 9 of [2] that

(10) V±(f'; a, b) S V2(f; a, b) .

To establish the reverse inequality, let a = xQ, x.. , ..., x =b be any

subdivision of [a, b ] . Then

K-2
= .1 l/'ln^J-f'ln^) | , where ^ < n^ < xi+1 , i = 0, 1, ..., n-2 ,xi+1

%, — \J

S V^f; a, b) .

Therefore,

(11) V2(f; a, b) £ F 1 ( / ' ; a, b) .

From (10) and (ll) i t is now clear that

(12) V2(f; a, b) = V^f'i a, b) .

We are now in a position to offer more general versions of Theorems 3

and k of [3].

THEOREM 8. If f € BVk[a, b] , k £ 3 , then

(k-l)\Vk(f; a, b) = V2{f
{k~2); a, b) .

Furthermore, if k > 2 3 and f ? BV^a, b] , then

(k-l)\Vk(f; a, b) = F1(/
(fe"l); a, b) .

Proof. It follows from Theorem 12 of [2] that f" € BV,_ [a, b] ,

r = 1, 2, ..., k-2 . Successive applications of (9), and a final

https://doi.org/10.1017/S0004972700008273 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700008273


An in tegra l representat ion 419

application of Theorem 7, give the required results.

THEOREM 9. Let f be a function suah that p*'1' is absolutely

continuous on [a, b] . Then f ~ (. BV [a, b] , s = 1, 2 k ,
s

and, in particular,

(13) ( k - l ) \ V k ( f ; a , x ) = j \f{k) ( t ) \ d t , a < x S & .

(k-l)
Proof. Since f is absolutely continuous on [a, b] , it is

also of bounded (first) variation on that interval. It follows from

repeated applications of Lemma 3 of [4] that

f{k~s) € BVs[a, b] , s = 1, 2, ..., k .

Consequently, from the second part of the previous theorem, we conclude

that

(k-l)Wk(f; a, b) = ̂ Cf (fc"l}; a, b) ,

and

'a

using Theorem 1.

REMARK. In view of ( l ) , (13) can be w r i t t e n in the more e legan t form

7k(f; a, x) = j \f{k\t)\dt , a 5 x S b .
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