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Further results on an integral
representation of functions
of generalised variation

A.M. Russell

In this paper we present further properties of the kth

variation of a function, and obtain an integral representation for
a function having bounded kth variation and an absolutely
continuous (k-1)th derivative. The absolute continuity
requirement replaces a previous stronger condition that required
the kth derivative of a function to be continuous except on a

set of Lebesgue measure zero.

1. Introduction

It is a well known result that if f is an absolutely continuous
function on [a, b] , then f is of bounded variation, and its variation

is given by
b
v,(fs a, D) =J ! (¢)|de .
a

In [3] the author extended this result to functions which have bounded
kth variation and which have the additional restriction that the kth
derivative is continuous except on a set of Lebesgue measure zero. In this
paper we weaken the additional restriction by showing that the Kth total

variation of a function f can be written in the form
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b k)
(-0t (f5 2, 5) = [ 5P e lae
a
(k-1) ., .
wvhen f is absolutely continuous on [a, b] .

In order to arrive at the more general result just outlined it was
found expedient to work with two definitions of bounded kth variation,

one defined with quite arbitrary subdivisions a = xo, xl, ey xn =ph of

fa, b] , and the other using subdivisions in which all subintervals

Eri—l’ xi] are of equal length. We show first that provided continuous

functions are used, we obtain the same class of functions irrespective of

which subdivisions are used.

2. Notation and preliminaries

DEFINITION 1. We shall say that a set of points x., ., ..., &_ is

0* "1’ n

a m-subdivision of [a, b] when a = <, <& < . <my S b

Before introducing the two definitions of bounded kth variation, we
need the definition and some properties of kth divided differences, and

for this purpose we refer the reader to [Z].

DEFINITION 2. The total kth variation of a function f on [a, b]
is defined by

n-k
Vilfs @ B) = sup P () 19 (s =0 sz

If Vk(f; a, b) < | we say that f 1is of bounded kth variation on

[a, ] , and write f € BVk[a, b] . The summations over which the supremum

is taken are called approximating sums for Vk(f; a, b)

We now concern ourselves with subdivisions of [a, b] in which all
sub-intervals are of equal length. More formally, if % > O , then we will

xz_ of [a, b] such that

denote by ﬂh a subdivision Zos xl, cees X

a=zy<x <. < < b , where Ly =Ly )= h, 2=1,2, ..., n , and

0 = b—xn < h . 1In order to introduce the second definition of bounded kth
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variation we make use of the difference operator Ak

% defined by

Mf() = flash) - flz)

and
Bria) = A;[A;j‘lﬂx))

DEFINITION 3. If f 1is continuous on [a, b] , then we define total
kth variation of f on [a, b] (restricted form) by

k
_ n-k & flz.)
Vk(f; a, b) = sup 2 —hk—_f—
™, 1=0 [

if ;k(f; a, b) < » we say that f 1is of restricted bounded kth

variation on [a, b] , and write f ¢ EV—k[a, bl .

If we denote, for brevity, Cla, b] by C , BVk[a, bl by BVk’ and

Wk[a, bl by BV. , then we show subsequently that

= BV,

C n BV %

k

We point out at this stage that the restriction to continuous
functions is not nearly as severe as it first may appear, because functions

belonging to BVk[a, b] when k > 2 are automatically continuous. (See
Theorem 4 of [2].)
Our final definition deals with synchronized sets of points.
DEFINITION 4. Let Ty s wevs T, and Ygs Y1 <++5 U, be two

sets of points belonging to {a, b] such that Ty <wy < ... <z and

yo<yl<...<yn. If

Y; = %4 0 2=0,1, ..., n=1,

or

x 2 =0,1, ooy n=-1,

PR

we say that the two sets of points are synchronized; otherwise, we say
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that the two sets of points are not synchronized.

The following theorem will be a useful result. Since it is well
known, and appears in the literature, for example, in §18 of [1], a proof

will not be given.

THEOREM 1. Let F be absolutely continuous on la, bl , written in
z

the form F(x) = J f(£)dt, a<=x=b. Then F 1is of bounded variation
a

on la, bl , and
b
v,(F; a, b) = J |F(e)|dt .
a

We now direct our attention to establishing the result

= BV

C n BV. % »

% k=z1.

LEMMA 1. Let Il, T » I be a set of n adjoining closed

o cees L
intervals on the real line having lengths pl/ql’ p2/q2, cees pn/qn
respectively, where Pis> Pps ++o5 Pys dys Gps +vvs 4, are positive
integers. Then it is possible to subdivide the intervals Il, I2, vees I
into sub-intervals of equal length.

The proof is easy and will be omitted.

LEMMA 2. If k=1, then C n BV, c BV,

% P using abbreviated

notation.
Proof. This is easy and will not be inecluded.

LEMMA 3. If k=1, then CnBVk:’Eﬁk.

Proof. Let us suppose that f 1is continuous, belongs to EVk[a, bl ,
but f ¢ BVk[a, b] . Then for an arbitrarily large number K , and an

arbitrarily small positive number ¢ , there exists a subdivision

nl[xo, Tys vees xn] of [a, b] such that

m

n-k
S . = .zg (zi+k_xi)le(f; Tis enns xi+k)l >K+¢ .
1=
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If not all the lengths Lri+lﬁxi) s 2 =0,1, ..., n-1 are rational, then
because f 1is continuous we can obtain a subdivision "z(yo’ Yis oo yn)
of f{a, ] 1in which all the lengths {yi+l—yi) , 1 =0,1, ..., n-1 are
rational, and such that |S -5 | <e, S being the approximating sum

S | m

1 2 2

of Vk(f; a, b) corresponding to the T, subdivision. Consequently,

S, 28 - 15TT -5, |

2 1 1 2
> K

In the T, subdivision, all sub-intervals have rational length, so we can

apply Lemma 1 to obtain a m subdivision of [a, b] in which each sub-

interval has length h . If Sﬂ is the corresponding approximating sum
h

for ?k(f; a, b) , then it follows from Theorem 3 of [2] that

1

[N >3 > K
=1)1 - ’
(k-1)! ﬂh L

since for any o, subdivision, and each €% =0, 1, ..., n-k ,

k
6 F (=)

(£

hk-f’ = (k—l)!ﬁri+k—xi)Qk(f; Tys eees xi+k]

Thus S > (k-1)!K , and this is a contradiction to the assumption that

h
f € EVk[a, bl . Hence f € E?k[a, bl , and so Eﬁ% cCn BVk
THEOREM 2. If k =1, then CnBVk=-7k,' and if f is a
eontinuous function on [a, b] , then
(1) Vk(f; a, b) = (k-l)!Vk(f; a, b) , k=z1.

Proof. The first part follows from Lemmas 2 and 3. For the second

part we first observe that

(2) Vk(f; a, b) = (k—l)!Vk(f; a, b)

Let ¢ >0 be arbitrary. Then there exists a m, subdivision of [a, b]
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and the corresponding approximating sum STT to Vk(f; a, b) such that
1

STrl > Vk(fﬁ a, b) -

— &

2(k-1)1 °

If not all the sub-intervals of ﬂl have rational lengths, then we can
proceed as in Lemma 3 to obtain a m, subdivision of [a, b] in which all

sub-intervals are of equal length % . Then, if Sn is the corresponding

h

approximating sum to v%(f; a, b) , we can show that

_._l_.S > g - €
(k-1)t "my = ™ 2(k-1)1
€
>Vk(f,a,b)—m—!.
Consequently,
Vk(f; a, b) > S"h
>

(k-l)!Vk(f; a, b) - e,

from which it follows that V%(f; a, b) = (k—l)!Vk(f; a, b) . This

inequality together with (2) gives (1).

We now proceed towards an application of the result, ( n BVk = BVk
3. Main results
Let the set of points g = Lgs Tys veen & 1 5 L = b bea 1
subdivision of [a, bl , and let ¢t be a real number such that 0 < ¢ =<1

We shall have need to consider the two related sets of points

Zo* t(xs'xi+l) , where § = 442, ..., 1+k ,
(3) and
z, + t(xs—xi) . where 8§ = 7+1, ..., Z+k-1

In relation to the sets of points (3) we shall consider the sum
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n-k

(k) 'ZO |Qk_2(f; xi+l+t(x_xi+l); Tppns vo xi+k)
1:

- Qk_2(f; xi+t(x—xi]; TP xi+k—l)l

(fs a, D) ,

Normally, the sum (4) would be an approximating sum for Vk 1

but since the two sets of points (3) are not synchronized subdivisions,
further investigation is required to determine the relationship between (L)

and Vk l(f; a, b) . In view of Theorem 2, we simplify our procedure by

considering 7 subdivisions in which each sub-interval Ezi 1° xi] is of

h
length % . When k> 2 and f € BVk[a, bl , f is continuous, and so by
Theorem 2, there is no loss of generality in considering m,

subdivisions. Thus we can write (3) in the more convenient form

xi+1+th’ xi+l+2th, cees xi+l+(k_l)th s

and
x.+th, x.+2th, ..., x.+(k-1)th .
1 1 1
The relative distribution of these two sets of points depends upon the
value of ¢ , so we now discuss various cases, starting with the simplest.
The case ¢ = 0 . This is trivial as each divided difference in (k)
is zero when ¢ =0 .

The case 0 < £ = F%§ . This gives rise to the distribution

x.4th < 2.42th < ... < x.+(k-1)th
1 A 1

=z

i+1+th < xi+1+2th < ... < x.+l+(k—1)th.

7
That (4) is again dominated by Vk_l(f; a, b) follows readily. The cases

1 1
_<t§___,
p p-1

lap" of the two sets "increasing" as p decreases. We discuss in some

p = k-3, ..., 2 are similar in character, with the "over-

detail the situation when p =2 .

The case ¥ <t =<1 . First of all if ¢ =1 , (4) is clearly
dominated by Vk_l(f; a, b) . Hence we suppose that % < ¢ < 1 , and

present the following:
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THEOREM 3. If %4 <t < 1, then

n-k

(5) .25 |Qk—2(f; xi+l+t(x—xi+l); Tiepr ot mi+k) -
ﬂ:

- Qk_z(f; xi+t(x—xi); Typ1s woes xi+k—lJI =V, ,(f3 a, b) .

Proof. Suppose that ¢ 1is irrational, so that points of different

sub-divisions do not coincide.
Let n -k =1, so that we consider the three sets of points

xi+th, xi+2th, vens xi+(k—l)th , 1 =0,1, 2.

The sets. of points corresponding to Z =0 and 4 = 1 are distributed

relative to one another as follows:
x0+th < xo+2th < xl+th < x0+3th < x1+2th <

.. < xl+(k—3)th < xo+(k-1)th < xl+(k—2)th < x4 (k-1)th.

In other words, after the first two points x. + th and x. + 2th , the

0 0

points alternate until x. + (k-1)th , and this is finally followed by

0
x, *+ (k-2)th and ©, * (k-1)th . However, when the third set of points is

added some ambiguity occurs because z5 + th , definitely greater than

xy + 2th , may be either greater than or less than zg + bth , depending

upon the vaiue of ¢ in (%, 1) . To be definite, let us assume that

xl+2th < x2+th < xo+hth , and proceed. An analysis similar to the follow-

ing will apply if we assume x2+th > xo+hth . Accordingly, relabel the set

of (3k-3) points Y1> Yps ++vs Yz _3 » vhere

Yy, = xo+th, Yy, = x0+2th, Y3 xl+th, y), xo+3th,

Ys = xl+2th, Yg = Tytth, Yr = x0+hth, = x2+(k—l)th .

> Y3k-3
Consequently, using Theorem 1, Corollary of [Z], and writing

Qk_g(yi, s yi+k-2) instead of Qk_2(f; Ygs voes yi+k-2) , we obtain
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:EZ 1o mprtlo—ay)s 2ppgs ooos mpg) -
-Q_o (7 xi+l+t(x_xi+l); Tppor wrs xi*‘k)l
= 1B oy ooos v ) * B ol s y) e
- ¥ BopesholWopese o ¥ge)es olss coos yiaa) -
- ath_g(yh, cees yk+2) - - a2k—3Qk—2(y2k—3’ een, y3k_5)| +
+ |a3Qk_2(y3, cees yk+l) + O‘th..g(yh’ cees yk+2) +
oty 3% ol s o Ugos) ~ ¥s&oluss e viag) -
Ve olWgs o> Ypa) = 0 = Y1 G oWy e Y g |
where the a's, 8's , and y's are all non-negative, and
31+82+ +82k—5 = og +ah + ... +a2k—3=Y5+Y6 + ... +Y2k—l=l .
After some re-arrangement, the summation can be shown to equal
1849 s --vs yp 1) =Qlyos -s gt +
+ (B ){elyys - yd-Qlygs oo my)l
+ (848,850 ) {Qygs oy @y s B}
.+ (31+32+33+ oo ¥ Byg T Og = Oy = .. _a2k-5) x
Qs> o> Y ) QWgyys +-> Uz g} *
+ (B + .t Bogos = Og = Oy = -en = O‘ek—h) x
@y gnr o> Y36 Wy s> -+ ¥ S}
*+loag{@lygs <o v, R0y <oes bt
+ [a3+ah){Q(yh, cens yk+2]—Q(y5, ces yk+3)} +
+ (a3+ah-hot5—ys){Q(y5, cees yk+3)-Q(y6, cees yk+h)} +
S (0‘3+°‘h+ e Oy o= Y5 =Yg < e -ng_3] x
folygs =0 ¥y 9 Wz o oo vy )b
+ [a3 toy e F Oy =Yg =Yg m e - sz_z) x
P P L1 CPO N o | )
=By 0Qys e wp ) RMps sy ) |+ (By8y)
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Yoo +oos Yd=Qygs oo Yppn) |+ (B 4B 48 aka ] x

Y Qs -oos papd |+ (B #8188 agoytagiy ) X

BN
w

-

.

Yys == yk+2)-Q{y5, cees yk+3)| + o+

|20y g > o y3k-6)‘Q(yek-3’ e y3k—5)| *

(
(
(

P Loy may - oy )ty O b g =Yg - Y - V) X
(
(@ -vs-¥g = - vy PRy g s YD R s Uzl
(

1l- YS - Y6 = ese = Y2k_2) IQ(yzk_Q: Tecy y3k_h]’Q(y2k_l’ seey y3k_3j!

1A
™7
&
=
<
\4

.y yi*_k“z)"Q{yi_'_la ceey y‘l:"'k—l)l = Vk_l(f; a, b)

A similar, but longer, analysis applies for higher values of n - k .

Finally, let ¢ be a rational number. Then, since f 1is continuous,

sets of points x, + st'h and o0t st'h , s=1, 2, ..., k-1 , where

t!' is irrational, exist such that the sums (4) corresponding to ¢ and
t' differ by an arbitrarily small specified e . Thus (5) is still valid,

and we conclude the proof.

THEOREM 4. If k=23, and f € BV, [a, b] , then Ff' € BVk—l[a’ bl

k
and

(6) Vi 1 {f's @, B) = (k-1)V, (f5 a, D) .

Proof. That f' € B a, b] follows from Theorem 12 of [2]. Now

Vil

see Theorem 9 of [Z], but observe that the ”k2" in the second last line
of the proof of that theorem can be replaced by "k" .

THEOREM 5. If k=3, and f € BV, [a, bl , then f' € BV

%-1las DI

k
and

Vk_l(f'; a, b) = (k—l)Vk(f; a, b)

Proof of inequality. It follows from Theorem 11 of [2] that f' is

continuous in [a, &} , 80 we can write
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Hence, using a property of kth divided differences,

(1)

|Qk—l(f, x‘l:+l’ 0y x%"‘k) Qk—l(f; xi’ sr ey x’L"’k—l

[f(x)-—f(xiﬂ] J l flz)-f(x }

Q —_— . R . ceey X

k-2 -2 . > i+2? > ik > Tra1e > i+k-1
J

1+1

1
= ‘Qk'2[JO f'Gri+l+t(x_xi+l))dt; Lyons oves xi+k}
1

"Qk—2[Jo f (x +t[x-x })dt; Tigrs s Toapl l)dt‘

1
= |J0 {Qk—g(f'(xi+l t(x—xt+l)) Tspps oens Tpo)

_Qk_g(fv(xi+tﬂr~xi)); To1s oees xi+k—l]}dt‘

1
) U 0 {Qk—2(f ') xi+l+t(xi+2'xi+l) ot xi+1+t(xi+k_mi+l))

—Qk_e(f’(x); x. +t@r vy X +t(x

l tk_zdt

T+l z) 1+k-1"%

Therefore, using Theorem 3, we obtain

n-k

Lo 1%l s o 29 (B 2w |

1
' k=25 o L :
=V 1(f's a b) J' t7dt = 57V, ((f'5 a, B)

We can now conclude that

(8) (k- l)V (f; a, =V

as required.
Combining (6) and (8) gives us

THEOREM 6. If k=3, and f € BVk[a, bl , them f' ¢ ka_l[a, b,

(9) Vk_l(f’; a, b) = (k-l)Vk(f; a, b) .

We now treat the case K = 2 separately, this case requiring the
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extra hypothesis that f' exists throughout I[a, b] .
THEOREM 7. If f ¢ BVz[a, bl and f' exists in la, b] , then
f’GBV[a,b] and
V2(f; a, b) = Vl(f'; a, b)

Proof. It follows from Theorem 9 of [2] that

(10) v, (f's a» b) = V,(f3 a, b)

To establish the reverse inequality, let g = Ty T s =b be any

IEEERE »

subdivision of [a, ] . Then

n-2
igo 10,(F5 =400 ;. -0 (F3 =55 2,,))
n-2
= igo lf'(”i+1)'f'(”i)| , where T <N, <D 2 =0,1, «.., n-2 ,
= Vl(f'; as b)
Therefore,
(11) Vo(fs as b) = V,(f's a, b)
From (10) and (11) it is now clear that
(12) Vg(f; a, b) = Vl(f'; a, b) .

We are now in a position to offer more general versions of Theorems 3

and 4 of [3].

THEOREM 8. If f ¢ BVk[a, bl , k=3, then

(k-1 (f5 a, b) = Vz{f(k_z); a, b)

(k-1)

Furthermore, if k= 2, and f € BVl[a, bl , then

(-1 17, (£ @, ) = v, (F5 5 g, )

(r) ¢

Proof. It follows from Theorem 12 of [Z] that f gv, la, Bl ,

k-r

r=1,2, ..., k-2 . Successive applications of (9), and a final
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application of Theorem 7, give the required results.

THEOREM 9. Let f be a function such that f(k'l) is absolutely

(k-g)

continuous on [a, b] . Then f € BVs[a, bl, e=1,2, ..., k,

and, in particular,

T k)
(13) (k=117 (f a, =) = J 17 g, asazsb
a
. (k-1) . . o s
Proof. Since f is absolutely continuous on [a, b] , it is

also of bounded (first) variation on that interval. It follows from

repeated applications of Lemma 3 of [4] that

(k-s)

f € BVs[a, bl, s=1,2, ..., k.

Consequently, from the second part of the previous theorem, we conclude
that

(-0 (f5 an B) = v, (F5 D6, )

and
b
k
N e, 8) = [ 15wl
a
using Theorem 1.
REMARK. In view of (1), (13) can be written in the more elegant form

X
7%(f; a, x) = J If(k)(t)ldt , a<x=<h
a
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