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Abstract

We study the Rankin–Selberg integral for a pair of representations of SO2l ×GLn, where
SO2l is defined over a local non-Archimedean field and is either split or quasi-split. The
integrals span a fractional ideal, and its unique generator, which contains any pole which
appears in the integrals, is called the greatest common divisor (gcd) of the integrals. We
describe the properties of the gcd and establish upper and lower bounds for the poles.
In the tempered case we can relate it to the L-function of the representations defined
by Shahidi. Results of this work may lead to a gcd definition for the L-function.

1. Introduction

Let F be a local non-Archimedian field. We study the Rankin–Selberg integral for a finite type
generic representation π of SO2l(F ) and an irreducible generic representation τ of GLn(F ).
The group SO2l(F ) will be either split or quasi-split, i.e. split over a quadratic extension of F .
Jacquet et al. [JPS83] constructed this integral for GLk(F )×GLn(F ). Our construction follows
the method devised by Gelbart and Piatetski-Shapiro [GPR87] for G(F )×GLn(F ), where G(F )
is a split classical group of rank n. This method has been extended by Ginzburg [Gin90] to the
split group G= SOl with bl/2c> n and later by Ginzburg et al. [GPR97] to an orthogonal group
G, corresponding to a quadratic form with an arbitrary Witt index, where the representation of
G is not necessarily generic.

Henceforth references to the field are omitted from the notation. Let V (τ, s) be the space
of the representation of SO2n+1 parabolically induced from τ |det|s−

1
2 , s ∈ C. Let M(τ, s) :

V (τ, s)→ V (τ∗, 1− s) be the standard intertwining operator, where τ∗ is isomorphic to the
contragredient representation, and M∗(τ, s) be the standard normalized intertwining operator.
An element fs ∈ V (τ, s) is called a standard section if its restriction to a certain fixed maximal
compact subgroup is independent of s. Denote by ξ(τ, std, s) the space of standard sections.
Let ξ(τ, hol, s) = C[q−s, qs]⊗ ξ(τ, std, s) be the space of holomorphic sections (where q is the
cardinality of the residue field of F ). Following the method of Piatetski-Shapiro and Rallis
[PR87, PR86] (see below) we define the set of ‘good sections’,

ξ(τ, good, s) = ξ(τ, hol, s) ∪M∗(τ∗, 1− s)ξ(τ∗, hol, 1− s).

The Rankin–Selberg integrals Ψ(W, fs, s), where W is a Whittaker function for π and fs ∈
ξ(τ, good, s), satisfy a functional equation which was used in [Kap10b] to define the γ-factor
γ(π × τ, ψ, s) (where ψ is a fixed additive character of the field). In [Kap10b] we proved
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that γ(π × τ, ψ, s) is multiplicative in both variables. Here we extend this study and define the
greatest common divisor (gcd) and the ε-factor. The integrals span a fractional ideal of C[q−s, qs],
and its unique generator, in the form P (q−s)−1 for P ∈ C[X] such that P (0) = 1, is what we
call the gcd of the integrals, gcd(π × τ, s). The functional equation defining ε(π × τ, ψ, s), an
exponential, is

Ψ(W,M∗(τ, s)fs, 1− s)
gcd(π × τ∗, 1− s)

= ε(π × τ, ψ, s) Ψ(W, fs, s)
gcd(π × τ, s)

(the actual equation is slightly different, see (3.6)). The primary focus of this work is the gcd and
its properties. Motivated by the work of Jacquet et al. [JPS83], we establish several key properties
that may lead to a definition of the L-function of π and τ as gcd(π × τ, s). Such a definition
provides another point of view on the L-function. It is expected to have many applications, since
the poles of the integrals indicate relations between the representations. This work may also
have applications in analyzing the poles of the global L-function; in fact this was the original
motivation for the definition of good sections (see below).

The present definition of the L-function of π × τ is due to the work of Shahidi on his method
of local coefficients (e.g. [Sha81, Sha90]). In the tempered case we essentially relate the gcd to
this L-function. We need the following assumption.

Conjecture 1.1. The factor γ(π × τ, ψ, s) is identical, up to a normalization factor in
C[q−s, qs]∗, with Shahidi’s γ-factor.

This conjecture is actually a theorem in the split case according to the results of [Kap10a,
Kap10b, Kap12, Sou95]. In the quasi-split case some more work on the Archimedian integrals
is needed. Soudry [Sou93, Sou95, Sou00] proved the conjecture for SO2l+1 ×GLn. The
normalization factor depends on the groups, on ψ and on certain central characters (and is
independent of s).

Theorem 1.1. Let π and τ be tempered representations for which Conjecture 1.1 holds. Let
L(π × τ, s) be the L-function attached to π and τ by Shahidi. Then L(π × τ, s)−1 divides
gcd(π × τ, s)−1 and gcd(π × τ, s) ∈ L(π × τ, s)Mτ (s)C[q−s, qs], where Mτ (s) (defined in § 3.2)
contains the poles ofM∗(τ, s) andM∗(τ∗, 1− s),Mτ (s)−1 ∈ C[q−s, qs]. Moreover, if the operators
L(τ, S2, 2s− 1)−1M(τ, s) and L(τ∗, S2, 1− 2s)−1M(τ∗, 1− s) are holomorphic,

gcd(π × τ, s) = L(π × τ, s).

According to a result of Casselman and Shahidi [CS98, Theorem 5.1], L(τ, S2, 2s− 1)−1

M(τ, s) is holomorphic for an irreducible supercuspidal τ , and is expected to be holomorphic
for a tempered τ . Therefore, Theorem 1.1 states that in the tempered case, under a reasonable
assumption on the operators (holding in the supercuspidal case), the gcd definition gives the L-
function defined by Shahidi. Without the assumption, the gcd and this L-function are equal up
to the poles of Mτ (s). For the general case (regardless of Conjecture 1.1) we have the following
upper and lower bounds.

Theorem 1.2. Let τ = IndGLn
Pn1,...,nk

(τ1 ⊗ · · · ⊗ τk) be an irreducible representation, where

Pn1,...,nk is a parabolic subgroup whose Levi part is isomorphic to GLn1 × · · · ×GLnk . Then

gcd(π × τ, s) ∈
( k∏
i=1

gcd(π × τi, s)
)
Mτ1⊗···⊗τk(s)C[q−s, qs].
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Theorem 1.3. Let π = IndSO2l
Pk

(σ ⊗ π′) be a finite type representation, where Pk is a parabolic

subgroup whose Levi part is isomorphic to GLk × SO2(l−k). Let τ = IndGLn
Pn1,...,na

(τ1 ⊗ · · · ⊗ τa) be

irreducible (a> 1). Then

gcd(π × τ, s) ∈ L(σ × τ, s)
( a∏
i=1

gcd(π′ × τi, s)
)
L(σ∗ × τ, s)Mτ1⊗···⊗τa(s)C[q−s, qs]. (1.1)

Here L(σ × τ, s) and L(σ∗ × τ, s) are the L-factors of [JPS83]. In the case of k = l 6 n, relation
(1.1) holds under the assumptions that σ is irreducible and τ is of Langlands’ type. Note that,
for k = l, by definition gcd(π′ × τi, s)≡ 1.

Theorem 1.4. Let π be irreducible and τ be tempered such that L(τ, S2, 2s− 1)−1M(τ, s)
and L(τ∗, S2, 1− 2s)−1M(τ∗, 1− s) are holomorphic. Write π = IndSO2l

Pk
(σ ⊗ π′) as a standard

module (in particular π′ is tempered: see § 6.2). Then, if k < l or k = l > n,

L(σ × τ, s) gcd(π′ × τ, s)L(σ∗ × τ, s) ∈ gcd(π × τ, s)C[q−s, qs].

The factor Mτ1⊗···⊗τk(s) (defined in § 3.2) designates an upper bound to the poles of
M∗(τ, s) and M∗(τ∗, 1− s). We also prove more detailed versions of Theorems 1.2 and 1.3 (see
Corollaries 8.1 and 9.1, respectively). The following is an immediate corollary of Theorems 1.1,
1.3 and 1.4.

Corollary 1.1. Let π and τ be as in Theorem 1.4 and assume that Conjecture 1.1
holds for π′ and τ . Then L(π × τ, s)−1 divides gcd(π × τ, s)−1 and gcd(π × τ, s) ∈ L(π ×
τ, s)Mτ (s)C[q−s, qs].

The Rankin–Selberg method for studying Langlands’ automorphic L-functions is to find
integral representations for these functions. We briefly describe the steps of the method, following
Cogdell [Cog06]. The global integral admits a factorization into an Euler product of local
factors, called the local Rankin–Selberg integrals. In order to relate the global integral to the
L-function, one computes the local integrals with unramified data and shows that they produce
local L-functions. This is roughly sufficient to determine the analytic properties of the restricted
L-function. In order to study the global L-function, the local integrals at the finite ramified
places as well as the Archimedian places must be studied. The local analysis typically involves a
functional equation and local factors, namely L, γ and ε-factors.

In their pioneering work Jacquet et al. [JPS83] defined and analyzed the local Rankin–Selberg
integrals at the finite places, for a pair of generic representations of GLk ×GLn. They defined
the L-factor as the gcd of the integrals and computed it inductively, up to representations of
Langlands’ type. This work is an attempt to carry out the local analysis for SO2l ×GLn. Our
approach is somewhat similar to [JPS83] and oftentimes we adapt their arguments.

The main difference between our construction and the setting of GLk ×GLn is the
intertwining operator in the functional equation. The first attempt to define a gcd in our setting
is to consider the fractional ideal spanned by Ψ(W, fs, s) with fs ∈ ξ(τ, hol, s). However, this
definition does not fit well in the functional equation. If only holomorphic sections were used, the
ratio gcd(π × τ∗, 1− s)−1Ψ(W,M∗(τ, s)fs, 1− s) might not be a polynomial, because M∗(τ, s)fs
is not necessarily a holomorphic section. In turn the ε-factor might not be an exponential.

Moreover, there is an intrinsic problem with considering only holomorphic sections. Assume
that π and τ are irreducible supercuspidal. Then one can show that for fs ∈ ξ(τ, hol, s),
Ψ(W, fs, s) is holomorphic (see Corollary 4.2), while the Langlands’ L-function L(π × τ, s) may
have a pole.
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The notion of good sections was introduced by Piatetski-Shapiro and Rallis [PR86, PR87],
in the construction of a (global) Rankin triple L-function, in order to analyze the poles of the
restricted L-function defined over the set of finite primes. Ikeda [Ike92, Ike99] extended their work
and studied the gcd in the unramified and Archimedean cases. The method of good sections has
also been applied by Harris et al. [HKS96], in the context of the local theta correspondence
between unitary groups, in order to define ε-factors.

Although the actual definition of good sections varies to some extent among the studies
mentioned above, there are essential properties of such a set that are common to all. Firstly,
it is stable under the normalized intertwining operator, i.e. the operator is a bijection of good
sections. Secondly, it contains the holomorphic sections, required in order for the integrals to
span a fractional ideal.

The idea of using good sections instead of just holomorphic addresses the lack of symmetry
in the functional equation. Since M∗(τ, s)ξ(τ, good, s) = ξ(τ∗, good, 1− s), both sides of the
equation are polynomials. The gcd may contain poles originating from the intertwining operator.
It is then quickly seen that ε(π × τ, ψ, s) ∈ C[q−s, qs]∗. Regarding the scenario of supercuspidal
representations mentioned above, Ψ(W, fs, s) for a good section fs might not be holomorphic.

One of the basic properties required of the integrals is meromorphic continuation to functions
in C(q−s). Therefore the largest reasonable set of sections to consider would be rational sections,
i.e. C(q−s)⊗ ξ(τ, std, s). We are looking for poles of the integrals rather than poles introduced
by sections, and hence we try to be conservative in our usage of rational sections. Theorem 1.1
and Corollary 1.1 yield that the gcd captures the notion of the L-function, for a certain range
of parameters. The next case to consider would be an arbitrary irreducible generic τ .

We explain the role of the factors Mτ (s), Mτ1⊗···⊗τk(s) in our results. The bound gcd(π ×
τ, s) ∈ L(π × τ, s)Mτ (s)C[q−s, qs] of Theorem 1.1 implies that gcd(π × τ, s) may include poles
from both M∗(τ∗, 1− s) and M∗(τ, s), which do not appear in L(π × τ, s). Theorem 5.1 of
Casselman and Shahidi [CS98] is used for showing that gcd(π × τ, s) cannot contain poles
from M∗(τ, s). In this way it ‘separates’ gcd(π × τ, s) from gcd(π × τ∗, 1− s), resembling the
expectation that the quotient L(π × τ∗, 1− s)L(π × τ, s)−1 would be reduced (see e.g. [Cog06]).
The factor Mτ1⊗···⊗τk(s) in the bounds reflects a certain multiplicative property of the poles of
the intertwining operators.

The last paragraph also illustrates a (possible) shortcoming of the method of good sections.
Namely, it is difficult to control the additional poles of the intertwining operators (see § 8.4). Note
that (even in the tempered case) the relation between the analytic properties of the intertwining
operators and the local coefficients is still only partially understood.

The present work is among the few attempts so far to provide a gcd definition to the
L-function, and the first attempt to carry over the work of Jacquet et al. [JPS83] to the Rankin–
Selberg convolutions of G×GLn, for a classical group G. Such a study was suggested by Gelbart
and Piatetski-Shapiro [GPR87, p. 136]. Our technique and results readily adapt to the integrals
studied by Ginzburg [Gin90] and Soudry [Sou93], due to the similar nature and technical closeness
of the constructions.

Shahidi’s definition of L-functions for irreducible generic representations [Sha90] begins
with the tempered case, then uses Langlands’ classification. It would be interesting to show
that in the general case, the gcd also factorizes according to this classification.

The rest of this paper is organized as follows. In § 2 we supply basic definitions. In § 3 we
describe the integrals and the intertwining operators, and define the local factors. The basic tools
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used in the study of the integrals are developed in § 4. Section 5 contains the proof of a weak
lower bound on the gcd, which is used to prove Theorem 1.4. In § 6 we prove Theorems 1.1
and 1.4. Section 7 provides the basic framework for proving Theorems 1.2 and 1.3, whose proof
occupies §§ 8 and 9 (respectively).

2. Preliminaries

2.1 The groups

Let F be a local non-Archimedian field of characteristic zero. Denote by O the ring of integers
of F ; P =$O is the maximal ideal and |$|−1 = q = |O/P|. For k > 1 let Jk ∈GLk(F ) be the
matrix with 1 on the anti-diagonal and 0 elsewhere. Let ρ ∈ F ∗. If ρ ∈ F 2, define J2l,ρ = J2l and
set ρ= β2. Otherwise write J2l,ρ = diag(Il−1,

(
0 1
−ρ 0

)
, Il−1) · J2l. We use ρ to define the special

even orthogonal group SO2l(F ). Let

Gl(F ) = SO2l(F ) = {g ∈ SL2l(F ) : tgJ2l,ρg = J2l,ρ},

regarded as an algebraic group over F . When ρ= β2 it is split, and we may assume that |β|= 1.
Otherwise it is quasi-split, i.e. non-split over F and split over a quadratic extension of F , and
we may assume |ρ|> 1. Also let γ = 1

2ρ. Throughout, references to the field are omitted.

Fix the Borel subgroup BGl = TGl n UGl , where UGl is the subgroup of upper triangular
unipotent matrices in Gl. When Gl is quasi-split,

TGl =
{

diag
(
t1, . . . , tl−1,

(
a bρ
b a

)
, t−1
l−1, . . . , t

−1
1

)
: a2 − b2ρ= 1

}
.

Let Pk = Lk n Vk be the standard maximal parabolic subgroup with Lk = {diag(x, y, Jk(tx−1)Jk) :
x ∈GLk, y ∈Gl−k} ∼= GLk ×Gl−k, Vk < UGl . When Gl is split, we have an additional standard
maximal parabolic subgroup κPl = κ−1Plκ where κ= diag(Il−1, J2, Il−1). For any parabolic
subgroup P <Gl, P is the parabolic subgroup opposite to P containing the Levi part of P
and δP is the modulus character of P .

For any l′ 6 l, Gl′ is embedded in Ll−l′ ∼= GLl−l′ ×Gl′ , thereby viewed as a subgroup of Gl.
In addition, let KGl be a special good maximal compact open subgroup (e.g. in the split case
KGl =Gl(O)). For k > 0, NGl,k = (I2l +M2l×2l(Pk)) ∩Gl is a ‘small’ compact open (subgroup)
neighborhood of the identity.

The special odd orthogonal group is

Hn = SO2n+1 = {g ∈ SL2n+1 : tgJ2n+1g = J2n+1}.

We use a notation similar to the above for Hn (e.g. BHn , KHn =Hn(O)). Let Qk =Mk n Uk be
the standard parabolic subgroup with a Levi part Mk

∼= GLk ×Hn−k. For n′ 6 n, Hn′ is embedded
in Hn through Mn−n′ .

In the group GLk, fix the Borel subgroup BGLk =Ak n Zk, where Ak is the diagonal
subgroup and Zk is the subgroup of upper triangular unipotent matrices. For k1, . . . , km > 1
a partition of k (m> 1), let Pk1,...,km =Ak1,...,km n Zk1,...,km be the standard parabolic subgroup
of GLk which corresponds to the partition (k1, . . . , km). Its Levi part Ak1,...,km is isomorphic
to GLk1 × · · · ×GLkm . Also denote by Yk the mirabolic subgroup of GLk, i.e. the subgroup of
m ∈GLk with the last row (0, . . . , 0, 1). For an element x ∈GLk we define x∗ = Jk(tx−1)Jk.
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Oftentimes GLk will be regarded as a subgroup of Gl (respectively Hn), embedded in Lk′

(respectively Mk′) for k′ > k. Since the embedding of An in Mn is just THn , we identify THn
with An. Regarding Gl, TGl is identified with G1 ×Al−1.

In general, for a subgroup Y we write gY = g−1Y g and gy = g−1yg.

2.2 Embedding Gl in Hn, l 6 n

Let F k be the k-dimensional column space. Denote by ( , ) the symmetric form defined on F 2n+1

by J2n+1 (i.e., (u, v) = tuJ2n+1v). Let EHn = (e1, . . . , en, en+1, e−n, . . . , e−1) be the standard
basis of F 2n+1, such that the Gram matrix of EHn with respect to ( , ) is J2n+1 (e.g. e−i = e2n+2−i).
Set eγ = en + γe−n (recall that γ = 1

2ρ). The image of Gl in Hn is SO(V ) where V is the
orthogonal complement of

SpanF {e1, . . . , en−l, eγ , e−(n−l), . . . , e−1}.

We select a basis EGl of V with a Gram matrix J2l,ρ. To write g ∈Gl in coordinates relative to
EHn , we form E ′Gl by adding eγ to EGl as the (l + 1)th vector, extend g by defining geγ = eγ and
compute, for M the transition matrix from E ′Gl to EHl ,

[g]EHn = diag(In−l, M−1[g]E ′Gl
M, In−l).

If Gl is split,

M = diag

Il−1,


1
4

1
2β − 1

2β2

1
2 0 1

β2

−1
2β

2 β 1

 , Il−1

 .

Otherwise

M = diag

Il−1,


0 1 0
1
2 0 1

2γ
−1

1
2 0 −1

2γ
−1

 , Il−1

 .

Remark 2.1. The vector eγ is defined using 1
2ρ (instead of ρ), so that, when ρ ∈ F 2 (hence Gl is

split), the Witt index of the orthogonal complement of SpanF {eγ} would be n. This is necessary
for embedding split Gl in Hl.

Remark 2.2. In the construction of the integral for l < n, eγ is used to define a certain character
ψγ of a unipotent subgroup Nn−l. The embedding Gl <Hn is such that Gl normalizes Nn−l and
stabilizes ψγ . See § 4.2.

One property of this embedding is that, although Al−1 < THn , TGl is not a subgroup of THn .
We write explicitly the form of an element from G1 under the embedding in H1, in the split case.
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Of course this embedding carries over to Hn by the embedding H1 <Hn:

x=
(
b 0
0 b−1

)
7→


1
2 + 1

4(b+ b−1) 1
2β (b− b−1) 2

β2

(
1
2 −

1
4(b+ b−1)

)
1
4β(b− b−1) 1

2(b+ b−1) − 1
2β (b− b−1)

1
2β

2

(
1
2 −

1
4(b+ b−1)

)
−1

4β(b− b−1) 1
2 + 1

4(b+ b−1)

 . (2.1)

It will be useful to denote bxc= b if |b|6 1 and bxc= b−1 otherwise. Also let [x] = max(|b|, |b|−1).
The following lemma shows how to write a torus element of Gl approximately as a torus element
of Hn. Put

(a, b) =

a b −1
2b

2a−1

1 −ba−1

a−1

 ∈H1 (a ∈ F ∗, b ∈ F ).

Lemma 2.1. For any k0 > 0 there are h1, h2 ∈H1 and k > k0 such that for all x= diag(b, b−1),
with [x]> qk, in H1 we have x ∈BH1h1NH1,k0 if bxc= b, and x ∈BH1h2NH1,k0 if bxc= b−1.
Specifically, x ∈mxuxhiNH1,k0 with mx = (bxc, 0), ux = (1, cbxc−1) where c=−2β−1 if bxc= b
and c= 2β−1 if bxc= b−1.

Proof of Lemma 2.1. Let ε= diag(β−1, 1, β), let k′ > k0 be such that ε−1NH1,k′ <NH1,k0 , and
take k′′ > k′ such that q−2k′′ 6 |2|q−k′ .

In H1, x is given by (2.1). Write x′ = εx. We will exhibit m′ ∈BH1 and h′ such that
m′x′ ∈ h′NH1,k′ , whence m= ε−1

m′ and h= ε−1
h′ satisfy mx ∈ hNH1,k0 . Let m′ = (t, tv) and,

for ξ ∈ F , u(ξ) = diag(1,−1, 1) · J3 · (1,−ξ) ∈H1.

We select k > k′ for which q−k < |4|q−k′ . Suppose that bxc= b and assume |b|< q−k. Take
v = 2 + 4b(1 + 2$k′′), t−1 =−8b(1 +$k′′) and h′ = u(2). By matrix multiplication we see that

m′x′ ∈ h′NH1,k′ =

 Pk′ Pk′ 1 + Pk′

Pk′ −1 + Pk′ −2 + Pk′

1 + Pk′ −2 + Pk′ −2 + Pk′

 .

Note that if one assumes |2|= 1, to verify this computation it is enough to check the last two
rows of m′x′, and then use the fact that m′x′ ∈H1.

Returning to x, we have obtained x ∈m−1hNH1,k0 with m−1 = (−8b(1 +$k′′),
−2β−1(1 + 2b+ 4b$k′′)), h= (β−2, 0)u(2β−1). Then m−1 =mxuxz with z = (−8(1 +$k′′),
−4β−1(1 + 2$k′′)). Let h1 = zh. Then h1 depends only on k′′, k′, k0. Also x ∈mxuxh1NH1,k0 .

Regarding bxc= b−1, take v =−2− 4b−1(1 + 2$k′′), t−1 =−8b−1(1 +$k′′) and h′ =
u(−2). 2

In the quasi-split case, it will usually be sufficient to know that the image of G1 in H1 is a
compact subgroup which is covered, for any k > 0, by a finite union

⋃
xiNH1,k (xi ∈H1).

2.3 Embedding Hn in Gl, n < l

Here ( , ) is defined using J2l,ρ. Let EGl = (e1, . . . , el, e−l, . . . , e−1) be the standard basis of F 2l

such that the Gram matrix of EGl with respect to ( , ) is J2l,ρ. Let eγ = 1
4el − γe−l when Gl is split

and eγ = 1
2e−l otherwise. The group Hn is embedded in Gl as SO(V ), where V is the orthogonal
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complement of
SpanF {e1, . . . , el−n−1, eγ , e−(l−n−1), . . . , e−1}.

If EHn is a basis of V with a Gram matrix J2n+1, E ′Hn is obtained from EHn by adding eγ as the
(n+ 1)th vector. Extend h ∈Hn by defining heγ = eγ ; then

[h]EGl = diag(Il−n−1, M
−1[h]E ′HnM, Il−n−1).

Here M = diag(In,
(2 −β−2

β (2β)−1

)
, In) in the split case and diag(In,

(
0 2
1 0

)
, In) otherwise.

2.4 Representations
Representations will always be smooth, admissible, of finite type and generic, i.e. admit unique
Whittaker models. Tempered representations are assumed to be irreducible by definition. We fix
a non-trivial additive character ψ of F and construct a character of Zk by z 7→ ψ(

∑k−1
i=1 zi,i+1)

(ψ is non-degenerate for k > 1). If a representation π has a Whittaker model with respect to a
character χ, the model is denoted by W(π, χ). If π has a central character, it is denoted by ωπ.
A representation of GLk is always assumed to have a central character.

For s ∈ C and g ∈GLn denote αs(g) = |det g|s−
1
2 . For a representation τ of GLn, denote by

τ∗ the representation (of GLn) defined on the space of τ by τ∗(g) = τ(g∗) (g∗ = Jn(tg−1)Jn).
When τ is irreducible, W(τ̃ , ψ) =W(τ∗, ψ), where τ̃ is the contragredient representation.

Let λ(x)f (respectively x · f) be the left-translation (respectively right-translation) of f by x.

2.5 Sections
We recall the definition of a holomorphic section of a parabolically induced representation,
parameterized by an unramified character of the Levi part. For a thorough treatment of this
subject refer to Waldspurger [Wal03, § 4] and Muić [Mui08].

Let τ be a representation of GLn on the space U . Set K =KHn . Consider the induced
representation IndKQn∩K(τ) whose space we denote by V (τ) = V K

Qn∩K(τ). For any fixed s ∈ C
we have the representation IndHnQn (ταs) (normalized induction) in the space V (τ, s) = V Hn

Qn
(τ, s).

Any f ∈ V (τ) can be extended to an element of V (τ, s), according to the Iwasawa decomposition.
This produces an isomorphism between V (τ) and V (τ, s) as K-representation spaces. The image
of f ∈ V (τ) in V (τ, s) is denoted by fs.

Consider the following family of functions. For k ∈K, N <K a compact open subgroup and
v ∈ U which is invariant by (k

−1
N) ∩Qn, define chkN,v ∈ V (τ) by

chkN,v(k′) =

{
τ(a)v k′ = akn, a ∈Qn ∩K, n ∈N,
0 otherwise.

These functions span V (τ) (see [BZ76, 2.24]). Then chkN,v extends to chkN,v,s ∈ V (τ, s).
We will usually consider s as a parameter. A function f(s, h) : C×Hn→ U such that for all s

the mapping h 7→ f(s, h) belongs to V (τ, s) is called a section.
A section f is called standard if for any fixed k ∈K the function s 7→ f(s, k) is independent

of s (i.e., it is a constant function). Let ξHnQn (τ, std, s) be the space of standard sections. The
elements of this space are precisely the functions (s, h) 7→ fs(h) where f ∈ V (τ). The subgroup
K acts on this space by k · f(s, h) = f(s, hk). For f ∈ ξHnQn (τ, std, s) there is a compact open
subgroup N <K such that f(s, hy) = f(s, h) for all s ∈ C, h ∈Hn and y ∈N . Furthermore,
there is a subset B ⊂Hn such that for all s the support of the function h 7→ f(s, h) equals B.
The subset B is invariant for multiplication on the right by N and on the left by Qn.
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We usually pick a section f and study the function h 7→ f(s, h) as s varies. Therefore we
introduce the following convention. We write, a priori, fs instead of f and think of s as a
parameter. So for any fs ∈ ξHnQn (τ, std, s) there is a compact open subgroup N <K independent
of s, such that fs is right-invariant by N , and the support of fs in Hn is independent of s. In order
to obtain a concrete function on Hn, we must fix s. Then we say that for a fixed s, fs ∈ V (τ, s).

The space of holomorphic sections is ξHnQn (τ, hol, s) = C[q−s, qs]⊗C ξ
Hn
Qn

(τ, std, s). We use
the abbreviated notation ξ(τ, ·, s) = ξHnQn (τ, ·, s). A holomorphic section takes the form fs =∑m

i=1 Pi(q
−s, qs)f (i)

s where Pi ∈ C[q−s, qs], f (i)
s ∈ ξ(τ, std, s). The following claim shows that

ξ(τ, hol, s) is an Hn-space, where Hn acts by right-translations on the second component of
the tensors.

Claim 2.1. For any fs ∈ ξ(τ, hol, s) and h ∈Hn, we have h · fs ∈ ξ(τ, hol, s).

Proof of Claim 2.1. It is enough to prove the claim for fs ∈ ξ(τ, std, s). Take N <K as above.
Given h ∈Hn, h · fs is right-invariant on Nh = (h

−1
N) ∩K. Let k1, . . . , km ∈K be distinct

representatives of the double coset space Qn\Hn/Nh. For any ki, write kih= qik
′
i ∈QnK,

qi = aiui (ai ∈GLn, ui ∈ Un). Then h · fs(ki) = Pivi where Pi = δ
1
2
Qn

(qi)|det ai|s−
1
2 ∈ C[q−s, qs]

and vi = τ(ai)fs(k′i) ∈ U . Note that vi is invariant by (k
−1
i Nh) ∩Qn and independent of s because

k′i ∈K and fs is standard. Hence we have chkiNh,vi ∈ V (τ) and h · fs =
∑m

i=1 Pi · chkiNh,vi,s ∈
ξ(τ, hol, s). 2

For an element fs ∈ ξ(τ, hol, s) there is a compact open subgroup N <K independent of s
such that fs is right-invariant by N . Whenever we take a subgroup by which fs is right-invariant,
we implicitly mean such a subgroup. The support of fs in Hn may depend on s.

Let fs =
∑m

i=1 Pif
(i)
s ∈ ξ(τ, hol, s) with 0 6= Pi ∈ C[q−s, qs], and f

(i)
s ∈ ξ(τ, std, s). Pick a

subgroup N such that f
(i)
s is right-invariant by N for all i. Then if k1, . . . , kb ∈K are

distinct representatives for Qn\Hn/N , then fs =
∑

i,j Pi chkjN,vi,j ,s. Let Ukj ⊂ U be the subspace

invariant by (k
−1
j N) ∩Qn. Since the function φ : Ukj → V (τ) given by φ(v) = chkjN,v is linear, we

may rewrite fs so that, for each j, the nonzero vectors in {v1,j , . . . , vm,j} are linearly independent.
Consequently fs can be written as

fs =
m′∑
i=1

P ′i · chk′iN,v′i,s, (2.2)

with P ′i 6= 0, k′i ∈ {k1, . . . , kb} (the double cosets Qnk′iN are not necessarily disjoint), and the
data (m′, k′i, N, v

′
i) do not depend on s. Moreover, if {i1, . . . , ic} is a set of indices satisfying

k′i1 = · · ·= k′ic , then v′i1 , . . . , v
′
ic

are linearly independent.
We will mostly be dealing with either holomorphic sections or the images of such, under

specific intertwining operators. This leads us to consider the space ξHnQn (τ, rat, s) = C(q−s)⊗C
ξ(τ, std, s) of rational sections. It is also an Hn-space.

In a slightly more general context, let G be one of the groups defined in § 2.1 and P <G
be a parabolic subgroup with a Levi part L∼= GLk1 × · · · ×GLkm ×G′, where G′ is either the
trivial group {1} or a group of the same type as G. Assume that τ is a representation of L.
An m-tuple s= (s1, . . . , sm) ∈ Cm defines an unramified character αs of L by (g1, . . . , gm, g

′) 7→
αs1(g1) · · · · · αsm(gm). The space V KG

P∩KG(τ) of the representation IndKGP∩KG(τ) is isomorphic to
the space V G

P (τ, s) of IndGP (ταs) (as KG-spaces). The holomorphic sections are ξGP (τ, hol, s) =
C[q∓s1 , . . . , q∓sm ]⊗C ξ

G
P (τ, std, s). Note that KG may be chosen such that αs|KG ≡ 1.
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2.6 Equality up to units
Consider the polynomial ring C[q−s, qs] and its field of fractions C(q−s) . We denote by ' an
equality of polynomials or rational functions which holds up to invertible factors of C[q−s, qs].
For example, q−s ' 1 and for any P ∈ C[q−s, qs] there is some P ′ ∈ C[q−s] such that P ' P ′.

3. The integrals and local factors

3.1 The integrals
We present the integrals for Gl ×GLn and a pair of representations π × τ . Let π be a
representation of Gl whose underlying space is W(π, ψ−1

γ ), where ψγ is the generic character
of UGl given by

ψγ(u) =


ψ

( l−2∑
i=1

ui,i+1 +
1
4
ul−1,l − γul−1,l+1

)
Gl is split,

ψ

( l−2∑
i=1

ui,i+1 +
1
2
ul−1,l+1

)
Gl is quasi-split.

Let τ be an irreducible representation of GLn realized in W(τ, ψ). For s ∈ C, form the
representation IndHnQn (ταs) (see § 2.5). An element fs ∈ V (τ, s) = V Hn

Qn
(τ, s) is regarded as a

function on Hn ×GLn, where for any h ∈Hn the function b 7→ fs(h, b) lies in W(τ, ψ).

Remark 3.1. The assumption that τ is irreducible is not needed for the definition of the integrals
per se. Several properties proved below will hold without this restriction. The irreducibility is
needed for the intertwining operators. To avoid confusion we restrict ourselves, a priori, to an
irreducible representation τ .

There are two possible forms for the integral according to the size of l relative to n.

Definition 3.1. Let W ∈W(π, ψ−1
γ ), fs ∈ V (τ, s).

(i) For l 6 n the integral is

Ψ(W, fs, s) =
∫
UGl\Gl

W (g)
∫
Rl,n

fs(wl,nrg, 1)ψγ(r) dr dg,

where

wl,n =


γIl

In−l
(−1)n−l

In−l
γ−1Il

 ,

Rl,n =




In−l x y 0 z

Il 0 0 0
1 0 y′

Il x′

In−l


<Hn

and ψγ(r) = ψ(rn−l,n) (the notation ψγ is used because this character is the restriction of a
character which depends on γ, defined in § 4.2).
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(ii) For l > n,

Ψ(W, fs, s) =
∫
UHn\Hn

(∫
Rl,n

W (rwl,nh) dr
)
fs(h, 1) dh.

Here

wl,n =


In

Il−n−1

I2

Il−n−1

In

 ,

Rl,n =




In
x Il−n−1

I2

Il−n−1

x′ In


<Gl.

For fs ∈ ξ(τ, hol, s) = ξHnQn (τ, hol, s) these integrals are absolutely convergent for <(s)� 0,
i.e. the integrals with |W |, |fs| and without ψγ for l 6 n are convergent. Moreover, there is
some s0 > 0 which depends only on the representations π and τ , such that for all <(s)> s0

the integrals are absolutely convergent. Additionally, they have a meromorphic continuation
to functions in C(q−s). These properties were proved for the Rankin–Selberg integrals of
SO2l+1 ×GLn by Soudry [Sou93]. The arguments carry over simply to our case. For example,
meromorphic continuation is established using Bernstein’s continuation principle (see [Sou93,
§ 8.4] and [Ban98]). The development of the integral as a local factor of a global integral, for
l < n, was detailed in [Kap12].

3.2 The intertwining operators
Let τ be an irreducible representation of GLn realized in W(τ, ψ), and let M(τ, s) : V (τ, s)→
V (τ∗, 1− s) be the standard intertwining operator. It is given (formally) by the integral

M(τ, s)fs(h, b) =
∫
Un

fs(wnuh, dnb∗) du (h ∈Hn, b ∈GLn).

Here

wn =

 In
(−1)n

In

 , dn = diag(−1, 1, . . . , (−1)n) ∈GLn .

This integral converges absolutely for <(s)� 0. Note that τ∗ is realized in W(τ∗, ψ). Denote
by M∗(τ, s) the standard intertwining operator normalized by Shahidi’s local coefficient
γ(τ, S2, ψ, 2s− 1), where S2 is the symmetric square representation, i.e.

M∗(τ, s) = γ(τ, S2, ψ, 2s− 1)M(τ, s).

Since τ is irreducible and generic, by the definition of the local coefficient

M∗(τ, s)M∗(τ∗, 1− s) = 1. (3.1)

We collect a few results regarding the poles of the intertwining operator. The L-group of the
Levi part ofQn is GLn(C). The adjoint action of GLn(C) on the Lie algebra of the L-group of Un is
S2, which is irreducible [Sha92, p. 5]. Therefore, in this case the local coefficient γ(τ, S2, ψ, 2s− 1)
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and Shahidi’s γ-factor are equal, up to a unit in C[q−s, qs] (see [Sha90, Theorem 3.5]; in the
language of Shahidi this is an ‘m= 1’ situation). According to Shahidi [Sha90, § 7],

γ(τ, S2, ψ, 2s− 1)' L(τ∗, S2, 2− 2s)
L(τ, S2, 2s− 1)

. (3.2)

(In general the local coefficient is, essentially, a product of γ-factors so there would be additional
L-functions to consider.)

Let P ∈ C[X] be a polynomial of minimal degree, with P (0) = 1, such that P (q−s)M∗(τ, s)
is a holomorphic operator. We set `τ (s) = P (q−s)−1. Using the rationality properties of
the intertwining operator (see [Mui08, Wal03]), for any fs ∈ ξ(τ, hol, s), `τ (s)−1M∗(τ, s)fs
belongs to ξ(τ∗, hol, 1− s). Also note that `τ∗(1− s)−1 ∈ C[qs] and `τ∗(1− s)−1M∗(τ∗, 1− s)
is holomorphic.

By a result of Shahidi, the following theorem holds ([Sha90, Proposition 7.2a], see also [CS98]).

Theorem 3.1. For a tempered τ , L(τ, S2, s) is holomorphic for <(s)> 0.

The following result of Casselman and Shahidi [CS98, Theorem 5.1] will be used to bound
the poles of the intertwining operator.

Theorem 3.2. For an irreducible supercuspidal τ , L(τ, S2, 2s− 1)−1M(τ, s) is holomorphic.

Remark 3.2. In [CS98] the result is stated for standard modules which satisfy injectivity at a
certain level, in particular it is valid for standard modules induced from generic irreducible
supercuspidal representations [CS98, Theorem 3.4].

For τ as in Theorem 3.2 or a tempered τ with the assumption that L(τ, S2, 2s− 1)−1M(τ, s)
is holomorphic (see Theorem 1.1), `τ (s) = L(τ∗, S2, 2− 2s). For a general irreducible τ , the poles
of the intertwining operator can be bounded by a product of L-functions, using multiplicativity
properties: see (3.3) below and the proof of Corollary 5.3. One could let `τ (s) be defined as
this product of L-functions. The factors `τ (s) mostly impact the upper bounds on the gcd,
since they comprise the factors Mτ (s) (see below). Hence letting them satisfy the minimality
property, rather than designate local components of global factors, improves the bounds.
See also § 8.4.

Let τ1 ⊗ τ∗2 be an irreducible representation of An1,n2 . We have the standard intertwining
operator

M(τ1 ⊗ τ∗2 , (s, 1− s)) : V GLn
Pn1,n2

(τ1|det|n/2 ⊗ τ∗2 |det|n/2, (s, 1− s))

→ V GLn
Pn2,n1

(τ∗2 |det|n/2 ⊗ τ1|det|n/2, (1− s, s)).

Then M∗(τ1 ⊗ τ∗2 , (s, 1− s)) is the standard intertwining operator normalized by Shahidi’s local
coefficient, and by [Sha90, Theorem 3.5], with a minor abuse of notation,

M∗(τ1 ⊗ τ∗2 , (s, 1− s))'
L(τ∗1 × τ∗2 , 2− 2s)
L(τ1 × τ2, 2s− 1)

M(τ1 ⊗ τ∗2 , (s, 1− s)).

Define `τ1⊗τ∗2 (s) ∈ C[q−s] similarly to `τ (s), i.e. `τ1⊗τ∗2 (s)−1M∗(τ1 ⊗ τ∗2 , (s, 1− s)) is holomorphic.
The result of [CS98] now reads as the following theorem.

Theorem 3.3. For irreducible supercuspidal τ1 and τ2, L(τ1 × τ2, 2s− 1)−1M(τ1 ⊗ τ∗2 ,
(s, 1− s)) is holomorphic.
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If τ = IndGLn
Pn1,n2

(τ1 ⊗ τ2), according to the multiplicativity of the intertwining operators
[Sha81, Theorem 2.1.1] and local coefficients [Sha81, Proposition 3.2.1],

M∗(τ, s) =M∗(τ1, s)M∗(τ1 ⊗ τ∗2 , (s, 1− s))M∗(τ2, s). (3.3)

Hereby we define the factors Mτ (s), Mτ1⊗···⊗τk(s) appearing in the introduction (e.g. in
Theorem 1.2). Let τi be an irreducible representation of GLni for i= 1, . . . , k. Then

Mτ1⊗···⊗τk(s) =
k∏
i=1

`τi(s)`τ∗i (1− s)
∏

16i<j6k

`τi⊗τ∗j (s)`τ∗j ⊗τi(1− s).

In particular for k = 1, Mτ1(s) = `τ1(s)`τ∗1 (1− s). These factors are inverses of polynomials in
C[q−s, qs]. Note that, by definition, Mτ1⊗···⊗τk(s) =Mτ∗k⊗···⊗τ

∗
1
(1− s). Theorems 3.2 and 3.3

enable us to calculate or bound Mτ1⊗···⊗τk(s). For example, if τ1, τ2 are supercuspidal, then
`τ1⊗τ∗2 (s) = L(τ∗1 × τ∗2 , 2− 2s) and

Mτ1⊗τ2(s) =
( 2∏
i=1

L(τ∗i , S
2, 2− 2s)L(τi, S2, 2s)

)
L(τ∗1 × τ∗2 , 2− 2s)L(τ2 × τ1, 2s).

In the course of proving Theorem 1.2 we will encounter poles of M∗(τi, s) and M∗(τ∗i , 1− s).
The crucial property of Mτi(s) is that both Mτi(s)

−1M∗(τi, s) and Mτi(s)
−1M∗(τ∗i , 1− s) are

holomorphic.
Assume that τ = IndGLn

Pn1,...,nk
(τ1 ⊗ · · · ⊗ τk) is irreducible. Then (3.3) implies that

`τ (s) ∈
k∏
i=1

`τi(s)
∏

16i<j6k

`τi⊗τ∗j (s)C[q−s, qs]. (3.4)

Hence Mτ (s) ∈Mτ1⊗···⊗τk(s)C[q−s, qs], i.e. Mτ1⊗···⊗τk(s) is an upper bound for the poles of Mτ (s).

3.3 Definitions of local factors
In [Kap10b] we defined the γ-factor of π × τ as the proportionality factor between Ψ(W, fs, s)
and Ψ(W,M∗(τ, s)fs, 1− s). Namely, there is a factor γ(π × τ, ψ, s) ∈ C(q−s) such that for all
W ∈W(π, ψ−1

γ ) and fs ∈ ξ(τ, rat, s),

γ(π × τ, ψ, s)Ψ(W, fs, s) = c(l, τ, γ, s)Ψ(W,M∗(τ, s)fs, 1− s). (3.5)

Here c(l, τ, γ, s) ∈ C[q−s, qs]∗ equals ωτ (γ)−2|γ|−2n(s− 1
2

) if n < l, or 1 otherwise. It is included in
order to get a compact form for the multiplicative properties of the γ-factor. Equality (3.5) is
an equality in C(q−s) between meromorphic continuations.

The existence of the functional equation which defines γ(π × τ, ψ, s), when both π and τ
are irreducible, follows from [AGRS10, MW10] (see [GGP12, p. 57]). The case of l = n was
proved in [GPR87]. For π of finite type one uses the theory of derivatives of Bernstein and
Zelevinsky [BZ76, BZ77], as done by Soudry [Sou93, § 8] for the integrals of SO2l+1 ×GLn.

In [Kap10b] we proved that γ(π × τ, ψ, s) is multiplicative in both variables. Firstly, if τ is
induced from Pn1,n2 and the representation τ1 ⊗ τ2 of An1,n2 ,

γ(π × τ, ψ, s) = γ(π × τ1, ψ, s)γ(π × τ2, ψ, s).

Secondly, for π induced from Pk and the representation σ ⊗ π′ of Lk ∼= GLk ×Gl−k,

γ(π × τ, ψ, s) = ωσ(−1)nωτ (−1)k[ωτ (2γ)−1]γ(σ × τ, ψ, s)γ(π′ × τ, ψ, s)γ(σ∗ × τ, ψ, s).

599

https://doi.org/10.1112/S0010437X12000644 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X12000644


E. Kaplan

Here γ(σ × τ, ψ, s), γ(σ∗ × τ, ψ, s) are the γ-factors of GLk ×GLn of [JPS83] and the factor
ωτ (2γ)−1 appears only when k = l, in which case also γ(π′ × τ, ψ, s)≡ 1.

The L-factor was defined in [JPS83] as a gcd of the integrals. As explained in the
introduction, we adapt their approach to our scenario, using the idea of Piatetski-Shapiro and
Rallis [PR87, PR86] (see also [HKS96, Ike92]), which is to define a gcd for integrals with good
sections. Let

ξ(τ, good, s) = ξ(τ, hol, s) ∪M∗(τ∗, 1− s)ξ(τ∗, hol, 1− s)
be the set of good sections, i.e. either holomorphic sections or the images of such under the
normalized intertwining operator. According to (3.1), M∗(τ, s)ξ(τ, good, s) = ξ(τ∗, good, 1− s);
that is, the intertwining operator M∗(τ, s) is a bijection of good sections.

The integrals Ψ(W, fs, s) where W ∈W(π, ψ−1
γ ), fs ∈ ξ(τ, good, s) span a fractional ideal

Iπ×τ (s) of C[q−s, qs] which contains the constant 1 (see Proposition 4.1). Hence, it admits a
unique generator in the form P (q−s)−1, with P ∈ C[X] such that P (0) = 1. This generator is
what we call the gcd of the integrals Ψ(W, fs, s). Denote gcd(π × τ, s) = P (q−s)−1. Here the
character ψ is absent. We now show that the gcd is indeed independent of ψ.

Recall that we have a fixed non-trivial additive character ψ of the field. Any other such
character ψ′ takes the form ψ′(x) = ψ(cx) for some c 6= 0. Changing ψ effectively changes
W(π, ψ−1

γ ), W(τ, ψ) and the character ψγ of Rl,n (for l < n).

Claim 3.1. Let I ′π×τ (s) be the fractional ideal spanned by the integrals Ψ(W, fs, s) with the
character ψ in the construction replaced with ψ′. Then I ′π×τ (s) = Iπ×τ (s).

Proof. Suppose that ψ′(x) = ψ(cx). Assume that l 6 n. Let a= diag(cl−1, . . . , c2, c) ∈Al−1,
t= diag(a, I2, a

∗) ∈ TGl , b= diag(c−1, c−2, . . . , c−(n−l)) ∈An−l, d= diag(a, 1, b) ∈An and d′ =
diag(b∗, a, 1) ∈An. If W ∈W(π, ψ−1

γ ), the function g 7→W (tg) belongs to W(π, tψ−1
γ ) where

tψγ(u) = ψγ(tut−1). Similarly for τ realized in W(τ, ψ) and fs ∈ V (τ, s), the mapping y 7→
fs(h, dy) lies in W(τ, dψ). Then I ′π×τ (s) is spanned by integrals of the form∫

UGl\Gl

∫
Rl,n

W (tg)fs(wl,nrg, d)(d
′
ψγ)(r) dr dg (W ∈W(π, ψ−1

γ ), fs ∈ ξ(τ, good, s)).

We may move d to the first argument of fs and conjugate it by wl,n; it normalizes Rl,n and the
integral becomes

C(d)
∫
UGl\Gl

∫
Rl,n

W (tg)fs(wl,nr(wl,nd)g, 1)ψγ(r) dr dg,

where C(d) ∈ C[q−s, qs]∗. Changing g 7→ t−1gt in the integral yields, for some δ(t) ∈ C∗,

δ(t)C(d)
∫
UGl\Gl

∫
Rl,n

t ·W (g)(wl,nd) · fs(wl,nrg, 1)ψγ(r) dr dg,

which is just δ(t)C(d)Ψ(t ·W, wl,nd · fs, s) ∈ Iπ×τ (s).
Regarding the case of l > n, set a= diag(cl−n−1, . . . , c2, c) ∈Al−n−1, b= diag(cl−1, cl−2, . . . ,

cl−n) ∈An and t= diag(b, a, I2, a
∗, b∗) ∈ TGl . Then for some C ′(t) ∈ C[q−s, qs]∗,∫

UHn\Hn

∫
Rl,n

W (trwl,nh)fs(h, b) dr dh= C ′(t)Ψ(w
l,n
t ·W, b · fs, s).

The result follows from this. 2
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By the results regarding the existence of a functional equation mentioned above, the quotients

Ψ(W, fs, s)
gcd(π × τ, s)

,
Ψ(W,M∗(τ, s)fs, 1− s)

gcd(π × τ∗, 1− s)
,

which by definition belong to C[q−s, qs], are also proportional. There exists a proportionality
factor ε(π × τ, ψ, s) satisfying, for all W ∈W(π, ψ−1

γ ) and fs ∈ ξ(τ, good, s),

Ψ(W,M∗(τ, s)fs, 1− s)
gcd(π × τ∗, 1− s)

= c(l, τ, γ, s)−1ε(π × τ, ψ, s) Ψ(W, fs, s)
gcd(π × τ, s)

. (3.6)

Combining (3.5) and (3.6) we derive the relation

γ(π × τ, ψ, s) = ε(π × τ, ψ, s)gcd(π × τ∗, 1− s)
gcd(π × τ, s)

. (3.7)

Equality (3.7) resembles the relation between the γ, L and ε-factors of Shahidi [Sha90], where
the gcd is replaced with the L-function. By Shahidi’s definitions, when π and τ are standard
modules, the γ-factor and L-function are multiplicative in their inducing data, and hence so is
the ε-factor. Here γ(π × τ, ψ, s) is multiplicative, but in order to deduce this for ε(π × τ, ψ, s)
we still need to establish proper multiplicative properties for the gcd. Currently this task seems
difficult. We prove another fundamental property of the ε-factor, namely that it is invertible.

Claim 3.2. We have ε(π × τ, ψ, s) ∈ C[q−s, qs]∗.

Proof of Claim 3.2. Take Wi, f
(i)
s , i= 1, . . . , k, such that gcd(π × τ, s) =

∑k
i=1 Ψ(Wi, f

(i)
s , s).

Plugging Wi, f
(i)
s into (3.6) and summing, we get ε(π × τ, ψ, s) ∈ C[q−s, qs]. According to the

definition of ε(π × τ∗, ψ, 1− s), (3.1), (3.6) and because c(l, τ, γ, s)c(l, τ∗, γ, 1− s) = 1, we have
ε(π × τ, ψ, s)ε(π × τ∗, ψ, 1− s) = 1, whence ε(π × τ, ψ, s) is a unit. 2

Remark 3.3. For ξ, φ a pair of representations of GLk, GLr (respectively), the relation between
the γ-factor and the L and ε-factors of [JPS83] is given by

γ(φ× ξ, ψ, s) = ε(φ× ξ, ψ, s)L(φ∗ × ξ∗, 1− s)
L(φ× ξ, s)

. (3.8)

We mention a useful, simple observation which follows from the multiplicative properties of
the γ-factor stated above.

Claim 3.3. Let τ = IndGLn
Pn1,...,na

(τ1 ⊗ · · · ⊗ τa) be irreducible, a> 1. Suppose that for some

P ∈ C[q−s, qs], gcd(π × τ, s) =
∏a
i=1 gcd(π × τi, s)Mτ1⊗···⊗τa(s)P . Then gcd(π × τ∗, 1− s)'∏a

i=1 gcd(π × τ∗i , 1− s)Mτ1⊗···⊗τa(s)P . A similar assertion holds when π is induced from
σ ⊗ π′, e.g. if gcd(π × τ, s) = L(σ × τ, s) gcd(π′ × τ, s)L(σ∗ × τ, s)Mτ (s)P , gcd(π × τ∗, 1− s)'
L(σ × τ∗, 1− s) gcd(π′ × τ∗, 1− s)L(σ∗ × τ∗, 1− s)Mτ (s)P .

Proof of Claim 3.3. In general there exist M−1, Q ∈ C[q−s, qs] with gcd(π × τ∗, 1− s) =∏a
i=1 gcd(π × τ∗i , 1− s)Mτ1⊗···⊗τa(s)MQ. Utilizing the multiplicativity of γ(π × τ, ψ, s) in τ ,

a∏
i=1

gcd(π × τ∗i , 1− s)
gcd(π × τi, s)

' gcd(π × τ∗, 1− s)
gcd(π × τ, s)

=
a∏
i=1

gcd(π × τ∗i , 1− s)
gcd(π × τi, s)

MQ

P
.

Hence MQ' P . For π induced from σ ⊗ π′ one uses (3.8). 2
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4. Properties of the integrals

4.1 Special fs and W
The following two results describe a section and a Whittaker function that will be used to study
the integrals. The first lemma was proved in a slightly different form in [Kap12, Claim 4.1].

Lemma 4.1. There is a constant k0 > 0 depending on the embedding of Gl in Hn such that the
following holds. Assume l 6 n. Let Wτ ∈W(τ, ψ) and k > k0 be such that Wτ is right-invariant
by NGLn,k−k0 . Then there exists fs ∈ ξ(τ, std, s) and a measurable subset Ok ⊂NGl,k−k0 with
vol(Ok)> 0 such that for any b ∈GLn and v ∈ Vl−1 oG1 <Gl,

∫
Rl,n

fs(wl,nrv, b)ψγ(r) dr equals

|γ|l(
1
2
n+s− 1

2
)Wτ (btγ) if v ∈Ok and zero otherwise. Here tγ = diag(γIl, In−l) if |γ| 6= 1 and tγ = In

otherwise.

Actually, the function is fs = ch(t−1
γ wl,n)NHn,k,cWτ ,s

, with c > 0 a volume constant. To prove the

lemma first write v = v0x with v0 ∈ Vl−1, x ∈G1 and observe that fs(wl,nrv, b) vanishes unless
the image of x in H1 belongs to NH1,k. Then we may assume that v = v0 and the non-constant
coordinates of v0 and r are essentially seen to belong to Pk.

The second lemma is a straightforward adaptation of a similar claim of Soudry [Sou93] (inside
the proof of Proposition 6.1). The proof is skipped.

Lemma 4.2. Let 0 6 j < l and W0 ∈W(π, ψ−1
γ ). For any k large enough (depending on W0)

there exists W ∈W(π, ψ−1
γ ) such that for any v =

(
Ij
u b

)
∈GLl−1 < Pl−1 with b ∈BGLl−j−1

and
a ∈GLj < Pl−1, W (av) =W0(a) if v ∈NGl,k and zero otherwise. We can take W which, in
addition, vanishes unless the last row of a lies in ηj +M1×j(Pk) (ηj = (0, . . . , 0, 1)).

Now we can prove the following result.

Proposition 4.1. There exist W and fs ∈ ξ(τ, hol, s) such that Ψ(W, fs, s) = 1, for all s.

Proof of Proposition 4.1. The proof follows the arguments of Soudry [Sou93, § 6]. If l > n,
apply Lemma 4.2 along with fs = chNHn,k,W ′,s ∈ ξ(τ, std, s), where W ′ ∈W(τ, ψ) is such that
W ′(1) 6= 0. For l 6 n also use Lemma 4.2, and fs ∈ ξ(τ, hol, s) is selected by Lemma 4.1. 2

When describing the integral Ψ(W, fs, s) for a good section fs, it is often convenient to assume
that fs is holomorphic or even standard.

Proposition 4.2. For any fs ∈ ξ(τ, good, s) there exist Pi ∈ C[q−s, qs], f (i)
s ∈ ξ(τ, std, s) such

that Ψ(W, fs, s) = `τ∗(1− s)
∑k

i=1 PiΨ(W, f (i)
s , s). If fs ∈ ξ(τ, hol, s), the factor `τ∗(1− s) may

be dropped.

Proof of Proposition 4.2. This follows from the definitions and rationality of M∗(τ∗, 1− s). 2

4.2 The inner integration over Rl,n

In the case of l < n, the integral Ψ(W, fs, s) contains an inner integration over the unipotent
subgroup Rl,n. The properties of this integration resemble those of the Whittaker functional,
proved by Casselman and Shalika [CS80] (see also [Sha78, Sha81]) and we follow their line of
arguments. Define a functional on V (τ, s) by

fs 7→ Ω(fs) =
∫
Rl,n

fs(wl,nr, 1)ψγ(r) dr.
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There exists a constant s1 > 0 depending only on τ such that if <(s)> s1, this integral is
absolutely convergent for all fs (see [Sou93, § 4.5]). According to the (global) construction of
the integral in [Kap12] or by a direct verification,

Ω(fs) ∈HomNn−l(V (τ, s), ψ−1
γ ), (4.1)

where Nn−l = Zn−l n Un−l (here Zn−l is considered as a subgroup of the Levi part of Qn−l) and
ψγ denotes the character of Nn−l defined for z ∈ Zn−l and u ∈ Un−l by ψγ(zu) = ψ(z)ψ(en−lueγ)
(with en−l, eγ given in § 2.2; see also Remark 2.2). Specifically,

ψγ(x) = ψ

(n−l−1∑
i=1

xi,i+1 + xn−l,n + γxn−l,n+2

)
.

The results in the next few paragraphs imply that as a function of s, in its domain of absolute
convergence, Ω(fs) is a polynomial in C[q−s, qs], for fs ∈ ξ(τ, hol, s). Hence it has an analytic
continuation by which it is defined for all s.

Define for N <Nn−l a compact open subgroup and fs ∈ V (τ, s) the function fN,ψγs ∈ V (τ, s)
by

f
N,ψγ
s = vol(N)−1

∫
N
ψγ(n)n · fs dn.

The following claim shows that Ω (defined for <(s)> s1) is invariant for such a twist of fs.

Claim 4.1. For any fs ∈ V (τ, s), compact open N <Nn−l and g ∈Gl, Ω(g · fN,ψγs ) = Ω(g · fs).

Proof of Claim 4.1. A direct consequence of (4.1) and the fact that, according to the embedding
Gl <Hn described in § 2.2, Gl normalizes Nn−l and stabilizes ψγ . 2

Fix s ∈ C arbitrarily. We use the filtration of V (τ, s) according to the geometrical
lemma [BZ77, 2.12]. We follow the exposition of Muić [Mui08, § 3] (see also [BZ77, Cas95]).
Consider the decomposition Hn =

∐
w∈A C(w) (

∐
is a disjoint union), where A is a set of

representatives for Qn\Hn/Qn−l and C(w) =QnwQn−l. One can take

A=


wr =



Ir
In−l−r

Il
(−1)n−l−r

Il
In−l−r

Ir


: r = 0, . . . , n− l


. (4.2)

According to the special ordering defined on the Bruhat cells, w0 > · · ·>wn−l. Let C>wr =∐
w>wr C(w). In the following we consider the elements of V (τ, s) as functions of one variable,

i.e. functions defined on Hn taking values in U , the space of τ . The space V (τ, s) as a
representation of Qn−l is filtered by the subspaces Fwr(s) = {fs ∈ V (τ, s) : supp(fs)⊂ C>wr}
(e.g. Fwn−l(s) = V (τ, s)). Here supp(fs) denotes the support of fs. Also let Qwrn = wrQn ∩Qn−l.

Fix r and consider also the decomposition Qn−l =
∐
η∈A(r) Q

wr
n ηGlNn−l, where A(r) is a

(finite) set of representatives for Qwrn \Qn−l/GlNn−l. We describe the set A(r). For k > 0, let Sk
be the group of permutations of {1, . . . , k} (S0 = {1}). Denote the natural association
of Sk with the permutation matrices in GLk by σ 7→ b(σ) (b(σ)i,j = δi,σ(j)). The space Ql\Hl/Gl
is trivial containing a single element which we represent using the identity, when Gl is quasi-
split. Otherwise it contains two more elements [GPR87, § 3], which may be taken to be

603

https://doi.org/10.1112/S0010437X12000644 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X12000644


E. Kaplan

diag(1,−1, 1) · J3 · (−γ,∓β) ∈H1 <Hl (the matrix (·, ·) was defined in § 2.2). Then

A(r) = {diag(b(σ), ξ, b(σ)∗) : σ ∈ (Sr × Sn−l−r)\Sn−l, ξ ∈Ql\Hl/Gl}.

Here Sr (respectively Sn−l−r) is embedded in Sn−l as the subgroup of permutations of {1, . . . , r}
(respectively of {r + 1, . . . , n− l}). We order the elements of A(r) according to the special
ordering defined on the Bruhat cells.

We order the set of pairs {(wr, η) : 0 6 r 6 n− l, η ∈ A(r)} lexicographically, i.e. (w′, η′)>
(w, η) if w′ >w or both w′ = w, η′ > η. Let C(wr, η) =QnwrηGlNn−l and C>(wr,η) =∐

(w′,η′)>(wr,η) C(w′, η′). The space Fwr(s) as a representation of GlNn−l is filtered by the
subspaces Fwr,η(s) = {fs ∈ V (τ, s) : supp(fs)⊂ C>(wr,η)}, where η varies over A(r).

Claim 4.2. For any r > 0, η ∈ A(r) and fs ∈ Fwr,η(s) there exists a compact open subgroup

N <Nn−l such that f
N,ψγ
s ∈ Fw′,η′(s) where (w′, η′)> (wr, η). Furthermore, N depends only on

the support of fs (and on ψγ).

Proof of Claim 4.2. Fix r > 0 and η. It is enough to find N such that for all x ∈GlNn−l,

f
N,ψγ
s (wrηx) = vol(N)−1

∫
N
fs(wrηxn)ψγ(n) dn= 0.

Regard the function f ′s = λ(η−1w−1
r )(fs|C(wr)) as a function on GlNn−l. There is a compact

set C ⊂GlNn−l such that supp(f ′s) = (η(Qwrn ) ∩GlNn−l)C. Denote by CGl , CNn−l the projections
of C on Gl, Nn−l (respectively). These are compact sets.

It is possible to show that there exists a compact subgroup O < wrηUn ∩Nn−l (which depends
on r and η) on which ψγ |O 6≡ 1. For instance if r < n− l, η = diag(b(σ), ξ, b(σ)∗) and there is
some 1 6 j < n− l such that σ(j) 6 r and σ(j + 1)> r, we let O be the image in Nn−l of the
subgroup of Zn−l consisting of matrices with 1 on the diagonal, an arbitrary element of P−k in
the (j, j + 1)th coordinate and zero elsewhere. Here k > 0 depends on ψγ .

We can take a compact open subgroup N <Nn−l such that CNn−l ⊂N and for all g ∈ CGl ,
O ⊂ g−1

N . This follows from the fact that Gl normalizes Nn−l. We see that N depends only on
the support of fs in C(wr, η) (and on ψγ).

Assume that for some x ∈GlNn−l, f
N,ψγ
s (wrηx) 6= 0. Then x ∈ (η(Qwrn ) ∩GlNn−l)CGlN , and

hence it is enough to prove that, for all g ∈ CGl , f
N,ψγ
s (wrηg) = 0. Since Gl stabilizes ψγ , up to

a volume constant (depending on g) fN,ψγs (wrηg) equals∫
g−1N

fs(wrηng)ψγ(n) dn.

This vanishes because O < g−1
N and we can factor the integral through O and obtain an inner

integration of the non-trivial character ψγ |O which vanishes. 2

Again we treat s as a parameter and study the behavior of the functional on holomorphic
sections. Let Fwr be the set of fs ∈ ξ(τ, hol, s) such that for all s ∈ C, fs ∈ Fwr(s). Since, for all
s, Fwr(s) is a Qn−l-space, so is Fwr . Also note that Fwr is a C[q−s, qs]-module, i.e. if fs ∈ Fwr ,
P · fs ∈ Fwr for P ∈ C[q−s, qs]. Similarly for η ∈ A(r) we define Fwr,η as the set of fs ∈ ξ(τ, hol, s)
such that for all s ∈ C, fs ∈ Fwr,η(s). Then Fwr,η is a GlNn−l-space and a C[q−s, qs]-module.
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The above claim has the following useful corollary, showing how to use twists by some N in
order to put holomorphic sections in Fw0 . The key point is that N will be independent of s.

Corollary 4.1. For any fs ∈ ξ(τ, hol, s) there exists a compact open subgroup N <Nn−l,

independent of s, such that f
N,ψγ
s ∈ Fw0 .

Proof of Corollary 4.1. We start with fs ∈ ξ(τ, std, s). The support of standard sections is
independent of s, hence fs ∈ Fwr,η for some r and η ∈ A(r). Argue, by induction on r and η, that
there exists a subgroup N independent of s with fN,ψγs ∈ Fw0 . For r = 0 this is trivial. Let r > 0.

For every s, fs ∈ Fwr,η(s). By Claim 4.2 there is a subgroup N ′, depending only on the
support of fs which is independent of s, such that fN

′,ψγ
s ∈ Fw′,η′(s) with (w′, η′)> (wr, η).

Thus fN
′,ψγ

s ∈ Fw′,η′ . The next step is to apply the induction hypothesis, but note that fN
′,ψγ

s ∈
ξ(τ, hol, s) might not be standard.

Write fN
′,ψγ

s as in (2.2), i.e. fN
′,ψγ

s =
∑m

i=1 Pi · f
(i)
s with Pi 6= 0, f (i)

s = chkiN,vi,s ∈ ξ(τ, std, s)
and such that if ki1 = · · ·= kic , vi1 , . . . , vic are linearly independent. Suppose that for some i,
f

(i)
s /∈ Fw′,η′ . Since the support of f (i)

s is independent of s, then f
(i)
s /∈ Fw′,η′(s) for all s. In fact,

there is some x ∈ kiN which does not belong to C>(w′,η′) (x ∈ supp(f (i)
s )). Let {i1, . . . , ic} be a

maximal set of indices such that ki1 = · · ·= kic = ki. Choose s0 such that Pij (q
−s0 , qs0) = αj 6= 0

for some 1 6 j 6 c. Now on the one hand, since x /∈ C>(w′,η′), fN
′,ψγ

s0 (x) = 0. On the other hand
f
N ′,ψγ
s0 (x) = α1vi1 + · · ·+ αcvic , contradicting the fact that vi1 , . . . , vic are linearly independent.

Hence, for each i, f (i)
s ∈ Fw′,η′ . Now the induction hypothesis shows that (f (i)

s )Ni,ψγ ∈ Fw0 , for a
subgroup Ni independent of s.

In general, if O1 <O2 <Nn−l are compact open, then (fO1,ψγ
s )O2,ψγ = f

O2,ψγ
s . Then if we take

N containing N ′ and all of the subgroups Ni, we have

f
N,ψγ
s = (fN

′,ψγ
s )N,ψγ =

( m∑
i=1

Pi · f (i)
s

)N,ψγ
=

m∑
i=1

Pi · ((f (i)
s )Ni,ψγ )N,ψγ ∈ Fw0 .

This establishes the claim for standard sections.
Now if fs ∈ ξ(τ, hol, s), then write, as above, fs =

∑m
i=1 Pi · f

(i)
s . For each i we have Ni

independent of s, (f (i)
s )Ni,ψγ ∈ Fw0 , whence, for N containing all of the subgroups Ni, f

N,ψγ
s ∈

Fw0 . 2

Looking at (4.2) one sees that C(w0) = C(wl,n), so in fact we may replace w0 with wl,n. Let
fs ∈ ξ(τ, std, s). The next proposition shows that Ω(fs), initially defined for <(s)> s1 to ensure
the absolute convergence of the integral, equals an element in C[q−s, qs]. Therefore Ω(fs) has an
analytic continuation by which it can be defined for all s. These results extend to fs ∈ ξ(τ, hol, s).
The proposition is also the main tool in writing the Iwasawa decomposition in § 4.3.

Proposition 4.3. Let fs ∈ ξ(τ, std, s). There exist Pi ∈ C[q−s, qs] and Wi ∈W(τ, ψ), i=
1, . . . , m, such that, for all a ∈Al−1 < TGl and s,

Ω(a · fs) = |det a|l−
1
2
n+s− 1

2

m∑
i=1

PiWi(diag(a, In−l+1)). (4.3)

In addition, for the split case there exists a constant k > 0 such that the following holds.
For t= ax ∈ TGl with x ∈G1 < TGl write x= diag(b, b−1). Then there exist Pi ∈ C[q−s, qs] and
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Wi ∈W(τ, ψ), which depend on whether bxc= b or bxc= b−1, so that, for all t satisfying [x]> qk

and s,

Ω(t · fs) = (|det a|[x]−1)l−
1
2
n+s− 1

2

m∑
i=1

PiWi(diag(a, bxc, In−l)). (4.4)

In both (4.3) and (4.4) the left-hand side is defined by the integral for <(s)> s1 and the equality
for all s is in the sense of analytic continuation.

Proof of Proposition 4.3. Select N for fs by Corollary 4.1. Note that GLl−1 (as a subgroup
of Pl−1 <Gl) normalizes Rl,n. Additionally, Gl fixes ψγ . Using this and Claim 4.1, yields, for
<(s)> s1,

Ω(a · fs) = Ω(a · fN,ψγs ) = |det a|l−
1
2
n+s− 1

2

∫
Rl,n

f
N,ψγ
s (wl,nr, diag(a, In−l+1))ψγ(r) dr. (4.5)

Since fN,ψγs ∈ ξ(τ, hol, s) ∩ Fw0 , we can write, as in (2.2),

f
N,ψγ
s =

m∑
i=1

Pif
(i)
s (Pi ∈ C[q−s, qs], f (i)

s = chkiN,vi,s ∈ ξ(τ, std, s)). (4.6)

As in the proof of Corollary 4.1 we deduce that, for each i, f (i)
s ∈ Fw0 . Hence each λ(w−1

l,n )f (i)
s , as

a function on Qn−l, is compactly supported modulo Qwl,nn (similar to fN,ψγs ) and this support is
independent of s (in contrast with fN,ψγs ). That is, there is a compact set Bi ⊂Qn−l such that, for
all s, the support of λ(w−1

l,n )f (i)
s equals Qwl,nn Bi. One can show that Rl,n ∩Q

wl,n
n Bi is contained

in a compact subset of Rl,n. Roughly, this is because Rl,n ∩Q
wl,n
n = {1} (but a more direct

calculation is needed). Then let N ′i <Rl,n be a compact open subgroup such that λ(w−1
l,n )f (i)

s is
right-invariant by N ′i , ψγ |N ′i ≡ 1 and Rl,n ∩Q

wl,n
n Bi ⊂

∐mi
j=1 ri,jN

′
i for some elements ri,j ∈Rl,n

and mi > 1. It follows that there exist constants ci,j ∈ C such that, for all s and a,∫
Rl,n

f (i)
s (wl,nr, diag(a, In−l+1))ψγ(r) dr =

mi∑
j=1

ci,jf
(i)
s (wl,nri,j , diag(a, In−l+1)).

In particular the integral Ω(a · fN,ψγs ) is absolutely convergent for all s. Next, there are
Pi,j ∈ C[q−s, qs] and Wi,j ∈W(τ, ψ) such that

ci,jf
(i)
s (wl,nri,j , diag(a, In−l+1)) = Pi,jWi,j(diag(a, In−l+1))

for all s and a. Therefore, we conclude that∫
Rl,n

f
N,ψγ
s (wl,nr, diag(a, In−l+1))ψγ(r) dr =

m∑
i=1

Pi

mi∑
j=1

Pi,jWi,j(diag(a, In−l+1)).

This establishes (4.3).
Let k0 > 0 be such that fs is right-invariant by NHn,k0 . Let k > k0 be as in Lemma 2.1. For

[x]> qk we write x=mxuxhnx as specified by the lemma. The choice of h depends on whether
|b|< |b|−1 or vice versa, but is otherwise independent of x. We now assume that |b|< |b|−1 and
fix h. Since ψγ(r) = ψ(rn−l,n) and w−1

l,nmx ∈Mn,

Ω(t · fs) = (|det a|[x]−1)l−
1
2
n+s− 1

2

∫
Rl,n

f
N,ψγ
s (wl,nruxh, diag(a, bxc, In−l))ψ(bxc−1rn−l,n) dr.
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Conjugating r by ux and noting that w−1
l,nux ∈ Un, the dr-integration equals∫

Rl,n

f
N,ψγ
s (wl,nrh, diag(a, bxc, In−l))ψ?(r) dr.

Here ψ?(r) = ψ(γcrn−l,n+1) where c is the constant of Lemma 2.1. By our fixing of h, ψ?(r) no
longer depends on x (since c is fixed). We can continue as above and write fN,ψγs as in (4.6); for
each i, h · (λ(w−1

l,n )f (i)
s ) is still compactly supported modulo Q

wl,n
n (because h ∈Qn−l). Thus,

for each f
(i)
s ∈ ξ(τ, std, s),∫
Rl,n

f (i)
s (wl,nrh, diag(a, bxc, In−l))ψ?(r) dr =

mi∑
j=1

P ′i,jW
′
i,j(diag(a, bxc, In−l)).

Here P ′i,j ∈ C[q−s, qs], W ′i,j ∈W(τ, ψ). Now equality (4.4) follows.

Note that the proof for |b|> |b|−1 is identical but the actual polynomials P ′i,j and Whittaker
functions W ′i,j may vary, because they depend on h and ψ?. 2

Remark 4.1. Observe that if l = n, in which case the dr-integration is trivial, we can simply put
Ω(h · fs) = fs(wl,nh, 1) (h ∈Hn) and Proposition 4.3 remains valid.

4.3 Iwasawa decomposition for Ψ(W, fs, s)
We show how to write Ψ(W, fs, s) as a finite sum of integrals over a torus. We do this for
fs ∈ ξ(τ, std, s); using Proposition 4.2, a similar form holds for fs ∈ ξ(τ, good, s). Write an
element x ∈G1 < TGl as x= diag(α, α−1) and define for k > 0,G0,k

1 = {x ∈G1 : [x]> qk, bxc= α}
and G∞,k1 = {x ∈G1 : [x]> qk, bxc= α−1}. In addition for a set Λ let chΛ be the characteristic
function of Λ.

Proposition 4.4. For each integral Ψ(W, fs, s), fs ∈ ξ(τ, std, s), there exist integrals

I
(1)
s , . . . , I

(m)
s such that, for all s, Ψ(W, fs, s) =

∑m
i=1 I

(i)
s . If l 6 n, each I

(i)
s is of the form

P

∫
Al−1

∫
G1

chΛ(x)W �(ax)W ′(diag(a, bxc, In−l))

(|det a| · [x]−1)l−
1
2
n+s− 1

2 δ−1
BGl

(a) dx da
split Gl,

P

∫
Al−1

W �(a)W ′(diag(a, In−l+1))|det a|l−
1
2
n+s− 1

2 δ−1
BGl

(a) da quasi-split Gl.

(4.7)

Here P ∈ C[q−s, qs], W � ∈W(π, ψ−1
γ ), W ′ ∈W(τ, ψ). In the split case, Λ is either G0,k

1 or G∞,k1

for a constant k > 0, or a compact open subgroup of G1. When l > n, I
(i)
s takes the form

P

∫
An

W �(diag(a, I2(l−n), a
∗))W ′(a)|det a|

3
2
n−l+s+ 1

2 δ−1
BHn

(a) da. (4.8)

Remark 4.2. Note that in the above integrals, except for P and the exponents of |det a| and [x],
none of the terms depend on s.

Proof of Proposition 4.4. We prove the result for <(s)� 0. Specifically, s belongs to a right
half-plane depending only on the representations. Then the equality holds for all s in the sense
of meromorphic continuations, since Ψ(W, fs, s) and each of the integrals I(i)

s extend to functions
in C(q−s). In fact, using the asymptotic expansion of Whittaker functions (see [JPS83, § 2.5],
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[CS80, § 6], and [LM09]) one shows that I(i)
s is equal to a sum of products of Tate-type integrals

and its meromorphic continuation is proved exactly as in [JPS83, § 2.7].
First assume that l 6 n. Applying the Iwasawa decomposition of Gl to the integral, it reduces

to a sum of integrals of the form∫
Al−1

∫
G1

W �(ax)Ω(ax · f ′s)δ−1
BGl

(a) dx da, (4.9)

where W � ∈W(π, ψ−1
γ ) and f ′s ∈ ξ(τ, hol, s). This writing depends on the subgroups of KGl for

which W and fs are right-invariant, and, since these are independent of s, this decomposition is
independent of s. This means that there exist a finite number of integrals, each of the form (4.9),
such that for all s in the right half-plane their sum equals Ψ(W, fs, s). Henceforth, whenever we
write such a decomposition, it will be independent of s in this sense.

If Gl is quasi-split, then integral (4.9) equals a sum of integrals over Al−1, and we apply
Proposition 4.3 to obtain integrals of the form (4.7). If Gl is split, the integration over G1 is
divided into integrations over G0,k

1 , G∞,k1 and {x ∈G1 : [x] 6 qk}, with k > 0 taken according to
Proposition 4.3. In the first two domains we can again apply the proposition to obtain a sum of
integrals of the form (4.7). The last domain is compact and treated as in the quasi-split case.

The result for l > n follows again from the Iwasawa decomposition and from the fact that
the support in r of the function (a, r) 7→W (ar), where a ∈GLn < Ln and r ∈Rl,n, is contained
in a compact set independent of a (see [Sou93, Lemma 4.1]). 2

This proposition has the following corollary, which is a direct consequence of the properties
of Whittaker functions for supercuspidal representations (see [CS80, § 6]).

Corollary 4.2. Let π be a supercuspidal representation and τ be an irreducible supercuspidal
representation. Assume that if l = n= 1, G1 is quasi-split. Then Ψ(W, fs, s) is holomorphic for
fs ∈ ξ(τ, hol, s). In particular, gcd(π × τ, s) ∈ `τ∗(1− s)C[q−s, qs].

If π and τ are irreducible unitary supercuspidal representations (in particular, tempered) for
which Conjecture 1.1 holds, Theorem 1.1 will imply that gcd(π × τ, s) = L(π × τ, s), and then
Corollary 4.2 shows that L(π × τ, s)−1 divides L(τ, S2, 2s)−1, since `τ∗(1− s) = L(τ, S2, 2s) (see
§ 3.2, Theorem 3.2).

4.4 Realization of τ induced from τ1 ⊗ τ2

When τ = IndGLn
Pn1,n2

(τ1 ⊗ τ2), it is convenient for the manipulations of Ψ(W, fs, s) to use an
explicit integral formula for the Whittaker functional on τ . To ensure convergence of this
(Jacquet) integral, the representations τi are twisted using an auxiliary complex parameter ζ
as in [JPS83, Kap10b, Sha78, Sou93, Sou00]. Set ε1 = τ1|det|ζ , ε2 = τ2|det|−ζ and suppose that
εi is realized in W(εi, ψ). Let ε= IndGLn

Pn1,n2
(ε1 ⊗ ε2). Assume that ζ is such that ε is irreducible;

this holds for all but a discrete subset of C (because τ was taken to be irreducible). Let Qn1,n2 <
Hn be the standard parabolic subgroup whose Levi part is isomorphic to GLn1 ×GLn2 . As
explained in § 2.5 we have spaces of standard, holomorphic and rational sections for the induced
representation Πs1,s2 = IndHnQn1,n2

((ε1 ⊗ ε2)α(s1,s2)), where s1 and s2 are complex parameters (i.e.,

s= (s1, s2)). Consider also Π′s1,s2 = IndHnQn1
((ε1 ⊗ IndHn2

Qn2
(ε2α

s2))αs1) (for b1 ∈GLn1 , h2 ∈Hn2 ,
αs1(diag(b1, h2, b

∗
1)) = αs1(b1)). These representations are isomorphic via

(h, b1, h2, b2) 7→ f(h2h, b1, b2), (h, b1, b2) 7→ ϕ(h, b1, I2n2+1, b2). (4.10)
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Here f belongs to the space of Πs1,s2 , ϕ belongs to the space of Π′s1,s2 , h ∈Hn, h2 ∈Hn2 , and

bi ∈GLni . Furthermore (4.10) defines isomorphisms between Π = IndKHnQn1,n2∩KHn
(ε1 ⊗ ε2) and

Π′ = IndKHnQn1∩KHn
(ε1 ⊗ Ind

KHn2
Qn2∩KHn2

(ε2)). Then, for ϕ in the space of Π′, we can first regard it
as a function in the space of Π, extend it to a function in the space of Πs1,s2 using the Iwasawa
decomposition and finally consider it as a function in the space of Π′s1,s2 . Therefore we may
realize the space ξ(ε1 ⊗ ε2, std, (s1, s2)) = ξHnQn1,n2

(ε1 ⊗ ε2, std, (s1, s2)) by extending functions of
the space of Π′ to functions of the space of Π′s1,s2 . Then we can also realize ξ(ε1 ⊗ ε2, hol, (s1, s2))

as the space of elements
∑m

i=1 Piϕ
(i)
s1,s2 where Pi ∈ C[q∓s1 , q∓s2 ], ϕ(i)

s1,s2 ∈ ξ(ε1 ⊗ ε2, std, (s1, s2)),
and similarly realize ξ(ε1 ⊗ ε2, rat, (s1, s2)).

Now consider the case of s1 = s2 = s. Any function in V Hn
Qn

(W(ε, ψ), s) is the image of a
function in V Hn

Qn
(ε, s) under the application of a Whittaker functional to ε. The representations

IndHnQn (εαs) and Π′s,s are also isomorphic, according to

(h, b1, h2, b2) 7→ f(h2h, In, b1, b2), (h, b, b1, b2) 7→ |det b|−
1
2
n−s+ 1

2ϕ(bh, b1, I2n2+1, b2).

Here f ∈ V Hn
Qn

(ε, s), ϕ belongs to the space of Π′s,s and b ∈GLn. These isomorphisms also define

isomorphisms between IndKHnQn∩KHn
(ε) and Π′.

Any ϕs ∈ ξ(ε1 ⊗ ε2, hol, (s, s)) defines a function f ′s ∈ ξHnQn (W(ε, ψ), hol, s) by

f ′s(h, b) = |det b|−
1
2
n−s+ 1

2

∫
Zn2,n1

ϕs(ωn1,n2zbh, In1 , I2n2+1, In2)ψ−1(z) dz. (4.11)

Here ωn1,n2 is the image of
( In1
In2

)
in Qn. The Jacquet integral (4.11) always has a sense as

a principal value, but there exists a ζ0 > 0, which depends only on τ1 and τ2, such that for all
ζ with <(ζ)> ζ0 it is absolutely convergent for all s and ϕs. The integral Ψ(W, ϕs, s) is just
Ψ(W, f ′s, s) with formula (4.11); e.g. if l 6 n, then

Ψ(W, ϕs, s) =
∫
UGl\Gl

W (g)
∫
Rl,n

∫
Zn2,n1

ϕs(ωn1,n2zwl,nrg, 1, 1, 1)ψ−1(z)ψγ(r) dz dr dg. (4.12)

We say that this integral is absolutely convergent if it is convergent when we replace W, ϕs with
|W |, |ϕs| and drop the characters. The following claim relates Ψ(W, f ′s, s) to Ψ(W, ϕs, s).

Claim 4.3. Suppose that, for W and ϕs ∈ ξ(ε1 ⊗ ε2, hol, (s, s)), Ψ(W, ϕs, s) is absolutely
convergent at s. Then Ψ(W, ϕs, s) = Ψ(W, f ′s, s) at s, where f ′s is defined by (4.11).

Proof. Assume, for instance, that l 6 n, the other case being similar. We use the idea of [JPS83, p.
424]. Let s be such that Ψ(W, ϕs, s) is absolutely convergent. Then Ψ(W, f ′s, s) is also absolutely
convergent. The smoothness of W and ϕs implies that the dz-integration in Ψ(W, ϕs, s) is
absolutely convergent for all g ∈ supp(W ) and r ∈Rl,n. Then according to Fubini’s theorem
this dz-integration can be replaced with f ′s(wl,nrg, 1) (defined by principle value). This shows
that the integrals Ψ(W, ϕs, s) and Ψ(W, f ′s, s) are equal at s. 2

Suppose that τ is realized in W(τ, ψ) and let fs ∈ ξHnQn (τ, hol, s). Then there is a section
ϕs ∈ ξ(ε1 ⊗ ε2, hol, (s, s)) with the following properties. Let f ′s be defined by (4.11) and write
f ′s =

∑m
i=1 Pi ch

kiN,W
(i)
ζ ,s

with Pi ∈ C[q−s, qs], W (i)
ζ ∈W(ε, ψ) as in (2.2). Now if we let ζ vary,

the data (m, ki, N, Pi) is independent of ζ, W (i)
ζ is right-invariant by (k

−1
i N) ∩Qn and for
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each b ∈GLn there is Q ∈ C[q−ζ , qζ ] such that, for all ζ, W (i)
ζ (b) =Q. Moreover, if we put ζ = 0

in this expression for f ′s we get that f ′s = fs.

4.5 The gcd of ramified twists

Let τ be an irreducible representation of GLn and let µ be a (unitary) character of F ∗, extended
to GLn by b 7→ µ(det(b)). We show that if µ2 is sufficiently ramified, a twist of τ by µ removes
all poles except perhaps those of the intertwining operator.

Proposition 4.5. For µ such that µ2 is sufficiently ramified, gcd(π × (τµ), s) ∈ `(τµ)∗(1− s)
C[q−s, qs].

This resembles a result of [JPS83, Proposition 2.13] and is proved in the same manner, with
the aid of Propositions 4.2 and 4.4.

Example 4.1. Let τ ′ be a unitary irreducible supercuspidal representation of GLn and take a
character µ for which µ2 is sufficiently ramified (with respect to τ ′, π), so that no unramified
twist of τ = τ ′µ (or τ∗) would be self-dual. Then L(τ, S2, 2s) = 1 by [Sha92, Theorem 6.2]. Using
(3.2) and Theorem 3.2, `τ∗(1− s) = 1 and gcd(π × τ, s) = 1.

There is an analogous result for a ramified character π of G1, proved similarly.

Proposition 4.6. If π is a sufficiently ramified character or G1 is quasi-split, gcd(π × τ, s) ∈
`τ∗(1− s)C[q−s, qs].

5. Embedding poles in induced representations

5.1 Embedding poles in π × τ

Let τ be an irreducible representation of GLn. We consider cases where the poles of the Rankin–
Selberg GLk ×GLn integrals are contained in gcd(π × τ, s). This provides a weak lower bound
on gcd(π × τ, s), which will be strengthened in the process of proving Theorem 1.4.

Lemma 5.1. Let π = IndGl
Pk

(σ ⊗ π′) with 1 6 k < l, where σ is a representation of GLk and π′ is

a representation of Gl−k. Then L(σ × τ, s) ∈ gcd(π × τ, s)C[q−s, qs].

Proof of Lemma 5.1. Let Wσ ∈W(σ, ψ−1) and Wτ ∈W(τ, ψ) be arbitrary. Suppose that
Wσ (respectively Wτ ) is right-invariant by NGLk,k0 (respectively NGLn,k0). Select ϕ in the
space of π with support in PkNGl,k1 , k1� k0, which is right-invariant by NGl,k1 and such

that ϕ(a, Ik, I2(l−k)) = δ
− 1

2
Pk

(a)Wσ(a) for a ∈GLk. Then ϕ defines a Whittaker function Wϕ ∈
W(π, ψ−1

γ ) by the principal value of the Jacquet integral

Wϕ(g) =
∫
Vk

ϕ(vg, 1, 1)ψγ(v) dv. (5.1)

Let W1 be as in Lemma 4.2, with j to be specified below, defined for Wϕ, with k2� k1 (i.e. Wϕ

is W0 in the lemma). The additional condition in the lemma for W1 concerning the last row of
a ∈GLj is not imposed yet. If n < l, set W = (wl,n)−1 ·W1 and otherwise W =W1. Finally let
fs = chNHn,k3

,Wτ ,s ∈ ξ(τ, std, s), k3� k2. The proof varies according to the relative sizes of k, l
and n.
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(i) n < k. In the selection of W above, Lemma 4.2 is applied with j = n. We may write the
dh-integral in Ψ(W, fs, s) over Qn. The integral becomes∫

Zn\GLn

∫
Un

(∫
Rl,n

W (rwl,nau) dr
)
fs(u, a)|det a|−

1
2
n+s− 1

2 du da.

By our choice of fs, fs(u, a) = 0 unless u ∈NHn,k3 , in which case fs(u, a) = fs(1, a). Taking k3

large enough, W is right-invariant for such elements u. Therefore the du-integration can be
ignored. According to the selection of W and W1 the dr-integration is ignored. Now substitute
(5.1) for Wϕ. Since n < k, a stabilizes ψγ and normalizes Vk. The integral equals∫

Zn\GLn

(∫
Vk

ϕ(v, diag(a, Ik−n), 1)ψγ(v) dv
)
Wτ (a)|det a|s−

1
2

(k−n) da.

By our choice of ϕ, the dv-integration is discarded (up to a constant depending on k1) and we
obtain the GLk ×GLn integral of [JPS83],∫

Zn\GLn

Wσ(diag(a, Ik−n))Wτ (a)|det a|s−
1
2

(k−n) da.

(In the notation of [JPS83, § 2.4] this is Ψ(s, Wσ, Wτ ; 0); an integral of type (3).) Because Wσ

and Wτ are arbitrary, this shows that L(σ × τ, s) ∈ gcd(π × τ, s)C[q−s, qs].

(ii) k < n < l. In choosing W1 we take j = k. Proceeding as above we reach∫
Zk\GLk

(∫
Vk

ϕ(va, 1, 1)ψγ(v) dv
)
Wτ (diag(a, In−k))|det a|−

1
2
n+k−l+s+ 1

2 da. (5.2)

The difference between this case and the previous is that here a ∈GLk does not stabilize ψγ .
Write a= xayaba with xa ∈ F ∗ in the center of GLk, ya ∈ Yk (Yk is the mirabolic subgroup) and
ba ∈KGLk . Since Wτ is majorized by a gauge and k < n, Wτ (diag(a, In−k)) vanishes unless
|xa|< c where c is some positive constant depending on Wτ . Then if we choose k1 large
enough, depending on the constant c, ψγ(a

−1
v) will be identically 1 whenever |xa|< c, and thus∫

Vk
ϕ(v, a, 1)ψγ(a

−1
v) dv =Wσ(a) and the integral is∫

Zk\GLk

Wσ(a)Wτ (diag(a, In−k))|det a|s−
1
2

(n−k) da.

(iii) n= k. Contrary to case (i), a does not stabilize ψγ , while the method of case (ii) falls short
because the properties of Wτ do not allow to bound xa. Following Cogdell and Piatetski-Shapiro
[CP, § 3], it is enough to obtain two types of integral:∫

Zk\GLk

Wσ(a)Wτ (a)Φ(ηka)|det a|s da, (5.3)∫
Zk\Yk

Wσ(y)Wτ (y)|det y|s−1dry. (5.4)

Here Φ ∈ S(F k) (S(F k); the space of Schwartz functions on F k) satisfies Φ(0) 6= 0 and any such
Φ is sufficient, ηk = (0, . . . , 0, 1). In fact, denote the GLk ×GLk integral by Ψ(Wσ, Wτ , Φ, s)
(this is (5.3) with an arbitrary Φ). Assume that L(σ × τ, s) has a pole at s0. Then the residue
of Ψ(Wσ, Wτ , Φ, s0) defines a non-trivial trilinear form onW(σ, ψ−1)×W(τ, ψ)× S(F k). If this
form vanishes identically on the subspace S0 = {Φ ∈ S(F k) : Φ(0) = 0}, it represents a non-trivial
trilinear form on W(σ, ψ−1)×W(τ, ψ)× S0\S(F k). Then the pole is obtained by (5.3) with
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any Φ such that Φ(0) 6= 0. Otherwise, s0 is a pole of some Ψ(Wσ, Wτ , Φ, s) with Φ ∈ S0, in which
case, using the Iwasawa decomposition, the integral is seen to be equal to a sum of integrals,
each of the form (5.4).

Start as in case (i). In general our selection of ϕ implies that∫
Vk

ϕ(va, 1, 1)ψγ(v) dv = δ
1
2
Pk

(a)Wσ(a)
∫
Vk∩NGl,k1

ψγ(a
−1
v) dv.

Writing a= xayaba with the above notation we see that there is a constant c > 0 depending on ψγ
and on k1, such that for |xa|> c the integral on the right-hand side vanishes and for |xa|< c we get

δ
1
2
Pk

(a)Wσ(a) multiplied by a measure constant depending on k1. Let Bc = {a ∈GLk : |xa|< c}.
The integral becomes ∫

Zk\GLk

Wσ(a)Wτ (a) chBc(a)|det a|s da.

We can replace chBc(a) with Φ(ηka), for some Φ ∈ S(F k) such that Φ(0) 6= 0. Hence we
have (5.3).

Now we turn to integrals of the form (5.4), where we can assume that k > 1. Here W1 is
chosen with j = k and such that it vanishes on a ∈GLk unless ηka lies in ηk +M1×k(Pk2). The
constant k2 is large enough so that Wϕ is right-invariant on NGl,k2 . As in case (i) the integral
becomes∫

KGLk

∫
Zk\Yk

∫
GL1

W1(diag(yxb, I2(l−k), (yxb)
∗))Wτ (yxb)|det y|

1
2
k−l+s− 1

2 |x|A+s dx dry db,

where the integral was factored using GLk = Pk−1,1KGLk , x= diag(Ik−1, x) and A is some
constant. Denote b=

(
b1 b2
b3 b4

)
∈KGLk = GLk(O), where b1 ∈Mk−1×k−1. The condition imposed

by W1 on ηkyxb= ηkxb is that xb3 ∈M1×k−1(Pk2) and xb4 ∈ 1 + Pk2 . When this is fulfilled,
|x|= 1, W1(yxb) =Wϕ(yxb) and xb ∈ (Yk ∩KGLk)NGLk,k2 . Since Wϕ and Wτ are right-
invariant on NGLk,k2 and the measure dry is invariant for translations on the right, we may
ignore the dx db-integration. Plugging in (5.1) and noticing that Yk stabilizes ψγ(v) leads
to (5.4).

(iv) l 6 n. Choose W1 with j = k. Now fs is selected according to Lemma 4.1 for t−1
γ ·Wτ ,

with k3� k2 large so that W is right-invariant by NGl,k3−c0 (tγ as in Lemma 4.1 and c0 is the
constant k0 of Lemma 4.1). We use the formula∫

UGl\Gl
F (g) dg

=
∫
BGLl−1−k

∫
G1

∫
Vl−1

∫
Zk\GLk

∫
Zk,l−1−k

F (ambvx)δ−1
Pk

(a)δ(b) dm da dv dx db,

where GLl−1−k <Gl−k, Zk,l−1−k < Ll−1 and δ is some modulus character. The properties of fs
imply that the dr dv dx-integration can be ignored (the dr-integration is over Rl,n) and the choice
of W implies that the dm db-integration may be disregarded. The integral reduces to an integral
over Zk\GLk, and after plugging in the formula for Wϕ we reach (5.2) and continue as in case (ii)
using the fact that Wτ is majorized by a gauge. 2

Lemma 5.2. Assume that l > n. Let π = IndGl
Pl

(σ) where σ is a representation of GLl.

Then L(σ × τ, s) ∈ gcd(π × τ, s)C[q−s, qs]. A similar relation holds for π = IndGlκ(Pl)
(σ) (κ=

diag(Il−1, J2, Il−1), see § 2.1).
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Proof of Lemma 5.2. The arguments of Lemma 5.1(i) apply here, as well, with ϕ, W1,
W = (wl,n)−1 ·W1 and fs selected similarly. Now if n < l − 1, then GLn stabilizes ψγ(v) =
ψ(−γvl−1,l+1) and the result follows. Otherwise if n= l − 1, then continue as in case (ii) of
the lemma, using a bound of Wσ by a gauge (instead of Wτ ). 2

Corollary 5.1. Let π and τ be as in Theorem 1.3. If k < l or k = l > n, L(σ × τ, s) ∈
gcd(π × τ, s)C[q−s, qs].

5.2 Embedding poles of π × τ

Let π and τ be a pair of representations of Gl and GLn (respectively). In contrast with § 5.1,
here we show that Iπ×τ (s)⊂ Iπ×ε(s) for a representation ε induced from τ and another auxiliary
representation. This result will be used to prove Theorem 1.3. It suggests an inductive passage
from π × τ to π × ε which increases n while preserving the original poles, and hence any upper
bound of gcd(π × ε, s) implies a similar bound of gcd(π × τ, s).

Lemma 5.3. Let τ1 be a representation of GLm such that l < m+ n and ε= IndGLm+n

Pm,n
(τ1 ⊗ τ)

is irreducible. Then for any fs ∈ ξHnQn (τ, hol, s) there is f ′s ∈ ξ
Hm+n

Qm+n
(ε, hol, s), where ε is realized

in W(ε, ψ), such that for all W , Ψ(W, fs, s) = Ψ(g0 ·W, f ′s, s). Here g0 = I2l unless l > n and Gl
is quasi-split, in which case g0 ∈Gl depends only on γ.

Proof of Lemma 5.3. We use the notation and results of § 4.4, for ζ = 0. We will define ϕs ∈
ξ
Hm+n

Qm,n
(τ1 ⊗ τ, hol, (s, s)) such that I1 = Ψ(g0 ·W, ϕs, s) is absolutely convergent for <(s)� 0

and equals Ψ(W, fs, s). Then f ′s is defined by (4.11) and according to Claim 4.3, for all <(s)� 0,
Ψ(g0 ·W, f ′s, s) = I1 = Ψ(W, fs, s). Hence Ψ(g0 ·W, f ′s, s) = Ψ(W, fs, s), as functions in C(q−s).
The proof depends on the relative sizes of l and n.

(i) l 6 n. We introduce the following integral, deduced from I1 by a formal manipulation:

I2 =
∫
Um

∫
UGl\Gl

W (g)
∫
Rl,n

ϕs(w′u, 1, wl,nr′(bn,mg), 1)ψγ(r′)ψγ(u) dr′ dg du,

where w′ ∈Hn is a Weyl element satisfying (w′)−1
Um = Um (Um is the unipotent subgroup

opposed to Um) and bn,m = diag(In, (−1)m, In). The subgroup Rl,m+n (in I1) is decomposed
as Rl,n nRm where Rm =Rl,m+n ∩ Um, dr = dr′drm and, in I2, du= dz drm.

Claim 5.1. For s such that I2 is absolutely convergent we have I1 = I2.

This claim was proved in [Kap10b] by a simple application of Fubini’s theorem (see [Sou00,
Lemma 3.2]). We follow the argument of [Sou00, Lemma 3.4] to find a specific ϕs for which I2 =
Ψ(W, fs, s), almost what we need. Set N =NHm+n,k, k� 0. Let ϕs ∈ ξHm+n

Qm,n
(τ1 ⊗ τ, hol, (s, s))

be such that, as a function on Hm+n, supp(ϕs) =Qmw
′N , ϕs is right-invariant by N and

ϕs(xw′, 1, 1, y) = (bn,m · λ(bn,m)fs)(x, y) (x ∈Hn, y ∈GLn). Note that w′N =N . Then w′u ∈
supp(ϕs) if and only if (w′)−1

u ∈N . Formally, for this ϕs,

I2 = c

∫
UGl\Gl

W (g)
∫
Rl,n

ϕs(w′, 1, wl,nr′(bn,mg), 1)ψγ(r′) dr′ dg = cΨ(W, fs, s).
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Here c= vol(Um ∩N). The same reasoning shows that∫
Um

∫
UGl\Gl

∫
Rl,n

|W |(g)|ϕs|(w′u, 1, wl,nr′(bn,mg), 1) dr′dg du

= c

∫
UGl\Gl

∫
Rl,n

|W |(g)|fs|(wl,nr′g, 1) dr′ dg. (5.5)

We still need to show that Ψ(W, f ′s, s) = cΨ(W, fs, s). To this end we use the idea of [JPS83, p.
424]. Since Ψ(W, fs, s) is absolutely convergent for <(s)� 0 (i.e. the right-hand side of (5.5) is
finite), the left-hand side of (5.5) is finite. Hence we can apply Claim 5.1 to conclude firstly that
I1 = I2 = cΨ(W, fs, s) and secondly, by Fubini’s theorem, for <(s)� 0,∫

UGl\Gl

∫
Rl,m+n

∫
Zn,m

|W |(g)|ϕs|(ωm,nzwl,m+nrg, 1, 1, 1) dz dr dg <∞.

This proves that I1 is absolutely convergent.
(ii) l > n. The method is similar to the above but the integral manipulations and selection

of ϕs are more involved. The proof is omitted. 2

Lemma 5.3 shows that the poles of gcd(π × τ, s) originating from holomorphic sections appear
in gcd(π × ε, s). However, gcd(π × τ, s) may also contain poles due to non-holomorphic sections.
Under a certain assumption, these poles will also be included in gcd(π × ε, s).

Corollary 5.2. Let τ1 and ε= IndGLm+n

Pm,n
(τ1 ⊗ τ) be as in Lemma 5.3. If the operator

M∗(τ1, s)M∗(τ1 ⊗ τ∗, (s, 1− s)) is holomorphic, gcd(π × τ, s) ∈ gcd(π × ε, s)C[q−s, qs].

Proof of Corollary 5.2. We still need to show that for any f1−s ∈ ξ(τ∗, hol, 1− s) there exists f ′s ∈
ξ(ε, good, s) such that Ψ(W,M∗(τ∗, 1− s)f1−s, s) = Ψ(g0 ·W, f ′s, s). Let ϕs,1−s ∈ ξHm+n

Qm,n
(τ1 ⊗ τ∗,

hol, (s, 1− s)) be defined as in Lemma 5.3, using f1−s. Denote ϕ′s =M∗(τ∗, 1− s)ϕs,1−s ∈
ξ
Hm+n

Qm,n
(τ1 ⊗ τ, rat, (s, s)). Our assumption on the operators along with (3.1) show that we can find

Φ1−s ∈ ξHm+n

Qn,m
(τ∗ ⊗ τ∗1 , hol, (1− s, 1− s)) such that M∗(τ∗ ⊗ τ1, (1− s, s))M∗(τ∗1 , 1− s)Φ1−s =

ϕs,1−s. Using (3.3) with ε∗, ϕ′s =M∗(ε∗, 1− s)Φ1−s. Therefore ϕ′s defines f ′s ∈ ξ(ε, good, s) by
(4.11) and, as in the lemma, Ψ(W,M∗(τ∗, 1− s)f1−s, s) = Ψ(g0 ·W, f ′s, s). 2

We will resort to Corollary 5.2 for given representations π and τ , with the luxury of selecting
τ1. The following demonstrates how to select τ1 so that the corollary would be applicable.

Corollary 5.3. Let τ be an irreducible representation of GLn. For any m>max(n, l − n)
and unitary irreducible supercuspidal representation τ1 of GLm twisted by a sufficiently
ramified character, we have Mτ1(s) = `τ∗⊗τ1(1− s) = `τ1⊗τ∗(s) = 1 and gcd(π × τ, s) ∈ gcd(π ×
ε, s)C[q−s, qs], for any representation π of Gl.

Proof of Corollary 5.3. Note that the properties of τ and τ1 imply that ε is irreducible
(see [Zel80, § 9]). Once we show that Mτ1(s) = `τ∗⊗τ1(1− s) = `τ1⊗τ∗(s) = 1, the result follows
from Corollary 5.2. The fact that Mτ1(s) = 1 is obtained as explained in Example 4.1.
Next we show that `τ∗⊗τ1(1− s) = `τ1⊗τ∗(s) = 1. Choose φ∗ = IndGLn

Pn1,...,nk
(φ∗1 ⊗ · · · ⊗ φ∗k) with

irreducible supercuspidal representations φ∗i such that τ∗ is a sub-representation of φ∗. Since
whenever m> n (and τ1 is irreducible supercuspidal) [JPS83, Proposition 8.1(i)] implies
that L(φ∗i × τ∗1 , 1− 2s) = 1, Theorem 3.3 shows that each M(φ∗i ⊗ τ1, (1− s, s)), 1 6 i6 k, is
holomorphic. According to [Sha81, Theorem 2.1.1], so is M(τ∗ ⊗ τ1, (1− s, s)). Now the fact
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that L(τ × τ1, 2s) = 1 implies that M∗(τ∗ ⊗ τ1, (1− s, s)) is holomorphic. The same reasoning
applies to M∗(τ1 ⊗ τ∗, (s, 1− s)). 2

6. Computation of the gcd

6.1 Tempered representations

Assume that π and τ are tempered representations. The following proposition is the key
ingredient in the proof of Theorem 1.1.

Proposition 6.1. The integral Ψ(W, fs, s) with fs ∈ ξ(τ, std, s) has no poles for <(s)> 0.

We derive the theorem first.

Proof of Theorem 1.1. We prove that L(π × τ, s)−1 divides gcd(π × τ, s)−1, gcd(π × τ, s) ∈
L(π × τ, s)Mτ (s)C[q−s, qs] and under a certain assumption on the intertwining operators,
gcd(π × τ, s) = L(π × τ, s).

Recall that by Conjecture 1.1, γ(π × τ, ψ, s) given by (3.5) equals (up to an invertible factor in
C[q−s, qs]) the corresponding γ-factor of Shahidi. By Shahidi’s definition of the γ-factor [Sha90]
and (3.7),

gcd(π × τ∗, 1− s)
gcd(π × τ, s)

' γ(π × τ, ψ, s)' L(π × τ∗, 1− s)
L(π × τ, s)

. (6.1)

Here the L-functions on the right-hand side are the ones defined by Shahidi. By [CS98, § 4],
the L-function L(π × τ, s) is holomorphic for <(s)> 0 and L(π × τ∗, 1− s) is holomorphic for
<(s)< 1. Therefore the quotient on the right-hand side is reduced and it follows immediately
that L(π × τ, s)−1 divides gcd(π × τ, s)−1.

The integrals Ψ(W, fs, s) with fs ∈ ξ(τ, hol, s) span a fractional ideal of C[q−s, qs] which
contains 1, according to Proposition 4.1. Thus there is a polynomial P0 ∈ C[X] with P0(0) = 1
and of minimal degree such that P0(q−s)Ψ(W, fs, s) ∈ C[q−s, qs] for all W and fs ∈ ξ(τ, hol, s).
Put gcd0(π × τ, s) = P0(q−s)−1. Then gcd0(π × τ, s)−1 divides gcd(π × τ, s)−1 and, by virtue of
Proposition 4.2,

gcd(π × τ, s) = gcd0(π × τ, s)`τ∗(1− s)P (q−s, qs),

where P ∈ C[q−s, qs] divides `τ∗(1− s)−1. Similarly write gcd(π × τ∗, 1− s) using P̃ ∈ C[q−s, qs]
which divides `τ (s)−1. Consider the quotient

gcd(π × τ∗, 1− s)
gcd(π × τ, s)

=
gcd0(π × τ∗, 1− s)`τ (s)P̃ (q−s, qs)
gcd0(π × τ, s)`τ∗(1− s)P (q−s, qs)

.

Proposition 6.1 implies that gcd0(π × τ∗, 1− s)−1 and gcd0(π × τ, s)−1 are relatively prime.
However, gcd0(π × τ, s) and `τ (s)P̃ (q−s, qs) may have common factors and factors of `τ∗(1− s)
P (q−s, qs) may also appear in the numerator. Canceling common factors and using
(6.1) we see that gcd0(π × τ, s) ∈ `τ (s)L(π × τ, s)C[q−s, qs]. Therefore gcd(π × τ, s) ∈ L(π ×
τ, s)Mτ (s)C[q−s, qs].

Now assume that the intertwining operators L(τ, S2, 2s− 1)−1M(τ, s) and L(τ∗, S2,
1− 2s)−1M(τ∗, 1− s) are holomorphic. According to (3.2), with a minor abuse of notation,

M∗(τ∗, 1− s) = γ(τ∗, S2, ψ, 1− 2s)M(τ∗, 1− s)' L(τ, S2, 2s)
L(τ∗, S2, 1− 2s)

M(τ∗, 1− s).
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Since we assume that L(τ∗, S2, 1− 2s)−1M(τ∗, 1− s) is holomorphic, the poles of M∗(τ∗, 1− s)
are contained in the poles of L(τ, S2, 2s), which by Theorem 3.1 lie in <(s) 6 0. Thus by
Propositions 4.2 and 6.1 the poles of Ψ(W, fs, s) for fs ∈ ξ(τ, good, s) are in <(s) 6 0 and
the same is true for gcd(π × τ, s). Similarly we see that the poles of gcd(π × τ∗, 1− s) are
in <(s) > 1. Thus the quotient gcd(π × τ∗, 1− s) gcd(π × τ, s)−1 is reduced. Then (6.1) implies
that gcd(π × τ, s) = L(π × τ, s). 2

Proof of Proposition 6.1. Consider the case of l 6 n and split Gl. By Proposition 4.4 it is enough
to prove that the integral∫

Al−1

∫
G1

chΛ(x)|W |(ax)δ
− 1

2
BGl

(a)(δ
− 1

2
BGLn

· |det|<(s) · |W ′|)(diag(a, bxc, In−l)) dx da (6.2)

is convergent for <(s)> 0 and this convergence is uniform for <(s) in a compact set. We may
already take a real s. Since |bxc|6 1 and W ′ vanishes away from zero (W ′(t) = 0 for t ∈An unless
all simple roots evaluated at t are close enough to zero; see [CS80, § 6.1]), the coordinates of a
are all bounded from above. Hence we may simply replace chΛ(x) in the last integral by a non-
negative Schwartz function Φ ∈ S(F l), which is a function of a and bxc. By the Cauchy–Schwarz
inequality, integral (6.2) is bounded by the product of square roots of the following two integrals:∫

Al−1

∫
G1

|W |2(ax)|det a|s[x]−sδ−1
BGl

(a) dx da, (6.3)∫
Al−1

∫
G1

Φ2(a, bxc)(δ−1
BGLn

· |det|s · |W ′|2)(diag(a, bxc, In−l)) dx da. (6.4)

Replace the dx-integration in (6.4) with an integration over al ∈ F ∗. Then (6.4) is a sum of two
integrals: the first with |al|6 1, the second with |al|> 1, both bounded by an integral of the
form ∫

Al

|W ′|2(a)Φ2(a)|det a|sδ−1
BGLn

(a) da. (6.5)

Integrals (6.3) and (6.5) converge for s > 0, uniformly for s in a compact set, since π and τ are
tempered. This follows by using the asymptotic expansion of Whittaker functions (see [CS80,
§ 6], and also [LM09]) and the fact that the exponents of a tempered representation are non-
negative [Wal03, Proposition III.2.2].

For l 6 n and quasi-split Gl one just repeats the above arguments, ignoring the integration
over G1. The case of l > n is similar (the properties of W imply that the coordinates of a ∈An
are bounded from above). 2

6.2 Lower bound for an irreducible π and a tempered τ
Let π be an irreducible (generic) representation ofGl. According to [Mui01] we may assume that π
is a standard module. Namely, π = IndGlPk(σ ⊗ π′) where σ = IndGLk

Pk1,...,km
(σ1 ⊗ · · · ⊗ σm) (if m= 1,

σ = σ1), σi = |det|eiσ′i, σ′i is a square-integrable representation of GLki , ei ∈ R, 0> e1 > · · ·> em
and π′ is a tempered representation of Gl−k (see also [Mui04]). Note that if k = l, it is also
possible that π = IndGlκPl(σ).

Proof of Theorem 1.4. Let τ be tempered such that the prescribed intertwining operators are
holomorphic. Using Corollary 5.1 (valid for our range of k, l and n), for some P1, P2 ∈ C[q−s, qs],

L(σ × τ, s) = gcd(π × τ, s)P1, L(σ × τ∗, 1− s) = gcd(π × τ∗, 1− s)P2. (6.6)
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According to the multiplicativity of γ(π × τ, ψ, s), (3.7), (3.8) and (6.6),

P2L(σ∗ × τ∗, 1− s) gcd(π′ × τ∗, 1− s)
P1L(σ∗ × τ, s) gcd(π′ × τ, s)

' 1. (6.7)

As proved in § 6.1 the poles of gcd(π′ × τ, s) lie in <(s) 6 0, because π′ and τ are tempered (this
did not rely on Conjecture 1.1). According to [JPS83, Theorem 3.1],

L(σ∗ × τ, s) ∈
m∏
i=1

L(σ∗i × τ, s)C[q−s, qs].

Hence any pole of L(σ∗ × τ, s) is contained in some L(σ∗i × τ, s) = L((σ′i)
∗ × τ, s− ei), and since

σ′i is square-integrable we get from [JPS83, § 8] that the poles of L((σ′i)
∗ × τ, s− ei) lie in

<(s) 6 ei < 0. We conclude that the poles of the denominator of (6.7) are in <(s) 6 0.

In a similar manner we prove that the poles of the numerator of (6.7) are in <(s) > 1.
Specifically, the poles of gcd(π′ × τ∗, 1− s) are in <(1− s) 6 0 because π′ and τ∗ are tempered,
and any pole of L(σ∗ × τ∗, 1− s) appears in some L((σ′i)

∗ × τ∗, 1− s− ei).
Thus any pole appearing in the denominator must be canceled by P1, i.e. P1L(σ∗ ×

τ, s) gcd(π′ × τ, s) ∈ C[q−s, qs]. Together with (6.6) this gives the result. 2

7. Integrals and Laurent series

7.1 Functions and Laurent series

The integral Ψ(W, fs, s) is by meromorphic continuation a rational function in q−s. In order to
bound the possible poles of the integral in their case, Jacquet et al. [JPS83] regarded it as a
Laurent series. In this section we provide a few background definitions and results, explicating
the connection between integrals and series.

Let Σ(X) = C[[X, X−1]] be the complex vector space of formal Laurent series, e.g. of∑
m∈Z amX

m, am ∈ C. It is an R(X) = C[X, X−1]-module with torsion. A Σ ∈ Σ(X) is said
to be absolutely convergent at s0 ∈ C if the complex series obtained from Σ by replacing X with
q−s0 is absolutely convergent. Then the value of Σ at s0 is the value of the complex series.

Let f = f(s) be a complex-valued function defined on some domain Df ⊂ C, where a domain
will always refer to a subset containing a non-empty open set. We say that f has a representation
Σ ∈ Σ(X) in Df if, for all s0 ∈Df , Σ is absolutely convergent at s0 and equals f(s0). Note that
such a representation is unique, i.e. if Σ′ also represents f in Df , then Σ = Σ′ in Σ(X). When
clear from the context, we omit the domain and say that f is representable by Σ.

7.2 Representations of integrals as series

Let Γ be an l-space, i.e. a Hausdorff, locally compact zero-dimensional topological space (see
[BZ76, 1.1]), with a Borelian measure dx. For a ring R, denote by C∞(Γ, R) the set of locally
constant functions φ : Γ→R. This is a ring with the pointwise product. We usually take R to
be the polynomial ring C[q−s, qs], or C(q−s).

Example 7.1. The function αs belongs to C∞(GLn, C[q−s, qs]).

Example 7.2. Let fs ∈ ξ(τ, hol, s) = ξHnQn (τ, hol, s) where τ is realized in W(τ, ψ). For a
fixed s, fs ∈ V (τ, s), and then, for a fixed h, b 7→ fs(h, b) belongs to W(τ, ψ) (see § 3.1).
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Write fs =
∑m

i=1 Pi(q
−s, qs)f (i)

s where f
(i)
s ∈ ξ(τ, std, s). For h ∈Hn write h= buk with b ∈

GLn ∼=Mn, u ∈ Un and k ∈KHn according to the Iwasawa decomposition. Then f
(i)
s (h, 1) =

|det b|s−
1
2 δ

1
2
Qn

(b)f (i)
s (k, b) and, since f (i)

s (k, b) is independent of s, f (i)
s (h, 1) ∈ C[q−s, qs]. Hence

the function h 7→ fs(h, 1) =
∑m

i=1 Pi(q
−s, qs)f (i)

s (h, 1) is a locally constant function on Hn with
values in C[q−s, qs]. Therefore we may regard fs as an element of C∞(Hn, C[q−s, qs]). Similarly,
fs ∈ ξ(τ, rat, s) may be viewed as an element of C∞(Hn, C(q−s)) (the function h 7→ fs(h, 1) takes
values in C(q−s)).

For a non-empty finite subset of integers M , let VM = SpanC{q−sj : j ∈M} ⊂ C[q−s, qs].
Denote the empty set by ∅. Let φ ∈ C∞(Γ, C[q−s, qs]). The M -support of φ is the set of x ∈ Γ
such that 0 6= φ(x) ∈ VM and for all ∅ 6=M ′ (M , φ(x) /∈ VM ′ . We denote this set (which may
be empty) by suppM (φ). Since φ is locally constant, suppM (φ) is an open subset. Note that
x ∈ suppM (φ) means that M is exactly the subset of integers m such that q−sm appears in the
polynomial φ(x) with a nonzero coefficient.

Claim 7.1. If supp(φ) 6= ∅ (supp(φ) being the support of φ), there is a unique (necessarily
countable) collection of non-empty finite subsets of integers {Mi}i∈I , such that suppMi

(φ) 6= ∅
for all i ∈ I and supp(φ) =

∐
i∈I suppMi

(φ).

Proof of Claim 7.1. For any x ∈ supp(φ), φ(x) is a nonzero polynomial in q−s, qs whence there
is a unique finite set ∅ 6=M ⊂ Z containing precisely the integers m such that q−sm appears in
φ(x) with a nonzero coefficient. Hence φ(x) ∈ VM and, for all ∅ 6=M ′ (M , φ(x) /∈ VM ′ . Thus
x ∈ suppM (φ). It follows that supp(φ) =

⋃
i∈I suppMi

(φ) for some collection of sets {Mi}i∈I .
If x ∈ suppM (φ)

⋂
suppN (φ) for another non-empty finite subset N , then φ(x) ∈ VM

⋂
VN .

Since φ(x) 6= 0 we obtain M ∩N 6= ∅. If M
⋂
N =M , we get that ∅ 6=M (N and φ(x) ∈ VM ,

which contradicts the fact that x ∈ suppN (φ). But now ∅ 6=M ∩N (M satisfies φ(x) ∈ VM∩N
contradicting that x ∈ suppM (φ). This shows that supp(φ) =

∐
i∈I suppMi

(φ) and the collection
{Mi}i∈I is unique. 2

We say that Γ can be divided into the simple supports of φ if supp(φ) = ∅ or if the collection
{Mi}i∈I of Claim 7.1 satisfies Mi = {mi} for some mi ∈ Z for all i ∈ I.

Example 7.3. The l-space GLn can be divided into the simple supports of αs.

Example 7.4. Let P =
∑

j∈Z ajq
−sj ∈ C[q−s, qs] (i.e. aj = 0 for almost all j). The function

φ(x) = P defined on Γ trivially belongs to C∞(Γ, C[q−s, qs]). Assuming that P 6= 0, we have
that supp(φ) = Γ = suppM (φ) where M = {j ∈ Z : aj 6= 0}. This example can be extended by
replacing the coefficients aj with functions in C∞(Γ, C).

Example 7.5. Let fs ∈ ξ(τ, std, s) be regarded as a function in C∞(Hn, C[q−s, qs]), as
explained in Example 7.2, i.e. the actual function is h 7→ fs(h, 1). For h ∈Hn, fs(h, 1) =

|det b|s−
1
2 δ

1
2
Qn

(b)fs(k, b) where h= buk is written according to Example 7.2. Since fs(k, b) is
independent of s,

supp{m}(fs) = {h ∈Hn : h= buk, |det b|= q−m, fs(k, b) 6= 0}.

This shows that Hn can be divided into the simple supports of fs.

Denote by Pm : C[q−s, qs]→ C the function given by Pm(
∑

j∈Z ajq
−sj) = am. The function

x 7→ Pm(φ(x)) is locally constant (hence measurable).
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Definition 7.1. Let φ ∈ C∞(Γ, C[q−s, qs]). Assume that for all m ∈ Z,
∫

Γ |Pm(φ(x))| dx <∞.
Then we define a Laurent series in Σ(X),∮

Γ
φ(x) dx=

∑
m∈Z

Xm

∫
Γ
Pm(φ(x)) dx.

We define a series as above to be strongly convergent at s if∑
m∈Z

q−<(s)m

∫
Γ
|Pm(φ(x))| dx <∞,

a condition stronger than being absolutely convergent at s (where the absolute value surrounds
the dx-integral).

Example 7.6. Let a ∈ C∞(Γ, C)⊂ C∞(Γ, C[q−s, qs]). Then supp(a) = supp{0}(a), and provided
that

∫
Γ |a(x)| dx <∞ then

∮
Γ a(x) dx=

∫
Γ a(x) dx is a constant term as an element of Σ(X).

Next we define an integral for φ ∈ C∞(Γ, C[q−s, qs]). Any fixed s0 ∈ C induces a
homomorphism C[q−s, qs]→ C by evaluation. Denote by [φ(x)](s0) the value of φ(x) under this
homomorphism. For example, if x ∈ suppM (φ), then φ(x) =

∑
j∈M aj(x)q−sj where 0 6= aj(x) ∈ C

and [φ(x)](s0) =
∑

j∈M aj(x)q−s0j ∈ C.

For any fixed s ∈ C, the integral Φ(s) =
∫

Γ[φ(x)](s) dx is absolutely convergent if∫
Γ |[φ(x)](s)| dx <∞. If there is a domain D ⊂ C such that, for all s ∈D, Φ(s) is absolutely

convergent, then s 7→ Φ(s) is a complex-valued function on D. The following results show how
to use the series defined above to represent the complex function Φ in the sense of § 7.1.

We introduce the following notation that will be used repeatedly below. For φ ∈
C∞(Γ, C[q−s, qs]), denote Φφ(s) =

∫
Γ[φ(x)](s) dx and Σφ =

∮
Γ φ(x) dx (assuming these are

defined). Let D ⊂ C be a domain. We write Σφ ∼D Φφ if, for all s ∈D, Φφ(s) is absolutely
convergent, Σφ is strongly convergent at s and Σφ represents Φφ in D.

Lemma 7.1. Let φ ∈ C∞(Γ, C[q−s, qs]) be such that Γ can be divided into its simple supports.
Assume that Φφ(s) is absolutely convergent in a domain D ⊂ C. Then Σφ is defined and
Σφ ∼D Φφ.

Proof of Lemma 7.1. If x ∈ supp{m}(φ), write φ(x) = q−smam(x) with 0 6= am(x) ∈ C. In D,

Φφ(s) =
∑
m∈Z

∫
supp{m}(φ)

[φ(x)](s) dx=
∑
m∈Z

∫
supp{m}(φ)

q−smam(x) dx

=
∑
m∈Z

q−sm
∫

supp{m}(φ)
Pm(φ(x)) dx=

∑
m∈Z

q−sm
∫

Γ
Pm(φ(x)) dx.

Note that whenever supp{m}(φ) 6= ∅, am(x) is defined. Each of the integrals
∫

Γ Pm(φ(x)) dx is
absolutely convergent, because Φ(s) is such for s ∈D. Hence Σφ is defined,

Σφ =
∑
m∈Z

Xm

∫
Γ
Pm(φ(x)) dx.
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It is strongly convergent since∑
m∈Z

q−<(s)m

∫
Γ
|Pm(φ(x))| dx =

∑
m∈Z

q−<(s)m

∫
supp{m}(φ)

|Pm(φ(x))| dx

=
∑
m∈Z

∫
supp{m}(φ)

|[φ(x)](s)| dx=
∫

Γ
|[φ(x)](s)| dx <∞.

Evidently, replacing X with q−s in Σφ we obtain Φφ(s), showing that Σφ represents Φφ in D. 2

More generally, we have the following lemma.

Lemma 7.2. Let φ ∈ C∞(Γ, C[q−s, qs]) be such that Σφ is defined. Assume that Φφ(s) is
absolutely convergent and Σφ is strongly convergent in a domain D ⊂ C. Then Σφ ∼D Φφ.

Proof of Lemma 7.2. According to the assumptions, it is left to show that Σφ represents Φφ in D.
For x ∈ suppM (φ) write φ(x) =

∑
j∈M aj(x)q−sj where 0 6= aj(x) ∈ C. Let Z be the (countable)

set of finite non-empty subsets of Z. Observe that for a fixed m ∈ Z,∫
Γ
|Pm(φ(x))| dx=

∑
{M∈Z:m∈M}

∫
suppM (φ)

|Pm(φ(x))| dx=
∑

{M∈Z:m∈M}

∫
suppM (φ)

|am(x)| dx.

(7.1)
(The summation is over all subsets M ∈ Z containing m.) Note that suppM (φ) may be empty,
in which case the dx-integration over suppM (φ) vanishes. Also, for any two distinct M, N ∈ Z,
as we proved in Claim 7.1 the sets suppM (φ), suppN (φ) are disjoint.

Let s ∈D. Since Σφ is strongly convergent in D, using (7.1) yields∑
m∈Z

q−<(s)m
∑

{M∈Z:m∈M}

∫
suppM (φ)

|am(x)| dx <∞. (7.2)

We also have

Φφ(s) =
∑
M∈Z

∫
suppM (φ)

[φ(x)](s) dx=
∑
M∈Z

∫
suppM (φ)

∑
j∈M

aj(x)q−sj dx. (7.3)

For fixed M and j ∈M ,
∫

suppM (φ) |aj(x)| dx <∞ because it is majorized by q<(s)j times (7.2).
Hence we may change the order of summation and integration in (7.3) and obtain∑

M∈Z

∑
j∈M

q−sj
∫

suppM (φ)
aj(x) dx.

Again using (7.2) we change the order of summation,

Φφ(s) =
∑
M∈Z

∑
j∈M

q−sj
∫

suppM (φ)
aj(x) dx=

∑
m∈Z

q−sm
∑

{M∈Z:m∈M}

∫
suppM (φ)

am(x) dx

=
∑
m∈Z

q−sm
∑

{M∈Z:m∈M}

∫
suppM (φ)

Pm(φ(x)) dx=
∑
m∈Z

q−sm
∫

Γ
Pm(φ(x)) dx.

This shows that Σφ represents Φφ in D. 2

Next we consider the integral of a sum of holomorphic sections.

Lemma 7.3. Let φ1, φ2 ∈ C∞(Γ, C[q−s, qs]) and put φ= φ1 + φ2. If Σφi is defined, i= 1, 2, then
Σφ is defined. Moreover if Σφi ∼D Φφi for both i, then Σφ ∼D Φφ and Σφ = Σφ1 + Σφ2 .
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Proof of Lemma 7.3. The series Σφ is defined because Σφ1 , Σφ2 are defined and Pm(φ(x)) =
Pm(φ1(x)) + Pm(φ2(x)). Now consider s ∈D. Since Φφ1(s), Φφ2(s) are absolutely convergent,
so is Φφ(s) and Φφ(s) = Φφ1(s) + Φφ2(s). Also Σφ is strongly convergent, because Σφ1 , Σφ2

are. By Lemma 7.2, Σφ ∼D Φφ. Since the series Σφ1 + Σφ2 also represents Φφ in D, then
Σφ = Σφ1 + Σφ2 . 2

As in Example 7.4, let P ∈ C[q−s, qs] be considered as an element of C∞(Γ, C[q−s, qs]); then
P · φ ∈ C∞(Γ, C[q−s, qs]). This defines a structure of a C[q−s, qs]-module on C∞(Γ, C[q−s, qs]).
The next lemma shows that the

∮
operation commutes with multiplication by a polynomial.

Lemma 7.4. Let φ ∈ C∞(Γ, C[q−s, qs]) be such that Σφ is defined and assume that Σφ ∼D Φφ.
Then, for any P ∈ C[q−s, qs], ΣPφ is defined, ΣPφ ∼D ΦPφ and P (X, X−1)Σφ = ΣPφ, i.e.

P (X, X−1)
∮

Γ
φ(x) dx=

∮
Γ
(Pφ)(x) dx.

Proof of Lemma 7.4. Write P =
∑

j∈M ajq
−sj , φj = ajq

−sj · φ. It follows from the definitions that
Σφj =

∮
Γ φj(x) dx is defined and in D, Σφj is strongly convergent and Φφj (s) =

∫
Γ[φj(x)](s) dx is

absolutely convergent. By Lemma 7.2, Σφj ∼D Φφj . Since Pφ=
∑

j∈M φj , Lemma 7.3 shows that
ΣPφ =

∮
Γ(Pφ)(x) dx is defined and ΣPφ ∼D ΦPφ. For s ∈D, ΦPφ(s) = P (q−s, qs)Φφ(s), whence

P (X, X−1)Σφ also represents ΦPφ in D, showing that ΣPφ = P (X, X−1)Σφ. 2

Let Γ× Γ′ be a product of l-spaces (this is also an l-space) and let φ ∈ C∞(Γ× Γ′, C[q−s, qs]).
For any x ∈ Γ define a function φ(x, ·) ∈ C∞(Γ′, C[q−s, qs]) by x′ 7→ φ(x, x′). We say that φ
is smooth in Γ if the function x 7→ φ(x, ·) belongs to C∞(Γ, C∞(Γ′, C[q−s, qs])). Put Σφ =∮

Γ×Γ′ φ(x, x′)d(x, x′), Φφ(s) =
∫

Γ×Γ′ [φ(x, x′)](s)d(x, x′). We prove a weak analogue of Fubini’s
theorem.

Lemma 7.5. Let φ ∈ C∞(Γ× Γ′, C[q−s, qs]) be smooth in Γ, for which Σφ is defined. Assume
Σφ ∼D Φφ. Then, for all x ∈ Γ, the series Σφ(x,·) =

∮
Γ′ φ(x, x′) dx′ is defined and Σφ(x,·) ∼D Φφ(x,·),

where Φφ(x,·)(s) =
∫

Γ′ [φ(x, x′)](s) dx′. Further suppose that, for all x ∈ Γ, Σφ(x,·) ∈R(X). Then
the function φΓ′(x) = Σφ(x,·)(q−s, qs) belongs to C∞(Γ, C[q−s, qs]), ΣφΓ′ =

∮
Γ φΓ′(x) dx is defined,

ΣφΓ′ ∼D Φφ, and Σφ = ΣφΓ′ .

Proof of Lemma 7.5. Let x ∈ Γ. Since φ is smooth in Γ, there is a compact open neighborhood
Nx ⊂ Γ of x, such that φ(x, ·) = φ(nx, ·) for all nx ∈Nx. Put cx = vol(Nx)−1. Because Σφ is
defined, for all m we have∫

Γ′
|Pm(φ(x, x′))| dx′ 6 cx

∫
Γ×Γ′

|Pm(φ(x, x′))| d(x, x′)<∞.

Therefore Σφ(x,·) is defined. The coefficient of Xm in Σφ(x,·) is
∫

Γ′ Pm(φ(x, x′)) dx′. In addition,
since Σφ is strongly convergent at s ∈D,∑

m∈Z
q−<(s)m

∫
Γ′
|Pm(φ(x, x′))| dx6 cx

∑
m∈Z

q−<(s)m

∫
Γ×Γ′

|Pm(φ(x, x′))| d(x, x′)<∞.

Hence Σφ(x,·) is strongly convergent. Also Φφ(x,·)(s) is absolutely convergent in D. According to
Lemma 7.2, we have Σφ(x,·) ∼D Φφ(x,·).
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Now suppose that Σφ(x,·) ∈R(X) for all x. Then φΓ′ ∈ C∞(Γ, C[q−s, qs]) because φ is smooth
in Γ. By Tonelli’s theorem and using the fact that Σφ is defined,∫

Γ
|Pm(φΓ′(x))| dx=

∫
Γ

∣∣∣∣∫
Γ′
Pm(φ(x, x′)) dx′

∣∣∣∣ dx6
∫

Γ×Γ′
|Pm(φ(x, x′))|d(x, x′)<∞.

It follows that ΣφΓ′ is defined. Since Σφ is strongly convergent for s ∈D, so is ΣφΓ′ . In fact,∑
m∈Z

q−<(s)m

∫
Γ
|Pm(φΓ′(x))| dx6

∑
m∈Z

q−<(s)m

∫
Γ×Γ′

|Pm(φ(x, x′))| d(x, x′)<∞.

Now ΦφΓ′ (s) =
∫

Γ[φΓ′(x)](s) dx is absolutely convergent in D because∫
Γ
|[φΓ′(x)](s)| dx6

∫
Γ

∫
Γ′
|[φ(x, x′)](s)| dx′ dx=

∫
Γ×Γ′

|[φ(x, x′)](s)| d(x, x′)<∞.

Appealing to Lemma 7.2, we have that ΣφΓ′ ∼D ΦφΓ′ and since, for s ∈D, ΦφΓ′ (s) =∫
Γ

∫
Γ′ [φ(x, x′)](s) dx′dx, by Fubini’s theorem we have that ΦφΓ′ (s) = Φφ(s) for all s ∈D. Hence

ΣφΓ′ ∼D Φφ and Σφ = ΣφΓ′ . 2

We may extend the definitions and results of § 7.1 and this section to functions f(s1, . . . , sk)
in k variables. Then we consider the space C∞(Γ, C[q∓s1 , . . . , q∓sk ]) and, for instance, VM =
SpanC{q−s1j1−...−skjk : (j1, . . . , jk) ∈M} where ∅ 6=M ⊂ Zk is finite.

7.3 Laurent representation for Ψ(W, fs, s)
We will use the series described in § 7.2 to represent the integral Ψ(W, fs, s). Recall that there
is a domain D ⊂ C of absolute convergence for Ψ(W, fs, s), fs ∈ ξ(τ, hol, s), which depends only
on the representations π and τ (see § 3.1). Since for fs ∈ ξ(τ, good, s) we have `τ∗(1− s)−1fs ∈
ξ(τ, hol, s), we can assume that Ψ(W, fs, s) is absolutely convergent in D for all good sections,
and D still depends only on the representations.

Lemma 7.6. Let fs ∈ ξ(τ, hol, s). Consider Ψ(W, fs, s) as a function of s, defined in D. It is
representable in Σ(X) by a strongly convergent series Σ(W, fs, s) with finitely many negative
coefficients.

Proof of Lemma 7.6. We prove the case of l 6 n, the other case being similar. Since UGlBGl is
a dense open subset of Gl such that its complement is a subset of zero measure, we can replace
the dg-integration in Ψ(W, fs, s) with an integration over BGl . Then the integral takes the form

Ψ(W, fs, s) =
∫
BGl

∫
Rl,n

W (g)fs(wl,nrg, 1)ψγ(r) dr dg.

Here dg is actually a right-invariant Haar measure on BGl . Let Γ =BGl ×Rl,n. For fs ∈
ξ(τ, hol, s), set φfs(g, r) =W (g)fs(wl,nrg, 1)ψγ(r) ∈ C[q−s, qs] (g ∈BGl , r ∈Rl,n) and note that
φfs ∈ C∞(Γ, C[q−s, qs]). Then Φφfs

(s) = Ψ(W, fs, s) is absolutely convergent in D.
Assume first that fs ∈ ξ(τ, std, s). For (g, r) ∈ Γ write wl,nrg = buk with b ∈GLn ∼=Mn,

u ∈ Un and k ∈KHn according to the Iwasawa decomposition. Then

φfs(g, r) =W (g)|det b|s−
1
2 δ

1
2
Qn

(b)fs(k, b)ψγ(r)

and, since the only factor depending on s is |det b|s (because fs(k, b) is independent of s),

supp{m}(φfs) = {(g, r) ∈ Γ : wl,nrg = buk, |det b|= q−m, W (g)fs(k, b) 6= 0}.
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Thus Γ can be divided into the simple supports of φfs (see also Example 7.5). Applying
Lemma 7.1, we get Σφfs

∼D Φφfs
. Regarding fs ∈ ξ(τ, hol, s), write fs =

∑m
i=1 Pif

(i)
s for Pi ∈

C[q−s, qs], f (i)
s ∈ ξ(τ, std, s). Then Σφ

f
(i)
s

∼D Φφ
f

(i)
s

for all i and, by Lemma 7.4, ΣPiφ
f

(i)
s

∼D
ΦPiφ

f
(i)
s

. Since
∑m

i=1 Piφf (i)
s

= φfs , Lemma 7.3 implies that Σφfs
∼D Φφfs

, and we set

Σ(W, fs, s) = Σφfs
.

Regarding the negative coefficients, decompose Ψ(W, fs, s) as in Proposition 4.4. Clearly
each integral I(j)

s in this decomposition is representable as a series, by formally replacing q−s

with X. We argue that each series has a finite number of negative coefficients, i.e., nonzero
coefficients of X−k with k > 0. Looking at (4.7), each coordinate of a is bounded from above
because W � ∈W(π, ψ−1

γ ) vanishes away from zero and by definition [x]−1 = |bxc|6 1. Hence
|det a| · [x]−1 is bounded from above. Note that the properties of W ′ ∈W(τ, ψ) could similarly
be used to bound the coordinates of a. When l > n we consider (4.8) instead of (4.7) for this
argument. 2

For any fs ∈ ξ(τ, good, s) there exists a P ∈ C[q−s, qs] which divides `τ∗(1− s)−1, such that
Pfs ∈ ξ(τ, hol, s). According to the above, Ψ(W, Pfs, s) defined in D is representable in Σ(X).

8. Upper bound in the second variable

8.1 Outline
In this section we prove Theorem 1.2. We revisit the arguments of [Kap10b], where we proved the
multiplicative property of the γ-factor in the second variable. The proof relied on manipulations
of integrals, involving the application of three functional equations, for π × τ2, τ1 × τ2 and π × τ1,
to Ψ(W, fs, s). Here we reinterpret the passages as passages between Laurent series, and apply
the functional equations to the series Σ(W, fs, s) which represents Ψ(W, fs, s). We utilize the
notation and results of § 7 (e.g. Σ(X) = C[[X, X−1]], R(X) = C[X, X−1]).

The overall structure of the proof already appeared in [JPS83]. Roughly, the proportionality
factor between Ψ(W, fs, s) and Ψ(W,M∗(τ, s)fs, 1− s) is calculated using (3.3). Each of the
intertwining operators on the right-hand side of (3.3) appears as a result of applying a functional
equation to an inner integral. For example, M∗(τ2, s) appears once we apply the functional
equation of π × τ2.

As explained in the introduction our technique extends to the Rankin–Selberg integrals of
SO2l+1 ×GLn. In particular, one can apply the results of § 7 to the integral manipulations in
Soudry’s proof of the multiplicativity for the γ-factors ([Sou93, § 11] and [Sou00]).

8.2 Interpretation of functional equations
The functional equations, at first defined between meromorphic continuations, can sometimes
be interpreted as equations in Σ(X), by substituting X for q−s, as observed in [JPS83, (§ 4.3)].
Consider a typical functional equation:

gcd(π × τ, s)−1Ψ(W, fs, s)
= c(l, τ, γ, s)ε(π × τ, ψ, s)−1 gcd(π × τ∗, 1− s)−1Ψ(W,M∗(τ, s)fs, 1− s). (8.1)

This equality is, a priori, between meromorphic continuations, but, by the definition of the gcd
and because of Claim 3.2, both sides are actually polynomials. Then (8.1) may be reinterpreted
as an equality in R(X) by replacing q−s with X. If gcd(π × τ, s)−1Ψ(W, fs, s) =B(q−s, qs) and
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the right-hand side equals B̃(q−s, qs) for some B, B̃ ∈ C[q−s, qs], equality (8.1) implies that
B(X, X−1) = B̃(X, X−1) in R(X).

Let G(q−s)−1 = gcd(π × τ, s)−1 and denote by G(X)−1 ∈R(X) (in fact, G(X)−1 ∈ C[X])
the polynomial obtained by replacing q−s with X. Similarly put G̃(q−s, qs)−1 = c(l, τ, γ, s)ε(π ×
τ, ψ, s)−1 gcd(π × τ∗, 1− s)−1 and form G̃(X, X−1)−1 ∈R(X).

If fs ∈ ξ(τ, hol, s), by Lemma 7.6 there exists a series Σ(W, fs, s) which represents Ψ(W, fs, s)
in some domain of absolute convergence. Hence in Σ(X) it holds that G(X)−1Σ(W, fs, s) =
B(X, X−1). If also M∗(τ, s)fs ∈ ξ(τ∗, hol, 1− s), equality (8.1) may be interpreted in Σ(X) as

G(X)−1Σ(W, fs, s) = G̃(X, X−1)−1Σ(W,M∗(τ, s)fs, 1− s).

However, it may be the case that M∗(τ, s)fs has poles (due to the intertwining operator). Let
0 6= P ∈ C[q−s, qs] be such that P (q−s, qs)M∗(τ, s)fs is holomorphic. Since

P (q−s, qs)Ψ(W,M∗(τ, s)fs, 1− s) = Ψ(W, P (q−s, qs)M∗(τ, s)fs, 1− s),

we can multiply both sides of (8.1), which are polynomials, by P and reach the equivalent
equation

P (q−s, qs) gcd(π × τ, s)−1Ψ(W, fs, s)
= c(l, τ, γ, s)ε(π × τ, ψ, s)−1 gcd(π × τ∗, 1− s)−1Ψ(W, P (q−s, qs)M∗(τ, s)fs, 1− s).

Now this may be interpreted in Σ(X) as

P (X, X−1)G(X)−1Σ(W, fs, s) = G̃(X, X−1)−1Σ(W, P (q−s, qs)M∗(τ, s)fs, 1− s).

We also mention that if an integral Ψ(W, fs, s) for fs ∈ ξ(τ, hol, s) is already a
polynomial, then Σ(W, fs, s) ∈R(X) and the analytic continuation of Ψ(W, fs, s) equals
(Σ(W, fs, s))(q−s, qs).

8.3 Proof of Theorem 1.2
The proof is based on the following lemma.

Lemma 8.1. Suppose that τ = IndGLn
Pn1,n2

(τ1 ⊗ τ2) is irreducible. Let P1, P2, P3 ∈ C[X],
normalized by P1(0) = P2(0) = P3(0) = 1, and of minimal degree such that

P1(q−s) gcd(π × τ∗2 , 1− s)−1M∗(τ2, s),
P2(q−s)M∗(τ1 ⊗ τ∗2 , (s, 1− s)),

P3(q−s) gcd(π × τ∗1 , 1− s)−1M∗(τ1, s)

are holomorphic. Set Pπ×τ = P1P2P3 ∈ C[X]. Then, for fs ∈ ξ(τ, hol, s),

Ψ(W, fs, s) ∈ gcd(π × τ1, s) gcd(π × τ2, s)Pπ×τ (q−s)−1C[q−s, qs], (8.2)
Ψ(W,M∗(τ, s)fs, 1− s) ∈ gcd(π × τ∗1 , 1− s) gcd(π × τ∗2 , 1− s)Pπ×τ (q−s)−1C[q−s, qs]. (8.3)

Before proving the lemma we use it to derive the theorem. We argue by induction on k.
Assume first that k = 2, τ = IndGLn

Pn1,n2
(τ1 ⊗ τ2). By applying Lemma 8.1 to τ∗, for f1−s ∈

ξ(τ∗, hol, 1− s),

Ψ(W,M∗(τ∗, 1− s)f1−s, s) ∈ gcd(π × τ1, s) gcd(π × τ2, s)Pπ×τ∗(qs−1)−1C[q−s, qs]. (8.4)

We have Pπ×τ (q−s)−1 ∈ `τ1(s)`τ1⊗τ∗2 (s)`τ2(s)C[q−s, qs], according to the definitions of Pπ×τ , P1,
`τ2(s) (P2, etc.). Similarly, Pπ×τ∗(qs−1)−1 ∈ `τ∗1 (1− s)`τ∗2⊗τ1(1− s)`τ∗2 (1− s)C[q−s, qs]. We also
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apply the lemma to τ and fs ∈ ξ(τ, hol, s). Combining (8.2) and (8.4) we see that, for any
fs ∈ ξ(τ, good, s),

Ψ(W, fs, s) ∈ gcd(π × τ1, s) gcd(π × τ2, s)Mτ1(s)`τ1⊗τ∗2 (s)`τ∗2⊗τ1(1− s)Mτ2(s)C[q−s, qs].

Now for the general case let k > 2. Put Gπ×(τ1⊗···⊗τk)(s) =
∏k
i=1 gcd(π × τi, s). Let η =

IndGLn−n1
Pn2,...,nk

(τ2 ⊗ · · · ⊗ τk). Applying the induction hypothesis to η∗ yields

gcd(π × η∗, 1− s) ∈Gπ×(τ∗k⊗···⊗τ
∗
2 )(1− s)Mτ∗k⊗···⊗τ

∗
2
(1− s)C[q−s, qs].

Apply Lemma 8.1 to τ = IndGLn
Pn1,n−n1

(τ1 ⊗ η). By the minimality of P1 and since `η(s) ∈
Mτ∗k⊗···⊗τ

∗
2
(1− s)C[q−s, qs] (because of the multiplicativity of M∗(η, s), see (3.4)),

P1(q−s)−1 gcd(π × η∗, 1− s) ∈Gπ×(τ∗k⊗···⊗τ
∗
2 )(1− s)Mτ∗k⊗···⊗τ

∗
2
(1− s)C[q−s, qs].

Also `τ1⊗η∗(s) ∈
∏k
j=2 `τ1⊗τ∗j (s)C[q−s, qs] and `τ1(s) ∈Mτ∗1

(1− s)C[q−s, qs]. Hence

P2(q−s)−1P1(q−s)−1 gcd(π × η∗, 1− s)

∈Gπ×(τ∗k⊗···⊗τ
∗
2 )(1− s)Mτ∗k⊗···⊗τ

∗
2
(1− s)

k∏
j=2

`τ1⊗τ∗j (s)C[q−s, qs],

Pπ×τ (q−s)−1 gcd(π × τ∗1 , 1− s) gcd(π × η∗, 1− s)
∈Gπ×(τ∗k⊗···⊗τ

∗
1 )(1− s)Mτ∗k⊗···⊗τ

∗
1
(1− s)C[q−s, qs].

(8.5)

Then it follows from (8.3) (η replaces τ2) and (8.5) that, for fs ∈ ξ(τ, hol, s),

Ψ(W,M∗(τ, s)fs, 1− s) ∈Gπ×(τ∗k⊗···⊗τ
∗
1 )(1− s)Mτ∗k⊗···⊗τ

∗
1
(1− s)C[q−s, qs]. (8.6)

Using the multiplicativity of γ(π × τ, ψ, s) and (3.7),

Gπ×(τ∗k⊗···⊗τ
∗
1 )(1− s)

Gπ×(τ1⊗···⊗τk)(s)
' gcd(π × τ∗, 1− s)

gcd(π × τ, s)
' gcd(π × τ∗1 , 1− s) gcd(π × η∗, 1− s)

gcd(π × τ1, s) gcd(π × η, s)
.

Then similarly to the proof of Claim 3.3, from (8.5) we deduce

Pπ×τ (q−s)−1 gcd(π × τ1, s) gcd(π × η, s) ∈Gπ×(τ1⊗···⊗τk)(s)Mτ1⊗···⊗τk(s)C[q−s, qs]. (8.7)

Combining (8.2) with (8.7) we assert that, for fs ∈ ξ(τ, hol, s),

Ψ(W, fs, s) ∈Gπ×(τ1⊗···⊗τk)(s)Mτ1⊗···⊗τk(s)C[q−s, qs].

As in the case of k = 2, repeating the arguments above for τ∗ and taking f1−s ∈ ξ(τ∗, hol, 1− s),
(8.6) becomes

Ψ(W,M∗(τ∗, 1− s)f1−s, s) ∈Gπ×(τ1⊗···⊗τk)(s)Mτ1⊗···⊗τk(s)C[q−s, qs].

We conclude that gcd(π × τ, s) ∈Gπ×(τ1⊗···⊗τk)(s)Mτ1⊗···⊗τk(s)C[q−s, qs].
The result we obtain is somewhat stronger. In the statement of the lemma we see, for instance,

that if gcd(π × τ∗2 , 1− s) already contains the poles of M∗(τ2, s), then P1 = 1. Hence the factor
Mτ2(s) in the upper bound for k = 2 will be replaced with just `τ∗2 (1− s). Applying induction
more carefully, keeping track of the poles of intertwining operators which are canceled by the
gcd factors, yields the following refinement of Theorem 1.2.

Corollary 8.1. For all 1 6 i6 k, let Pi, P̃i ∈ C[X] be normalized by Pi(0) = P̃i(0) = 1 and of
minimal degree such that

Pi(q−s) gcd(π × τ∗i , 1− s)−1M∗(τi, s), P̃i(qs−1) gcd(π × τi, s)−1M∗(τ∗i , 1− s)
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are holomorphic. Let Qi ∈ C[q−s, qs] be a least common multiple of Pi(q−s) and P̃i(qs−1). Then

gcd(π × τ, s) ∈
k∏
i=1

(gcd(π × τi, s)Qi(q−s, qs)−1)
∏

16i<j6k

`τi⊗τ∗j (s)`τ∗j ⊗τi(1− s)C[q−s, qs].

Proof of Lemma 8.1. We use the notation and results of § 4.4. Namely, replace τ with ε and
prove the lemma for ε, keeping ζ fixed, <(ζ)� 0 throughout the proof. Eventually we shall put
ζ = 0 in order to derive the result for τ , and thus any data we use will need to be analytic in ζ.
This follows the pattern of [JPS83]. 2

Remark 8.1. Alternatively, we could take ζ as a parameter and use Laurent series in two
variables. There are minimal technical differences between these approaches.

The polynomials Pi are replaced with P ζi as prescribed by the next claim.

Claim 8.1. There exist P ζi ∈ C[X], i= 1, 2, 3, with coefficients that are polynomial in q∓ζ ,

such that the operators P ζ1 (q−s) gcd(π × ε∗2, 1− s)−1M∗(ε2, s), P
ζ
2 (q−s)M∗(ε1 ⊗ ε∗2, (s, 1− s))

and P ζ3 (q−s) gcd(π × ε∗1, 1− s)−1M∗(ε1, s) are holomorphic, and P 0
i = Pi for 1 6 i6 3.

Proof of Claim 8.1. Start with P ζ1 . By definition, the zeros of gcd(π × ε∗2, 1− s)−1 = gcd(π ×
τ∗2 , 1− (s− ζ))−1 can be written in the form (1− aq−s+ζ), a ∈ C∗. The poles of M∗(ε2, s) =
M∗(τ2, s− ζ) are of the form (1− aq−s+ζ)−1. The multiplicity of a factor (1− aq−s+ζ)±1 in
either gcd(π × ε∗2, 1− s)−1 or `ε2(s) does not change when we substitute 0 for ζ. Then P ζ1 is
chosen by taking suitable factors (1− aq−s+ζ) and replacing q−s with X. The argument for P ζ3
is similar.

The poles of M∗(ε1 ⊗ ε∗2, (s, 1− s)) appear either in L(ε∗1 × ε∗2, 2− 2s) (due to the
normalization of the intertwining operator) or as poles of M(ε1 ⊗ ε∗2, (s, 1− s)). An argument as
in the proof of Corollary 5.3 shows that the latter poles appear in L(φi × θ∗j , 2s− 1), where φi, θj
are irreducible supercuspidal representations independent of ζ (e.g. τ∗2 is a sub-representation of
a representation induced from θ1 ⊗ · · · ⊗ θm). We let P ζ2 be a product of factors (1− aX2). 2

Let W ∈W(π, ψ−1
γ ) and fs ∈ ξHnQn (τ, hol, s). As explained in § 4.4 (the last paragraph) we

take ϕs ∈ ξHnQn1,n2
(ε1 ⊗ ε2, hol, (s, s)) such that f ′s, defined by (4.11), satisfies f ′s = fs for ζ = 0.

The function h 7→ ϕs(h, 1, 1, 1) belongs to C∞(Hn, C[q−s, qs]) (see Example 7.2). We replace
Ψ(W, fs, s) with Ψ(W, ϕs, s) (see e.g. (4.12)). There is a domain D in ζ and s, depending only
on π, τ1 and τ2, such that Ψ(W, ϕs, s) is absolutely convergent. This domain is of the form
{ζ, s ∈ C : <(s)�<(ζ)� 0} (the parameters for all of the domains we consider are similar
to those calculated in [Sou00]). Recall that we fix ζ; hence we refer to this domain as a
domain in s. As in the proof of Lemma 7.6 one shows that Ψ(W, ϕs, s) is represented by
a series Σ(W, ϕs, s) ∈ Σ(X) which is strongly convergent in D. For instance, when l 6 n, we
take Γ =BGl ×Rl,n × Zn2,n1 and define φ ∈ C∞(Γ, C[q−s, qs]) using the integrand (start with
ϕs ∈ ξ(ε1 ⊗ ε2, std, (s, s)) then use Lemmas 7.4 and 7.3). During our series computations, it is
permissable to suppress certain factors in R(X)∗ (see e.g. the proof of Claim 8.1). We indicate
such factors whenever they occur.

First we apply the functional equation for π × ε2. For h ∈Hn, b1 ∈GLn1 , denote by
ϕs(h, b1, ·, ·) the function (h2, b2) 7→ ϕs(h, b1, h2, b2) (h2 ∈Hn2 , b2 ∈GLn2). Then ϕs(h, b1, ·, ·) ∈
ξ
Hn2
Qn2

(ε2, hol, s). The function M∗(ε2, s)ϕs ∈ ξHnQn1,n2
(ε1 ⊗ ε∗2, rat, (s, 1− s)) is obtained by
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applying the intertwining operator to ϕs(h, b1, ·, ·). Let

ϕs,1−s = P ζ1 (q−s) gcd(π × ε∗2, 1− s)−1M∗(ε2, s)ϕs ∈ ξHnQn1,n2
(ε1 ⊗ ε∗2, hol, (s, 1− s)).

We use the notation Ψ(W, θs,1−s, (s, 1− s)) to denote the Rankin–Selberg integral for Gl ×GLn
where θs,1−s ∈ V Hn

Qn1,n2
(ε1 ⊗ ε∗2, (s, 1− s)) and integral (4.11) is applied to θs,1−s. It is a triple

integral. If l 6 n, this is (4.12) with θs,1−s replacing ϕs. The integral is absolutely convergent
in a domain D∗ of the form {ζ, s ∈ C : <(ζ)�<(s)� 0} (ζ is fixed, and D∗ is a domain in s
depending only on π, τ1, τ2). Since ϕs,1−s is a holomorphic section, the proof of Lemma 7.6 shows
that we have a series Σ(W, ϕs,1−s, (s, 1− s)) representing Ψ(W, ϕs,1−s, (s, 1− s)).

Let G(π × εi, X)−1 ∈R(X) be the polynomial obtained from gcd(π × εi, s)−1 by replacing
q−s with X, for i= 1, 2. We have the next claim.

Claim 8.2. The following identity holds:

P ζ1 (X)G(π × ε2, X)−1Σ(W, ϕs, s) = Σ(W, ϕs,1−s, (s, 1− s)).

Proof of Claim 8.2. We prove this claim for the case of l 6 n2. In the other cases the
integral manipulations are different but the method of proof is similar. In particular when
n2 < l 6 n the manipulations are a bit more involved, since we have an inner integral over
Hn2\Gn2+1. As we showed in [Kap10b], in D it is true that (see I2 in Lemma 5.3 (i))

Ψ(W, ϕs, s) =
∫
Un1

∫
BGl

∫
Rl,n2

W (g)ϕs(w′u, 1, wl,n2r(
bn2,n1g), 1)ψγ(r)ψγ(u) dr dg du. (8.8)

Here we replaced the dg-integration over UGl\Gl with an integration over BGl , w
′ ∈Hn is a Weyl

element, and bn2,n1 = diag(In2 , (−1)n1 , In2) ∈GL2n2+1. If we substitute |W |, |ϕs| for W, ϕs and
drop the characters, the right-hand side of (8.8) is convergent in D. We transform this equality
into an equality of series. Let Γ = Un1 , Γ′ =BGl ×Rl,n2 . The function

φ(u, (g, r)) =W (g)ϕs(w′u, 1, wl,n2r(
bn2,n1g), 1)ψγ(r)ψγ(u)

belongs to C∞(Γ× Γ′, C[q−s, qs]). Since ϕs and ψγ are smooth, φ is smooth in Γ. As in the proof
of Lemma 7.6 we see that Σφ =

∮
Γ×Γ′ φ(u, (g, r))d(u, (g, r)) is defined and strongly convergent,

and hence Lemma 7.2 implies that Σφ ∼D Φφ, where Φφ =
∫

Γ×Γ′ φ(u, (g, r))d(u, (g, r)). Since Φφ

equals the right-hand side of (8.8), Σ(W, ϕs, s) = Σφ.
Apply Lemma 7.5 to Σφ. Then, for all u ∈ Γ, Σφ(u,·) is defined and Σφ(u,·) ∼D Φφ(u,·). Note

that Φφ(u,·) = ψγ(u)Ψ(W, ϕs(w′u, 1, ·, ·), s) (the conjugation by bn2,n1 was omitted because it
does not impact the argument, ϕs(w′u, 1, ·, ·) should be replaced with the function (h2, b2) 7→
ϕs(w′u, 1, bn2,n1h2, b2)). Set Q= P ζ1 (q−s) gcd(π × ε2, s)−1 ∈ C[q−s]. By Lemma 7.4, ΣQφ(u,·) ∼D
Q(q−s)ψγ(u)Ψ(W, ϕs(w′u, 1, ·, ·), s). Since ϕs(w′u, 1, ·, ·) ∈ ξ

Hn2
Qn2

(ε2, hol, s),

ΣQφ(u,·) =Q(X)ψγ(u)Σ(W, ϕs(w′u, 1, ·, ·), s) ∈R(X).

Now apply Lemma 7.5 again, to Q(X)Σφ = ΣQφ and obtain (Qφ)Γ′(u) = ΣQφ(u,·)(q−s, qs),
ΣQφ = Σ(Qφ)Γ′

.
According to the functional equation for Gl ×GLn2 and π × ε2, in C[q−s, qs] we have

gcd(π × ε2, s)−1Ψ(W, ϕs(w′u, 1, ·, ·), s)
= c(l, ε2, γ, s)ε(π × ε2, ψ, s)−1 gcd(π × ε∗2, 1− s)−1

×Ψ(W,M∗(ε2, s)ϕs(w′u, 1, ·, ·), 1− s). (8.9)
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The factors c(l, ε2, γ, s) = c(l, τ2, γ, s− ζ) and ε(π × ε2, ψ, s) = ε(π × τ2, ψ, s− ζ) belong to
C[q∓(s−ζ)]∗ and may be ignored. Note that the integrals Ψ(·, ·, s) for π × ε2 are defined in some
right half-plane {s : <(s− ζ)� 0} and D can be taken so that it intersects this right half-plane in
a domain. Therefore the functional equation is applicable to the integrals Ψ(W, ϕs(w′u, 1, ·, ·), s).

Let Q̃= P ζ1 (q−s) gcd(π × ε∗2, 1− s)−1 ∈ C[q−s, qs]. Since Q̃(q−s, qs)M∗(ε2, s) is a holomor-
phic operator, as explained in § 8.2 we can multiply both sides of (8.9) by P ζ1 and obtain an
equality in Σ(X),

Q(X)Σ(W, ϕs(w′u, 1, ·, ·), s) = Σ(W, Q̃(q−s, qs)M∗(ε2, s)ϕs(w′u, 1, ·, ·), 1− s). (8.10)

The left-hand side of (8.10) equals ψ−1
γ (u)ΣQφ(u,·) and the right-hand side represents the integral

Ψ(W, ϕs,1−s(w′u, 1, ·, ·), 1− s), which is a polynomial.
Next, in D∗ equality (8.8) is applicable with ϕs,1−s replacing ϕs. Define φ∗ similarly to φ

but with ϕs,1−s instead of ϕs. Then, as above, Lemmas 7.6 and 7.2 show that Σφ∗ ∼D∗ Φφ∗ and
Σ(W, ϕs,1−s, (s, 1− s)) = Σφ∗ . The domain D∗ is taken so that it intersects the left half-plane
{s : <(1− s+ ζ)� 0} where the integrals Ψ(·, ·, 1− s) for π × ε∗2 on the right-hand side of (8.9)
are defined (this means taking <(ζ) large enough). As above,

Σφ∗(u,·) ∼D∗ Φφ∗(u,·) = ψγ(u)Ψ(W, ϕs,1−s(w′u, 1, ·, ·), 1− s),

Σφ∗(u,·) = ψγ(u)Σ(W, Q̃(q−s, qs)M∗(ε2, s)ϕs(w′u, 1, ·, ·), 1− s) ∈R(X),

and Lemma 7.5 shows that Σφ∗ = Σ(φ∗)Γ′
. Now (8.10) implies that ΣQφ(u,·) = Σφ∗(u,·), for all u.

Hence (Qφ)Γ′ = (φ∗)Γ′ . Putting the pieces together, we have

Q(X)Σ(W, ϕs, s) = ΣQφ = Σ(Qφ)Γ′
= Σ(φ∗)Γ′

= Σφ∗ = Σ(W, ϕs,1−s, (s, 1− s)). 2

We continue with the functional equation for ε1 × ε2. For h ∈Hn denote by

h · ϕs,1−s(·, ·, I2n2+1, ·)

the function (b0, b1, b2) 7→ ϕs,1−s(b0h, b1, I2n2+1, b2) (b0 ∈GLn, bi ∈GLni). Then

h · ϕs,1−s(·, ·, I2n2+1, ·) ∈ ξGLn
Pn1,n2

(ε1|det|n/2 ⊗ ε∗2|det|n/2, hol, (s, 1− s)).

The functionM∗(ε1 ⊗ ε∗2, (s, 1− s))ϕs,1−s ∈ ξ
Hn
Qn2,n1

(ε∗2 ⊗ ε1, rat, (1− s, s)) is defined by applying
the intertwining operator to h · ϕs,1−s(·, ·, I2n2+1, ·). Let

ϕ′1−s,s = P ζ2 (q−s)M∗(ε1 ⊗ ε∗2, (s, 1− s))ϕs,1−s ∈ ξ
Hn
Qn2,n1

(ε∗2 ⊗ ε1, hol, (1− s, s)).

We show the following claim.

Claim 8.3. We have P ζ2 (X)Σ(W, ϕs,1−s, (s, 1− s)) = Σ(W, ϕ′1−s,s, (1− s, s)).

Proof of Claim 8.3. The proof is similar to the proof of Claim 8.2 and described briefly. Assume
for instance that l 6 n (the proof when l > n is almost identical). Replace the dg-integration in
Ψ(W, ϕs,1−s, (s, 1− s)) with an integration over BGl . Let Γ =BGl ×Rl,n, Γ′ = Zn2,n1 . Let D∗ be
as in Claim 8.2. Define φ ∈ C∞(Γ× Γ′, C[q−s, qs]) by

φ((g, r), z) =W (g)ϕs,1−s(ωn1,n2zwl,nrg, 1, 1, 1)ψ−1(z)ψγ(r).

Then
∫

Γ′ φ((g, r), z) dz =W (g)ψγ(r)Υ((wl,nrg) · ϕs,1−s(·, ·, I2n2+1, ·)), where Υ denotes a
Whittaker functional (given by the Jacquet integral) on the space V GLn

Pn1,n2
(ε1|det|n/2 ⊗

ε∗2|det|n/2, (s, 1− s)). According to the definition of the local coefficient [Sha81, § 3], if Υ∗ denotes
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a similar Whittaker functional on V GLn
Pn2,n1

(ε∗2|det|n/2 ⊗ ε1|det|n/2, (1− s, s)), then

Υ((wl,nrg) · ϕs,1−s(·, ·, I2n2+1, ·)) = Υ∗(M∗(ε1 ⊗ ε∗2, (s, 1− s))(wl,nrg) · ϕs,1−s(·, ·, I2n1+1, ·)).
(8.11)

This is, a priori, an equality (between meromorphic continuations) in C(q−s), but because

ϕs,1−s(·, ·, I2n2+1, ·) ∈ ξGLn
Pn1,n2

(ε1|det|n/2 ⊗ ε∗2|det|n/2, hol, (s, 1− s))

it is actually in C[q−s, qs]. We define Γ′′ = Zn1,n2 and φ∗ ∈ C∞(Γ× Γ′′, C[q−s, qs]) by

φ∗((g, r), z) =W (g)ϕ′1−s,s(ωn2,n1zwl,nrg, 1, 1, 1)ψ−1(z)ψγ(r).

The integral Ψ(W, ϕ′1−s,s, (1− s, s)) is absolutely convergent in a domain D∗∗. Proceeding as in
Claim 8.2, we use Lemmas 7.4–7.6 to conclude that

P ζ2 (X)Σ(W, ϕs,1−s, (s, 1− s)) = Σ
P ζ2 φ

= Σ
(P ζ2 φ)Γ′

= Σ(φ∗)Γ′′
= Σφ∗ = Σ(W, ϕ′1−s,s, (1− s, s)).

The equality Σ
(P ζ2 φ)Γ′

= Σ(φ∗)Γ′′
holds because, according to (8.11), (P ζ2 φ)Γ′ = (φ∗)Γ′′ . 2

Next we apply the functional equation for π × ε1. Write

ϕ∗1−s = P ζ3 (q−s) gcd(π × ε∗1, 1− s)−1M∗(ε1, s)ϕ′1−s,s ∈ ξHnQn2,n1
(ε∗2 ⊗ ε∗1, hol, (1− s, 1− s)).

Claim 8.4. The following holds:

P ζ3 (X)G(π × ε1, X)−1Σ(W, ϕ′1−s,s, (1− s, s)) = Σ(W, ϕ∗1−s, 1− s).

This is proved analogously to Claim 8.2. Collecting Claims 8.2–8.4, we have

P ζ1 (X)P ζ2 (X)P ζ3 (X)G(π × ε1, X)−1G(π × ε2, X)−1Σ(W, ϕs, s) = Σ(W, ϕ∗1−s, 1− s). (8.12)

The final step is to put ζ = 0 in this equality. Looking at (3.3) we see that

ϕ∗1−s = P ζ1 (q−s)P ζ2 (q−s)P ζ3 (q−s) gcd(π × ε∗1, 1− s)−1 gcd(π × ε∗2, 1− s)−1M∗(ε, s)ϕs.

Let

f∗1−s = Pπ×τ (q−s) gcd(π × τ∗1 , 1− s)−1 gcd(π × τ∗2 , 1− s)−1M∗(τ, s)fs.

The definition of Pπ×τ and (3.4) imply that f∗1−s ∈ ξ
Hn
Qn

(τ∗, hol, 1− s). Let gcd(π × τi, X)−1 ∈
R(X) be obtained from gcd(π × τi, s)−1 by replacing q−s with X.

Claim 8.5. Putting ζ = 0 in (8.12) gives

Pπ×τ (X) gcd(π × τ1, X)−1 gcd(π × τ2, X)−1Σ(W, fs, s) = Σ(W, f∗1−s, 1− s). (8.13)

Proof of Claim 8.5. The domain D ⊂ C× C in ζ and s of absolute convergence of Ψ(W, ϕs, s)
contains a domain D0 = {(ζ, s) : ζ0 < <(ζ)< ζ1, <(s)> s0}, where ζi, s0 are constants depending
only on π, τ1 and τ2. Put D′0 = {ζ : ζ0 < <(ζ)< ζ1}. The first step is to show that Σ(W, ϕs, s) is
of the form

∑∞
m=N am(ζ)Xm, where N is independent of ζ and for, each m, am :D′0→ C is an

analytic function: a polynomial in q∓ζ .
According to Claim 4.3, in D0 we have Ψ(W, ϕs, s) = Ψ(W, f ′s, s) where f ′s ∈ ξ(W(ε, ψ), hol, s)

is defined by (4.11) using ϕs. Fix ζ ∈D′0 and use Proposition 4.4 to write Ψ(W, f ′s, s) as a sum
of integrals, say if l 6 n, of the form (4.7). Here W ′ ∈W(τ, ψ) is replaced with W ′ζ ∈W(ε, ψ).
The number of negative coefficients is bounded as in Lemma 7.6, using the fact that W vanishes
away from zero. Now if we let ζ vary, this bound remains fixed because W is independent of ζ
(it is also possible to use W ′ζ to obtain a bound independent of ζ). Then observe that there is a
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compact open subgroup N <GLn, independent of ζ, such that W ′ζ is right-invariant by N and,
for a fixed b ∈GLn, W ′ζ(b) ∈ C[q−ζ , qζ ] (see the last paragraph of § 4.4). Since the coordinates of
a ∈Al−1 are bounded from above, if Gl is split (respectively quasi-split), then for any m ∈ Z, the
set of a, x (respectively a) such that |det a| · [x]−1 = qm (respectively |det a|= qm) is compact
in Al−1 ×G1 (respectively Al−1), whence the coefficient of Xm is a polynomial in q∓ζ . The same
applies when l > n, by considering (4.8).

Let C ⊂ C be a compact set containing 0 and sC > 0 be a constant, depending only on π, τ1, τ2

and C, such that, in D1 = {(ζ, s) : ζ ∈ C, <(s)> sC}, Ψ(W, f ′s, s) is absolutely convergent and
D1 ∩D0 is a domain of C× C. By Lemma 7.6, for any ζ ∈ C, in the domain {s : <(s)> sC}, the
integral Ψ(W, f ′s, s) has a representation Σ(W, f ′s, s) =

∑∞
m=N bm(ζ)Xm with properties as above.

Note that Lemma 7.6 is applicable because D1 does not depend on f ′s or W . Therefore bm(ζ) =
am(ζ) for all ζ ∈ C, m>N , and, for ζ = 0, Σ(W, f ′s, s) is the series representing Ψ(W, fs, s) (since
for ζ = 0, f ′s = fs). It follows that putting ζ = 0 in Σ(W, ϕs, s) yields Σ(W, fs, s). The argument
for Σ(W, ϕ∗1−s, 1− s) is similar: use Claim 8.1 and note that, for ζ = 0, M∗(ε, s) =M∗(τ, s). 2

According to Lemma 7.6, Σ(W, fs, s) (respectively Σ(W, f∗1−s, 1− s)) is a Laurent series
with finitely many negative (respectively positive) coefficients. Hence both sides of (8.13) are
polynomials. Since Pπ×τ (q−s) gcd(π × τ1, s)−1 gcd(π × τ2, s)−1Ψ(W, fs, s) is represented by the
left-hand side of (8.13),

Ψ(W, fs, s) ∈ gcd(π × τ1, s) gcd(π × τ2, s)Pπ×τ (q−s)−1C[q−s, qs].

Additionally Ψ(W, f∗1−s, 1− s) is represented by the polynomial Σ(W, f∗1−s, 1− s), and,
according to the definition of f∗1−s,

Ψ(W,M∗(τ, s)fs, 1− s) ∈ gcd(π × τ∗1 , 1− s) gcd(π × τ∗2 , 1− s)Pπ×τ (q−s)−1C[q−s, qs]. 2

8.4 Technical issues concerning good sections
We encountered two basic problems with the method of good sections, which further applications
of this method may need to address.

First, the approach of Laurent series is not suited for rational sections. It is not clear how to
associate a Laurent series to an element of C∞(Hn, C(q−s)). Indeed, in (8.1) the right-hand side
was known to be in C[q−s, qs], but in order to pass to Σ(W,M∗(τ, s)fs, 1− s) we had to ensure
that M∗(τ, s)fs did not have any poles. To this end we used the polynomials Pi of Lemma 8.1,
leading to the additional poles of Mτ1⊗···⊗τk(s) in Theorem 1.2, some of which were eliminated
in Corollary 8.1 by a more careful calculation.

The second problem concerns the lower bound. We seek a lower bound as in § 5.2, i.e.
gcd(π × τ, s) ∈ gcd(π × ε, s)C[q−s, qs], for a general irreducible representation ε induced from
τ1 ⊗ τ . We need to show that we can embed the poles of Ψ(W,M∗(τ∗, 1− s)f1−s, s), with
f1−s ∈ ξ(τ∗, hol, 1− s), in gcd(π × ε, s). However, the integral Ψ(W, f ′s, s) for f ′s ∈ ξ(ε, good, s)
might not contain the poles of M∗(τ∗, 1− s), due to zeros of M∗(ε∗, 1− s). This difficulty was
settled by assuming certain properties of τ1, as in Corollary 5.3.

9. Upper bound in the first variable

9.1 Proof of Theorem 1.3: case k < l

As in § 8 we reinterpret the proof of [Kap10b], of the multiplicativity of γ(π × τ, ψ, s) in the first
variable, in terms of Laurent series.
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Lemma 9.1. Assume that k < l < n. Let P ∈ C[X] with P (0) = 1 be of minimal degree such that
the operators P (q−s) gcd(π′ × τ∗, 1− s)−1M∗(τ, s) and P (q−s) gcd(π′ × τ, s)−1M∗(τ∗, 1− s)
are holomorphic (note that P (q−s)−1 ∈Mτ (s)C[q−s, qs]). Then

gcd(π × τ, s) ∈ L(σ × τ, s) gcd(π′ × τ, s)L(σ∗ × τ, s)P (q−s)−1C[q−s, qs].

In particular (1.1) holds for a= 1 and k < l < n.

The proof is similar to the proof of Lemma 8.1: it involves applying the functional equations of
σ × τ , π′ × τ and σ × τ∗. We skip the proof, but show how the lemma implies the theorem for
k < l and general n and a. Put Gπ′×(τ1⊗···⊗τa)(s) =

∏a
i=1 gcd(π′ × τi, s). Suppose first that l < n.

By Theorem 1.2 applied to π′ × τ and Claim 3.3, for some P0 ∈ C[q−s, qs],

gcd(π′ × τ, s) =Gπ′×(τ1⊗···⊗τa)(s)Mτ1⊗···⊗τa(s)P0,

gcd(π′ × τ∗, 1− s)'Gπ′×(τ∗1⊗···⊗τ∗a )(1− s)Mτ1⊗···⊗τa(s)P0.
(9.1)

Then the operators P0 gcd(π′ × τ∗, 1− s)−1M∗(τ, s) and P0 gcd(π′ × τ, s)−1M∗(τ∗, 1− s) are
holomorphic. Applying Lemma 9.1 to π × τ , the polynomial P (q−s) of the lemma divides P0.
This and (9.1) show that equality (1.1) holds.

Now assume l > n. Let η be a unitary irreducible supercuspidal representation of GLm for
m> l chosen by Corollary 5.3 (see also Example 4.1). Then if ε= IndGLm+n

Pm,n
(η ⊗ τ) (which is

irreducible), gcd(π × τ, s) ∈ gcd(π × ε, s)C[q−s, qs].
Following Proposition 4.5 we may select η which also satisfies gcd(π′ × η, s) = gcd(π′ × η∗,

1− s) = 1. Corollary 5.3 also guarantees that Mη(s) = `η⊗τ∗(s) = `τ∗⊗η(1− s) = 1 whence
Mε(s) ∈Mτ (s)C[q−s, qs]. The proof of the corollary shows that Mη⊗τ1⊗···⊗τa(s) =Mτ1⊗···⊗τa(s).
Hence according to Theorem 1.2 applied to π′ × ε and by our choice of η, for some Q0 ∈ C[q−s, qs],

gcd(π′ × ε, s) =Gπ′×(τ1⊗···⊗τa)(s)Mτ1⊗···⊗τa(s)Q0. (9.2)

Similarly to the proof of Claim 3.3, we find

gcd(π′ × ε∗, 1− s)'Gπ′×(τ∗1⊗···⊗τ∗a )(1− s)Mτ1⊗···⊗τa(s)Q0.

Thus the operators Q0 gcd(π′ × ε∗, 1− s)−1M∗(ε, s) and Q0 gcd(π′ × ε, s)−1M∗(ε∗, 1− s) are
holomorphic. Since k < l <m+ n, Lemma 9.1 is applicable to π × ε and P (q−s) of the lemma
divides Q0. Therefore

gcd(π × ε, s) ∈ L(σ × ε, s) gcd(π′ × ε, s)L(σ∗ × ε, s)Q−1
0 C[q−s, qs].

Since also k <m and η is irreducible supercuspidal, L(σ × η, s) = L(σ∗ × η, s) = 1. Hence,
according to [JPS83, Theorem 3.1],

gcd(π × ε, s) ∈ L(σ × τ, s) gcd(π′ × ε, s)L(σ∗ × τ, s)Q−1
0 C[q−s, qs].

Now using (9.2) the result follows. We summarize a corollary of the proof.

Corollary 9.1. Let π = IndGlPk(σ ⊗ π′) (k < l) and suppose that for some L−1, L̃−1, P0 ∈
C[q−s, qs] it is true that gcd(π′ × τ, s) = LMτ (s)P0 and gcd(π′ × τ∗, 1− s) = L̃Mτ (s)P0. Then

gcd(π × τ, s) ∈ L · L(σ × τ, s)L(σ∗ × τ, s)Mτ (s)C[q−s, qs].

9.2 Proof of Theorem 1.3: case k = l > n

A stronger result, namely (1.1) with Mτ (s) instead of Mτ1⊗···⊗τa(s), is a direct consequence of
the next lemma.

631

https://doi.org/10.1112/S0010437X12000644 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X12000644


E. Kaplan

Lemma 9.2. Assume that k = l > n. Let P ∈ C[X] with P (0) = 1 be of minimal degree such that
the operators P (q−s)M∗(τ, s) and P (q−s)M∗(τ∗, 1− s) are holomorphic. Then

gcd(π × τ, s) ∈ L(σ × τ, s)L(σ∗ × τ, s)P (q−s)−1C[q−s, qs].

The lemma is proved in the same manner as Lemmas 8.1 and 9.1, utilizing the integral
manipulations of [Kap10b]. The functional equation replacing π′ × τ is Shahidi’s functional
equation defining γ(τ, S2, ψ, 2s− 1) (the local coefficient, see [Sha81, § 3]).

9.3 Proof of Theorem 1.3: case k = l 6 n

It seems difficult to prove this case via direct integral manipulations. We prove the following
slightly stronger result. Let π = IndGlPl (σ) where σ is a (generic) quotient of a representation
θ = IndGLl

Pl1,...,lm
(σ1 ⊗ · · · ⊗ σm) (if m= 1, θ = σ1) of Langlands’ type, i.e. σi = |det|uiσ′i, σ′i

is tempered, ui ∈ R and u1 > · · ·> um. Since π is the generic quotient of IndGlPl (θ), then
W(π, ψ−1

γ ) =W(IndGlPl (θ), ψ
−1
γ ), and hence for the purpose of the gcd we may replace σ with θ.

Let

µ= IndGLl−lm
Pl1,...,lm−1

(σ1 ⊗ · · · ⊗ σm−1).

Also let τ = IndGLn
Pn1,...,na

(τ1 ⊗ · · · ⊗ τa) and τ ′ = IndGLn−n1
Pn2,...,na

(τ2 ⊗ · · · ⊗ τa) be irreducible of
Langlands’ type. We show that

gcd(π × τ, s) ∈ L(θ × τ, s)L(θ∗ × τ, s)Mτ1⊗···⊗τa(s)C[q−s, qs]. (9.3)

Now if σ is irreducible, then σ ∼= θ and (1.1) follows (e.g. L(σ × τ, s) = L(θ × τ, s)).
The following lemma is used to prove (9.3).

Lemma 9.3. Let σ and τ be essentially tempered. Then

gcd(π × τ, s) ∈ L(σ × τ, s)L(σ∗ × τ, s)Mτ (s)C[q−s, qs].

Before proving the lemma, let us use it to derive (9.3). If m> 1, set π′ = IndGlmPlm
(σm) and

then π = IndGlPl−lm (µ⊗ π′). Assume that a= 1. The case of m= 1 is immediate. For m> 1 apply
Lemma 9.3 to gcd(π′ × τ, s), use Claim 3.3, Corollary 9.1 and note that, because θ and τ are of
Langlands’ type, L(θ × τ, s) = L(µ× τ, s)L(σm × τ, s) [JPS83, Theorem 9.4].

Now suppose that a > 1. Using induction on a we find that, for some Q′, Q ∈ C[q−s, qs],

gcd(π × τ ′, s) = L(θ × τ ′, s)L(θ∗ × τ ′, s)Mτ2⊗···⊗τa(s)Q′,
gcd(π × τ1, s) = L(θ × τ1, s)L(θ∗ × τ1, s)Mτ1(s)Q.

By virtue of Claim 3.3 and using the multiplicativity of the γ-factors of GLl ×GLn and (3.8),
similar equalities hold for gcd(π × (τ ′)∗, 1− s) and gcd(π × τ∗1 , 1− s). Applying Lemma 8.1 to
π × τ with τ = IndGLn

Pn1,n−n1
(τ1 ⊗ τ ′) and fs ∈ ξ(τ, hol, s), we see that P1(q−s) (of Lemma 8.1)

divides Q′ and P3(q−s) divides Q. Then Pπ×τ (q−s) divides Q0 =Q′`τ1⊗(τ ′)∗(s)−1`(τ ′)∗⊗τ1(1−
s)−1Q. When we apply the lemma to π × τ∗ and f1−s ∈ ξ(τ∗, hol, 1− s) we obtain that
Pπ×τ∗(qs−1) also divides Q0. Therefore

gcd(π × τ, s) ∈ gcd(π × τ1, s) gcd(π × τ ′, s)Q−1
0 C[q−s, qs].

Now (9.3) follows using the multiplicativity of L(θ × τ, s) in τ [JPS83, Theorem 9.4].
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Proof of Lemma 9.3. Assume first that τ is tempered. Let U be the set of all complex numbers
u such that σu = |det|uσ is tempered. The set U is just a vertical line in the plane. Let
πu = IndGlPl (σu). Ignoring a discrete subset of U , we can assume that πu is tempered (we take
tempered representations to be irreducible; see [Mui04, § 3] and [Wal03, Lemma III.2.3]). Since

γ(πu × τ, ψ, s) = ωσu(−1)nωτ (−1)lωτ (2γ)−1γ(σu × τ, ψ, s)γ(σ∗u × τ, ψ, s)

and the γ-factors on the right-hand side are equal (up to C[q−s, qs]∗) to Shahidi’s γ-factors,
we may apply Theorem 1.1 to πu × τ and obtain gcd(πu × τ, s) ∈ L(πu × τ, s)Mτ (s)C[q−s, qs],
where L(πu × τ, s) is the L-function defined by Shahidi. Since πu and τ are tempered, the results
of [CS98, § 4] and (3.8) imply that

gcd(πu × τ, s) ∈ L(σ × τ, s+ u)L(σ∗ × τ, s− u)Mτ (s)C[q−s, qs].

If we could put u= 0, the result would follow, but this has to be justified. Currently, for each
u ∈ U there is some Pu ∈ C[q−s, qs] such that

gcd(πu × τ, s) = L(σ × τ, s+ u)L(σ∗ × τ, s− u)Mτ (s)Pu.

Write Mτ (s) = eMτ (s)′, Pu = euP
′
u for (Mτ (s)′)−1, P ′u ∈ C[q−s] with constant terms equal to

1 and e, eu ∈ C[q−s, qs]∗. Since the other factors in this equation are inverses of polynomials in
C[q−s] with constant terms also equal to 1, we obtain e · eu = 1 and in particular eu is independent
of u. Since gcd(πu × τ, s) is an inverse of a polynomial, any zero of Pu must be canceled by some
other factor on the right-hand side. Therefore P ′u is uniquely determined by a finite product of
factors appearing in either L(σ × τ, s+ u), L(σ∗ × τ, s− u) or Mτ (s)′. Hence we may assume
(perhaps passing to a smaller subset U ′ ⊂ U) that there exists P ∈ C[q∓s, q∓u] such that, for all
u ∈ U ,

gcd(πu × τ, s) = L(σ × τ, s+ u)L(σ∗ × τ, s− u)Mτ (s)P. (9.4)

Note that U (still) contains some infinite sequence which converges to some point in the plane.
Repeating this for πu × τ∗ we may assume in addition that there is some P̃ ∈ C[q∓s, q∓u]
satisfying, for all u ∈ U ,

gcd(πu × τ∗, 1− s) = L(σ × τ∗, 1− s+ u)L(σ∗ × τ∗, 1− s− u)Mτ (s)P̃ . (9.5)

Fix u ∈ U . According to the multiplicativity of γ(πu × τ, ψ, s), (3.7) and (3.8),

ε(σ × τ, ψ, s+ u)ε(σ∗ × τ, ψ, s− u)
L(σ∗ × τ∗, 1− s− u)L(σ × τ∗, 1− s+ u)

L(σ × τ, s+ u)L(σ∗ × τ, s− u)

= ε(πu × τ, ψ, s)
gcd(πu × τ∗, 1− s)

gcd(πu × τ, s)
. (9.6)

Here the factor ωσu(−1)nωτ (−1)lωτ (2γ)−1 was omitted: it does not impact the argument because
it is independent of u and s (ωσu(−1) = ωσ(−1)). Combining (9.4)–(9.6) we see that

ε(πu × τ, ψ, s) = ε(σ × τ, ψ, s+ u)ε(σ∗ × τ, ψ, s− u)PP̃−1. (9.7)

Equality (3.6) implies that, for all Wu ∈W(πu, ψ−1
γ ) and fs ∈ ξ(τ, hol, s),

c(l, τ, γ, s)−1ε(πu × τ, ψ, s) gcd(πu × τ, s)−1Ψ(Wu, fs, s)
= gcd(πu × τ∗, 1− s)−1Ψ(Wu, M

∗(τ, s)fs, 1− s).
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Plugging (9.4), (9.5) and (9.7) into this equation yields

c(l, τ, γ, s)−1ε(σ × τ, ψ, s+ u)ε(σ∗ × τ, ψ, s− u)
Mτ (s)−1L(σ × τ, s+ u)−1L(σ∗ × τ, s− u)−1Ψ(Wu, fs, s)

= L(σ × τ∗, 1− s+ u)−1L(σ∗ × τ∗, 1− s− u)−1Ψ(Wu, Mτ (s)−1M∗(τ, s)fs, 1− s). (9.8)

Note that Mτ (s)−1M∗(τ, s)fs ∈ ξ(τ∗, hol, 1− s). For an arbitrary W ∈W(π, ψ−1
γ ) take Wu such

that W0 =W , by applying a Whittaker functional to a suitable section of ξGlPl (σ, std, u+ 1
2). Let

C ⊂ C be a compact subset containing 0, which intersects U in a set D1 containing some infinite
sequence that converges to some point in the plane. There exist constants s1, s2 > 0 depending
only on C, σ and τ such that Σ(Wu, fs, s) (respectively Σ(Wu, Mτ (s)−1M∗(τ, s)fs, 1− s))
represents Ψ(Wu, fs, s) (respectively Ψ(Wu, Mτ (s)−1M∗(τ, s)fs, 1− s)) for all u ∈ C and <(s)>
s1 (respectively <(s)<−s2). Let u ∈D1. Then both sides of (9.8) are polynomials in q∓s and as
explained in § 8.2 this equality may be interpreted in Σ(X),

A(u, X)Σ(Wu, fs, s) =B(u, X)Σ(Wu, Mτ (s)−1M∗(τ, s)fs, 1− s).

This is an equality of the form
∑

m∈Z am(u)Xm =
∑

m∈Z bm(u)Xm, valid for all u ∈D1, with
am, bm : C→ C analytic (see the proof of Claim 8.5). Hence it is valid also for u= 0. Since
Σ(W0, fs, s) represents Ψ(W0, fs, s) = Ψ(W, fs, s) and is a series with finitely many negative
coefficients, as in Lemma 8.1 we find that A(0, X)Σ(W0, fs, s) ∈R(X) and conclude that

Ψ(W, fs, s) ∈ L(σ × τ, s)L(σ∗ × τ, s)Mτ (s)C[q−s, qs].

A similar relation holds for Ψ(W,M∗(τ∗, 1− s)f1−s, s), f1−s ∈ ξ(τ∗, hol, 1− s) and the result
follows.

The case of an essentially tempered τ is reduced to the tempered, by considering some
v ∈ C such that τv = |det|vτ is tempered. Note that gcd(π × τv, s) = gcd(π × τ, s+ v) and
Mτv(s) =Mτ (s+ v). 2
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to appear, math.NT/0909.2999v1.

GPR87 S. Gelbart, I. Piatetski-Shapiro and S. Rallis, L-functions for G×GL(n), Lecture Notes in
Mathematics, vol. 1254 (Springer, New York, NY, 1987).

Gin90 D. Ginzburg, L-functions for SOn ×GLk, J. Reine Angew. Math. 405 (1990), 156–180.
GPR97 D. Ginzburg, I. Piatetski-Shapiro and S. Rallis, L-functions for the orthogonal group, Mem.

Amer. Math. Soc. 128 (1997).
HKS96 M. Harris, S. S. Kudla and W. J. Sweet, Theta dichotomy for unitary groups, J. Amer. Math.

Soc. 9 (1996), 941–1004.
Ike92 T. Ikeda, On the location of poles of the triple L-functions, Compos. Math. 83 (1992), 187–237.
Ike99 T. Ikeda, On the gamma factor of the triple L-function, I, Duke Math. J. 97 (1999), 301–318.
JPS83 H. Jacquet, I. Piatetski-Shapiro and J. A. Shalika, Rankin-Selberg convolutions, Amer. J. Math.

105 (1983), 367–464.
Kap10a E. Kaplan, An invariant theory approach for the unramified computation of Rankin–Selberg

integrals for quasi-split SO2n ×GLn, J. Number Theory 130 (2010), 1801–1817.
Kap10b E. Kaplan, Multiplicativity of the gamma factors of Rankin–Selberg integrals for SO2l ×GLn,

Preprint (2010).
Kap12 E. Kaplan, The unramified computation of Rankin-Selberg integrals for SO2l ×GLn, Israel J.

Math. 191 (2012), 137–184.
LM09 E. Lapid and Z. Mao, On the asymptotics of Whittaker functions, Represent. Theory 13 (2009),

63–81.
MW10 C. Moeglin and J.-L. Waldspurger, La conjecture locale de Gross-Prasad pour les groupes
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