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1. Introduction

Let B(H) be the algebra of bounded linear operators on a complex separable Hilbert
space H. The problem of operator approximation is to determine how closely each
operator T e B(H) can be approximated in the norm by operators in a subset L of B(H).
This problem is initiated by P. R. Halmos [3] when he considered approximating
operators by the positive ones. Since then, this problem has been attacked with various
classes L: the class of normal operators whose spectrum is included in a fixed nonempty
closed subset of the complex plane [4], the classes of unitary operators [6] and
invertible operators [1]. The purpose of this paper is to study the approximation by
partial isometries.

In Section 2 below, after some preliminary preparations we first determine the
distance from an arbitrary operator T to the class of isometries in terms of some
operator parameters of T. This is based on, and closely related to, the work of D. D.
Rogers [6] on unitary approximations. We also settle the related approximation
problem for the larger class consisting of isometries and coisometries.

Section 3 contains our main result on approximation by partial isometries. We
determine the distance from T to such operators in terms of the "singular values" of T.
The proof is inspired by the work of Halmos on the normal spectral approximation [4].
In this case, the distance is always attained by some partial isometry.

2. Isometries

We start by considering polar decompositions of an operator. Recall that for any
operator T, ind T=dimker T — dimker T* if at least one of these numbers is finite and
ind T = 0 otherwise. The proof of the next lemma is contained in [5, Solution 135].

Lemma 2.1. Let T be an operator on H. Then T = VP, where V is a nonunitary
isometry, a nonunitary coisometry or a unitary operator according as whether ind T < 0,
>0 or = 0, and P = (T*T)1'2 is a positive operator.

For an operator T, let a(T) (resp. <re{T)) denote its spectrum (resp. essential spectrum);
let m(r) = inf{A:Ae(j((r*T)1/2)} (resp. me(T) = inf{A:A6ffe((r*T)1/2)}) be its minimum
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modulus (resp. essential minimum modulus). It is known that (1) m(T) = inf{||Tx||:||x|| = l},
(2) m(T)>0 (resp. me(T)>0) if and only if T is left invertible (resp. left Fredholm) and
(3) if L is a left inverse of T (resp. L is such that LT— 1 is compact), then

m U ) = M
Analogous results hold when T is replaced by T* and "left" by "right". (Readers are
referred to [1, Theorems 1 and 2] for these and other properties.) The next lemma
relates the distance between two operators to their minimum moduli.

Lemma 2.2. Let T and S be operators on H. Then

(1) \\T-S\\^\m(T)-m(S)\;

(2) | |T-S| |^|m(T)-m(S*)| if T is left invertible and S is right invertible.

Proof. (1) Let {xn} be a sequence of unit vectors in H such that lim||Sxn|| = m(S).
Then | |T-S||^| |(T-S)xn||^| |Txn| - | Sxn||^m(T)-||Sxn||. Letting n->oo, we obtain
||T-S|jlm(T)-m(S). Since | | T - S | = \S-T\\^m(S)-m(T) from above, we have | |T -
S\\^\m{T)-m(S)\.

(2) Let L be a left inverse of T and R be a right inverse of S. Since

we have

1 1
\\TS\\* = \m{T)-m(S*)\ as asserted.

Now we are ready for the approximation by isometries.

Theorem 2.3. For any operator T,

m „ , fmax{IITil-1, l-m(T)} j / i n d T < 0
inf{\\T-V :Fisometry}H J / , \~io ,

111 " J / (max{| |T| | - l , l + wie(7*)} otherwise.

The infimum is attained if ind T^O.

Proof. Let a = inf {||T-F||: V isometry}. If indT^O, then T=VP, where V is an
isometry and P=(T*T)1/2^0 by Lemma 2.1. For this V we have

This shows that a^max{||T|| — 1,1— m{T)}. For the other direction, since any isometry
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V satisfies ||K|| = m(K) = 1, we have

and
\\T-V\\^m(V)-m(T)=l-m(T)

by Lemma 2.2(1). It follows that a^max{| |T| |- l , l-m(T)}.

Next assume that indT>0. We have aginf{ | |T-t / | | : U unitary} = max{||T| |-1,1 +
me(T*)} by [6, Theorem 1.3]. Since indT>O^indF for any isometry V, [6, Theorem
2.1] is applicable showing that \\T-V\\^l+me(T*). Thus a^max{||T|| —1, l + me(T*)}
completing the proof.

In the following, we show that when ind T>0 the distance from T to the class of
isometries may not be attained. The proof is modified from the one for [6, Theorem 1.4 (ii)].
But first we need some lemmas.

Lemma 2.4. For any contraction T (i.e., \\T\\^ 1), ind(T-1) = 0.

Proof. This follows from the fact that ker ( 7 - 1 ) = ker (T*- l ) (cf. [7, Proposition
1.3.1]).

Lemma 2.5. Let T be an operator and V be an isometry on H. Then ind T^ind V*T.

Proof. Since kerTskerK*^ we have dimker Tgdimker K*7: On the other hand,
F(kerT*K)£kerT* implies that, since V is an isometry, dim ker T* K g dim ker T*.
Thus ind T = dim ker T-dim ker T*gdim ker K*T-dim ker T*V = ind V*T as
asserted.

Theorem 2.6. / / T is an operator with indT>0 and inf{||T-K||: V isometry} = 1,
then this infimum is not attained for any isometry.

Proof. Assume that W is an isometry such that | |T-W| | = inf{||T- V\\: Fisometry} = l.
Then | |W*T- l | | g l and it follows from Lemma 2.4 that mdW*T=0. By Lemma 2.5,
this leads to ind T :g 0, a contradiction.

If T is the adjoint of a unilateral weighted shift with weights am 0 < a n ^ 2 , such that
liman=0, then T is not one-to-one while T* is and ran T* is not closed (cf. [5, Solution
96]). Hence ind T=dimkerT>0 and me(T*) = Q (cf. [I, Theorem 2(vi)]). Therefore

inf {\\T- V\\: V isometry} = max {||T||-1,1 +me(T*)} = 1.

This shows that the assumption on T in the preceding theorem is not vacuously
satisfied.

To obtain the distance from an arbitrary operator to the class consisting of isometries
and coisometries, we need the following lemma.
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Lemma 2.7. Let T be an operator on H.

(1) If ind T = 0, then m(T) = m(T*) whence T is one-sided invertible if and only if T is
invertible.

(2) 7 / i nd r^O, then m(T)^m(T*) whence T is right invertible if and only if T is
invertible.

Proof. We only prove (1). If T is left invertible, then ker T = {0} and ran T is closed.
Thus indT = 0 implies that kerT* = {0} whence ran T = H. It follows that T is
invertible. If T is right invertible, then T* is left invertible and indT* = 0. By the
arguments above, T* is invertible and so is T.

As for the minimum moduli of T and T*, either both are 0 or at least one is positive.
In the latter case, T is one-sided invertible whence invertible and we have m(T) = m{T*)
(cf. [1, Theorem 1]).

Theorem 2.8. For any operator T,

inf{| |T-F| | :K isometry or coisometry}=max{||T|| - 1 , min{l-m(T), l-m(T*)}}.

Moreover, the infimum is always attained.

Proof. Let a and /? denote the quantities on the left and right sides of the above
equality, respectively. First assume that ind T^O. By Lemma 2.7(2), we have m(T*)^m(T).
Hence a±Smax{||T|| — 1, 1— m(Tr)} = P by Theorem 2.3. For the reverse inequality, we
have, by Theorem 2.3, ||T— K||^max{||T|| — 1, l-m(T)} or max{||T||-l, l-m(T*)}
depending on whether V is an isometry or a coisometry. It is easily seen that either
quantity is not smaller than /?. Hence | |T—F| |^^ and it follows that a = /?. If
ind T > 0, the conclusion follows by applying the above arguments to T*.

3. Partial isometries

In this section we prove our main result on the approximation by partial isometries.
We start with the following lemma. Recall that for any operator T, FI(T) denotes its
approximate point spectrum.

Lemma 3.1. / / T is an arbitrary operator on H, then

| | T — S | | ^ sup inf |z —vv|.
zen(T)weo(S)

Proof. For any zell(T), there exists a sequence {xn} of unit vectors in H such that
lim||(r-z)xn||=0. Hence

||T-S||^||(r-S)xn||^||(S-z)xn||-||(T-z)xn||^ inf |z-w|-||(r-z)xn||,
weo(S)

where the last inequality follows from the spectral theorem for normal operators (cf. [4,
p. 56]). Letting «->oo, we obtain the required inequality.
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Corollary 3.2. / / T and S are normal operators, then

\\T-S\\^ sup inf \z-w\.

Proof. This follows from the preceding lemma and the fact that a(T) = U(T) for any
normal T.

The preceding results have been obtained before by Rogers [8, Theorem 1.6] and
Halmos [4, p. 57], respectively. When T and S are arbitrary operators, we need to
consider their "singular values" instead of spectra. This is achieved through the following
lemma which was noted by H. Wielandt in the case of finite-dimensional spaces
(cf.[2,p.H3]).

Lemma 33. For any operator T, let

PT=(T*T)1'2 and t =

Then a(f)^ {± X: Xe c(PT)}. These two sets differ at most by the number 0 and they are
equal if ii

Proof. Let a be a nonzero real number. We prove that a$o(T) if and only if a^ +A
for any lea(PT). If a$<r(T), then T—a is invertible with inverse, say,

S =

Carrying out the matrix multiplication of (T —a)S=l, we obtain, for the (1,2)- and
(2,2)-entries, — <xS12 + TS22=0 and T*Si2 — aS22 = 1. From the first equation, we have
S12=(TS22)/a, which, when substituted into the second one, gives (T*T—a2)(S22/<x) = l.
Since T*T-oc2 is Hermitian, this shows that T*T-x2 is invertible. Hence a2$a(T*T)
or, equivalently, + a £ cr(PT).

Conversely, if a±±k for any Xea{PT), then a2£<r(T*T) whence T*T-<x2 is
invertible. Let R be its inverse. A little computation shows that

r(TRT*-l)/a TRl
[_ RT* <xR]

is the inverse of T—a. Hence <x

As for the number 0, note that T is invertible if and only if T is. Hence Oecr(T) if and
only if 0e(x(T). On the other hand, 0e<r(Pr) if and only if m(T) = 0 which is, in term,
equivalent to the fact that T is not left invertible. Thus 0ea{PT) implies that 0ea{T). If
ind T 2:0, then, from Lemma 2.7(2), T is left invertible if and only if T is invertible.
Thus 0ea{PT) if and only if Oea(T), completing the proof.
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In case ind T < 0, these two sets may differ. Indeed, if T is a unilateral shift, then
a(t) = {0, +1} and <j(Pr) = {l}.

Theorem 3.4. Let T and S be operators on H and P = (T*T)1/2 and Q=(S*S)U2. Then

\\T-S\\^ sup inf {/l,|A-r7|}.

Moreover, if indS^O, then

\\T—S||^ sup inf \X — n\.

Proof. Let

Since both are Hermitian, we have

| | f - S | | ^ sup inf |z-w|
ze<T(f)we<r(S)

by Corollary 3.2. However, it is easily seen that ||T"—S|| = ||T — S\\. Thus we may
conclude from Lemma 3.3 that

\\T-S\\* sup inf {A,|A-i,|} if a(S)#{±n:neG{Q)}

Ae<7(P)ve<7«2)

and

| | T - S | | ^ sup inf \X-r\\ otherwise.
^e<r(P)iie<T((2)

Lemma 3.5. Let T be an arbitrary operator and S be a partial isometry. Then
l - l | } for any lea({T*T)112).

Proof. S is a partial isometry implies that (S*S)i/2 is an orthogonal projection. Thus
<T((S*S)1/2)£{0, 1}. Our assertion follows from Theorem 3.4.

Now we are ready for our main result.

Theorem 3.6. For any operator T,

inf{| | r-S| | :S partial isometry} = sup min{A,|2-l|}.
XUT'T)1'2)

Moreover, this infimum is always attained.

Proof. First assume that indT^O. By Lemma 2.1, we have T=VP, where V is an
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isometry and P=(T*T)112. Let <p be the function from C to {0,1} defined by

0 if | z | ^ | z - l |

1 otherwise

and let S = V<p(P). Then S is a partial isometry and

= sup min{A,|A-l|}
Xea(P)

by the spectral theorem. If indT>0, then indT*<0. The arguments above show that
there exists a partial isometry R such that

||T*-.R||= sup

Note that R* is also a partial isometry and the nonzero elements of o(P) and
<j{{TT*)m) are the same (cf. [5, Problem 76]). We conclude that

II7 ~K \\ = \\1 K\\= S U P

In both cases, we have

inf{||T-S||:S partial isometry}^ sup min{/l,|A-l|}.
Xea(P)

The reverse inequality follows from Lemma 3.5. This completes the proof.
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