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Abstract

In this article we consider whether, for integrable functions on the unit ball of Cn, the mean-value property
implies (α, β)-harmonicity. We find that the answer is affirmative when 0 < n + α + β ≤ ρ0, but is negative
when n + α + β > ρ0. Here ρ0 is a constant between 11.025 and 11.069.
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1. Introduction

Let Bn be the open unit ball in Cn, and let S and B̄n be its boundary and closure. The
group of all one-to-one holomorphic maps of Bn onto Bn will be denoted by Aut(Bn).
This group is generated by the unitary transformations and the involutions ϕa of the
form

ϕa(z) =
a − Paz − (1 − |a|2)1/2Qaz

1 − 〈z, a〉
∀z ∈ Bn

where Pa is the orthogonal projection from Cn onto the one-dimensional subspace
generated by a and Qaz := z − Paz, for all a ∈ Bn.

The invariant Laplacian or Bergman Laplacian on Bn is defined, for all f ∈C2(Bn),
by

∆̃ f (z) = ∆( f ◦ ϕz)(0) = 4(1 − |z|2)
n∑

i, j=1

(δi j − ziz̄ j)DiD̄ j f ,

where ∆ is the ordinary Laplacian and D j = ∂/∂z j. It commutes with every ψ ∈ Aut(Bn)
in the sense that

(∆̃ f ) ◦ ψ = ∆̃( f ◦ ψ).

TheM-harmonic functions in Bn are those for which ∆̃ f = 0.
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Let ν denote Lebesgue measure on Cn normalized so that ν(Bn) = 1. If f is
M-harmonic, then its mean value over spheres of center 0 and radius r at most 1
is f (0) (see [17, p. 51]). If f is also in L1(Bn, ν), then∫

Bn

f ◦ ψ dν = f (ψ(0)) ∀ψ ∈ Aut(Bn). (1.1)

We can also describe this property by saying that f satisfies the invariant mean-value
property.

In 1993 Ahern et al. (see [3]) proved a surprising result.

T 1. The invariant mean-value property (1.1) characterizes M-harmonic
functions in L1(Bn, ν) if and only if n ≤ 11.

This paper is motivated by an attempt to understand the reason for the curious
dependence on the dimension in Theorem 1. To this end we generalize Theorem 1
to (α, β)-harmonic functions.

GeneralizedM-harmonic functions, or (α, β)-harmonic functions, are the functions
annihilated by the differential operator ∆α,β, given by

∆α,β = (1 − |z|2)
{ n∑

i, j=1

(δi j − ziz̄ j)DiD̄ j + αR + βR̄ − αβ
}
,

where α, β ∈ C and R is the radial derivative, given by R =
∑

j z jD j. If α = β = 0, then
the operator 4∆0,0 is just the invariant Laplacian ∆̃. The operator ∆α,α is the Laplacian
for the Bergman space with weight (1 − |z|2)α. The more general operators ∆α,β were
introduced by Geller [13]. They appear in a natural way when we consider certain
derivatives ofM-harmonic functions. It was proved in [2] that ∆α,βu = 0 implies that
∆α,β−1(Ru − βu) = 0. The operators ∆α,β also appear when computing the Laplace–
Beltrami operator on forms.

We now give the definition of the mean-value property to which the title of our
paper refers. To make this notion meaningful, as well as for simplicity, we will from
now on assume that α and β are two real numbers satisfying the conditions that

n + α + β > 0, n + α > 0, n + β > 0.

For notational simplicity, we write

ρ := n + α + β.

It was shown in [13, Theorem 1.1] that if ∆α,β f = 0 in Bn and 0 < r < 1, then

2F1(−α, −β; n; r2) f (0) =

∫
S

f (rζ) dσ(ζ), (1.2)

where 2F1(a, b; c; z) is the Gauss hypergeometric function (see Section 2 for the
definition) and σ denotes the normalized surface-area measure on the unit sphere S .

https://doi.org/10.1017/S1446788711001431 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788711001431


[3] The mean-value property 191

We multiply (1.2) by 2nr2n−1 and integrate over [0, 1) to get

C0

∫
Bn

f (z) dν(z) = f (0) (1.3)

and

C0 =

{
2n

∫ 1

0
r2n−1

2F1(−α, −β; n; r2) dr
}−1

=
Γ(n + α + 1)Γ(n + β + 1)
Γ(n + 1)Γ(n + α + β + 1)

.

Here the last equality follows by (2.1) in Section 2. It is proved in [2, Lemma 1.2] that

∆α,β[( f ◦ ϕa)h(α,β)
a ] = [(∆α,β f ) ◦ ϕa]h(α,β)

a (1.4)

for each a ∈ Bn. Here

h(α,β)
a (z) = (1 − 〈a, z〉)α(1 − 〈z, a〉)β ∀z ∈ Bn.

This implies that ( f ◦ ϕa)h(α,β)
a is also (α, β)-harmonic. Thus applying (1.3) to

( f ◦ ϕa)h(α,β)
a shows that

f (a) = C0

∫
Bn

( f ◦ ϕa)h(α,β)
a dν ∀a ∈ Bn. (1.5)

This is the mean-value property to which the title of our paper refers. This property
is invariant in the sense that ( f ◦ ϕa)h(α,β)

a satisfies this property for each a ∈ Bn

whenever f satisfies the property.
The question again arises as to whether this invariant mean-value property

characterizes the (α, β)-harmonic functions in L1(Bn, ν). In our main result, ρ0 is a
constant between 11.025 and 11.069, which is made precise in Definition 4.8.

T 1.1. Suppose that n + α + β > 0, n + α > 0 and n + β > 0. For integrable
functions in Bn the mean-value property (1.5) implies that (α, β)-harmonicity if and
only if n + α + β ≤ ρ0.

The proof of the above theorem follows the main lines of [3]. However our
study of Berezin-type transforms is interesting in its own right. These results are
included in Section 3. In Section 2, we review some of the standard facts on Möbius
transformations and the Gauss hypergeometric function and establish a few elementary
lemmas. Section 4 is devoted to the study of the eigenspaces of ∆α,β. Finally we
complete the proof of our main result in Section 5.

2. Preliminaries

We begin by summarizing some properties of the mapping ϕa which will be used
later.

L 2.1. For all a ∈ Bn, the mapping ϕa has the following properties.

(i) ϕa(0) = a and ϕa(a) = 0.
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(ii) The mapping ϕa is an involution; that is, ϕa ◦ ϕa = id, where id is the identity
mapping.

(iii) For all z, w ∈ B̄n,

1 − 〈ϕa(z), ϕa(w)〉 =
(1 − 〈a, a〉)(1 − 〈z, w〉)
(1 − 〈z, a〉)(1 − 〈a, w〉)

.

(iv) The (real) Jacobian of ϕa is given by

(JR ϕa)(z) =
(1 − |a|2)n+1

|1 − 〈z, a〉|2(n+1)
.

A number of special functions will appear in this paper. We use the classical
notation 2F1(a, b; c; z) to denote the hypergeometric series

2F1(a, b; c; z) =

∞∑
k=0

(a)k(b)k

(c)k

zk

k!

where c , 0, −1, −2, . . . , (a)0 = 1, and for all positive integers k,

(a)k = a(a + 1) · · · (a + k − 1).

We list the following formulas for easy reference (see [4, Ch. 2]):

2F1(a, b; c; 1) =
Γ(c)Γ(c − a − b)
Γ(c − a)Γ(c − b)

, (2.1)

2F1(a, b; c; z) = (1 − z)c−a−b
2F1(c − a, c − b; c; z), (2.2)

2F1(a, b; c; z) =
Γ(c)

Γ(λ)Γ(c − λ)

∫ 1

0
tλ−1(1 − t)c−λ−1

2F1(a, b; λ; tz) dt, (2.3)

where Re c > Re λ > 0 and z < [1, +∞).

L 2.2. Suppose that Re c > 0, Re δ > 0 and Re(c − a − b + δ) > 0. Then∫ 1

0
tc−1(1 − t)δ−1

2F1(a, b; c; t) dt =
Γ(c)Γ(δ)Γ(c − a − b + δ)
Γ(c − a + δ)Γ(c − b + δ)

. (2.4)

P. Note that, under our hypotheses, both sides of (2.3) are continuous functions
of z at 1. The lemma then follows by letting z tend to 1 and applying (2.1). �

L 2.3. For all z ∈ Bn, s, t ∈ R and c > −1,∫
S

dσ(ζ)
(1 − 〈z, ζ〉)s(1 − 〈ζ, z〉)t

= 2F1(s, t; n; |z|2) (2.5)

and ∫
Bn

(1 − |w|2)c dν(w)
(1 − 〈z, w〉)s(1 − 〈w, z〉)t

=
Γ(n + 1)Γ(1 + c)

Γ(n + 1 + c) 2F1(s, t; n + 1 + c; |z|2). (2.6)
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P. It is well known that, if λ ∈ C, |λ| < 1 and γ ∈ R, then

(1 − λ)−γ =

∞∑
k=0

(γ)k

k!
λk.

We also recall that ∫
S
〈z, ζ〉k〈z, ζ〉

`
dσ(ζ) = δk`

k!
(n)k
|z|2k

for all nonnegative integers k and `. Thus∫
S

dσ(ζ)
(1 − 〈z, ζ〉)s(1 − 〈ζ, z〉)t

=

∫
S

{ ∞∑
k=0

(s)k

k!
〈z, ζ〉k

}{ ∞∑
`=0

(t)`
`!
〈ζ, z〉`

}
dσ(ζ)

=

∞∑
k,`=0

(s)k

k!
(t)`
`!

∫
S
〈z, ζ〉k〈z, ζ〉

`
dσ(ζ)

=

∞∑
k=0

(s)k

k!
(t)k

k!
k!

(n)k
|z|2k

= 2F1(s, t; n; |z|2).

We may now use polar coordinates (w = rζ) and (2.5) to obtain∫
Bn

(1 − |w|2)c dν(w)
(1 − 〈z, w〉)s(1 − 〈w, z〉)t

= 2n
∫ 1

0
r2n−1(1 − r2)c

2F1(s, t; n; r2|z|2) dr.

Now (2.6) follows after an application of (2.3). �

L 2.4. For all k ∈ Z+,

Γ(n + α + 1 + k)Γ(n + β + 1 + k)

Γ2(n + 1
2 (α + β) + 1 + k)

≤
Γ(n + α + 1)Γ(n + β + 1)

Γ2(n + 1
2 (α + β) + 1)

. (2.7)

P. The logarithmic derivative of the gamma function, ψ, which is defined by

ψ(x) =
d
dx

log Γ(x) =
Γ′(x)
Γ(x)

is called the psi or digamma function in the literature. Its second derivative satisfies

ψ′′(x) = −2
∞∑
j=0

1
(x + j)3

< 0.

Hence ψ is concave on [0,∞). Thus

ψ(n + α + 1 + x) + ψ(n + β + 1 + x) − 2ψ
(
n +

α + β

2
+ 1 + x

)
≤ 0.
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This implies that the function

x 7−→
Γ(n + α + 1 + x)Γ(n + β + 1 + x)

Γ2(n + 1
2 (α + β) + 1 + x)

is decreasing on [0,∞), and our result follows. �

3. Berezin-type transforms Bk

For all nonnegative integers k, define the measure νk on Bn by

dνk(w) = (1 − |w|2)k dν(w).

For all f ∈ L1(νk), the Berezin-type transform Bk f of f is defined by

Bk f (z) = Ck

∫
Bn

f (ϕz(w))h(α,β)
z (w) dνk(w) ∀z ∈ Bn, (3.1)

where

Ck =
Γ(n + α + k + 1)Γ(n + β + k + 1)

Γ(n + 1)Γ(k + 1)Γ(n + α + β + k + 1)
.

Hence we can rephrase the definition of the mean-value property in the form B0 f = f .
It will be helpful to recast our mean-value property using the integral operator B0.

If we replace w by ϕz(w) in (3.1), we obtain a second formula for Bk f , namely

Bk f (z) = Ck

∫
Bn

(1 − |z|2)n+α+β+k+1(1 − |w|2)k

(1 − 〈z, w〉)n+α+k+1(1 − 〈w, z〉)n+β+k+1
f (w) dν(w). (3.2)

L 3.1. Suppose that a, z, w ∈ Bn. Then

h(α,β)
ϕz(a)(w)h(α,β)

a (z) = h(α,β)
a (ϕz(w))h(α,β)

z (w). (3.3)

P. It suffices to show that

(1 − 〈ϕz(a), w〉)(1 − 〈a, z〉) = (1 − 〈a, ϕz(w)〉)(1 − 〈z, w〉),

which follows easily from Lemma 2.1. �

Now we prove the ‘Möbius invariance’ of the Berezin-type transforms.

P 3.2. Let k ≥ 0. If f ∈ L1(νk) and a ∈ Bn, then

Bk[( f ◦ ϕa)h(α,β)
a ] = [(Bk f ) ◦ ϕa]h(α,β)

a . (3.4)

P. Note first that, if f ∈ L1(νk), then ( f ◦ ϕa)h(α,β)
a ∈ L1(νk). For all z ∈ Bn, the

map ϕϕa(z) ◦ ϕa ◦ ϕz is an automorphism of Bn that fixes 0. Hence it is a unitary
transformation (see, for example [17, Theorem 2.2.5]), which we denote by U.
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Since ϕϕa(z) and ϕz are involutions,

ϕa ◦ ϕz = ϕϕa(z) ◦ U (3.5)

and
U ◦ ϕz(a) = ϕa(z). (3.6)

Thus

Bk[( f ◦ ϕa)h(α,β)
a ](z) = Ck

∫
Bn

f (ϕa(ϕz(w)))h(α,β)
a (ϕz(w))h(α,β)

z (w) dνk(w)

= Ck

∫
Bn

f (ϕϕa(z)(Uw))h(α,β)
ϕz(a)(w)h(α,β)

a (z) dνk(w)

= Ck

{∫
Bn

f (ϕϕa(z)(w))h(α,β)
Uϕz(a)(w) dνk(w)

}
h(α,β)

a (z)

= (Bk f )(ϕa(z))h(α,β)
a (z),

where, in the second inequality, we use (3.5) and (3.3); in the third equality, we use
the rotation invariance of νk and the inner product 〈·, ·〉; and in the fourth inequality we
use (3.6) and (3.1). �

P 3.3. If f ∈ L∞(Bn, ν), then for every nonnegative integer k,

‖Bk f ‖∞ ≤
Γ(n + α + 1)Γ(n + β + 1)

Γ2(n + 1
2 (α + β) + 1)

‖ f ‖∞. (3.7)

P. It follows immediately from (3.2) that

‖Bk f ‖∞ ≤Ck sup
z∈Bn

{
(1 − |z|2)ρ+k+1

∫
Bn

(1 − |w|2)k

|1 − 〈z, w〉|ρ+n+2k+2
dν(w)

}
‖ f ‖∞.

By applying (2.6) and (2.2), we may write the expression in braces in the form

Γ(n + 1) Γ(k + 1)
Γ(n + k + 1) 2F1

(
−
α + β

2
, −
α + β

2
; n + k + 1; |z|2

)
.

Note that the above hypergeometric function is increasing on the interval [0, 1) since
its Taylor coefficients are all positive. Thus this hypergeometric function is bounded
above by

2F1

(
−

1
2

(α + β), −
1
2

(α + β); n + k + 1; 1
)

=
Γ(n + 1 + k)Γ(n + α + β + 1 + k)

Γ2(n + 1
2 (α + β) + 1 + k)

.

Thus

‖Bk f ‖∞ ≤
Γ(n + α + 1 + k)Γ(n + β + 1 + k)

Γ2(n + 1
2 (α + β) + 1 + k)

‖ f ‖∞.

Now (3.7) follows from the above equality and (2.7). �
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P 3.4. Let k be a strictly positive integer. Then Bk is a bounded linear
operator on L1(ν), and

‖Bk‖ ≤ (ρ + 2)
Γ(n + α + 1)Γ(n + β + 1)

Γ2(n + 1
2 (α + β) + 1)

.

P. Let f ∈ L1(ν). It follows immediately from (3.2) that

‖Bk f ‖1 ≤Ck sup
w∈Bn

{
(1 − |w|2)k

∫
Bn

(1 − |z|2)ρ+1+k

|1 − 〈z, w〉|ρ+n+2k+2
dν(z)

}
‖ f ‖1.

After the change of variables z 7→ ϕw(z), the integral becomes∫
Bn

( (1 − |z|2)(1 − |w|2)
|1 − 〈z, w〉|2

)ρ+1+k( |1 − 〈z, w〉|
1 − |w|2

)ρ+n+2+2k( 1 − |w|2

|1 − 〈z, w〉|2

)n+1

dν(z)

= (1 − |w|2)−k
∫

Bn

(1 − |z|2)ρ+k+1

|1 − 〈z, w〉|ρ+n+2
dν(z).

Hence

‖Bk‖ ≤ Ck sup
w∈Bn

{∫
Bn

(1 − |z|2)ρ+k+1

|1 − 〈z, w〉|ρ+n+2
dν(z)

}
≤ Ck

Γ(n + 1)Γ(ρ + k + 2)
Γ(ρ + n + k + 2)

× sup
w∈Bn

2F1

(1
2

(ρ + n + 2),
1
2

(ρ + n + 2); ρ + n + k + 2; |w|2
)
.

Applying a similar argument to that in the proof of Proposition 3.3, we obtain

‖Bk‖ ≤

(
1 +

ρ + 1
k

)
Γ(n + α + 1 + k)Γ(n + β + 1 + k)

Γ2( 1
2 (n + ρ) + 1 + k)

≤ (ρ + 2)
Γ(n + α + 1)Γ(n + β + 1)

Γ2( 1
2 (n + ρ) + 1)

,

where the last inequality follows by (2.7). �

Note that B0 does not carry L1(ν) into L1(ν) when ρ > 0 because∫
Bn

(1 − |z|2)ρ+1

|1 − 〈z, w〉|ρ+n+2
dν(z)

tends to ∞ as |w| tends to 1. However we do have the following result, whose proof is
similar to that of Proposition 3.4 and is omitted.
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P 3.5. The operator B0 is a bounded linear operator from L1(ν) to L1(ν1).
Moreover,

‖B0 f ‖L1(ν1) ≤ (ρ + 2)(ρ + 1)
Γ(n + α + 1)Γ(n + β + 1)

Γ2(n + 1
2 (α + β) + 2)

‖ f ‖L1(ν)

for all f ∈ L1(ν).

P 3.6. If f ∈ L1(ν), then

lim
k→∞
‖Bk f − f ‖1 = 0.

P. We first assume that f ∈C(B̄n). We proceed to show that Bk f → f pointwise
as k→∞. Note that it is enough to prove that Bk f (0)→ f (0) as k→∞. The general
result then follows by Proposition 3.2: we simply apply this limit to ( f ◦ ϕz) h(α,β)

z .
Note that

Bk f (0) − f (0) = Ck

∫
Bn

[ f (w) − f (0)] dνk(w) + (C̃k − 1) f (0),

where

C̃k = Ck

∫
Bn

dνk =
Γ(n + α + 1 + k)Γ(n + β + 1 + k)
Γ(n + 1 + k)Γ(n + α + β + 1 + k)

.

It is an immediate consequence of Stirling’s formula that C̃k→ 1 as k→∞.
To show that

Ck

∫
Bn

[ f (w) − f (0)] dνk(w)→ 0 (3.8)

as k→∞, we split Bn into a (sufficiently) small ball δBn and a spherical shell Bn \ δBn.
We correspondingly decompose the integral into two parts. Then (3.8) follows by
estimating the integral over δBn using the continuity of f and estimating the integral
over Bn \ δBn using the boundedness of f and the inequality

Ck

∫
Bn\δBn

dνk(y) ≤
Γ(n + α + k + 1)Γ(n + β + k + 1)

Γ(n + 1)Γ(k + 1)Γ(n + α + β + k + 1)
(1 − δ2)k.

Finally, by Proposition 3.3 and Lebesgue’s dominated convergence theorem, we find
that

lim
k→∞

∫
Bn

|Bk f − f | dν = 0 ∀ f ∈C(B̄n).

The general case follows by Proposition 3.4 and the density of C(B̄n) in L1(ν). �

P 3.7. Suppose that k and ` are nonnegative integers, and k + ` > 0. Then
BkB` = B`Bk on L1(ν).
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P. By Proposition 3.4, the expression BkB` f makes sense for all f ∈ L1(ν) when
k ≥ 0 and ` ≥ 1. Proposition 3.5 implies that the expression BkB0 f also makes sense
for all f ∈ L1(ν) when k ≥ 1. Hence BkB` f is well-defined for all f ∈ L1(ν) when
k + ` > 0.

Let f ∈ L1(ν). To prove that BkB` f = B`Bk f it suffices to show that

BkB` f (0) = B`Bk f (0),

by Proposition 3.2. For notational simplicity, we write

c := α + β + n + k + ` + 1,
s′ := n + α + ` + 1, t′ := n + β + ` + 1,
s := n + α + k + 1, t := n + β + k + 1.

Note that c + n + 1 − s′ = t and c + n + 1 − t′ = s. In addition, a simple calculation
shows that

BkB` f (0) = CkC`

∫
Bn

f (w)(1 − |w|2)`
(∫

Bn

(1 − |z|2)c dν(z)
(1 − 〈z, w〉)s′(1 − 〈w, z〉)t′

)
dν(w). (3.9)

The change of variables z 7→ ϕw(z) in the inner integral yields∫
Bn

(1 − |z|2)c

(1 − 〈z, w〉)s′(1 − 〈w, z〉)t′
dν(z)

=

∫
Bn

( (1 − |z|2)(1 − |w|2)
|1 − 〈z, w〉|2

)c(1 − 〈z, w〉
1 − |w|2

)s′(1 − 〈w, z〉
1 − |w|2

)t′( 1 − |w|2

|1 − 〈z, w〉|2

)n+1

dν(z)

=

∫
Bn

(1 − |z|2)c(1 − |w|2)c+n+1−s′−t′

(1 − 〈z, w〉)c+n+1−s′(1 − 〈w, z〉)c+n+1−t′
dν(z)

= (1 − |w|2)k−`
∫

Bn

(1 − |z|2)c

(1 − 〈z, w〉)t(1 − 〈w, z〉)s
dν(z)

=
Γ(n + 1)Γ(c + 1)

Γ(n + 1 + c)
(1 − |w|2)k−`

2F1(t, s; n + 1 + c; |w|2),

where the last equality follows by (2.6). Inserting this into (3.9), we deduce that

BkB` f (0) = CkC`
Γ(n + 1)Γ(c + 1)

Γ(n + 1 + c)

×

∫
Bn

f (w)(1 − |w|2)k
2F1(t, s; n + 1 + c; |w|2) dν(w).

(3.10)
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On the other hand, interchanging the indices k and ` in (3.9) shows that

B`Bk f (0) = CkC`

∫
Bn

f (w)(1 − |w|2)k

×

{∫
Bn

(1 − |z|2)c

(1 − 〈z, w〉)s(1 − 〈w, z〉)t
dν(z)

}
dν(w)

= CkC`
Γ(n + 1) Γ(c + 1)

Γ(n + 1 + c)

×

∫
Bn

f (w)(1 − |w|2)k
2F1(s, t; n + 1 + c; |w|2) dν(w).

(3.11)

A comparison of (3.10) and (3.11) now establishes our result. �

The following proposition gives the relationship between the Berezin-type
transforms Bk and the differential operators ∆α,β.

P 3.8. For all nonnegative integers k and f ∈ L1(ν),

∆α,βBk f = (ρ + k + 1)(k + 1)(Bk f −Bk+1 f ).

P. By (1.4) and (3.4), it suffices to establish that

∆α,βBk f (0) = (ρ + k + 1)(k + 1){Bk f (0) −Bk+1 f (0)} ∀ f ∈ L1(ν).

This may be shown by differentiating under the integral sign and regrouping terms. �

In other words, for all strictly positive integers k, the operator identity

Bk =

(
1 −

∆α,β

k(ρ + k)

)
Bk−1

holds. The next corollary is an immediate consequence of this identity.

C 3.9. Suppose that k is a positive integer and set

Gk,ρ(λ) =

k∏
j=1

(
1 −

λ

j(ρ + j)

)
∀λ ∈ C.

Then Bk = Gk,ρ(∆α,β)B0 on L1(ν).

Let

Gρ(λ) :=
∞∏
j=1

(
1 −

λ

j(ρ + j)

)
∀λ ∈ C. (3.12)

It is clear that Gρ is an entire function and that Gk,ρ converges to Gρ, uniformly on
compact subsets of C as k→∞. It should not be surprising that the function Gρ plays
an important role in the solution of our problem.
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4. The eigenspaces of ∆α,β

Let α and β be fixed. For all λ ∈ C, we define the function space

Xλ := { f ∈C2(Bn) | ∆α,β f = λ f }.

In particular, when λ = 0, we see that X0 is the space of all (α, β)-harmonic functions.

P 4.1. Let λ, γ ∈ C be related by

λ = −γ(ρ − γ). (4.1)

Then the radial functions in Xλ are the constant multiples of

(1 − |z|2)γ 2F1(γ − α, γ − β; n; |z|2).

R. From now on, we will always assume that λ and γ are related as in (4.1).

P. We will only sketch of the proof, as it is similar to that of [1, Theorem 2.1].
Recall the following ‘radial-tangential’ expression (see [2]):

∆α,β = (1 − |z|2)
{ 1
|z|2

(
(1 − |z|2)RR̄ − L0 +

n − 1
2

(R + R̄)
)

+ αR + βR̄ − αβ
}
,

where

Li j = z̄i
∂

∂z j
− z̄ j

∂

∂zi
and L0 = −

1
2

∑
i< j

(L̄i jLi j + Li jL̄i j).

For radial functions, the operator ∆α,β has the form

∆α,β f =
(1 − r2)

4

{
(1 − r2)

d2

dr2
+

[2n − 1
r

+ (2α + 2β − 1)r
] d
dr
− 4αβ

}
f ,

where r = |z|.
Let f ∈C2(Bn) be radial. Then f (z) = (1 − r2)γg(r2) for some function g defined on

[0, 1). This converts ∆α,β f = λ f to the form

x(1 − x)g′′(x) + {n − (2γ − α − β + 1)x}g′(x) − (γ − α)(γ − β)g(x) = 0

for all x ∈ (0, 1). But this is just a hypergeometric equation, and its only solutions that
are smooth at 0 are multiples of

2F1(γ − α, γ − β; n; x).

Hence f is a multiple of

(1 − |z|2)γ 2F1(γ − α, γ − β; n; |z|2),

and our result is established. �
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C 4.2. If ∆α,β f = λ f in Bn and 0 < r < 1, then∫
S

f (ϕz(rζ))h(α,β)
z (rζ) dσ(ζ) = (1 − r2)γ 2F1(γ − α, γ − β; n; r2) f (z). (4.2)

P. If f ∈ Xλ, then so is its radialization f ], given by

f ] =

∫
U (n)

( f ◦ U) dU,

where U (n) denotes the group of all unitary transformations on Cn and dU denotes
the Haar measure element on U . It follows by Proposition 4.1 that

f ](z) = C(1 − |z|2)γ 2F1(γ − α, γ − β; n; |z|2) (4.3)

for some constant C. Letting z = 0 in (4.3) we get C = f (0) and hence∫
S

f (rζ) dσ(ζ) = (1 − r2)γ 2F1(γ − α, γ − β; n; r2) f (0) ∀r ∈ (0, 1).

This is (4.2) with f in place of ( f ◦ ϕz)h
(α,β)
z . The general case of (4.2) follows

from (1.4), that is, the Möbius-invariance of Xλ. �

C 4.3. Suppose that −1 < Re γ < ρ + 1 and f ∈ Xλ ∩ L1(ν). Then

B0 f (z) =
Γ(γ + 1)Γ(ρ + 1 − γ)

Γ(ρ + 1)
f (z).

P. We integrate using polar coordinates and apply (4.2) and (2.4) to obtain

B0 f (z) = C0

∫
Bn

f (ϕz(w))h(α,β)
z (w) dν(w)

= 2nC0

∫ 1

0
r2n−1

{∫
S

f (ϕz(rζ))h(α,β)
z (rζ) dσ(ζ)

}
dr

=

{
2nC0

∫ 1

0
r2n−1(1 − r2)γ 2F1(γ − α, γ − β; n; r2) dr

}
f (z)

= nC0
Γ(n)Γ(γ + 1)Γ(n + α + β + 1 − γ)

Γ(n + α + 1)Γ(n + β + 1)
f (z),

which is precisely the assertion of this corollary. �

For all s ∈ C, we set

Φs(η) :=
Γ(η + 1)Γ(s + 1 − η)

Γ(s + 1)
∀η ∈ C.
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L 4.4. Let λ and γ be related as in (4.1). Then

Gρ(λ) =
1

Φρ(γ)
.

P. The jth factor in the product (3.12)

Gρ(λ) =

∞∏
j=1

(
1 +

γ(ρ − γ)
j(ρ + j)

)
is equal to {(

1 +
γ

j

)
e−γ/ j

}{(
1 +

ρ − γ

j

)
e(γ−ρ)/ j

}{(
1 +

ρ

j

)−1

eρ/ j
}
.

Recalling the well-known identity

1
Γ(y + 1)

= eθy
∞∏
j=1

(
1 +

y
j

)
e−y/ j,

where θ is the Euler–Mascheroni constant, given by

θ = lim
j→∞

( j∑
i=1

1
i
− log j

)
,

the conclusion now follows easily. �

We define the region

Σρ := {γ ∈ C | −1 < Re γ < ρ + 1}.

Then γ 7→ λ is a two-to-one map from the region Σρ onto a region Ωρ. Arguing as in [3,
Section 3.1], it is easy to deduce that

Ωρ ⊆

{
λ ∈ C | Re λ +

( Im λ

ρ + 2

)2

< ρ + 1
}
⊂ {λ ∈ C | Re λ < ρ + 1}. (4.4)

The relationship (4.1) between λ and γ enables us to work with the region Σρ, which
is more manageable than Ωρ. Changes of variable of this kind have already been used
extensively (see, for example, [3, Section 3.1]).

C 4.5. Suppose that λ ∈Ωρ and f ∈ Xλ ∩ L1(ν). Then

B0 f = f /Gρ(λ).

P 4.6. We have Xλ ∩ L1(ν) , {0} if and only if λ ∈Ωρ.
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P. Take f ∈ Xλ ∩ L1(ν) \ {0} and a ∈ Bn \ {0}. Then g, defined by

g := ( f ◦ ϕa)h(α,β)
a ,

also lies in Xλ ∩ L1(ν) (by ‘Möbius invariance’) and hence so does g], its radialization.
Moreover, g] , 0 since

g](0) = g(0) = f (a) , 0,

by the choice of a. Thus g] is a nonzero multiple of the function g0, given by

g0(z) := (1 − |z|2)γ 2F1(γ − α, γ − β; n; |z|2).

Now it suffices to show that g0 ∈ L1(ν) if and only if λ ∈Ωρ. Integration in polar
coordinates yields∫

Bn

|g0| dν = n
∫ 1

0
|(1 − r2)γ 2F1(γ − α, γ − β; n; r2)|r2(n−1) dr2.

By [12, Vol. I, p. 76, (9)],

2F1(a, b; c; z) ∼ c1z−a + c2z−b

for large z (with a logarithmic factor if a − b is an integer). Therefore g0 ∈ L1(ν) exactly
when

−1 < Re γ < ρ + 1,

that is, exactly when λ ∈Ωρ. �

P 4.7. If λ ∈Ωρ, then Gρ(λ) , 0 and G′ρ(λ) , 0.

P. From (3.12), the zeroes of Gρ occur at ρ + 1, 2(ρ + 2), 3(ρ + 3), . . . , and none
of these lies in Ωρ, by (4.4). Logarithmic differentiation of (3.12) yields

G′ρ(λ) = Gρ(λ)
∞∑
j=1

1
λ − j(ρ + j)

.

Each of these summands has a negative real part when

Re λ < ρ + 1

and hence has a negative real part for all λ ∈Ωρ. �

For all γ ∈ Σρ such that λ ∈Ωρ, Corollary 4.5 shows that Xλ ∩ L1(ν) is a subspace of
the eigenspace of B0 with eigenvalue Φρ(γ). Since our main concern is the equation
B0 f = f , we need to investigate the set of points in Σρ at which Φρ(γ) = 1.
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D 4.8. Let S ⊆ R be the collection of all positive real numbers s for which
there exists a positive real number t such that Φs(−1 − it) ∈ R and Φs(−1 − it) > 1. We
define

ρ0 := inf S .

Then 11.025 < ρ0 < 11.069 by [20, p. 34].

P 4.9 (See [20, Theorem 4.5]). There are no zeroes of the function Φρ − 1
in Σρ\{0, ρ} if and only if ρ ≤ ρ0.

Further, if ρ > ρ0, then the equation Φρ(γ) = 1 has solutions in Σρ\{0, ρ}. The
number of these solutions is finite for each ρ, but tends to∞ as ρ→∞.

We define the set Eρ by

Eρ := {λ ∈Ωρ |Gρ(λ) = 1}.

C 4.10. We have Eρ = {0} if and only if ρ ≤ ρ0.

5. Proof of Theorem 1.1

The rest of the proof of our main result, Theorem 1.1, mimics the argument given
in [3], and we only sketch it.

By Proposition 3.5, the subspace

M := { f ∈ L1(ν) |B0 f = f }

is closed in L1(ν). We define ∆M
α,β to be the restriction of ∆α,β to M. Propositions 3.8

and 3.4 imply that ∆M
α,β is bounded from M to L1(ν). Moreover, for all f ∈ M,

B0∆M
α,β f = (ρ + 1)(B0 f −B1B0 f ) = ∆M

α,β f ,

by Propositions 3.8 and 3.7. Thus ∆M
α,β carries M into M.

Since
Gk,ρ(λ)→Gρ(λ)

uniformly on compact subsets of C as k→∞, it follows that

Gk,ρ(∆M
α,β)→Gρ(∆M

α,β)

in the topology induced by the operator norm. Corollary 3.9 and Proposition 3.6 now
imply that f = Gρ(∆M

α,β) f for all f ∈ M. That is,

Gρ(∆M
α,β) = idM , (5.1)

where idM denotes the identity map on the subspace M.
By Corollary 4.5 and Proposition 4.6 the set Eρ is exactly the point spectrum of

∆M
α,β. In addition, Eρ is finite for all positive ρ by Propositions 4.9 and 4.4.
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Now let Q be the monic polynomial which has a simple zero at each point of Eρ

and no other zeros in C. As G′ρ(λ) , 0 in Ωρ, there exists an entire function H such that
HQ = Gρ − 1 and H(λ) , 0 for all λ ∈ Eρ. Since H has no zero on the point spectrum
of ∆M

α,β, the spectral mapping theorem implies that 0 is not in the point spectrum of
H(∆M

α,β). Therefore H(∆M
α,β) is a one-to-one operator. Now (5.1) shows that

H(∆M
α,β)Q(∆M

α,β) = 0,

and it follows that Q(∆M
α,β) = 0.

Corollary 4.5 tells us that

M ∩ Xλ = Xλ ∩ L1(ν)

for all λ ∈ Eρ. We now apply [3, Lemma 4.1] to the Banach space M and the operator
∆M
α,β to deduce that

M =
⊕
λ∈Eρ

Xλ ∩ L1(ν).

The theorem now follows from this decomposition and Corollary 4.10. �
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