INTEGRATION OF SUBSPACES DERIVED FROM
A LINEAR TRANSFORMATION FIELD

EDWARD T. KOBAYASHI

1. Introduction. The problem we study is a generalization of a problem
first solved by Tonolo (6), then generalized successively by Schouten (5),
Nijenhuis (4), Haantjes (3), and Nijenhuis—Frolicher (2). The Tonolo—-
Schouten approach is distinct from that of Nijenhuis—Haantjes—Frolicher in
the sense that the former consider the problem on a Riemannian space,
while the latter consider it on a manifold without any further structure.

The object of investigation is the integrability of the distribution 6 of
vector subspaces 6, of the tangent space 77, to a manifold M, when 6, is in-
trinsically related to a given field # on M, of linear transformations %, on 7,.
The research has so far been restricted to certain types of 4. The result, under
the weakest restriction, was that of Haantjes, which states that if % is of
“type A"* then all the distributions are integrable if and only if the following
condition is satisfied:

hh[h,h] (w,2) + [hh](hu,ho) — k{hR] (hu,w) — h{h4] (u,hy) = 0

where u, v are two vector fields over M, and [k, 2] is a vector 2-form intro-
duced by Nijenhuis (cf. § 2).

We free ourselves from any restriction on £. Our result depends entirely
on the local factorization of the characteristic polynomial x of .. To each
factor x; of x, there corresponds a distribution 6; and a projection operator
e;(h), which is a polynomial in %, and the local integrability condition of 6,
is (I — e;(h))[e;(R), €;(h)] = 0 (Theorem 4.2). To each product x4 ... x4 of
distinct factors of x, there corresponds a distribution 8, . . . ;. The necessary
and sufficient condition for these distributions to be all locally integrable is
[e;(h), e;(h)] = 0 for all ¢ (Corollary 4.3).

2. Vector forms and projection operators. Let M be a C®-manifold
and & the ring of C*-functions on M. By a neighbourhood of a point p in
M, we mean an open, connected subset of M containing p.
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* is said to be of type 4 if (i) there are functions «y, . . . ,a, on M, such that (ai1), . . ., (@g)p
are distinct at each p, and give the eigenvalues of £, and if (ii) there are vector fields
Vity oo Oimgon M, 2 =1,...,g m + ...+ m, =n such that (vi1),, ..., (vin;), are eigen-
vectors corresponding to (e;), and are linearly independent.
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Definition 2.1. A vector ¢g-form is a C”-tensor field over M, skew-symmetric
in the covariant part, of covariant degree ¢, and of contravariant degree 1.
Let % be a vector 1-form. Then we see that % is nothing but a rule which
assigns to each point p of M a linear transformation %, of the tangent space
T, at p to M. Following Nijenhuis (4, 2) we introduce a vector 2-form [k, %]
defined by
2.1) Lk, k]l (u, v) = [hu, v] + hhlu, v] — hlhu, v] — klu, ho),

where u, v are vector fields over M. That (2.1) does define a tensor, follows
from the ®-linearity in % and » of the right side of (2.1).*

2

Definition 2.2. A vector 1-form e satisfying e> = ¢ on a neighbourhood U
is called a projection operator on U.

Remark 1. dim e,7T", is constant for ¢ € U, and we call this constant the
rank of e. In fact, dim ¢,7";, which is an integer, is equal to the trace of e,,
which depends continuously on ¢, hence is a constant.

Remark 2. If e is a projection operator on U, so is ¢ = I — e, where [ is
the identity vector 1-form. We have e + ¢ = I, e¢’ = ¢'¢ = 0 and

T,=¢T,® T, for g CU.
Furthermore we have
(2.2) le, e] = [¢/, ¢'].

Definition 2.3 A law 6 which assigns to each point p in a neighbourhood U
of M, an r-dimensional vector subspace 6, of the tangent space 7, of M at p,
is called an r-dimensional distribution over U. If at each p € U, we can find
a neighbourhood U’ of p, U’ contained in U, and r C®-vector fields X4, ..., X,
over U’, such that (X)), ..., (X,), form a basis for 6, at each ¢ € U’, we
say that 8 7s C*.

Definition 2.4. Let 0 be an r-dimensional C®-distribution over a neighbour-
hood U of p. If there is a neighbourhood U’ of p and, for each ¢ € U’, an
r-dimensional submanifold N contained in U’ and passing through ¢, such
that 8, is the tangent space of V at each ¢’ € N, then we say that 0 is integ-
rable tn U’', a neighbourhood of p.

Definition 2.5. Let § be a C”-distribution over a neighbourhood U of p. If
there is a neighbourhood U’ of p contained in U such that, for any two
C*®-vector fields X1, X» over U’, satisfying (X1),, (X2), € 8, (¢ € U’),;we have
[X,, X2], € 0, then we say that 6 is involutive in U’.

A C”-distribution 6 over a neighbourhood U of $ is integrable in a neigh-
bourhood U’ of p, contained in U, if and only if 8 is involutive in the neigh-
bourhood U’ of p, Frobenius (1).

Now, if e is a projection operator of rank 7 over U, then 6, defined by
g — ¢,1Ty, where T, is the tangent space of M at ¢ € U, is an r-dimensional

*For details of this type of argument, see the proof of Proposition (3.4) in (2).
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C*-distribution over U. To see that 6 is C®, choose a co-ordinate system

X1, ..., %, in a neighbourhood of ¢. Then we can pick » C”-vector fields from
85%;’i= 1,...,n,
say,
d a
“ox, T o,
so that

(o). (o)
axl . ..., axr q’

are linearly independent, hence form a basis for e, 7'/, for ¢’ in a neighbour-
hood of gq.

LEMMA 2.1. Let e be a projection operator over a neighbourhood U of p, and
let 0 be the C™-distribution defined by q — e,1y, ¢ € U. Then 0 is integrable in
a neighbourhood of p, if and only if (I — e)le, e] = 0 on a neighbourhood of p.

Proof. If u,v are two C®-vector fields over a neighbourhood of p, then
we have

(I — e)le el(u,v)
= (I — e)len, ev] — (I — e)eleu,v] — (I — e)elu, ev] + (I — e)e[u, v]
= (I — e)[eu, ev].

If u is a C™-vector field over a neighbourhood U’ of p, then eu is a C®-vector
field over U’ such that eu, € ¢,7,, q € U'. Conversely, if u is a C®-vector
field over U’ such that u, € ¢,7,, q € U’, then u, = eu,, hence u = eu. Hence,
using Frobenius’ theroem, we see that ¢ is integrable in a neighbourhood of p
if and only if [eu, ev], € ¢,T, for all ¢ in a neighbourhood U” of p, and all
C®-vector fields u, v over U”. This condition is equivalent to (I — e)[ex, ev],=0,
and the computation above shows that the latter in turn is equivalent to
I — e)le, e](u,v), = 0. Q.E.D.

If e;, 2 =1,...,g are projection operators on U, p € U, satisfying

g
Z e; = 1, eie; = e,
pas

then it can be shown that ¢;e; = 0 for 7 # j, and that Ty = (e1),7,® ... ®
(eg)¢Ty for ¢ € U. Let 0, . . . 4 be the C*-distribution over U defined by

g— ()L @ ... D (en) Ty

Here 1, . . ., 7 should be all distinct.
1f 6, .. . ,-1and 8, . ,are both integrable in a neighbourhood of p, then
using Frobenius’ theorem, we see that 6. . ,_; is integrable in a neighbour-

hood of p. Repeating this argument, we have: the distributions

Oy . uk=1,...,8—1; &,=1,...,g;, s=1,...,k)
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are all integrable in a neighbourhood of p if and only if the distributions
0, ... are all integrable in a neighbourhood of p.

LEMMaA 2.2, The distributions
On .0 (B=1,...,8—1; d,=1,...,g, s=1,...,k)

are all integrable in a neighbourhood of p if and only if [e;, e;] = 0 for all i in
a neighbourhood of p.

1
Proof. Notice first that e; + .. A .. + ¢, =1 — e Using Lemma 2.1. and
(2.2) the integrability of the distribution 6, A .., can be expressed as,
eiles, e;] = 0.

Now if all the distributions 6, .. ; are integrable in a neighbourhood
of p, then in particular 6, }\ ..gand 6; are integrable in a neighbourhood
of p, so we have e;le;, e;] = 0 and (I — e;)[e;, e;] = 0, and hence [e;, e;] = 0
on a neighbourhood of p.

Conversely if [e;, ;] = 0on a neighbourhood of p then of course ¢;[e;, ;] = 0
on a neighbourhood of p, thus the integrability of 6, . A . .,

3. The characteristic polynomial of a vector 1-form. Let / be a
vector 1-form on M and let A be an indeterminate. Suppose {xi, ..., x,} is
a co-ordinate system in a neighbourhood of p in M. i has components £ ,;7(x)
in this neighbourhood, where

9 z j _6_
(3.1) h Pl jz::l B (x) o,

We can consider x = det||]\6;/ — %,7(x)||, which is a polynomial in \ of degree
n with coefficients which are C®-functions of (xy, ..., x,). It is easy to verify
that the coefficients do not depend on the choice of the co-ordinate system, so
we have an element x in ®[\]. x is called the characteristic polynomial of h.

ProrosiTION 3.1. Suppose x,, the characteristic polynomial of h,, has a
Jfactorization over the reals R:

(3.2) xp, = Ki"'... K,

where K; € R[\], with leading coefficients 1, and K ; are all distinct and irreduc-
ible over R. Then there is a neighbourhood U of p, where x has a unique factorization

3.3) X=Xx1--..%x,0n U
satisfying

(1) x: € Py[\], where ®y is the ring of C*-functions on U;
(ii) x: has leading coefficient 1, deg x; = deg K /™i;
(i)  (xo)» = K™%
(iv)  (x4)q and (x;), are relatively prime for ¢ & U, i 5% j.
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For the proof, we apply the following lemma repeatedly.

LEMMA 3.2. Let ¢ € @[N] with leading coefficient 1. Suppose for a point p in
M, ¢, = PQ; where P, Q € R[\] (R = the real numbers), with leading co-
efficients 1, and relatively prime to each other. Then there is a neighbourhooa U
of p, and unique u, © € dy[\] (Py = the ring of C®-functions over U), with
leading coefficients 1, such that ¢ = um holds over U, and p, = P, m, = Q. More-
over U can be so chosen that u, and m, are relatively prime at each q € U.

Proof. Let the degree of P and Q be kand I respectively. Letx,(z = 1, ..., k),
v;G=1,...,0, z(s =1,...,k 4+ 1) be variables, and xy = yo = 20 = 1.
For {x1, ..., %}, {¥1,...,%4, and {21, ..., 2t+:}, we write x, y, and z re-

spectively. Let P(x), Q(v), and F(z) be polynomials in \, defined by

k

(34) P) =2« QW) = ;0 yA',

i=
and

k+1

F(z) = > g\,

§=

Let us take £ + [ functions of x, v, z defined by
(3.5) Gs(x,9,2) = — 2, + 2 x5 s=1,...,k+1D.
i+j=s
Finally, let ao(= 1), ay, . ey @ bo(=_1), by, ..., by 69(= 1), ¢1...,Cry1 be
real numbers such that P(a) = P, Q) = Q, ¢, = F'(c). PQ = ¢, is now
Gi(a,b,c) =0, s=1,...,k+1L
The Jacobian

jﬂ@}n--- be+ﬂ
a(x, y)

has the form (3.6), which is nothing but the resultant of the two polynomials
in A\, P(x) and Q(y).

J(x,9;2) =

1 1
Vi 1 0 X1 1
yo y1 1 X2 a1 1 0
X3 X2 x1 1
1
. Y1 Xy .
3.6) J(x,y;2) =]|. . Xy 1
Vi . X X1
Vi Xeo
0
0 .
Vi X
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As P(a) = P and Q(b) = Q are relatively prime, we have J(a, b;5) # 0.
In particular J(a, 8;¢) # 0.

Furthermore, as Gs(a, b,¢) =0, s = 1,..., %k + [/, we can use the implicit
function theorem to find (i) an open neighbourhood V of ¢ in R**! the
(k 4+ I)-dimensional euclidean space, and (ii) a unique set of C®-functions
fogni=1,...,kj=1,...,1 defined on V and satisfying (A) and (B):

A) G(fi(2), ..., fi(®), ¢1(z),...,8:(2),2) =0 for € V
(B) file) =ai;, gilc) =b;;i=1,...,k;j=1,...,L

Now, let
k+1

¢ = Z ¢s)‘k+1_sy
§=0

where ¢, € ®, ¢9 = 1. By ¢ we denote the C*-mapping M — R**' defined
by g — (¢1(q), ..., ¢rt+:(g)). Take U to be the connected component of
Y~1(V), containing p. If we let o; = f; 0¥ and B; = g; 0 ¢, then our desired
elements of ®y[\] are
k
u= Z ai)\k‘i
i=0

and
l
.
=2 BN
=0

where oy = 8o = 1.

As J(a,b;¢c) #0 and as J(¢) = J(ai(q), ..., a,(q), B:1(q),...,B8:.q;
¢1(q), . . ., dx+:(g)) is a continuous function of ¢ in U, we can take a neigh-
bourhood U’ of p, contained in U, such that J(¢) # 0 for ¢ € U’. Then for
q €U, u=Plaalg), ..., () and 7, = Q(Bi(g), . . ., B:(g)) are relatively
prime. Q.E.D.

Remark 1. If we let (3.2) to be the factorization of x, into irreducible factors
over the complex numbers C, then all K; are linear in A\, and we obtain
xi € ®y[\], where &, is the ring of complex-valued C*-functions over U.
However, this result does not appear to be necessary for our purpose.

Remark 2. If m; > 1, one might expect to obtain a further factorization of
Xi = XaXizy Xar Xi2 € cI’U'p\]

for a neighbourhood U’ of p, contained in U. But the following example
shows that this is not necessarily the case.

Let ¢ be a polynomial in A, with coefficients depending on two real parameters
x and vy, and having the form

3.7) ¢ = A — 26N 4 (x2 + y?).
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Then ¢¢,00 = 0 has A = 0 as a root of multiplicity 4. The solution of ¢ ,) = 0
has four roots == 7¥(cos 16 == 7 sin 16), where x = 7 cos 6, y = 7 sin 6, and we
pick fixed branches for cos $6 and sin 36. So (3.7) has a unique factorization
over R at any point (xo, o) # (0, 0)

(3.8) =\ — 273 cos Loon + ro) (N + 273 cos 300N + 7¢).

If we want to extend this factorization over a small neighbourhood of (xo, v¢)
we have

(3.9) ¢ = (\2 — 2r* cos 20N + 7) (\2 + 2/ cos 160\ + 7).

This extension is uniquely determined by requiring the coefficients in the
factors of (3.9) to be continuous in a small neighbourhood of (x, y,). However,
(3.9) will not give a factorization in a neighbourhood of (0, 0) because in a
neighbourhood of (0, 0), cos 20 is not a single-valued function.

Remark 3. If in (3.3) we have x; = (A — ;)™ for some 4, then (x;), = 0
has only one root of multiplicity m;, for ¢ € U. If x; = (\* + 8\ + 8/)™:
for some 1, then (x;), = 0 has two distinct complex roots, each of multiplicity
m;, for ¢ € U’, where the neighbourhood U’ is chosen sufficiently small with
p € U C U. In both cases it is easy to see that a; € &, or B;, 8,/ € &y
(for example, by expanding (A — a;)™¢ or (A\> + 8\ + B/)™¢ and using the
fact that the coefficients in the expansion are C*-functions on U).

Remark 4. Although it may not be possible to factor x; any further into
polynomials in A with C®-coefficients over some neighbourhood, it is well
known that the roots of (x;), = 0, for each 4, are continuous (multivalued)
functions of ¢. In particular, the roots of (x;), = 0 are close to those of
K, = 0 if ¢q is close to p.

4, Integration. Let 4 be a linear transformation on a finite dimensional
vector space V over the reals R. Let A be an indeterminate, and consider V
as an R[\]-module by letting Fo = F(A4)v for F € R[\], v € V, where, if

m

i=1
F(A) denotes the linear transformation

m

> adl

i=1
Let K be the characteristic polynomial of 4, and suppose K = FG where
F,G € R[\]; deg F, deg G < deg K; F and G have leading coefficients 1 and
are relatively prime over R. Then there exist unique P, Q € R[], with
deg P < deg G, deg Q < deg F, satisfying
(4.1) PF 4+ QG = 1.
Because KV = 0, we have from (4.1), (PF)% = (PF)v for all » € V, Let
Ve=(QG)V and V¢ = (PF)V, then we have
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Itisalsoeasy toseethat, Ve = {v € V| Fo = 0}and Vg = {v € V| Gu = 0}.
In fact let V' = {v € V| Fv = 0}. Then, as FV = 0, we have Vr C V.
Conversely, ifv € V', then0 = (PF)y = (1 — QG)v, hencev = (QG)v € Vi,
so Ve D Vg. Finally, F is the characteristic polynomial of 4|V and
dim Vr = deg F; G is the characteristic polynomial of 4|V, and dim Vg =
deg F.

Now, if we take 4 to be %, and B to be T}, in the argument above, (4.2)
gives a decomposition of 7,. We want to extend this decomposition to each
T,, for g in a neighbourhood of p, with the help of the factorization (3.3) of
the characteristic polynomial x of %. For this purpose we first prove a lemma.

LEmmaA 4.1. If ¢ and ¢ are elements of ®[\] with leading coefficients 1 and
degree k and | respectively, and if at each point q in a neighbourhood U, ¢, and
¥, are relatively prime, then there exist unique p, @ € dy[\] of degree <1 — 1,
k — 1 respectively, satisfying

(4.3) up +my =1 over U.

Proof. Let
!
¢ = Z az?\k”i, ¥ = Z 5i)\l_i,
i=0 =0

where a;, 3; € ®, and ay = By = 1. Let

k

]
u= E p.,-)\l_i, T = Z TN

i=1 i=1

Substituting these expressions in (4.3), we see that finding the required u, =
is equivalent to solve (4.4) for the u; and =/'s:

{Zaiuﬂr}: Bim; =0 1<p<k+I—1

i+j=p i+j=p

aru; + Byme = 1.
The determinant D of the coefficients of the left member of (4.4) is

(4.4)

1 1
0 0
ay 1 ,81 1
. 1 . 1
(4.5) D= | a1 B B
0 0
Ay Bl

D,, g € U, is the resultant of two polynomials ¢,, ¥, in R[A], and as ¢, and
¥, are relatively prime, we have D, ## 0. Hence we can solve (4.4) for u; and
x; over U (the solution is unique) and find them as rational functions of «;
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and B;, with non-zero denominator over U. Hence u, =; € ®y. Thus
u, ™ € ®y[N\] are uniquely determined. Q.E.D.

Now, if x is the characteristic polynomial of % and if

X = X1X2...Xy over a neighbourhood U of p

i
is the factorization (3.3), then x; and %; = x1.. A .. x, are relatively prime

at each point of U. By Lemma 4.1 we have u;, m; € ®y[A\] satisfying
(‘LG) MiXs + 77'1;(1' =1on U

As before, using x,7, = 0 for ¢ € U, and (4.6), we see that [(w:x)(h)]? =
(mX:) (k). Let us denote m;x; € ®y[A] by €;, and (w:%:),7, by Ty(x:). Then
€;(h) is a projection operator on U, and dim Ty(x;) = deg x;. As T, = T,
(x0) ®...® T,(x,), we have

izgl e;(h) = 1.

Furthermore 6; defined by ¢ — T,(x:), ¢ € U, is a C”-distribution over U.
Using Lemma 2.1 we have:

THEOREM 4.2. The distribution 0; is integrable in a neighbourhood of p if and
only if
(4.7) (I = ei(h)[es(h), es(B)] =0
holds on a neighbourhood of p.

As in § 2, if we define

0 ... DY ¢—=To(xa) @ ... @ Ty(xa),

we have, by Lemma 2.2:

COROLLARY 4.3. The distributions0,, . . 4 (k=1,...,g —1;i,=1,...,g;
s=1,...,k) are all integrable in a neighbourhood of p, if and only if
[e;(R), €;(R)] = O holds on a neighbourhood of p for all i.

The important feature of the projection operator e;(#) is that e,(%) is a
polynomial in % with coefficients in ®y. This property essentially characterizes
e;(h), as shown below.

PRroPOSITION 4.4. Let the characteristic polynomial x of h have the factorization
(B.2) xp = K™ ...K/" at p, and (3.3) x = x1...X, 00 @& neighbourhood U
of p; and let e,(h) be the projection operator on U corresponding to x,;. If e is a
projection operator on U such that ¢ = e(h), ¢ € ®y[\], then on U we have

g
(4.8) e=eh) = > dei(h) where § =0 or 1.

i=1

First we prove a lemma.
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LeMMA 4.5, Let A be a linear transformation on a real vector space V of finite
dimension, and suppose that the characteristic polynomial of A is of the form
K™ where K € R[\] is trreducible over R. Then if for P € R[\], P(4)? = P(4),
then P(4) = I or 0.

Proof. Let Q =1 — P, then Q(4)? = Q(4). If P(A) # 1 and P(4) # 0,
then V has a decomposition V = V; @ V,; V4, Ve # {0}, where V, = PV,
Ve = QV As

P(A|Vy) = P(AQ(4)) = P(4)Q(4) =0,

P is divisible by the minimal polynomial of 4|V, which in turn is equal to
K™ for some m/, 1 < m’ < m. Hence P is divisible by K. Similarly Q is
divisible by K. But P and Q = 1 — P are relatively prime, so we have a
contradiction. Q.E.D.

Proof of the Proposition 4.4. As e is a polynomial in % with coefficients
in &y, e,7,(x:) C Ty(x:). We can define projection operators e; over U by
letting ¢; = ee;(k). Then e;e; = 0 for ¢ # jand e = 2_9_, ¢; over U. We want
to prove either ¢; = 0 or e¢; = ¢;(h) for each .

We first notice that e;| 7,(x:) = e(h| T,(x:)), and that & | 7,(x;) has
characteristic polynomial K ;™:. Hence, using Lemma 4.5, we see that either
ei(Ty(x1) = {0,} or eiT,(x:) = T,(x:). But, as e,(7,(x;) = {0,} for
j #1, q € U, and, as e; has constant rank over U, we conclude that (i) if
e (Tp(x)) = {0,} then e;(T,(x:)) = {0,} for all ¢ € U, and that (ii) if
ei(Ty(x:)) = Tp(x:) then e (T (x:) = T,(x:) for all ¢ € U. In the first case
e; = 0; in the second case e; = €;(h). Q.E.D.
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