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1. I n t r o d u c t i o n . The problem we s tudy is a generalization of a problem 
first solved by Tonolo (6), then generalized successively by Schouten (5), 
Nijenhuis (4), Haant jes (3), and Nijenhuis-Frôlicher (2). The T o n o l o -
Schouten approach is dist inct from tha t of Ni jenhuis-Haant jes-Frol icher in 
the sense t h a t the former consider the problem on a Riemannian space, 
while the la t ter consider it on a manifold wi thout any further s t ructure . 

T h e object of investigation is the integrabili ty of the distr ibution 6 of 
vector subspaces 6P of the tangent space Tv to a manifold M, when 6P is in­
trinsically related to a given field h on M, of linear transformations hp on Tv. 
T h e research has so far been restricted to certain types of h. The result, under 
the weakest restriction, was tha t of Haantjes , which s tates t h a t if h is of 
4 ' type .4"* then all the distr ibutions are integrable if and only if the following 
condition is satisfied: 

hh[h,h](u,v) + [h,h](hu,hv) — h[h,h](hu,v) — h[h,h](u,hv) = 0 

where u, v are two vector fields over M, and [h, h] is a vector 2-form intro­
duced by Nijenhuis (cf. § 2). 

We free ourselves from any restriction on h. Our result depends entirely 
on the local factorization of the characteristic polynomial x of h. T o each 
factor xi of X> there corresponds a distribution 6t and a projection operator 
et(h), which is a polynomial in h, and the local integrabili ty condition of 6t 

is ( / — ei(h))[ei(h), et(h)] = 0 (Theorem 4.2). To each product xn • • • Xu- of 
dist inct factors of x> there corresponds a distribution 6h ik. The necessary 
and sufficient condition for these distr ibutions to be all locally integrable is 
[et(h), et{h)} = 0 for all i (Corollary 4.3). 

2. Vector f o r m s a n d projec t ion operators . Let i f be a C°°-manifold 
and $ the ring of Cœ-functions on M. By a neighbourhood of a point p in 
M, we mean an open, connected subset of M containing p. 
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*h is said to be of type A if (i) there are functions «i, . . . ,ag on M, such that (ai)p, . . . , (ag)p 

are distinct at each p, and give the eigenvalues of hp, and if (ii) there are vector fields 
vu, . . . , Vimi on My i = 1, . . . , g, mi + . . . + m0 = n such that (vu)p, . . . , (vimi)p are eigen­
vectors corresponding to (cti)p and are linearly independent. 
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Definition 2.1. A vector g-form is a C00-tensor field over M, skew-symmetric 
in the covariant part, of covariant degree q, and of contra variant degree 1. 

Let h be a vector 1-form. Then we see that h is nothing but a rule which 
assigns to each point p of M a linear transformation hp of the tangent space 
Tv at p to M. Following Nijenhuis (4, 2) we introduce a vector 2-form [h, h] 
defined by 
(2.1) ^[h, h](u, v) = [hu, hv] + hh[u, v] — h[hu, v] — h[u, hv], 

where u, v are vector fields over M. That (2.1) does define a tensor, follows 
from the ^-linearity in u and v of the right side of (2.1).* 

Definition 2.2. A vector 1-form e satisfying e2 = e on a neighbourhood U 
is called a projection operator on U. 

Remark 1. dim eqTQ is constant for q Ç £/, and we call this constant the 
raw& of e. In fact, dim eqTqj which is an integer, is equal to the trace of eQ, 
which depends continuously on q, hence is a constant. 

Remark 2. If e is a projection operator on U, so is e' = I — e, where I is 
the identity vector 1-form. We have e + e' = I, ee' = e'e = 0 and 

Tq = eqTq © eqTq for q £ U. 

Furthermore we have 

(2.2) [e, e] = [*', e']. 

Definition 2.3 A law 9 which assigns to each point p in a neighbourhood U 
of ikT, an r-dimensional vector subspace Bp of the tangent space Tv of M at £, 
is called an r-dimensional distribution over [/. If at each p £ U, we can find 
a neighbourhood £/r of p, U' contained in U, and r C°°-vector fields Xx, . . . , Xr 

over [/', such that (Xi)q, . . . , (X r)c form a basis for 6q at each q Ç f/', we 
say that 0 w C°°. 

Definition 2.4. Let 0 be an r-dimensional C°°-distribution over a neighbour­
hood U of p. If there is a neighbourhood Z7' of p and, for each q Ç £/', an 
r-dimensional submanifold A7 contained in f/' and passing through q, such 
that dq> is the tangent space of N at each q' G iV, then we say that 6 is integ-
rable in Uf, a neighbourhood of p. 

Definition 2.5. Let 6 be a C°°-distribution over a neighbourhood U oi p. If 
there is a neighbourhood £/' of p contained in U such that, for any two 
C00-vector fields Xu X2 over £/r, satisfying (Xi)ff, (X2)ff (z 0q (q £ U'),we have 
[Xi, X2]^ G f̂f, then we say that 0 is involutive in U'. 

A ^-distribution 6 over a neighbourhood U oî p is integrable in a neigh­
bourhood U' of p, contained in [/, if and only if 6 is involutive in the neigh­
bourhood U' of p, Frobenius (1 ). 

Now, if e is a projection operator of rank r over U, then 0, defined by 
q —> ^Tç, where 7^ is the tangent space of I f at g G U, is an r-dimensional 

*For details of this type of argument, see the proof of Proposition (3.4) in (2). 
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C°°-distribution over U. To see t ha t 0 is Cœ, choose a co-ordinate system 
Xi, . . . , xn in a neighbourhood of q. Then we can pick r C°°-vector fields from 

d . 
OXi 

say, 

d d 
dx\ ' dxr ' 

so t ha t 

\ dxi/ç' , . . . , \ dx r /V 

are linearly independent , hence form a basis for eq>Tq>, for g' in a neighbour­
hood of g. 

LEMMA 2.1. Le/ e be a projection operator over a neighbourhood U of p, and 
let 0 be the 0e0-distribution defined by q —> £ff7^, q £ U. Then 0 is integrable in 
a neighbourhood of p, if and only if (I — e)[e, e] = 0 on a neighbourhood of p. 

Proof. If u, v are two C°°-vector fields over a neighbourhood of p, then 
we have 

| ( Z - e)[e, e](u,v) 
= (I — e)[e«, ez;] — (I — e)e[eu, v] — (I — e)e[u, ev] + (I — e)e2[u, v] 
= (I — e)[ew, ev]. 

If w is a C00-vector field over a neighbourhood J/' of £, then ew is a C°°-vector 
field over Uf such t h a t eff#ff G eqTq, q G Z7'. Conversely, if w is a C°°-vector 
field over U' such t ha t uq G eqTq, q G U'', then wff = equq, hence u = eu. Hence, 
using Frobenius ' theroem, we see t ha t 0 is integrable in a neighbourhood of p 
if and only if [eu, ev]q G eqTq for all q in a neighbourhood £7" of £, and all 
C°°-vector fields u, y over Z7". This condition is equivalent to (I — e) [e#, ev]q = 0, 
and the computat ion above shows t ha t the la t ter in turn is equivalent to 
(I - e)[e,e](u,v)q = 0. Q.E.D. 

If eu i = 1, . . . , g are projection operators on U, p G £/, satisfying 

X) et = I, eiej = efr, 

then it can be shown t h a t etej = 0 for i ^ j , and t h a t 7^ = (e\)qTq® . . . © 
{e9)qTq for q £ U. Let 0^ ^ be the C°°-distribution over [7 defined by 

? - » i.eil)qTq 0 . . . © (eik)qTq. 

Here ii, . . . , 4 should be all distinct. 
If 0i . . . g-i and 02 . . . g are both integrable in a neighbourhood of £, then 

using Frobenius ' theorem, we see t h a t 02 . ^_i is integrable in a neighbour­
hood of p. Repeat ing this argument , we have : the distr ibutions 

On . . . ik (k = 1, . . . , g - 1; i, = 1, . . . , g; s = 1, . . . , k) 
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are all integrable in a neighbourhood of p if and only if the dis t r ibut ions 

Ou ig-i a r e aU integrable in a neighbourhood of p. 

LEMMA 2.2. The distributions 

Oti...ik (fe = 1, . . . , g — 1; i 3 = l , . . . , g ; s = l,...,k) 

are ail integrable in a neighbourhood of p if and only if [eu eî\ = 0 for all i in 
a neighbourhood of p. 

i 

Proof. Notice first t h a t e\ + . . A . . + eg = I — et. Using Lemma 2.1 . and 

(2.2) the integrabil i ty of the distr ibut ion Q\ . . \ . . g can be expressed as, 

ei[eu et] = 0 . 

Now if all the distr ibut ions 6tl . . . ik are integrable in a neighbourhood 
of p, then in part icular 0\ . m\ . . g

 a n d ®i a r e integrable in a neighbourhood 
of p, so we have et[eu et] = 0 and ( / — et)[eu et] = 0, and hence [eu et] = 0 
on a neighbourhood of p. 

Conversely if [ei} et] = 0 on a neighbourhood of p then of course et[eu et] — 0 
on a neighbourhood of p, thus the integrabil i ty of #1 . . lA . . g. 

3. T h e c h a r a c t e r i s t i c p o l y n o m i a l of a vector 1- form. Let h be a 
vector 1-form on M and let X be an indeterminate . Suppose {xi, . . . , xn] is 
a co-ordinate system in a neighbourhood of p in M. h has components ht

j(x) 
in this neighbourhood, where 

We can consider x = det||X<V — hi
j(x)\\J which is a polynomial in X of degree 

n with coefficients which are C°°-functions of (xi, . . . , xn). I t is easy to verify 
t h a t the coefficients do not depend on the choice of the co-ordinate system, so 
we have an element x in $[X]. x is called the characteristic polynomial of h. 

PROPOSITION 3.1. Suppose xP, the characteristic polynomial of hp, has a 
factorization over the reals R: 

(3.2) XP = Kx
mi • • . Kg

m\ 

where Kt Ç R\S\, with leading coefficients 1, and Kt are all distinct and irreduc­
ible over R. Then there is a neighbourhood U of p, where x has a unique factorization 

(3.3) x = Xi • • • • Xg on U 

satisfying 

(i) Xi £ ^ t /M* where §u is the ring of C00-functions on U; 
(ii) xt has leading coefficient 1, deg xi = deg Kimi\ 

(iii) (x,), = Kr*; 
(iv) (xf)<? # ^ (X;)v are relatively prime for q Ç U, i ^ j . 
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For the proof, we apply the following lemma repeatedly. 

LEMMA 3.2. Let <t> Ç $[X] with leading coefficient 1. Suppose for a point p in 
My 4>v = PQî where P, Q Ç R[\] (R = the real numbers), with leading co­
efficients 1, and relatively prime to each other. Then there is a neighbourhood U 
of p, and unique /x, T £ $ff[X] ($u = Â̂e riwg 0/ C^-functions over U), with 
leading coefficients 1, 5«cA /&&£ $ = /xx /w/ds oyer £/, awd M? = P, 7rp = Q. More­
over U can be so chosen that iiq and irq are relatively prime at each q £ U. 

Proof. Let the degree of P and Q be k and / respectively. Let x < (i = 1, . . . , k), 
3>./(j = 1, . . . , /), zs(5 = 1, . . . , k + /) be variables, and Xo = yo = ZQ = 1. 
For [xi, . . . , XJC}, {yu . • . > 3>z}> and {zi, . . . , 2*+?}, we write x, y, and 2 re­
spectively. Let P(x), Q(;y), and F(2) be polynomials in X, defined by 

(3.4) 

and 

P(x) E «A*-*, Q(y) = S yA 
z=0 j=0 

1-3 

k+l 

Let us take k + / functions of x, y, z defined by 

(3.5) Gs(x, y,z) = - zs+ Y, XiJi ( 5 = 1 , . . . , * + /) . 
i+j=s 

Finally, let a 0 (= 1), alf . . . , a*; 60(=_1), &i, . . . , *ÏÎ CO( = 1), CI . . . , c*+i be 
real numbers such that P(a) = P, Q(b) = Q, <t>P = F(c). PQ = </>„ is now 
G8(a,b,c) = 0, 5 = 1 , . . . , * + / . 

The Jacobian 

/foy;*) = 
d (Gi, . . . , Gfe+ s) 

d(x, y) 

has the form (3.6), which is nothing but the resultant of the two polynomials 
in A, P(x) and Q(y). 

(3.6) J(x,y;z) = 

1 
yi 

y* 
1 

y i 

0 
1 
x i 1 
x2 X i 1 
X 3 x2 Xi 

1 

yi X/c 

Xjc 

yi 

yi 

0 

Xjc 

0 

1 

x2 

y* 
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As P{a) = P and Q(b) = Q are relatively prime, we have J {a, b; z) ^ 0. 
In part icular J(a, b\ c) 9^ 0. 

Fur thermore , as Gs(a, b, c) = 0, s = ! , . . . , & + / , we can use the implicit 
function theorem to find (i) an open neighbourhood F of c in Rk+l, the 
(k + /)-dimensional euclidean space, and (ii) a unique set of C°°-function s 

jugj,i= 1> • • • > &> J = 1, . • • , /, defined on F and satisfying (A) and (B) : 

(A) CUM, . . . , / , ( * ) , ^ ( s ) , . . . , g,(s), z) =0 (or z t V 

(B) / i (c ) - a*, gj(c) = bj\ i = 1, . . . , k; j = 1, . . . , /. 

Now, let 

k+l 

s=0 

where </>,, 6 <ï>, <£o = 1. By \p we denote the C°°-mapping M—> Rk+l defined 
by q —> (0i (g), • • • , 4>k+i(q)). T a k e £/ to be the connected component of 
^ - 1 ( F ) , containing £. If we let «j = f{ o \p and ftj = gj o ^, then our desired 
elements of $u[\] are 

k 

and 

where a0 = /30 = 1. 
As J(a,b;c)?*0 and as J(q) = J(ai(q), . . . , otj(q), (31(q), . . . , f3((q) ; 

4>i(q), . . . , <j)k+i(q)) is a cont inuous function of g in [/, we can take a neigh­
bourhood V of p, contained in U, such t h a t J(q) ^ 0 for q £ V. Then for 
q Ç U', Va = P{ai{q), . . . , ak(q)) and TT̂  = Q(/3i(ç), • • • , 0i(g)) are relatively 
prime. Q.E.D. 

Remark 1. If we let (3.2) to be the factorization of Xv m^° irreducible factors 
over the complex numbers C, then all Kt are linear in X, and we obta in 
Xi 6 ^ [ X ] , where <&u is the ring of complex-valued C°°-functions over U. 
However, this result does not appear to be necessary for our purpose. 

Remark 2. If m* > 1, one might expect to obtain a further factorization of 

for a neighbourhood £/' of p, contained in U. Bu t the following example 
shows t h a t this is not necessarily the case. 

Let 0 be a polynomial in X, with coefficients depending on two real parameters 
x and y, and having the form 

(3.7) <j> = X4 - 2x\2 + (x2 +y2). 
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Then cfoo.o) = 0 has X = 0 as a root of multiplicity 4. The solution of <t>(X.v) = 0 
has four roots ± r*(cos \9 ± i sin J0), where x = r cos 0, y = r sin 0, and we 
pick fixed branches for cos J0 and sin f 0. So (3.7) has a unique factorization 
over R a t any point (x0, yo) ^ (0, 0) 

(3.8) cf> = (X2 - 2 r | cos |0OX + r0) (,X2 + 2r\ cos |0O X + r0) . 

If we want to extend this factorization over a small neighbourhood of (x0, y0) 
we have 

(3.9) 0 = (X2 - 2r^ cos J0X + r) (X2 + 2r^ cos J0X + r). 

This extension is uniquely determined by requiring the coefficients in the 
factors of (3.9) to be continuous in a small neighbourhood of (#0, yo). However, 
(3.9) will not give a factorization in a neighbourhood of (0, 0) because in a 
neighbourhood of (0 ,0 ) , cos | 0 is not a single-valued function. 

Remark 3. If in (3.3) we have x% = (^ — <^)Wi f ° r some i, then (x*)<? = 0 
has only one root of multiplicity mu for q G f/. If x* = (^2 + £A + Pi)mi 

for some £, then (x*)<z = 0 has two distinct complex roots, each of multiplicity 
mu for q G £/', where the neighbourhood £/' is chosen sufficiently small with 
p G Uf C U. In both cases it is easy to see t h a t at G $ # or /3Z-, /? / G «Ê^ 
(for example, by expanding (X — al)

rUi or (X2 + fit\ + /3/)mi and using the 
fact t h a t the coefficients in the expansion are C^-functions on U). 

Remark 4. Although it may not be possible to factor x% any further into 
polynomials in X with Cœ-coefficients over some neighbourhood, it is well 
known t h a t the roots of (x*)«? = 0> for each i, are continuous (multivalued) 
functions of q. In particular, the roots of (xt)q = 0 are close to those of 
Kt = 0 if q is close to p. 

4. I n t e g r a t i o n . Let A be a linear transformation on a finite dimensional 
vector space V over the reals R. Let X be an indeterminate , and consider V 
as an P[X]-module by letting Fv = F(A)v for F G P[X], z; G F, where, if 

m 

F = £ <a\ 
F04) denotes the linear transformation 

m 

i = l 

Let X be the characteristic polynomial of A, and suppose K — FG where 
P, G G P[X]; deg P, deg G < deg X ; F and G have leading coefficients 1 and 
are relatively prime over R. Then there exist unique P , Q G P[X], with 
deg P < deg G, deg Q < deg F, satisfying 
(4.1) FF + QG = 1. 
Because Z F = 0, we have from (4.1), (PP)2y = {PF)v for all «; G V, Let 
7 F = (QG) V and F G = ( P P ) V, then we have 

(4.2) V = VF 0 F c . 
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It is also easy to see that, VF = {v G V \ Fv = 0} and VG = {v G V\ Gu = 0}. 
In fact let VF

f = {v G F | ^ = 0}. Then, as FVF = 0, we have F F C F / . 
Conversely, if v G F / , then 0 = (PF)v = (1 - (?G>, hence v = (QG)v G F F , 
so F^ D VF'. Finally, F is the characteristic polynomial of ^4|F^, and 
dim V F = deg F; G is the characteristic polynomial of A\ V G, and dim VG = 
deg F. 

Now, if we take A to be hv and JB to be Tv in the argument above, (4.2) 
gives a decomposition of Tv. We want to extend this decomposition to each 
Tq, for q in a neighbourhood of p, with the help of the factorization (3.3) of 
the characteristic polynomial x of h. For this purpose we first prove a lemma. 

LEMMA 4.1. If 4> and \p are elements of $[X] with leading coefficients 1 and 
degree k and I respectively, and if at each point q in a neighbourhood U, 4>q and 
\f/q are relatively prime, then there exist unique /x, w G $uM of degree < / — 1, 
k — 1 respectively, satisfying 

(4.3) 

Proof. Let 

fief) + 7r̂  = 1 0z/er U. 

<t> = E «<x*~*, * = Z / u z 
z=0 z=0 

where au fii G <ï>, and a0 = /̂ o = 1. Let 
l k 

M = z2 M*X* \ ?r = Z ^A* 
i = l 2 = 1 

Substituting these expressions in (4.3), we see that finding the required n, ir 
is equivalent to solve (4.4) for the /z* and 7r/s: 

(4.4) 
:Mj + Z) *<*•, = 0 1 < £ < & + / - 1 

^ M i + PlTTk = 1. 

The determinant Z> of the coefficients of the left member of (4.4) is 

1 1 

(4.5) D = 

0 0 
a\ 1 

Oik 

Oik 

Pi 

1 

1 

1 

0* 

£* 

Z)ç, g G f/, is the resultant of two polynomials <j>q, ^q in R[\], and as <j>q and 
f̂f are relatively prime, we have Dq ^ 0. Hence we can solve (4.4) for /z* and 

7Ti over U (the solution is unique) and find them as rational functions of at 
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and /3i, with non-zero denominator over U. Hence iiu irt Ç $ a . T h u s 
M, 7T G $uM are uniquely determined. Q.E.D. 

Now, if x is the characteristic polynomial of h and if 

X = X1X2 • . . Xg over a neighbourhood U oî p 

i 

is the factorization (3.3), then x% and x* = Xi • • A . . Xg are relatively prime 
a t each point of U. By Lemma 4.1 we have IJLU in £ $17 [A] satisfying 

(4.6) [XiXi + iTiXi = 1 on U. 

As before, using XqLq = 0 for q £ £/, and (4.6), we see t h a t [ ( T T Ï X O W ] 2 = 
{FiXi)(h). Let us denote TT^X* G <£>t/[A] by e*, and (waugTc by Tq(xi)> Then 
e*(A) is a projection operator on £/, and dim Ta(xi) = deg Xz- As 7 \ = 7^ 
(Xz) © • • • © r c (x„ ) , we have 

É et(h) = 1. 
*=1 

Fur thermore dt defined by q —> TQ(xi)> <Z £ £7, is a C^-distribution over £7. 
Using Lemma 2.1 we have : 

T H E O R E M 4.2. 77ze distribution dt is integrable in a neighbourhood of p if and 
only if 

(4.7) ( / - « . ( * ) ) [ « « ( * ) , «,(*)] = 0 

holds on a neighbourhood of p. 

As in § 2, if we define 

0*i . . . ik by g -> r f f(xfi) © . . . © Tq(xik)> 

we have, by Lemma 2.2: 

COROLLARY 4.3. The distributions Bh . ik (k = 1, . . . , g — l ; i s = 1, . . . ,g; 

s = 1, . . . , &) are all integrable in a neighbourhood of p, if and only if 
[ei(h), €i(h)] = 0 holds on a neighbourhood of p for all i. 

T h e impor tan t feature of the projection operator et(h) is t h a t €*(Â) is a 
polynomial in h with coefficients in <ïv. This property essentially characterizes 
€i(h), as shown below. 

PROPOSITION 4.4. Let the characteristic polynomial xof h have the factorization 
(3.2) Xv = Ki™1 • • • Kgmg at Pi an& (3-3) x = Xi • • • Xg on a neighbourhood U 
of p; and let et{h) be the projection operator on U corresponding to x%- If e is a 
projection operator on U such that e = e(h), e £ $c/[X], then on U we have 

(4.8) e = e(h) = ^ W * ) where ôt = 0 or 1. 

First we prove a lemma. 
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LEMMA 4.5. Let A be a linear transformation on a real vector space V of finite 
dimension, and suppose that the characteristic polynomial of A is of the form 
Km

1 where K Ç R[X] is irreducible over R. Then if for P Ç R[\], P(A)2 = P{A), 
then P(A) = I or 0. 

Proof. Let Q = 1 - P , then Q{AY = Q(A). If P(A) ^ I and P(A) ^ 0, 
then V has a decomposition V = Fi © F2; 7i, F2 ^ {0}, where Vx = PV, 
V2 = QV. As 

P ( ^ | 7 2 ) = P(AQ(A)) = P(A)Q(A) = 0, 

P is divisible by the minimal polynomial of 4 | F 2 , which in turn is equal to 
Km' for some m', 1 < m' < m. Hence P is divisible by K. Similarly Q is 
divisible by K. But P and Q = 1 — P are relatively prime, so we have a 
contradiction. Q.E.D. 

Proof of the Proposition 4.4. As e is a polynomial in h with coefficients 
in <£>c/, eqTq(xi) C Tq(xi)- We can define projection operators e* over U by 
letting e* = eet(h). Then e^- = 0 for i ^ j and e = Z!?=i ^ over U. We want 
to prove either et = 0 or et = €*(&) for each i. 

We first notice that et\ Tv(xi) = e(h\ Tv(xi)), and that h \ Tv{xt) has 
characteristic polynomial Kt

m\ Hence, using Lemma 4.5, we see that either 
et(Tp(xi)) = {0̂ } or ei(Pp(Xi)) = Tp(xi)- But, as ei(Tq(xj)) = {0g} for 
j 9^ i, q G £/, and, as e* has constant rank over U, we conclude that (i) if 
et(Tp(Xi)) = {0P} then e^T^Xi)) = {0q} for all q £ U, and that (ii) if 
et(Tp(xi)) = Tv{xz) then ei(Tq(xi)) = Tq(xi) for all q £ U. In the first case 
e* = 0; in the second case et = et{h), Q.E.D. 

REFERENCES 

1. C. Chevalley, Theory of Lie groups I (Princeton, 1946). 
2. A. Frolicher and A. Nijenhuis, Theory of vector-valued differential forms I, Proc. Kon. Ned. 

Ak. Wet. Amsterdam A 59 (3) (1956), 338-359. 
3. J. Haantjes, On Xm-forming sets of eigenvectors, Proc. Kon. Ned. Ak. Wet. Amsterdam A 

58 (2) (1955), 158-162. 
4. A. Nijenhuis, Xn_i forming set of eigenvectors, Proc. Kon. Ned. Ak. Wet. Amsterdam A 54 

(2) (1951), 200-212. 
5. J. A. Schouten, Sur les tenseurs de Vn aux directions principales Vn-\ normales, Coll. de 

Geom. Diff. Louvain, avril (1951), 11-14. 
6. A. Tonolo, Suite varietà riemanniane a tre dimensioni, Pont. Accad. Sci. Acta, 13 (1949), 

29-53; Atti Accad. Naz. Lincei Rendi. Cl. Sci. Fis. Mat. Nat. (8), 6 (1949), 438-444. 

University of Washington 

https://doi.org/10.4153/CJM-1961-023-5 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1961-023-5

