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Introduction

Let A be a commutative ring and D be a derivation of A into itself.
If there exists a homomorphism E : A — A[[f]] such that

E(a) = a + tD(a) mod ¢

then we say that D is integrable. Integrable derivations have many good
properties. In fact, most of unpleasant phenomena of derivations in
characteristic p disappear if we consider integrable derivations only.

In §1 we state definitions and basic properties of differentiations, and
we give some examples of non-integrable derivations.

§ 2 is devoted to theorems which are essentially due to Seidenberg
([18], [19], [20]). These theorems show that integrable derivations behave
as they should, and provides us with necessary conditions for integrability.

Then in §3 and §4 we prove some sufficient conditions. In §3 we
consider smooth or formally smooth algebras, using André’s homology
theory. In §4, by an elementary argument we prove a criterion of inte-
grability, which shows that there are plenty of integrable derivations (in
the case of an integral domain finitely generated over a perfect field).

§1. Definitions and examples

In this article all rings are assumed to be commutative with a unit
element. Local rings are assumed to be noetherian.

Let A be a ring. The set of all derivations of A into itself is an
A-module and is denoted by Der (4). If k2 is a subring of A, the sub-
module of Der (A) consisting of those derivations which vanish on % is
denoted by Der, (A).
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A differentiation DD of A (in the sense of Hasse-Schmidt [7]) is an

infinite sequence D = (D,, D,, D,, - --) of additive endomorphisms D,: A —
A such that

(G} D, = identity , D,(ab) = 2. Dfa)DyDb).

i+j=n

It follows that D, is a derivation. D, will be called the i-th component
of D. Let ¢ be an indeterminate over A, and put

(1.2) E(a) = E(a) = }; " D.(a) e A[[f]] (acA).

Then E = E, is a ring homomorphism from A into A[[f]] such that a =
E(@)modt. It can be uniquely extended to an endomorphism of A[[t]]
such that E(t) = t; namely, we define

(1.3) E(

Then, using

8

1 t‘ai) — ST 6E(a,) .

=0

]

(1.9) E(@) =amodt (ac A), E@) =t,

we can easily see that E is an automorphism of A[[t]]. Conversely, any
automorphism of A[[#]] satisfying (1.4) comes from a differentiation. We
will denote the automorphism E = E, obtained from D by A(D); thus 4
is a bijection from the set of differentiations of A to the set of auto-
morphisms of A[[¢]] satisfying (1.4). This latter set is obviously a subgroup
of Aut (A[[]]), therefore by means of /4 we can make the set of differenti-
ations a group, which we denote by HS(A) and call the Hasse-Schmidt
group of A. f D=1,D,,---) and D' = (1, D;, - -.) are differentiations
of A, easy calculations show that

(15 DD’ =(1, D+ D, D, + DD, + D, -+, 3, DD, - - -) and
a6y D'=(Q,-D,Di- D, — Di+ DD,+ DD, —D,, ---).
Moreover, from (1.1) we see that

(1.7 if xe A, then (1, xD,, x*D,, - - -, x*D,, ---) is a differentiation.

We say that a derivation D e Der (A) is integrable if there exists a
differentiation D = (1, D,, D,, ---) of A with D, = D. Such D is called
(by lack of better terminology) an integral of D; we also say that D lifts
D. The formulas (1.5), (1.6), (1.7) show that the set of integrable derivations
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of A is an A-submodule of Der (A). We denote it by Ider (4). If A con-
tains the rational number field Q it is easy to see that all derivations are
integrable. The same holds when A is a field (of any characteristic), see
Th. 6. But in general there are non-integrable derivations.

Remark 1. If ¢ is an element of A[[t]] without constant term and D
is a differentiation of A, we get a homomorphism E, : A — A[[¢]] by E,.(a)
= > = t'"D,(a), and this can be uniquely extended to an automorphism
of A[[t]] as in (1.3). Applying 4! to this, we get a new differentiation.
For instance if ¢’ = x¢ then we get the differentiation of (1.7).

Remark 2. If E, and E, correspond to D and D’ respectively, and if
we put s = t" for some n > 1, then E,o E, gives a differentiation of the
form 1,D,, ---,D,_,, D, + D;, ---). From this it is clear that an inte-
grable derivation can have many integrals.

Let & be a subring of A. A differentiation D = (1, D,, D,, - - -) is called
a differentiation of A over k if DJ(a) = 0 for all i > 0 and for all ack.
The set of such differentiations is denoted by HS,(4). A derivation D is
said to be integrable over k if it has an integral belonging to HS,(A).
The set of derivations which are integrable over k2 will be denoted by
Ider, (A), which should not be confused with Der, (4) N Ider(A). For
instance, if A is a ring of characteristic p and if & = A?, then we have
Der (A) = Der, (A), but in most cases Ider (A) is not equal to Ider, (4),
the latter being zero if A is reduced. In fact,if D = (1, D,, D,, - - -) ¢ HS(4)
and if ¢ = p” is a power of p, then we have

E(a) = E(a)' = (a + tD@) + -- ) = a* + tDa) + --- ,
therefore it holds that
(1.8) D) =0if i =0(), D (a?) = Dy(a)".

A differentiation D is said to be iterative if
(1.9) D,oD, = (i J,rj>DM for all i, j .
i

This is equivalent to saying that the following diagram

AP, A

(1.10) Eiv , B,
Allt + ull —> A[lt, u]]

https://doi.org/10.1017/5002776300002002X Published online by Cambridge University Press


https://doi.org/10.1017/S002776300002002X

230 HIDEYUKI MATSUMURA

(where i is the inclusion map and E,(f) = f) is commutative.

A derivation D will be said to be strongly integrable if it has an
iterative differentiation as integral.

If the ring A contains the rational number field Q, then every deri-
vation D € Der (A) is strongly integrable, and there is a unique iterative
differentiation which lifts D, namely (1, D, (1/2)D?, - --,(1/n)D", - --). When
A is of characteristic p, a strongly integrable derivation D must satisfy
D? =0. In fact, if D = (1, D, D,, ---) is iterative, then by induction we
have Di = i! D, (all i), hence D? = 0. The condition D? = 0 is also sufficient
for strong integrability when A is a field (cf. Th. 7). In the case of
characteristic p the strongly integrable derivations do not form an A-
module.

We shall say that differentiations D = (1, D,, D,, ---) and D’ = (1, Dj,
Dj, - --) commute if D, and D} commute for every pair (i,j). If D and D’
are iterative and commute with each other, then their product DD’ is
again iterative, because (E.E,)(E.E)) = E,E,E'E, =E,, E|., (where all
maps are viewed as automorphisms of A[[¢, u]] which leave ¢, u invariant).

Like derivations, differentiations can be uniquely extended to a locali-
zation. In fact, let A be a ring, S a multiplicative subset of A, D ¢ HS(A)
and E,: A — A[[t]] the homomorphism corresponding to D. Let 4 : A —
Ag and ' : A[[f]] — A;[[t]] be the natural maps. If se S then the element
P(EL(8)) = ¥(s) + ty(Dy(s) + --- is invertible in Ag[[¢]], whence o E,
factors through Ag, i.e. there exists a unique homomorphism E’: A5 —
A[[¢]] satisfying " o E, = E’{ro.

Similarly, if I is an ideal of A and A* is the I-adic completion of A,
then a differentiation D = (1, D,, D,, - - -) is uniquely extended to A*. In
fact, we have D,(I*) € I'"" for v > n, and so each D, is uniformly con-
tinuous in the I-adic topology and can be uniquely extended to the com-
pletion A*,

ExampLE 1. Let % be a ring of characteristic p, and put A = kR[X]/(X?).
Put x = Xmod X?. Define D e Der,(A) by Dx = 1 (thus D is induced by
d/dx of k[X]). If D were integrable we would have
0=E@)=E@=(@+t+ P =04 -,

which is a contradiction. Therefore D is not integrable. The derivation
xD is integrable: in fact, x — x(1 + £) € A[[f]] defines a k-algebra homo-
morphism., We have Der,(A) = A-D (a free module), Ider,(A) = xA-D ~
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xA (not free).

ExampLE 2. Let R be a discrete valuation ring of characteristic zero
with maximal ideal pR, where p is a prime number. Put 2 = R/pR, A
= R[X, Y]/(pX — Y?). Then the derivation Y?7'3/6X + 9/0Y of R[X, Y]
induces a derivation D of A, which is not integrable. In fact, D induces
a derivation D of A/pA = k[X, Y]/(Y?) such that D(y) = 1, and as in the
preceding example D is not integrable. If D were integrable then D
would be so.

ExampLE 3. Let & be a field of characteristic p, and let A = k[x, y]
= k[X, Y1/(Y? — X? — X?*'), The polynomial Y? — X?(1 + X) is irreduc-
ible (Eisenstein criterion), hence A is an integral domain. The partial
derivation 9/0Y induces a derivation D of A over k. If D were integrable
to D=(Q,D,D, --)eHS(A) with D, = D, then we should have

0= D,(y> — x* — a2*') = D(y)* — D(x)® — ﬁ Di(x")D,_(x) = 1 — x*D,(x).

Therefore D,(x) = 1/x?. But 1/x” is not in A. Hence D is not integrable.

ExampLE 4. Let B be a ring and A = B[[X]] be the formal power
series ring over B. Let ¢ be another indeterminate. Then the map f(X)
— f(X + t) defines an iterative differentiation of A. Similarly for A[X].

§ 2. Seidenberg Theorems

Let A be a ring, I an ideal of A and D = (1, D, D,, ---) c HS(A).
The ideal I is said to be D-invariant (or invariant under D) if D,(I) < I
for all i. When this is the case, the differentiation D induces a differ-
entiation of A/I. Recall that an ideal of A is called a differential ideal
if all derivations of A map the ideal into itself. We shall say that the
ideal I is a HS-ideal (resp. HS,-ideal) if it is invariant under all differ-
entiations in HS(A) (resp. HS,(A)). If A contains Q, then the differential
ideals and the HS-ideals are the same (this can be seen using Remark 2
of §1.)

THEOREM 1. Let A be a ring, I an ideal of A and t an indeterminate
over A; put A* = A[[f]] and I* = I[[t]]. Let De HS(A). Then I is D-
invariant if and only if the automorphism E, of A* associated to D maps
I* onto itself: E(I*) = I*.
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Proof. If D(I) < I for all i, we have E(I*) < I*. It is easy to see
that (E) '(a) = > t"D;(a) where D, is a polynomial in D,, - --, D,. There-
fore we have (E,)'(I*) < I* also. Thus E,(I*) = I*. The converse is
obvious.

THEOREM 2. Let A be a noetherian ring and Pec Ass (A). Then P is
an HS-ideal, and consequently there are canonical maps

HS(A) —> HS(A/P), Ider (A) —> Ider (A/P).

Proof. We give only a sketch of Seidenberg’s proof in [19] pp. 23-24.
If 0) =q¢,N---Ng, is an irredundant primary decomposition in A and if
D, is the associated prime ideal of g, then (0) = q¥N .- -Ng* is an irre-
dundant primary decomposition in A* and pf is the associated prime
ideal of ¢f. Thus any automorphism E of A* induces a permutation of
Ass (A*) = {p¥, ---,pfl. If E corresponds to a differentiation then from
E(p¥) = p¥ it follows that p,  p;. Considering E-! we get p, = p,, or
what amounts to the same, pf = p¥. By the preceding theorem this means
that p,, - - -, p, are HS-ideals.

Remark 3. Example 1 shows that P is not necessarily a differential
ideal.

THEOREM 3. Let A be a noetherian integral domain and A’ be its
derived normal ring. Then any differentiation of A extends to A’, and
consequently there are canonical mappings

HS(A) —> HS(A), Ider (A) —> Ider (A4").

Proof. Let K denote the quotient field of A, let D e HS(A) and let
E: A — A[[t]] denote the corresponding homomorphism. We know that
D and E can be extended uniquely to K; we denote the extensions by the
same letters D and E. Then we have to show: E(A’) < A’[[#]].

It is well known that A[[¢]] is normal if A is a noetherian normal
ring. In the present case the ring A’ is not necessarily noetherian, but
still it is a Krull ring (cf. Nagata, Local Rings, p. 118), therefore an
intersection of discrete valuation rings: A’=(, V.. Then A'[[{]]=N.V.[[],
and each V,[[t]] is normal. Therefore A’[[f]] is also normal. Let o’ € A’,
a =ufv, ue A, ve A. Then E(a’) = E(u)/E(v) belongs to the quotient field
of A[[#]]. Moreover, since a’ is integral over A, E(a’) is integral over
A[[t]], hence a fortiori over A’[[f]]. Therefore E(a’) ¢ A’[[t]]. Q.E.D.

https://doi.org/10.1017/5002776300002002X Published online by Cambridge University Press


https://doi.org/10.1017/S002776300002002X

INTEGRABLE DERIVATIONS 233

Remark 4. If A’ is finite over A then A’[[t]] is finite over A[[t]] and
is equal to the derived normal ring of A[[#]].

Remark 5. Example 3 of § 1, which is also due to Seidenberg, shows
that a non-integrable derivation of A does not necessarily extend to A’.

CoOROLLARY. Let A, A’ be as in Th. 3 and ¢ be the conductor of A
(le. c ={aecAlaA’ < A}). Then ¢ is an HS-ideal.

Proof. Let aec, xeA',D=,D, D, ---)e HS(A). Then axec A and
so D,(ax) = D,(a)x + D,_(a)D\(x) + --- + aD,(x) e A. We prove D,(a) ec
by induction on n. Suppose Da)ec¢ for i < n. Since D/(x)e A’ for all i,
we have D,(a)xc A. As x is an arbitrary element of A’ this means that
D, (a)ec.

THEOREM 4. Let A be an excellent ring, I be the largest ideal which
defines Sing (A) and P be the generic point of an irreducible component of
Sing (A). Then I and P are HS-ideals.

Proof. Since P is an associated prime of I, if I is an HS-ideal then
P is so by Th. 2. Thus it suffices to prove that I'* is invariant under any
automorphism of A* = A[[f]]. Now A* is the t-adic completion of A[¢].
Since A[t] is excellent the canonical homomorphism A[tf] — A* is regular
by a well-known theorem of Grothendieck (cf. [EGA IV-2] 7.8.3 (v) or [11]
Th. 79). On the other hand it is obvious that the canonical map A — A[f]
is regular (for any A). Therefore A — A* is regular. It follows that I*
defines Sing (A*). Since I is reduced (i.e. an intersection of prime ideals),
so is I*. Thus I* is the largest ideal which defines Sing (A*), and, as
such, is invariant under any automorphism of A¥*. Q.E.D.

Remark 6. Similarly, the largest ideal which defines the set {pe
Spec (A)|A, is not @}, where @ denotes the property normal, Cohen-
Macaulay, Gorenstein (cf. [21]), or complete intersection (cf. [3]), is an
HS-ideal.

Let & be a field and A = k[x,, - - -, x,] be a finitely generated k-algebra.
Put R = k[X,, ---, X,], and write A = R/I, where I is the kernel of the
k-algebra homomorphism R — A which sends X, to x,. Let f, ---,f, be a
system of generators of I. We write df/ox, for df/6X, mod I. Consider the
Jacobian matrix (0f/0x) = (0f:/0%,)1<ics.1<i<ne L€t v be an integer, 0 < v < n.
The ideal of A generated by the (n — v) X (n — v) minors of (3f/dx) will
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be called the v-th Jacobian ideal of A and will be denoted by ,(A) or
simply by J,.. We put J, =dJ,,, = --- = A. Then we have J, C J, < J,
C.... Lipman [9] calls the first non-zero J, the Jacobian ideal of A.
When k is a perfect field and A is an integral domain of dimension d, it
is known that the matrix (3f/ox) has rank n — d ([AG] pp. 32-33). There-
fore J, is the Jacobian ideal of A in this case.

The exact sequence (cf. [11] Th. 58)

IIP— 2;, 8, A=AdX,®---® AdX, —> 2,, —> 0

shows that o, is the v-th Fitting invariant of 2,,, (cf. [15]). Therefore the
ideals o/, are invariants of the k-algebra A, independent of the represent-
ation A = R/I and of the choice of the generators f;, ---,f, of I. We will
state the invariance more precisely in the following lemma.

LemMMA 1. The ideals J, are left fixed by all automorphisms of the k-
algebra A.

Proof. Let ¢ be an automorphism of the k-algebra A, and M be an
A-module. The A-module structure on M is defined by a k-algebra homo-
morphism + : A — End, (M). We define a new A-module structure on M
by ¥ o0, and denote the new A-module by M,. Thus, ex in M, = a’x in
M@eA,xeM). If D: A— M is a k-derivation, then Dog is a k-deri-
vation of A into M,. Call it Dr.

Dr(ab) = D(a°b) = a’D(b?) + b°D(a’)  in M
= aD’(b) + bD’(a) in M, .
Let 2, = > 1 Adx,. > a,dx, = 0 means that 3 a,D(x,) = 0 holds for every
A-module M and for every derivation D: A— M. Then > a,D(x;) =0
in M,, ie. >, a:D(x;) =0 in M. Therefore we have > a7dx; = 0. Thus,
by putting
(X a;dx) = 2. ai dx]
we can define an automorphism of the k-module £2,, such that

(@) = @'’ (e A we,,).

If dx,, - - -, dx, generate 2,,, then dxj, ---, dx; also generate 2,,. More-
over, the ¢-image of a relation matrix of dx,, - - -, dx, is a relation matrix
of dx:, ---,dx?. By the independence of Fitting ideals on the choice of
generators of the A-module, our lemma is now obvious.
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Let B be a k-algebra. The module £2,, represents the functor M —
Der,(B, M) on the category of all B-modules. If the restriction of this
functor to the category of finite B-modules is representable, i.e. if there
exist a finite B-module M, and a k-derivation d, : B— M, with the universal
mapping property for the k-derivations of B into finite B-modules, then
M, is called the universal finite module of differentials of B over k and
is denoted by D, (B), cf. [17] or [22]. The following lemmas can be easily
proved from the definition.

LEmmA 2. Let B be a noetherian k-algebra such that D,(B) exists.
Then D.(B*) also exists (where B* = B[[t]]), and we have

D(B*) = (D(B) ®; B*) © B*dt.

LEMMA 3. Let R be a noetherian k-algebra, I an ideal of R and B =
R/I. Suppose D,(R) exists. Then D,(B) also exists, and we have an exact

sequence
/1" —» D(R)®, B—> D(B) —> 0.
(cf. [22].)
Returning to the situation R = k[X,, ---,X,], I=(f,, ---,f,) and A
= R/I, we have

A* = R¥|I* I* = isz*
1
and the sequence
I*/1* —> D(R*) Qp A¥ —> D, (A*) —> 0

is exact. Moreover, D,(R*) @, A* = (D(R) @, A*) D A*dt is a free A*-
module with basis dX], - - -, dX,, dt. Therefore J A* is the (v + 1)st Fitting
invariant of D,(A*), and proof of Lemma 1 can be applied, mutatis
mutandis, to show that J,A* is invariant under all k-algebra automorphisms
of A*. This proves the following theorem.

THEOREM 5. Let k be a field and A be a k-algebra of finite type. Then
the ideals J, are HS,-ideals.

ExampPLE 5. Let k2 be a field of characteristic p > 0 and let A =
klx, y] = R[X, Y]/(Y? — X?). The derived normal ring A’ is k[u] where u
= y/x, and we have x = u?, y = u®. The conductor is xA’ = (%, y)A, which
is also the largest ideal that defines Sing (A). Put D, = d/du € Der, (4’).
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The derivation uD, induces an integrable derivation D, of A because
E,: A’ — A'[[t]] defined by E (u) = u(1l + t) maps x = u* and y = ¢® into
A[[t]]. Similarly u*D, induces an integrable derivation D, of A. Let D
¢ Ider, (A). Then D ¢ Ider,(A") = A’'Dy,. If p++2 then Dy(x) =2u ¢ A
and so D, Der, (A). If p =2 then for any element f in k[u] we have
(w+t+fY=u’+3ut+ 3w+ uf)tt + -+, and u + ufe A. Thus D, e
Ider, (A) in all cases. Therefore we have Ider, (A) = AD, + AD,. When
p # 2, 3 it is easy to see that Der, (4) = AD, + AD, = Ider, (4).

If p = 2 then the Jacobian ideal of A is x’A. The partial derivation
0/oY of k[X, Y] induces a derivation D, on A, and D, = xD,, We have
Der, (A) = AD,, Ider, (A) = AD, + AD, = AyD, + Ax*D,. The derivation
D, maps x*A and (x,y)A into themselves, but it is not integrable as we
have already seen.

If p = 3 the partial derivation 9/dX induces a derivation D, on A.
We have Der, (A) = AD,, Ider, (A) = AxD, + AyD,.

§ 3. Integrability and smoothness

The theorems of the preceding section give various necessary con-
ditions for a derivation to be integrable. In this section we will consider
sufficient conditions of integrability.

Let %&£ be a ring and A a k-algebra. To give a derivation D ¢ Der, (4)
is to give a k-algebra homomorphism ¢,: A — A[t]/(#?) such that ¢,(a) = a
mod ¢t. Saying that D is integrable (over k) is equivalent to saying that
¢, can be lifted to a k-algebra homomorphism E: A — A[[t]], and since
A[[f]] = lim A[t]/(z") it suffices to find, step by step, k-algebra homomor-
phisms qS:_: A — A[t}/(t*") such that ¢,_,(a) = ¢,(a) mod ¢*. Such lifting is
always possible if A is a smooth k-algebra in the sense of [11] (i.e. formally
smooth with respect to the discrete topology in the sense of EGA, or 0-
smooth in the sense of André [1].)

THEOREM 6. Let k be a field and K be a separable extension field of k.
Then K is a smooth k-algebra. Consequently, every derivation of K over
k is integrable over k.

Proof. The smoothness is well known, cf. [5], [11]. Actually, one can
say more: Let B be a differential basis of K over .. Then k(B) is a purely
transcendental extension of k, and K is formally etale over k(B). (Cf. [10,
Th. 2].)
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CororrLaRY. Let K be a field. Then any derivation of K is integrable.
Proof. Put k = the prime field in K in the theorem.

LEmMA 4. Let A be a ring of characteristic p, and D be a derivation
of A with D* =0. Put Ay={aceA|Da =0} If xe A satisfies Dx =1,
then A is a free Ay-module with 1, x, % ---,x""! as a basis.

Proof. Put A, ={aec A|D*'a = 0} for 0 < i < p. By the assumption
D =0 we have A, , = A. We will prove

Ai=Ao+on+"‘+oni

by induction on i. For i = 0 there is nothing to prove. Let D'*'a = 0.
Then D'a ¢ A,, and if we put b = a — (i!))"'xD'a, then D'b =0, i.e. be A,_,
=A,+ Ax + -+ + Ax*". Thus ac A, + Ax + - + Ayx?, as wanted.
The linear independence of 1, x, ---, x?~! over A, is obvious.

THEOREM 7. Let K be a separable extension field of a field k of char-
acteristic p. Let DeDer,(K). Then D is strongly integrable over k iff
D = 0.

Proof. We have already seen the necessity. To prove the sufficiency,
we may assume D #= 0, D* =0. Take ye K with Dy == 0. Then there
exists a positive integer i < p such that D'y 0, Di*'y =0. Put x =
D*-'y/Diy. Then Dx = 1. Therefore, putting K, = {a@ € K| Da = 0} we have
K = K(x) and [K: K] = p by Lemma 4. The separability of K/k implies
that K? and k are linearly disjoint over 2”. Suppose x? € K?k. Then we
can write x” = >.i_;y?¢c,, where y, e K,, ¢c;ek and »7, ---,y? are linearly
independent over k?. Then y, ---,y, are linearly independent over k,
and since x¢ K, and £ C K, we see that x, v, ---,y, are also linearly
independent over k. Therefore x?, y?, - - -, 2 must be linearly independent
over k?, hence over k by the linear disjointness. But this contradicts our
assumption x? = >, y?¢c,. Therefore x? ¢ K2k, and so there exists a p-basis
B, of K |k containing x? as a member. Put

B=(B,— (x')Ulx}.

Then, putting ¥ = x? and I = (X? — y)K,[X], we have K = K, [X]/I. The
exact sequence

I —> ez @ K = (Qx0p @ K) ® KdX —> Q4 —> 0
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shows
Qppe = (Rxo Ok, K)/Kdy) ® Kdx .

This means that B is a p-basis of K/k. Put % = k(B, — {x*}). Then x is
transendental over k' (cf. [10, Th. 1]), hence we can define a homomor-
phism of k’-algebras

E, : F'(x) —> E'(2)[[t]]

by E(x) = x + t. Since K is formally etale over k'(x) = k(B), it follows
from the diagram

R)——— — K

id

@] — K[t —- - -— K[[2/@) — K[[/@®) = K

that Et can be uniquely extended to a homomorphism of k’-algebras
E :K—> KI[[1]] .

Consider the diagram

K—2 K

Enu . Eu
K[t + u]] —> K[z, u]] .

We have E,E,(a) =a = E,, (@) mod (¢, v) for all ae Kand E,-E, = i-E,,,
on k'(x). Hence the diagram commutes by the formal etaleness of K/k(x).
Therefore E, determines an iterative differentiation D = (1, D,, D,, - -+) of
K over k' such that Dy(x) =1= D(x), D(x) =0 (¢ >1). Since D(a) =
0 = D(a) for e« ¢ K*k' = K,, we have D, = D. Q.E.D.

Resuming our general discussion at the beginning of this section, we
put A, = A[f]/¢**') and consider the extension of k-algebras

T

(3.1) 0—>N—>A,-">A, ,—>0,

where N = A" is an ideal of square zeroin A, and N ~ A as A-module.
The pull-back of (8.1) by ¢,_,: A — A,_, is the extension

3.2 0—>A—>B—>A—0
where B is the fibre product of A and A, over A, _;:
(3.3) B={xaecA, X Alz(e) = ¢,_(a)}.
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The extension (3.2) is trivial if and only if ¢,_, is liftable to A — A,.
Thus the obstruction to lifting ¢,_; is the cohomology class represented
by (3.2) in the group H'(k, A, A) of M. André. (Cf. [1] Chap. XVI. It
coincides with the group Exalcom, (A, A) of EGA.) Therefore we have

THEOREM 8. Let k be a ring and A be a k-algebra. If
H'(k, A, A) =0,
then every derivation D of A over k is integrable over k.

Remark 7. As a matter of fact the extensions (3.1), (38.2) are Hochs-
child extensions, and so the obstruction class lies in the subgroup H3(A, A)*
of Exalcom, (A, A), cf. [5] p. 65. But we will not discuss this group here.

We will apply Th. 8 to regular local rings of characteristic p. Let
(A, m, K) be a regular local ring, and k2 be a field of characteristic p
contained in A. If the residue field K is separable over %k then A is
formally smooth (with respect to the m-adic topology) over k, but not
conversely.

Formal smoothness is equivalent to H'(k, A, K) =0, and then H'(k,
A, M)=0 for all A-modules M which satisfy m*M = 0 for some v.
Smoothness is equivalent to H'(k, A, M) = 0 for all A-modules M. ([1] p.
223 Prop. 17, p. 222 Def. 14.) Also the following lemma is known.

LEmMA 5. Let (A, m, K) be a noetherian local ring containing a field
k. Assume that A is formally smooth (with respect to the maximal ideal)

over k. Then:
i) for any prime ideal P of A the local ring A, is formally smooth
over k,

i) H(k, A, M) =0 for all A-modules M and for all i >0,

iil) Hyk, A, A) = 2,,. is A-flat,

iv) Hi(k, A, M) = Exti(Hk, A, A), M) for all A-modules M and for
all i > 0.

Proof. i) Formal smoothness over k is equivalent to geometric
regularity over k([5] (22.5.8), [11] p. 279 Th. 93). If k' is a finite extension
field of &, then A, &, k' is a localization of A®, k’. Therefore it is regular.

ii) follows from i) and [1] p. 331 Th. 30.

i) and iv): By [1] p. 41 Lemma 19, H,(k, A, A) = 0 (i > 0) implies

Hk, A, M) = Tor{(Hyk, A, A), M), H'(k, A, M) = Exti(H(k, A, A), M)
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for all i > 0. The first equation and ii) imply that Hy(k, 4, A) is A-flat.

THEOREM 9. Let k be a field and A be a noetherian local ring con-
taining k. Assume that A is formally smooth over k and that 2,, is a
finite A-module. Then A is smooth over k. Consequently, we have

Der, (A) = Ider, (A).

Proof. The module of differentials 2,, is finite by assumption and
flat by Lemma 5. Hence it is free, and so H'(k, A, M) = Ext\(2,,, M) =
0 for every A-module M. Therefore A is smooth over k.

Remark 8. The finiteness of £2,, holds in each of the following cases:
1) A is a localization of a finitely generated k-algebra;
2) char (k) = p and A is finite over k[A?].

The second case includes in particular E[[X], - - -, X,]] with [k : k7] finite.

TaeEOREM 10. If A is a complete local ring formally smooth over a
subfield k, then H'(k, A, M) = 0 for all finite A-module M. Consequently,
we have

Der, (A) = Ider, (A).

Proof. Consider an extension of k-algebras

(3.4) 0—>N—>B-%>4_—50

where N is a finite A-module. Let m denote the maximal ideal of A.
The extension 0 — N/mN — B/mN BA-0 splits because N/mN is an
A/m-module. Therefore there exists a k-algebra homomorphism ¢, : A —
B/mN such that «,0¢, = identity. Using formal smoothness we can lift
&, to ¢y, ¢y, - - -, Where ¢, : A — B/m'N, successively, because the kernel of
the natural map B/m'*'N — B/m'N is an A/m-module. Since N is a finite
A-module, it is m-adically complete and separated. It follows easily that
B is canonically isomorphic to lim B/m‘N. Therefore we obtain a k-algebra
homomorphism ¢ : A — B by ¢: lim ¢,. Since a = a,°p, (where p, is the
natural map B — B/mN) and p,o¢<—= ¢y, we get ao = ajopod = a0, =
identity. Therefore every extension of A by N splits, or equivalently,
H'(k,A,N) = 0. Q.E.D.

The author does not know whether H'(k, A, A) is zero for every
formally smooth local k-algebra A, nor whether H'(k, A, A) = 0 for a local
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k-algebra A (essentially of finite type, say) implies that A is regular. Of
course the equality Der, (A) = Ider, (4) may happen even if H!(k, A, A)
# 0. But anyway normality of a local ring is not enough to guarantee
the integrability of all derivations, as we see in the following example.

ExampLE 6. Let k be a field of characteristic 2 and consider
A= k[x7 Y, z](x,y,z) ) xy = 2%

This is a local ring of dimension 2, and since it is a complete intersection
and has an isolated singular point, it is normal. The derivations 9/0Z
and X0/0X + Y0/dY of k[X, Y, Z] induce derivations D,, D, of A. Suppose
D, is integrable. Then there exist power series

Ex)=x+ &+ -, Et(y)=y+t2772+"'9 E@=z+t+8G+ -
(‘fi’ Ny Ci € A) such that
(x 4+ 228, + ---)(y+t2772+ =@+t + G+ ).

Then x7, + y& = 1, hence 1 e m,, contradiction. Therefore D, is not inte-
grable. One can show that xD,, yD,, zD, + D, € Ider, (A). The A-module
Der, (A) is a free module generated by D,, D,.

We recall the famous Zariski-Lipman conjecture: Let A be the local
ring of a point of a variety over a field 2 of characteristic zero. If
Der, (A) is free then A is regular. Lipman [8] proved that A is normal.
The conjecture has been proved only in the case of a hypersurface by
Scheja-Storch [17]. The above example shows that the conjecture does
not hold in characteristic p. But if we modify the conjecture as follows,
then it may be true:

CongecTURE. If % is perfect, if Der, (A) = Ider, (A) and if this module
is A-free, then A is regular.

§4. Finitely generated k-algebras
Let k& be a perfect field and let
A=k[xh’"1xn]=k[Xla"'9Xn]/P, P=(f1""’fs)

be an integral domain of dimension n — r. Let J be the Jacobian ideal
of A, i.e. the ideal generated by the r X r minors of the Jacobian matrix
(@ffox). (Cf. §2.) We have seen that D ¢ Ider, (A) implies D(J) C J. The
converse is false, but we have the following theorem.
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THEOREM 11. If D € Der, (A) and D(A) C J, then D ¢ Ider, (A).
CoroLLARY 1. If 4 is a non-zero r X r minor of (3f/ox), then
4 Der, (A) C Ider, (4).
Consequently, we have
rank Der, (4) = rank Ider, (4),

where rank M for an A-module M means the maximal number of linearly
independent elements in M.

Proof of Th. 11. Put D(x,) = &,(ed), & = (&, ---,&,). Then we
have

flx+t)=0mod#, 1<a<s.

By induction, suppose that, for some v > 1, we have found &,;e J 1 < <y,
1 < j € n) such that

v—1
f,,(x—i—}:t”éP)EOmodt”, I1<a<s.
pg=1
Then we can write
v—1
f,,(x + 5 t”{:#) =pF(xmod#*, l<a<s.
1

Then the F,(x)’s are linear combinations, with coefficients in A, of mono-
mials of the form &, ; &, «*&uip ts + o + -+ + p, =v. Since g, < v we
have g > 2. Therefore F(x)eJ? 1If &, &,, ---, &, are elements of A we
have

£x + S ve) = ¢[Fu + S 0Rxe,| modtr, 1<a<s.

Therefore, if we can find &,;eJ (1 < j < n) which satisfy

(4.1) F(x) + 22 (0f.f0x)6,; =0 (1< a<5s)

then we can continue the induction and we are done.

Let 4, ---, 4, be the non-zero r X r minors of the Jacobian matrix
(0f/ox). We may suppose that the first r rows of the matrix (3f/ox) are
linearly independent. Put k[X,, ---, X,] = R. The local ring R, is regular
of dimension r, and the map + : R, — K" (K = quotient field of A) defined
by
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W(f) = @ffox,, - - -, of/ox,)

maps P?R, to zero. Therefore f, ---,f, are linearly independent modulo
P’R;, hence we have PR, = (f,, - - -, f,)Rp. Since F,(x)cJ* for all «, we
can write
(4.2) F(x) = > 4,h,(x), hyed 1<i<r).

2

Let f,., = 2o aifi, @,(X) e R.. Then we have

(43) afr+q/axj = Z aqi(x)afi/axj .

Moreover, we have F, . (x) = >, a,(®)F(x) because fi(x + > ;7" t'€,) = t'F(x)
mod #*!. Thus, putting

(49 Bavrsa(®) = 31 00 hu®)

we see that (4.2) holds for i =1, -- -, s.
Now fix an index 2 and consider the simultaneous equations

(4.5) A @) + 3 Offox)eP =0, 1<i<s.
J=1
Let I' = {i,, - - -, i,} denote the set of indices of the rows of (df/dx) which

appear in 4, These rows are linearly independent, and by (4.3) and (4.4)
we have

ofifox,- - -0fifox, hu
rank = rank (8f/ox) =r.
afs/axl t afs/axn hzs
Therefore, to solve (4.4) we have only to solve them for iel'. We put
§» = 0 if the j-th columm of (3f/ox) does not appear in 4,, and we find

the other & by Cramer’s rule. Since h,(x)cJ we have & eJ. Then
&yt = 2., &Y satisfy (4.1). Q.E.D.

COROLLARY 2. Let k, A, J be as above and let S be a multiplicative
subset of A. Put B= S'A. Then S~'J = JB is the first non-zero Fitting
ideal of 24, and if D e Der, (B) maps B into JB then D € lder, (B).

Proof. There exists ae S such that aD(A)eJ. Then aD e lder, (4),
hence D e Ider, (B).

CoROLLARY 3. Theorem 11 remains true if we replace the polynomial
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ring k[X,, ---, X,] by the formal power series ring k[[X,, ---, X,]].
Proof. The above proof of Th. 11 applies to this case as well.

Under the assumptions of Th. 11 we have rank Ider,(A) = rank Der,(A)
=n—r=dim A. More generally, if (A, m) is a noetherian local ring
and k is a quasi-coefficient field of A (i.e. & is a subfield of A such that
A[m is formally etale over k), then for each Pe Ass(4) we have rank
Ider, (4) < dim A/P (Mollinelli [12]), whereas rank Der, (4) can be bigger
than dim A. In the case when k is imperfect Cor. 1 is false in general,
as the following example shows.

ExamMpPLE 7. Let k be an imperfect field of characteristic p > 2, and
let a,bck be such that [k"(a, b): k*] = p*. Put A = k[x,y] = k[X, Y]/
(X + aX? 4+ bY?). The partial derivations of k[X, Y] induce derivations
D., D, of A over k, and we have Der,(4) = AD, + AD,. Suppose uD,
+ vD, is integrable, where u = f(x,y) and v = g(x, y). Considering the
coefficient of #? in the relation (x + tu + ---y? + ax + tu + ---)* + b(y
+ w4 ---) =0 we get

(%) 2xPu? + aqu® + bv® = 0.

Therefore 2X°f(X, Y)* + of (X, Y)* + bg(X, Y)* = (X** + aX” + bY?)H(X, Y)
for some H(X, Y)ek[X, Y]. Applying derivations D,, D, of k such that
D,(a) =1, D,(b) =0, DSa) =0, D(b) =1 to the last relation and sub-
stituting x, y for X, Y we get

ut = x*w, v =yw, w=H(x,y).

Substituting them into (x) we have w =0. Hence u=v=0. Thus
Ider, (4) = 0.

REFERENCES

[1] André, M., Homologie des algébres commutatives, Springer, 1974.

, Méthodes simpliciale en Algébre Homologique et Algébre Commutative,
Springer Lecture Notes in Math., 32 (1967).

[3] Avramov, L. L., Flat morphisms of complete intersections, Soviet Math. Dokl.,
16 (1975), 1413-141"7.

[4] Brown, W. C., On the imbedding of derivations of finite rank into derivations of
infinite rank, Osaka J. Math., 15 (1978), 381-389.

[5] Grothendieck, A., Eléments de Géométrie Algébrique, IV-1, Publ. I.H.E.S., no. 20,
1964.

, ibid., IV-2, Publ. I.H.E.S., no. 24, 1965.

[7]1 Hasse, H. and Schmidt, F. K., Noch eine Begriindung der Theorie der hoheren

https://doi.org/10.1017/5002776300002002X Published online by Cambridge University Press


https://doi.org/10.1017/S002776300002002X

[8]
[9]
[10]

[11]
[12]

[13]
[14]
[15]
[16]
[17]
[18]
[19]

[20]
[21]

[22]

INTEGRABLE DERIVATIONS 245

Differentialquotienten in einem algebraischen Funktionenkorper einer Unbes-
timmten, J. reine u. angew. Math., 117 (1937).

Lipman, J., Free derivation modules on algebraic varieties, Amer. J. Math., 87
(1965), 874-898.

——, On the Jacobian ideal of the module of differentials, Proc. Amer. Math.
Soc., 21 (1969), 422-426.

Matsumura, H., Quasi-coefficient rings of a local ring, Nagoya Math. J., 68
(1977), 123-130.

——, Commutative Algebra, 2nd Ed. Benjamin, 1980.

Molinelli, S., Sul modulo delle derivazioni integrabili in caratteristica positiva,
Ann, Mat. Pura Appl., 121 (1979), 25-38.

Nakai, Y., High order derivations I, Osaka J. Math., 7 (1970), 1-27.

, On locally finite iterative higher derivations, ibid., 15 (1978), 655-662.
Northeott, D. G., Finite Free Resolutions, Camb. Tracts in Math., 71, Camb.
Univ. Press, 1976.

Restuccia, G., Sul rango del modulo delle derivazioni di un anello in caratteristica
diseguale, Rend. Sem. Mat. Univ. Politecn. Torino, 36 (1977-78), 449-462.
Scheja-Storch, Differentielle Eigenschaften der Lokalisierungen analytiseher
Algebren, Math. Ann., 197 (1972), 137-170.

Seidenberg, A., Derivations and integral closure, Pacific J. Math.,, 16 (1966),
167-173.

——, Differential ideals in rings of finitely generated type, Amer. J. Math., 89
(1967), 22-42.

, Differential ideals in complete local rings, ibid., 95 (1973), 52-58.
Watanabe, K., Ishikawa, T., Tachibana, S. and Otsuka, K., On tensor products
of Gorenstein rings, J. Math. Kyoto Univ., 9 (1969), 413-423.

Yamauchi, N., On an algebra over a field with universal finite module of differen-
tials, Nagoya Math. J., 83 (1981), 107-121.

[AG] Hartshorne, R., Algebraic Geometry, Springer, 1977.

Department of Mathematics
Nagoya University

https://doi.org/10.1017/5002776300002002X Published online by Cambridge University Press


https://doi.org/10.1017/S002776300002002X



