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Abstract. We highlight a connection between Diophantine approximation and the lower
Assouad dimension by using information about the latter to show that the Hausdorff
dimension of the set of badly approximable points that lie in certain non-conformal
fractals, known as self-affine sponges, is bounded below by the dynamical dimension of
these fractals. For self-affine sponges with equal Hausdorff and dynamical dimensions,
the set of badly approximable points has full Hausdorff dimension in the sponge. Our
results, which are the first to advance beyond the conformal setting, encompass both the
case of Sierpiński sponges/carpets (also known as Bedford–McMullen sponges/carpets)
and the case of Barański carpets. We use the fact that the lower Assouad dimension of a
hyperplane diffuse set constitutes a lower bound for the Hausdorff dimension of the set of
badly approximable points in that set.

Fix d ∈ N. Dirichlet’s theorem in Diophantine approximation states that, for all x ∈ Rd ,
there exist infinitely many rational points p/q ∈Qd such that∥∥∥∥x−

p
q

∥∥∥∥< 1
q1+1/d .

A point x ∈ Rd is said to be badly approximable if this inequality cannot be improved
by more than a constant, i.e. if there exists a constant c > 0 such that, for any rational
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point p/q ∈Qd , we have ∥∥∥∥x−
p
q

∥∥∥∥≥ c
q1+1/d .

We denote the set of all badly approximable points in Rd by BAd . Dirichlet’s theorem
shows that in some sense, out of all the points in Rd , badly approximable points are the
hardest to approximate by rationals. It is well known that BAd is a Lebesgue nullset of full
Hausdorff dimension in Rd , see e.g. [25, Ch. III].

For more than a decade now, as part of the burgeoning study of Diophantine properties
of fractal sets and measures [5, 9, 10, 13, 19], there has been a growing interest in
computing the Hausdorff dimension of the intersection of BAd with various fractal sets.
Since BAd has full dimension, one expects its intersection with any fractal set J ⊆ Rd to
have the same dimension as J , and this can be proven for certain broad classes of fractal
sets J , see e.g. [4, 6, 12, 20].

However, progress so far has been limited to the class of fractals defined by conformal
dynamical systems, and it has been a natural challenge to understand what happens beyond
this case. Non-conformal dynamical systems (where the system is expanding but may have
different rates of expansion in different directions) are often much more complicated than
conformal ones, which can often be thought of as essentially the same as one-dimensional
systems. For instance, the Hausdorff dimension of any conformal expanding repeller can
be computed via Bowen’s formula (e.g. [23, Corollary 9.1.7]), but it is far more difficult to
compute the Hausdorff dimension of even relatively simple non-conformal fractals, such
as the limit sets/measures of affine iterated function systems (IFSs) satisfying the open
set condition. To make progress one generally has to assume either some randomness
in the contractions defining the IFS, as in [11, 16], or some special relations between
these contractions, as in [1, 7]. An exception to this is a recent theorem of Bárány
and Käenmäki [2], who showed that every self-affine measure on the plane is exact
dimensional.

In this paper, we will concentrate on the latter situation, considering the class of self-
affine sponges, and in particular analyzing the Hausdorff dimension of the intersection
of a self-affine sponge with the set of badly approximable points. The class of self-affine
sponges is the generalization to higher dimensions of the class of self-affine carpets, which
consists of subsets of R2 defined according to a certain recursive construction where each
rectangle in the construction is replaced by the union of several rectangles contained in
that rectangle (see Definition 1.1 below). The Hausdorff dimension of certain self-affine
carpets was computed independently by Bedford [3] and McMullen [22], and their results
were extended by several authors [1, 7, 18, 21].

Given a self-affine sponge, we would like to know what the Hausdorff dimension of its
intersection with BAd is. There are two subtleties that make this question more difficult
to answer than in the conformal case. One involves the question of what hypotheses are
sufficient to deduce that a self-affine sponge intersects BAd non-trivially. In the case of
self-conformal sets, the answer has always turned out to be an irreducibility assumption: in
the most general case, that the set in question is not contained in any real-analytic manifold
of dimension strictly less than d (see [6]). This assumption is natural because of a well-
known obstruction: any point contained in a rational affine hyperplane cannot be badly
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approximable, and thus any set that intersects BAd cannot be contained in a rational affine
hyperplane. Strengthening this requirement from rational hyperplanes to all hyperplanes,
and then from hyperplanes to real-analytic manifolds, is natural from a geometric point
of view. However, in the case of self-affine sponges the irreducibility assumption needs to
be stronger than the condition of not being contained in a manifold; in the next section
we will say precisely what assumption is needed (see Definition 1.2). Our irreducibility
assumption is satisfied in ‘most’ examples, and we can show that standard techniques (i.e.
Schmidt’s game and hyperplane diffuseness) must fail for sponges that are not irreducible
in our sense (see Proposition 3.4).

The other subtlety is that self-affine sponges may have no natural measure of full
dimension, as recently discovered by two of the authors [7]. For such sponges, our
techniques cannot prove that the intersection of the sponge with BAd has full dimension
in the sponge, but only that the dimension of this intersection is bounded below by the
dynamical dimension of the sponge, i.e. the supremum of the dimensions of the invariant
measures. Regarding this difficulty, we leave open the possibility that it may still be
possible to prove the full Hausdorff dimension of the sponge’s intersection with BAd using
Schmidt’s game and hyperplane diffuseness, but new ideas would be needed. This problem
as well as a few other open problems are listed at the end of the paper.

1. Main results
We use the same notation to describe self-affine sponges as in [7].

Definition 1.1. [7, Definitions 2.1 and 2.2] Fix d ≥ 1, and let D = {1, . . . , d}. For each i ∈
D, let Ai be a finite index set, and let 8i = (φi,a)a∈Ai be a finite collection of contracting
similarities of [0, 1], called the base iterated function system (IFS) in coordinate i . Let
A =

∏
i∈D Ai , and for each a= (a1, . . . , ad) ∈ A, consider the contracting affine map

φa : [0, 1]d → [0, 1]d defined by the formula

φa(x1, . . . , xd)= (φa,1(x1), . . . , φa,d(xd)),

where φa,i is shorthand for φi,ai in the formula above, as well as elsewhere. Geometrically,
φa can be thought of as corresponding to the rectangle to which it sends [0, 1]d :

φa([0, 1]d)=
∏
i∈D

φa,i ([0, 1])⊆ [0, 1]d .

Given E ⊆ A, we call the collection8 def
= (φa)a∈E a diagonal IFS. It is a special case of the

more general notion of an affine IFS. The coding map of 8 is the map π : EN
→ [0, 1]d

defined by the formula
π(ω)= lim

n→∞
φω�n(0),

where φω�n
def
= φω1 ◦ · · · ◦ φωn . Finally, the limit set of 8 is the set 38

def
= π(EN). We call

the limit set of a diagonal IFS a self-affine sponge. If d = 2, the limit set is also called a
self-affine carpet.

The sponge 38 is called Barański (respectively strongly Barański) if the base IFSs all
satisfy the open set condition (respectively the strong separation condition) with respect to
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FIGURE 1. Generating templates for the IFSs 8(1) and 8(2) considered in Example 1.3. The left-hand picture is
irreducible but the right-hand picture is reducible. Both IFSs have distinguishable coordinates and are Barański

but are not strongly Barański.

the interval I= (0, 1) (respectively I= [0, 1]), i.e. if for all i ∈ D the collection

(φi,a(I))a∈Ai

is disjoint.

We now define the notion of irreducibility that we need to state our theorem.

Definition 1.2. Define a partial order � on D by writing i � j if |φ′a,i | ≥ |φ
′

a, j | for all
a ∈ E . In other words, i � j if all contractions of 8 contract at least as fast in coordinate
j as in coordinate i . The sponge 38 is said to be irreducible if, for all i ∈ D, there exist
a, b ∈ E such that ai 6= bi but { j ∈ D : a j 6= b j } ⊆ { j ∈ D : j � i}. In other words, 8 is
irreducible if, for every coordinate, 8 contains two contractions that can be distinguished
in that coordinate but not in any coordinate that allows for slower contraction than in the
original coordinate.

The sponge 38 is said to have distinguishable coordinates if, for all i, j ∈ D with
i 6= j , there exists a ∈ E such that |φ′a,i | 6= |φ

′

a, j |. Note that in two dimensions a carpet has
distinguishable coordinates if and only if its IFS does not consist entirely of similarities.

Example 1.3. Let d = 2, m1 = 3, and m2 = 2, and consider the base IFSs

8i = (φi,a)0≤a≤mi−1, φi,a(x)=
a + x

mi
.

The product IFS consists of the affine contractions

φa(x1, x2)=

(
a1 + x1

3
,

a2 + x2

2

)
, a ∈ A = {0, 1, 2} × {0, 1}.

Let E (1) = {(0, 0), (1, 1), (2, 0)} ⊆ A and E (2) = {(0, 0), (2, 1)} ⊆ A, and consider the
diagonal IFSs 8(k) = (φa)a∈E (k) (k = 1, 2). (See Figure 1.) The IFS 8(1) is irreducible,
since for i = 1 we can take a= (0, 0) and b= (2, 0) and for i = 2 we can take a= (0, 0)
and b= (1, 1). On the other hand, the IFS 8(2) is reducible, since if i = 1, then there do
not exist a, b ∈ E (2) such that ai 6= bi and { j ∈ D : a j 6= b j } ⊆ { j ∈ D : j � i}. Both IFSs
have distinguishable coordinates.

We note that although 8(2) is reducible, its limit set is not contained in any line or
smooth curve in R2. This contrasts with the case of limit sets of conformal IFSs, where a set
is defined to be irreducible if it is not contained in any real-analytic manifold of dimension

https://doi.org/10.1017/etds.2017.42 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2017.42


642 T. Das et al

strictly smaller than the ambient dimension. The reason that we call 8(2) reducible is that
its limit set does not have any hyperplane diffuse subsets, meaning that Schmidt’s game
cannot be used to deduce lower bounds on the dimension of its intersection with BAd ;
see §2 and Proposition 3.4 for details.

The last notion we need to define before we can state our theorem is the notion of the
dynamical dimension of a self-affine sponge.

Definition 1.4. [7, Definition 2.6] The dynamical dimension of a self-affine sponge 38 is
the number

dimD(8)
def
= sup

µ
{dimH (π∗[µ])},

where the supremum is taken over all probability measures µ on EN that are invariant
under the shift map†. Here, π∗[µ] denotes the pushforward of µ under the coding map π ,
and the Hausdorff dimension of π∗[µ] is the infimum of the Hausdorff dimensions of sets
that have full measure under π∗[µ].

The dynamical dimension of a self-affine sponge is always bounded above by the
Hausdorff dimension of the sponge. Equality holds in the case of Sierpiński sponges (in
which the coordinatewise rates of contraction are the same for all contractions in the IFS)
[18] and also in the case of Barański carpets (i.e. two-dimensional Barański sponges) [1].
In general, the dynamical dimension may be strictly less than the Hausdorff dimension,
see [7]; this is true even for three-dimensional Barański sponges satisfying the coordinate
ordering condition (see Definition 2.8 below).

We are now ready to state our main result.

THEOREM 1.5. Let 38 ⊆ [0, 1]d be an irreducible Barański sponge with distinguishable
coordinates. Then

dimH (38 ∩ BAd)≥ dimD(38).

In particular, if d = 2 or if 38 is a Sierpiński sponge, then 38 ∩ BAd has full Hausdorff
dimension in 38.

The idea of the proof can be described succinctly as follows. Let ν = π∗[µ] be the image
under the coding map of an ergodic shift-invariant probability measure µ on EN. Let N be
a large number, and let F ⊆ E N be a subset consisting of ‘µ-typical’ words. Then the limit
set of the IFS 9F corresponding to F can be shown to intersect BAd in a set of dimension
close to the dimension of ν, Roughly, this is because the elements of 9F are all relatively
‘homogeneous’ and so the lower Assouad dimension of the limit set of 9F , which is a
lower bound for the dimension of its intersection with BAd (see Proposition 2.5), is close
to the Hausdorff dimension of the limit set of 9F , which is in turn close to the Hausdorff
dimension of ν (computed using a Ledrappier–Young-type formula [7, (2.13)]). Finally, ν
can be chosen so that its Hausdorff dimension is close to the dynamical dimension of 38.

† By [7, Theorem 2.7 and (2.13)], the dynamical dimension is the same if we take the supremum only over
ergodic measures of positive entropy. This means that our definition agrees with the usual one in the literature
e.g. [8, (2.14)].
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We do not need to deal with all possible ergodic shift-invariant measures; it suffices
to consider the smaller class of Bernoulli measures. A Bernoulli measure is a measure
of the form νp = π∗[pN

], where p is a probability measure on E . In [7, Theorem 2.7], it
was shown that the supremum of the Hausdorff dimensions of the Bernoulli measures is
equal to the dynamical dimension, so in the above proof sketch ν can be assumed to be a
Bernoulli measure. The function sending a Bernoulli measure to its Hausdorff dimension
is continuous [7, Theorem 2.9], so by compactness there exists a (not necessarily unique)
Bernoulli measure whose Hausdorff dimension is equal to the dynamical dimension.

If νp is a Bernoulli measure of maximal dimension, then to show that the conclusion of
Theorem 1.5 holds it suffices to check that the above proof sketch can be made rigorous for
the measure ν = νp. It turns out that the conditions under which this is possible are more
general than the hypotheses of Theorem 1.5. To make this statement precise, we introduce
a ‘local’ analogue of the partial order � considered in Definition 1.2.

Definition 1.6. Let p be a probability measure on E , and for each i ∈ D we define the
Lyapunov exponent of p in coordinate i to be the number

χi (p)=−
∫

log|φ′a,i | dp(a).

Define a partial order �p on D by writing i �p j if χi (p)≤ χ j (p). The measure p is said
to be irreducible (or equivalently, the sponge 38 is said to be irreducible with respect
to p) if for all i ∈ D, there exist a, b ∈ E such that ai 6= bi but { j ∈ D : a j 6= b j } ⊆ { j ∈
D : j �p i}. Note that �p is a finer partial order than �, so if a sponge is irreducible in
the sense of Definition 1.2 then it is irreducible with respect to every probability measure
on E .

The measure p is said to have distinct Lyapunov exponents if the numbers χi (p) (i ∈ D)
are all distinct.

We also introduce a ‘local’ analogue of the Barański condition.

Definition 1.7. (See [7, Definition 3.1]) Let 38 be a self-affine sponge, and let I ⊆ D be
a coordinate set. Let

8I = (φI,a)a∈πI (E),

where φI,a : [0, 1]I → [0, 1]I is defined by the formula

φI,a(x)= (φa,i (xi ))i∈I

and πI : A→ AI
def
=
∏

i∈I Ai is the projection map. We call I good (respectively strongly
good) if the collection

(φI,a(II ))a∈πI (E)

is disjoint, where I= (0, 1) (respectively I= [0, 1]). Also, a measure p on E is called
good (respectively strongly good) if for every x > 0, the set

I (p, x)= {i ∈ D : χi (p)≤ x}

is good (respectively strongly good).

We can now state a ‘local’ version of Theorem 1.5.
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THEOREM 1.8. Let38 ⊆ [0, 1]d be a self-affine sponge, and let p be an irreducible good
probability measure on E with distinct Lyapunov exponents. Then

dimH (38 ∩ BAd)≥ dimH (νp).

In particular, if dimH (νp)= dimH (38), then 38 ∩ BAd has full Hausdorff dimension
in 38.

If 38 is an irreducible Barański sponge with distinguishable coordinates, then every
probability measure on E is both irreducible and good, and the set of measures with distinct
Lyapunov exponents forms an open dense set. Thus, Theorem 1.8 implies Theorem 1.5.

Outline of the paper. In the next section, we recall some known results about the
dimension of intersection of BAd with fractals and its relation to the lower Assouad
dimension, and state a strengthening of Theorem 1.8, namely Theorem 2.7. In §3, we
prove some results which suffice to give a useful estimate of the Hausdorff dimension of
39F ∩ BAd , where 9F is a ‘homogeneous’ IFS as described in our proof sketch above.
In §4 we use this estimate to prove Theorem 2.7.

Convention 1. The symbols ., &, and � will denote coarse multiplicative asymptotics.
For example, A . B means that there exists a constant C > 0 (the implied constant) such
that A ≤ C B.

2. Schmidt’s game, hyperplane diffuse sets, and the lower Assouad dimension
For d ≥ 2, the full dimension of BAd in Rd was proven by Schmidt [24] using a technique
now known as Schmidt’s game. Since then, Schmidt’s game and its variants have been
used to prove the full dimension intersection of BAd with various fractals, as well as
various stability properties such as C1 incompressibility [4]. The modern approach [4] is
to first show that BAd is winning for a variant of Schmidt’s game known as the hyperplane
absolute game, and then to show that any set winning for the hyperplane absolute game
is also winning for Schmidt’s game played on any fractal satisfying a certain geometric
condition called hyperplane diffuseness. The Hausdorff dimension of a set winning for
Schmidt’s game played on a fractal can be bounded from below based on the geometry of
that fractal; there are currently two known ways of doing this, one based on the dimensions
of fully supported doubling Frostman measures on the fractal [20, Theorem 1.1], and the
other based on the lower Assouad dimension of the fractal [12, Theorem 3.1]. The two
methods give the same bound whenever the fractal in question is Ahlfors regular†, which
is true in most applications that have been considered so far. However, in our case the
fractals are not Ahlfors regular, and there is a difference between the two methods. We
work with the second method, based on the lower Assouad dimension, as it seems to be
more suited to the situation we consider here.

† We recall that a measure µ on Rd is said to be Ahlfors s-regular if, for all x ∈ Supp(µ) and 0< ρ ≤ 1, we have

µ(B(x, ρ))� ρδ .

A closed set K ⊆ Rd is said to be Ahlfors s-regular if there exists an Ahlfors s-regular measure µ such that
K = Supp(µ), and Ahlfors regular if it is Ahlfors s-regular for some s > 0.
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Definition 2.1. Let K be a closed subset of Rd . For any 0< α, β < 1, Schmidt’s (α, β)-
game is an infinite game played by two players, Alice and Bob, who take turns choosing
balls in Rd whose centers lie in K , with Bob moving first. The players must choose their
moves so as to satisfy the relations

B1 ⊇ A1 ⊇ B2 ⊇ · · ·

and
ρ(Ak)= αρ(Bk) and ρ(Bk+1)= βρ(Ak) for k ∈ N,

where Bk and Ak denote Bob’s and Alice’s kth moves, respectively, and where ρ(B)
denotes the radius of a ball B. Since the sets B1, B2, . . . form a nested sequence of non-
empty closed sets whose diameters tend to zero, it follows that the intersection

⋂
k Bk is a

singleton, say
⋂

k Bk = {x}, whose unique member x lies in K . The point x is called the
outcome of the game. A set S ⊆ K is said to be (α, β)-winning on K if Alice has a strategy
guaranteeing that the outcome lies in S, regardless of the way Bob chooses to play. It is
said to be α-winning on K if it is (α, β)-winning on K for every 0< β < 1, and winning
on K if it is α-winning on K for some 0< α < 1.

Definition 2.2. A set K ⊆ Rd is said to be hyperplane diffuse if there exists β > 0 such
that, for all 0< ρ ≤ 1 and x ∈ K and for any (affine) hyperplane L⊆ Rd , we have

B(x, ρ) ∩ K \N (L, βρ) 6=�,
where N (L, ε) denotes the closed ε-thickening of L, i.e. N (L, ε)= {y ∈ Rd

: d(y, L)
≤ ε}.

PROPOSITION 2.3. [4, Theorem 2.5 + Proposition 4.7] Let K ⊆ Rd be a closed and
hyperplane diffuse set. Then BAd ∩ K is winning on K .

This result remains true if BAd is replaced by any hyperplane absolute winning set,
see [4, p. 4] for the definition. The same applies to all the results of this paper.

To state in a clearer way the lower bound for the Hausdorff dimension of a winning set
discovered by the second-named author [12, Theorem 3.1], we recall the definition of the
lower Assouad dimension of a set. (The lower Assouad dimension has been given several
names in the literature, see [14, p. 6688], but the name ‘lower Assouad dimension’ seems
by far the most natural to us.)

Definition 2.4. Given ρ > 0 and S ⊆ Rd , we let Nρ(S) denote the cardinality of any
maximal ρ-separated subset of S. (Choosing a different maximal ρ-separated set will not
change Nρ(S) by more than a constant factor.) The lower Assouad dimension of a non-
empty closed set K ⊆ Rd , denoted dimA(K ), is the supremum of s ≥ 0 such that there
exists a constant c > 0 such that, for all x ∈ K and 0< β, ρ ≤ 1, we have

Nβρ(B(x, ρ) ∩ K )≥ cβ−s .

Equivalently,

dimA(K )= lim inf
β→0

inf
0<ρ≤1

inf
x∈K

log Nβρ(B(x, ρ) ∩ K )
−log(β)

= lim inf
β→0

lim inf
ρ→0

inf
x∈K

log Nβρ(B(x, ρ) ∩ K )
−log(β)

(see Appendix A).
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The lower Assouad dimension is the smallest of the standard fractal dimensions. In
particular, if K is closed then dimA(K )≤ dimH (K ), see e.g. [17, Lemma 2.2]. Note that
unlike most notions of dimension, the lower Assouad dimension is not monotone: a subset
may have larger lower Assouad dimension than the set it is contained in.

The essential idea of the following result is found in [12, Theorem 3.1]. We include the
proof for completeness.

PROPOSITION 2.5. Let K ⊆ Rd be closed and let S ⊆ K be winning on K . Then

dimH (S)≥ dimA(K ),

where dimA denotes the lower Assouad dimension.

Proof. Let δ = dimA(K ), and fix ε > 0. Then by definition, there exists a constant
c = cε > 0 such that, for all x ∈ K , 0< β ≤ 1/4, and 0< ρ ≤ 1, we have

N3βρ(B(x, (1− β)ρ) ∩ K )≥ N = N (β) def
= bcεβ−(δ−ε)c.

Now let α > 0 be chosen so that S is α-winning, and fix 0< β ≤ 1/2. For
each ball A = B(x, ρ), we choose a 3βρ-separated sequence y(1)(A), . . . , y(N )(A) ∈
B(x, (1− β)ρ) ∩ K , and we let fi (A) denote the ball centered at y(i)(A) of radius βρ.
Then the balls f1(A), . . . , fN (A) are contained in A and are separated by distances of at
least βρ. Moreover, each ball fi (A) is a legal move for Bob to make in response to Alice
playing A as her move.

Now fix a winning strategy for Alice to win the (α, β)-game, and we will consider
the family of counter-strategies for Bob such that whenever Alice plays a ball Ak , Bob
responds by playing one of the balls f1(Ak), . . . , fN (Ak). We fix Bob’s initial ball

(chosen to have radius less than 1), and for each functionω : N→ E def
= {1, . . . , N (β)}, we

consider the counter-strategy in which Bob responds to Alice’s kth move Ak by choosing
the ball Bk+1 = fω(k)(Ak). We denote the outcome of this counter-strategy by π(ω), so
that π : EN

→ K . The separation conditions on the balls f1(A), . . . , fN (A) guarantee
that

d(π(ω), π(τ))� (αβ)|ω∧τ | for all ω, τ ∈ EN,

where |ω ∧ τ | denotes the length of the longest common initial segment of ω and τ . Thus,
the uniform Bernoulli measure on π(EN) is Ahlfors s(β)-regular, where

s(β) def
=

log N (β)
−log(αβ)

=
−(δ − ε) log(β)+ O(1)

−log(αβ)
−−−→
β→0

δ − ε.

It follows that dimH (π(EN))≥ s(β). Now, since each element of π(EN) is the outcome of
a game where Alice played her winning strategy, we have π(EN)⊆ S and thus dimH (S)≥
s(β)→ δ − ε. Since ε was arbitrary, we have dimH (S)≥ δ. 2

Combining Propositions 2.3 and 2.5 gives the following corollary.

COROLLARY 2.6. Let K ⊆ Rd be a closed and hyperplane diffuse set. Then

dimH (BAd ∩ K )≥ dimA(K ).

With this result in mind, we can see how the following theorem is a strengthening of
Theorem 1.8.
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FIGURE 2. Generating templates for two carpets satisfying the coordinate ordering condition. The picture on the
right also satisfies the disjointness condition, making it a Lalley–Gatzouras carpet.

THEOREM 2.7. Let38 ⊆ [0, 1]d be a self-affine sponge, and let p be an irreducible good
probability measure on E with distinct Lyapunov exponents. Then there exists a sequence
of strongly Lalley–Gatzouras sponges 39N ⊆38 that are hyperplane diffuse and satisfy

dimA(39N )→ dimH (νp).

Here, following [7], we use the term ‘Lalley–Gatzouras’ to refer to a certain class of
sponges that includes the carpets considered by Lalley and Gatzouras.

Definition 2.8. (See [7, Definition 3.6]) A self-affine sponge 38 is Lalley–Gatzouras
(respectively strongly Lalley–Gatzouras) if there exists a permutation σ of D such that
both of the following hold (see Figure 2).
• (Coordinate ordering condition) For all a ∈ E , we have

|φ′a,σ (1)|> |φ
′

a,σ (2)|> · · ·> |φ
′

a,σ (d)|.

• (Disjointness condition) The coordinate sets σ(I≤i ) (i = 1, . . . , d) are all good

(respectively strongly good), where I≤i
def
= {1, . . . , i}.

3. Some results on Lalley–Gatzouras sponges
In this section, we give a necessary and sufficient condition for the hyperplane diffuseness
of a strongly Lalley–Gatzouras sponge38 (which will be fixed throughout the section), as
well as a formula for the lower Assouad dimension of 38. For conceptual completeness
we also state the formula for the upper Assouad dimension of 38, which is defined in the
following.

Definition 3.1. The upper Assouad dimension of a non-empty closed set K ⊆ Rd , denoted
dimA(K ), is the infimum of s ≥ 0 such that there exists C > 0 such that, for all x ∈ K and
0< β, ρ ≤ 1, we have

Nβρ(B(x, ρ) ∩ K )≤ Cβ−s,

where Nβρ is as in Definition 2.4. Equivalently,

dimA(K )= lim sup
β→0

sup
0<ρ≤1

sup
x∈K

log Nβρ(B(x, ρ) ∩ K )
−log(β)

= lim sup
β→0

lim sup
ρ→0

sup
x∈K

log Nβρ(B(x, ρ) ∩ K )
−log(β)

(see Appendix A).
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Definition 3.2. The sponge 38 is called uniformly irreducible if, for all i ∈ D and a ∈ E ,
there exists b ∈ E such that bi 6= ai but { j ∈ D : a j 6= b j } ⊆ { j ∈ D : j � i}, where the
partial order � is the same as in Definition 1.2.

For example, the irreducible Barański sponge 38(1) appearing in Example 1.3 is
not uniformly irreducible, since if i = 1 and a= (1, 1) then there is no b ∈ E (1)

such that bi 6= ai but { j ∈ D : a j 6= b j } ⊆ { j ∈ D : j � i}. On the other hand, if E (3) =
{(0, 0), (1, 1), (2, 0), (2, 1)}, then the corresponding Barański sponge 38(3) is uniformly
irreducible.

In the remainder of this section, we assume without loss of generality that the
permutation σ appearing in Definition 2.8 is trivial, i.e. that the orders � and ≤ on D
are equivalent. (Note that this is not true for the sponges of Example 1.3.)

PROPOSITION 3.3. The sponge 38 is hyperplane diffuse if and only if it is uniformly
irreducible.

We will use the backwards direction of this proposition in the proof of Theorem 2.7; we
include the proof of the forwards direction for completeness.

Proof of backwards direction. Fixω ∈ EN and 0< ρ ≤ 1, and let x= π(ω); we will prove
that

38 ∩ B(x, ρ) \N (L, βρ) 6=� (3.1)

for any hyperplane L, where β > 0 is an appropriate constant. For each i ∈ D, let Ni ∈ N
be the smallest number such that

Ni∏
n=1

|φ′ωn ,i | ≤ ρ, (3.2)

and note that by the coordinate ordering condition, we have N1 ≥ N2 ≥ · · · ≥ Nd . Let

[a]i = {b ∈ E : ai = bi },

[ω � N ]i
def
= {τ ∈ EN

: τn ∈ [ωn]i ∀n ≤ N },

Bω(N1, . . . , Nd)
def
=

⋂
i∈D

[ω � Ni ]i .
(3.3)

Then, by (3.2),
Bω(N1, . . . , Nd)⊆ π

−1(B(π(ω), ρ)).

(Here for convenience we work with the max norm on Rd .) Now fix i ∈ D and let a=
ωNi+1. Let b ∈ E be as in Definition 3.2. Define the point τ ∈ EN as follows: let τn = ωn

for all n 6= Ni + 1, and let τNi+1 = b. Finally, let y(i) = π(τ).
Fix j ∈ D. If a j = b j , then clearly τ ∈ [ω � N j ] j . On the other hand, if a j 6= b j ,

then j ≥ i and thus N j ≤ Ni , which implies τ ∈ [ω � N j ] j . So either way we have τ ∈
[ω � N j ] j , and thus τ ∈ Bω(N1, . . . , Nd). Consequently, y(i) ∈ B(x, ρ).

If j < i , then a j = b j and thus x j = y(i)j . On the other hand, since ai 6= bi and

since I≤i is strongly good, we have max j≤i |y
(i)
j − x j | � ρ. Combining these facts gives

|y(i)i − xi | � ρ. Since i, j were arbitrary, this means that the matrix M = (y(i)j − x j )i, j =∑
i∈D(e

(i)) · (y(i) − x)T is upper triangular and its diagonal entries are asymptotic to ρ,
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while all of its entries are bounded in magnitude by ρ. Here e(i) denotes the (column)
vector whose i th entry is 1 (and whose other entries are 0). This implies that

‖M−1
‖. ρ−1.

So if v ∈ Rd is any unit vector, then ‖Mv‖& ρ and thus there exists i ∈ D such that
|(y(i) − x) · v|& ρ. It follows that there exists a constant β > 0 (independent of x, ρ, v)
such that

d(y(i) − x, v⊥) > 2βρ. (3.4)

Now if L⊆ Rd is a hyperplane, then we can write L= p+ v⊥ for some p ∈ Rd and some
unit vector v, and then (3.4) implies that

max(d(x, L), d(y(i), L)) > βρ.

Since x, y(i) ∈38 ∩ B(x, ρ), this demonstrates (3.1), completing the proof. 2

Proof of forwards direction. By contradiction suppose that 38 is not uniformly
irreducible. Then there exist i ∈ D and a ∈ E such that, for all b ∈ E satisfying
bi 6= ai , we have { j ∈ D : a j 6= b j } 6⊆ { j ∈ D : j ≥ i}. Let ω = a∞, x= π(ω), and L=
x+

∑
j 6=i Re( j). We claim that, for all 0< ρ ≤ 1,

38 ∩ B(x, ρ)⊆N (L, Cρα), (3.5)

where C > 0 and α > 1 are constants. This implies that 38 is not hyperplane diffuse.
Indeed, fix 0< ρ ≤ 1, and for each j ∈ D, let N j ∈ N be the largest number such that

N j∏
n=1

|φ′ωn , j | = |φ
′

a, j |
N j ≥ ε−1ρ,

where
ε = min

I=I≤ j
j∈D

min
a,b∈πI (E)

distinct

d(φI,a([0, 1]I ), φI,b([0, 1]I )). (3.6)

Since 38 satisfies the disjointness condition, we have ε > 0. As before we have
N1 ≥ N2 ≥ · · · ≥ Nd . We let the notation [a]i , [ω � N ]i , and Bω(N1, . . . , Nd) be as in
the previous proof, but this time our definition of N j implies that

π−1(B(π(ω), ρ))⊆ Bω(N1, . . . , Nd).

Fix τ ∈ π−1(B(π(ω), ρ)), and we will estimate d(y, L), where y= π(τ). Fix n ≤ Ni−1

(with the convention that N0 =∞), and let b= τn . Since τ ∈ Bω(N1, . . . , Nd), we have
b j = τn, j = ωn, j = a j for all j < i . By the definition of i , this implies that bi = ai , and
thus τn,i = ωn,i for all n ≤ Ni−1. It follows that

d(y, L)= |yi − xi | ≤

Ni−1∏
n=1

|φ′ωn ,i | = |φ
′

a,i |
Ni−1 .

If i = 1, then we have shown that d(y, L)= 0. Suppose i > 1. Since 38 satisfies the
coordinate ordering condition, we have

α
def
=

log|φ′a,i |

log|φ′a,i−1|
> 1.
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On the other hand, the definition of Ni−1 implies that |φ′a,i−1|
Ni−1+1 < ε−1ρ, so

d(y, L)≤ |φ′a,i−1|
Ni−1α . ρα,

demonstrating (3.5). 2

If38 is irreducible but not uniformly irreducible, then in the next section we will show
that 38 contains uniformly irreducible subsponges. So, in this case, even though 38 is
not hyperplane diffuse it contains hyperplane diffuse subsets. On the other hand, we have
the following.

PROPOSITION 3.4. If 38 is reducible, then it contains no hyperplane diffuse subsets.

In this case, the techniques of §2 cannot possibly be used to prove that BAd ∩38 is
large, because these techniques rely on finding hyperplane diffuse subsets of 38 (with
sufficiently large lower Assouad dimension).

Proof. Since 38 is reducible, there exists i ∈ D such that, for all a, b ∈ E such that
ai 6= bi , there exists j < i such that a j 6= b j . Fix x= π(ω) ∈38, and let L= x+∑

j 6=i Re( j). Repeating the second paragraph of the proof of the forwards direction of
Proposition 3.3 shows that (3.5) holds for all 0< ρ ≤ 1. (One minor change is needed:
after fixing n ≤ Ni−1, we let a= ωn . Since the condition on i now holds for all a, b ∈ E ,
the subsequent argument is still valid.) Since x ∈38 was arbitrary, (3.5) implies that no
subset of 38 is hyperplane diffuse. 2

Next, we compute the upper and lower Assouad dimensions of 38. For each i ∈ D, let
πi = πI<i = πI≤i−1 , and for each a ∈ πi (E), consider the ‘fiber IFS’

8i,a = (φi,b)b∈Ei,a where Ei,a = {b ∈ Ai : (a, b) ∈ πi+1(E)}. (3.7)

Note that π1(E)= {�} and πd+1(E)= E . We let dim(8i,a) denote the dimension of the
limit set of the IFS 8i,a. (Since the limit set is Ahlfors regular, it does not matter what
notion of fractal dimension we use.)

THEOREM 3.5. Recall that 38 denotes a strongly Lalley–Gatzouras sponge such that the
orders � and ≤ on D are equivalent. For each i ∈ D let

δi = min
a∈πi (E)

dim(8i,a),

δi = max
a∈πi (E)

dim(8i,a).

Then

dimA(38)=
∑
i∈D

δi , (3.8)

dimA(38)=
∑
i∈D

δi . (3.9)
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The case d = 2 of Theorem 3.5 (i.e. carpets) was proven recently by Fraser [14,
Theorems 2.12 and 2.13], and the case of Sierpiński sponges by Fraser and Howroyd [15].
The case of general Barański sponges appears to be subtler.

We will prove only (3.8), since that is the equation that we will need in the proof of
Theorem 2.7. (To be precise, we only need the ≥ direction of (3.8).) The proof of (3.9) is
similar.

Proof of ≥ direction. Fix ω ∈ EN and 0< β, ρ ≤ 1, and let x= π(ω). For each i ∈ D, let
Ni ∈ N be the smallest number such that (3.2) holds. Fix i ∈ D, and consider the space

X i
def
=

Ni∏
n=1

{ωn,i } ×

Ni−1∏
n=Ni+1

Ei,πi (ωn).

Here we use the convention that N0 =∞. Let ri be the map

ri ([τ � N ])=
N∏

n=1

|φ′τn ,i |,

i.e. up to a constant, ri sends a cylinder in X i to the diameter of the i th coordinate of its
image under the coding map. Here τ denotes any element of EN.

CLAIM 3.6. If [τ � Ni−1] is a maximal-length cylinder of X i , then

ri ([τ � Ni−1]). ρ
1+δ (3.10)

where δ > 0 is a constant.

Proof. We have

ri ([τ � Ni−1])=

( Ni∏
n=1

|φ′ωn ,i |

)( Ni−1∏
n=Ni+1

|φ′τn ,i |

)
≤ λ

Ni−1−Ni
+ ρ,

where λ+ =maxi∈D maxb∈Ai |φ
′

i,b|< 1. Also,

ri ([ω � Ni−1])=

( Ni∏
n=1

|φ′ωn ,i |

)( Ni−1∏
n=Ni+1

|φ′ωn ,i |

)
≥ λ

Ni−1−Ni
− ρ,

where λ− =mini∈D minb∈Ai |φ
′

i,b|> 0. On the other hand, if

α
def
= max

i∈D
max
a∈E

log|φ′a,i |

log |φ′a,i−1|
> 1,

then

ri ([ω � Ni−1])=

Ni−1∏
n=1

|φ′ωn ,i | ≤

Ni−1∏
n=1

|φ′ωn ,i−1|
α
� ρα.

Combining these inequalities gives

λ
Ni−1−Ni
− . ρα−1

and thus
ri ([τ � Ni−1]). ρ

1+(α−1) log(λ+)/ log(λ−). C
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In the remainder of the proof we assume that ρ ≤ (C−1β)1/δ , where C is the implied
constant of (3.10). Then

ri ([τ � Ni−1])≤ βρ

for all maximal-length cylinders [τ � Ni−1] in X i . It follows that the collection

Pi = {[τ � N ] : ri ([τ � N ])≤ βρ < ri ([τ � N − 1])}

is a partition of X i .
Now let si = δi . By the definition of δi , we have∑

b∈Ei,a

|φ′i,b|
si ≥ 1 for all a ∈ πi (E),

and thus the map r si
i is subadditive on cylinders of length at least Ni . So

ρsi � r si
i ([ω � Ni ])≤

∑
P∈Pi

r si
i (P)� (βρ)

si #(Pi ),

i.e. #(Pi )& β−si . Now let P =
∏d

i=1 Pi , and let P(EN) denote the power set of EN. Define
the map ι : P→ P(EN) as follows:

ι([τ1 � M1], . . . , [τd � Md ])=
⋂
i∈D

[τi � Mi ]i ⊆ Bω(N1, . . . , Nd). (3.11)

Then the sets π(ι(P)) (P ∈ P) are contained in B(x, ρ) and separated by distances &βρ.
Thus

Nβρ(B(x, ρ) ∩38)& #(P)=
d∏

i=1

#(Pi )&
d∏

i=1

β−si = β ∧

(
−

d∑
i=1

δi

)
,

assuming that ρ ≤ (C−1β)1/δ . Here β ∧ s denotes β raised to the power of s. Taking the
infimum over x ∈ K , the liminf as ρ→ 0, and then the liminf as β→ 0 completes the
proof. 2

Proof of ≤ direction. For each i ∈ D, let a(i) ∈ E be chosen so that

dim(8i,πi (a(i)))= δi . (3.12)

Fix 0< ρ ≤ 1, and define the sequence N1, . . . , Nd by backwards recursion: if
Ni+1, . . . , Nd are defined, then let Ni be the smallest integer such that

d∏
j=i

|φ′a( j),i |
N j−N j+1 ≤ ρ.

Then let ω ∈ EN be the infinite word defined by the formula

ωn = a(i) for all i ∈ D for all n = Ni + 1, . . . , Ni−1. (3.13)

Note that, for each i ∈ D, Ni is the smallest integer that satisfies (3.2), i.e. Ni has the same
value in this proof as it did in the proof of the ≥ direction. Fix i ∈ D, and let X i and ri be
as in the proof of the ≥ direction. By (3.13) and (3.12), ri is additive on cylinders rather
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than merely being subadditive. Moreover, since the sets π(ι(P)) (P ∈ P) defined by (3.11)
have diameter .βρ and form a cover of B(x, λ−ερ) ∩38 (here ε is as in (3.6)), we have
� in the last calculation rather than just &:

Nβρ(B(x, λ−ερ) ∩38)� β ∧
(
−

d∑
i=1

δi

)
. (3.14)

The quantifiers on this statement are: for all ρ, there exists x such that (3.14) holds for all
β ≥ Cρδ , where C is the implied constant of (3.10) and δ is as in Claim 3.6. By varying ρ
we can make β arbitrarily small while still retaining (3.14). This completes the proof. 2

4. Proof of the main theorems
In this section, we prove Theorem 2.7, thus indirectly proving Theorems 1.5 and 1.8, which
are consequences of Theorem 2.7.

We recall that in Theorem 2.7, p is an irreducible good measure with distinct Lyapunov
exponents. Without loss of generality, we suppose that the orders �p and ≤ on D are
equivalent, i.e. that χ1(p) < χ2(p) < · · ·< χd(p).

By perturbing the measure p, we may assume that p(a) > 0 for all a ∈ E . Since 38 is
irreducible with respect to p, this implies that

hp(I≤i � I<i )
def
=

∫
log

p([a]I<i )

p([a]I≤i )
dp(a) > 0 (4.1)

for all i ∈ D. Here [a]I =
⋂

j∈I [a] j = {b ∈ E : b j = a j ∀ j ∈ I }.
Now fix ε > 0 and N ∈ N, and let S = SN ⊆ E N be the set of all words ω ∈ E N

satisfying

(1− ε)Nχi (p)≤−log|φ′ω,i | =
N∑

j=1

− log |φω j ,i | ≤ (1+ ε)Nχi (p) (4.2)

and

log
µ([ω]I<i )

µ([ω]I≤i )
=

N∑
j=1

log
p([ω j ]I<i )

p([ω j ]I≤i )
≥ (1− ε)Nhp(I≤i � I<i ), (4.3)

where µ= µN = pN . Here the notation is slightly different from in (3.3):

[ω]I = {τ ∈ E N
: τn ∈ [ωn]I ∀n ≤ N }.

By the law of large numbers, we have limN→∞ µN (SN )= 1, so if N is sufficiently large
then µ(S)≥ 1− ε.

Now define a sequence of sets Td ⊇ Td−1 ⊇ · · · ⊇ T0 as follows: Td = S, and if Ti is
defined then let

Ti−1 = {ω ∈ Ti : µ(Ti ∩ [ω]I<i )≥ εµ([ω]I<i )}.

Letting
Ii = {[a]I<i : a ∈ E} = {π−1

i (a) : a ∈ πi (E)},

we have

µ(Ti \ Ti−1)=
∑
P∈Ii

µ(Ti∩P)<εµ(P)

µ(Ti ∩ P)≤
∑
P∈Ii

µ(Ti∩P)<εµ(P)

εµ(P)≤ εµ(E N )= ε,

so µ(T0)≥ 1− (d + 1)ε. If ε is small enough then µ(T0) > 0, and T0 6=�.
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CLAIM 4.1. For all ω ∈ T0, we have T0 ∩ [ω]I<i = Ti ∩ [ω]I<i .

Proof. Fix τ ∈ Ti ∩ [ω]I<i ; we will prove by backwards induction that τ ∈ T j for all j =
i , i − 1, . . . , 0. Fix j ≤ i , and suppose that τ ∈ T j . Since τ ∈ [ω]I<i ⊆ [ω]I< j , we have
[τ ]I< j = [ω]I< j . Since ω ∈ T0 ⊆ T j−1, this shows that µ(Ti ∩ [τ ]I<i )≥ εµ([τ ]I<i ), and
thus τ ∈ T j−1. C

Note that in this claim it was crucial that we defined the sequence (Ti )
d
0 by backward

recursion rather than by forward recursion, since we needed the fact that [ω]I<i ⊆ [ω]I< j

for all j ≤ i . Combining Claim 4.1 with the definition of (Ti )
d
0 yields

µ(T0 ∩ [ω]I<i )≥ εµ([ω]I<i ) for all i ∈ D for all ω ∈ T0. (4.4)

Now let τ ∈ E∗ =
⋃
∞

n=0 En be a word of fixed length (independent of N ) such that

φτ ([0, 1]d)⊆ (0, 1)d , (4.5)

and consider the diagonal IFS 9 =9N = (ψω)ω∈T0 , where for each ω ∈ T0 we write

ψω = φω ◦ φτ .

Clearly,39 ⊆38. To bound dimA(39) from below using Theorem 3.5, we fix i ∈ D and
a ∈ πi (T0). We have

dim(9i,a)≥
log #(Ei,a)

max
b∈Ei,a

(−log|ψ ′i,b|)

where the ‘fiber IFS’ 9i,a = (ψb)b∈Ei,a is as in (3.7). Now, by (4.2),

max
b∈Ei,a

(−log|ψ ′i,b|)≤ (1+ ε)Nχi (p)+ (−log|φ′τ,i |),

and on the other hand

#(Ei,a)≥
µ(T0 ∩ π

−1
i (a))

maxb∈Ei,a µ(T0 ∩ π
−1
i+1(a, b))

≥
εµ(π−1

i (a))
maxb∈Ei,a µ(π

−1
i+1(a, b))

(by (4.4))

≥ ε exp((1− ε)Nhp(I≤i � I<i )). (by (4.3))

So

dim(9i,a)≥ δi (N , ε)
def
=
(1− ε)Nhp(I≤i � I<i )+ log(ε)
(1+ ε)Nχi (p)− log |φ′τ,i |

(4.6)

and thus, by Theorem 3.5,

dimA(9N )≥
∑
i∈D

δi (N , ε)−−−−→
N→∞

1− ε
1+ ε

∑
i∈D

hp(I≤i � I<i )

χi (p)
−−→
ε→0

∑
i∈D

hp(I≤i � I<i )

χi (p)
.

The right-hand side is equal to dimH (νp) by the Ledrappier–Young formula
(e.g. [7, Proposition 2.16]). So to complete the proof, we need to show that the sponge
39N is strongly Lalley–Gatzouras and hyperplane diffuse for all N sufficiently large. The
coordinate ordering condition follows from (4.2) and the fact that p has distinct Lyapunov
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exponents. Since p is good, so is39N , and (4.5) implies that39N is in fact strongly good.
Finally, combining (4.1) with the calculation preceding (4.6) shows that

min
i∈D

min
a∈πi (E)

#(Ei,a)≥ 2

for all N sufficiently large, and it is easy to check that this is equivalent to 9N being
uniformly irreducible. So, by Proposition 3.3, 39N is hyperplane diffuse for all N
sufficiently large.

5. Open questions
We conclude with a list of open questions.

Question 5.1. Let 38 ⊆ [0, 1]d be an irreducible Barański sponge with distinguishable
coordinates, such that dimD(38) < dimH (38) (see [7]). Does 38 ∩ BAd necessarily
have full Hausdorff dimension in 38 (as opposed to just full dynamical dimension as
guaranteed by Theorem 1.5)? Alternatively, can it be shown that it is impossible to prove
this using the techniques of this paper, by showing that 38 does not necessarily have
hyperplane diffuse subsets of sufficiently large lower Assouad dimension?

Question 5.2. Can Schmidt’s game be used to show that BAd has full dimension in some
fractal defined by a dynamical system which is both non-conformal and nonlinear?

Question 5.3. Is there any fractal 3 defined by a smooth dynamical system (e.g. the limit
set of a C1 IFS) such that 3 ∩ BAd is non-empty but does not have full dimension in 3?
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A. Appendix. Equivalent formulas for the upper and lower Assouad dimensions
In this paper, we have used the formulas

dimA(K )= δ1
def
= lim inf

β→0
inf

0<ρ≤1
inf

x∈K

log Nβρ(B(x, ρ) ∩ K )
−log(β)

= δ2
def
= lim inf

β→0
lim inf
ρ→0

inf
x∈K

log Nβρ(B(x, ρ) ∩ K )
−log(β)

,

dimA(K )= δ1
def
= lim sup

β→0
sup

0<ρ≤1
sup
x∈K

log Nβρ(B(x, ρ) ∩ K )
−log(β)

= δ2 = lim sup
β→0

lim sup
ρ→0

sup
x∈K

log Nβρ(B(x, ρ) ∩ K )
−log(β)

for the lower and upper Assouad dimension, respectively. It is clear from the definitions
that dimA(K )= δ1 and dimA(K )= δ1, but it is less clear that δ1 = δ2 and δ1 = δ2, so we
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prove this now. For brevity, we only prove the equality δ1 = δ2, as the proof of the equality
δ1 = δ2 is similar.

Obviously δ1 ≤ δ2, so we fix s < δ2, and we will show that δ1 ≥ s. Choose 0< β ≤ 1
small enough so that

lim inf
ρ→0

inf
x∈K

log Nβρ(B(x, ρ) ∩ K )
−log(β/4)

> s,

and then choose ρ0 > 0 small enough so that

inf
x∈K

log Nβρ(B(x, ρ) ∩ K )
−log(β/4)

≥ s for all 0< ρ ≤ ρ0.

Then every ball B(x, ρ) centered at a point in K of radius ≤ ρ0 contains a βρ-separated
set of cardinality at least (β/4)−s . Now the balls of radius βρ/2 centered at the points
of this set are disjoint and contained in B(x, 2ρ). Letting κ = 2ρ, we see that every
ball B(x, κ) with x ∈ K and κ ≤ 2ρ0 contains at least (β/4)−s disjoint balls of radius
(β/4)κ . Iterating, every such ball contains at least (β/4)−ns disjoint balls of radius
(β/4)nκ . Now fix x ∈ K and 0< r ≤ R ≤ 1. Let r ′ =min(ρ0, r) and R′ =min(ρ0, R),
and let n ≥ 0 be chosen so that (β/4)n ≥ r ′/R′ but (β/4)n � r ′/R′ � r/R. Then by the
above argument, B(x, R′)⊆ B(x, R) contains at least (β/4)−ns

� (r/R)−s disjoint balls
of radius (β/4)n R′ ≥ r ′. If r ′ = r , this shows that Nr (B(x, R))& (R/r)s , and if r ′ < r ,
then r > ρ0 and thus Nr (B(x, R))≥ 1� (R/r)s . By the definition of the lower Assouad
dimension, this implies that δ1 = dimA(K )≥ s.
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