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ON FACTORIZATION OF POLYNOMIALS 
MODULO n 

BY 

ROBERT GILMER 

Let A be an ideal of the commutative ring R with identity. There is a canonical 
homomorphism </>A from the polynomial ring R[X] onto (R/A)[X], obtained by 
reducing all coefficients modulo A. If / e R[X], then we say t h a t / i s reducible 
(irreducible) modulo A if <f>A(f) is reducible (irreducible) in (R/A)[X], Iff is monic 
and is reducible in R[X], then/is reducible modulo A for each nonzero proper ideal 
A of R, for / c a n be written as g • /z, where g and A are monic polynomials in R[X] 
of positive degree. Hence ^ ( / ) = ^ ( g ) • ^ ( ^ ) , where <f>A(g) and </̂ (A) are monic 
of positive degree, and consequently, are nonunits of (RIA)[X]Q). The purpose of 
this note is to prove that the converse of the preceding statement is false, even for 
the ring Z of integers. For example, 03 9 , the 39th cyclotomic polynomial, is 
reducible modulo n for each positive integer n, but 0 3 9 is irreducible in Z[X]. This 
statement will follow from more general considerations. 

LEMMA 1. Assume that {A^=1 is a finite set ofpairwise comaximal ideals of the 
commutative ring R with identity, and thatfe R[X] is reducible modulo A{ for each i 
between 1 andn. Then fis reducible modulo AXA2- • -An. 

Proof. By induction, it suffices to prove the lemma in the case where n=2. Thus 
we choose polynomials hl9 h2, gl9 g2 e R[X] such that 

/ s g ^ m o c M , ) , where <^.(&) and ^(K) 

are nonunits modulo At. Since the ideals A1 and A2 are comaximal, there exist 
polynomials g, he R[X] such that 

g = &(mod A4) h = fc,(mod A{). 

Therefore, f-gh e AX[X] n A2[X]=(A1 n A2)[X]=(A1A2)[X]. Moreover, if g or 
h were a unit modulo AXA2, this would contradict the fact that gt and ht are nonunits 
modulo Ait Consequently,/is reducible modulo A±A2. 

Received by the editors November 17,1971 and, in revised form, March 22,1972. 
O If fe S[{Xi}], where S is a commutative ring with identity and {X^} is a set of indeter-

minates over S, then / i s a unit of 5[{Ai}] if and only if the constant term of/ is a unit of S and 
each other coefficient of/is nilpotent [5]. 
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THEOREM 1. IffeZ[X] is a monic polynomial of positive degree, and iff has at 
least two nonassociate irreducible divisors modulo p for each prime p, then f is 
reducible modulo nfor each positive integer n. 

Proof. By Lemma 1, it suffices to prove that fis reducible modulo pk for each 
prime/? and each positive integer k. By assumption, there are monic polynomials 
g,he Z[X] of positive degree such that f=gh (mod/?), where g and h are relatively 
prime modulo p. HAV is the ring ofp-adic integers, it follows iha.tf=gh (mod pAv), 
and Hensel's lemma [4, p. 185] implies that there are monic polynomials gl9 hx e 
AV[X] such t h a t / ^ A , deg g 1 = degg , d e g / ^ d e g A , g±=g (mod pAp), and 
h±=h (mod pAp). Hence f^g1h1(p

kA^} for each positive integer k, and since 
AJpkApc^Z/pkZ [2, p. 224], it follows that there are polynomials g2, h2 eZ[X] 
such that g2=gi{pkAJt)9 h2=hx(p

kAp), degg a=deggx , degA2=deg/r1, and f~g2h2 

(modpk). Therefore, fis reducible modulo plc, and our proof is complete. 

REMARK. In Theorem 1, it is easy to give a direct proof, without invoking 
Hensel's lemma, that fis reducible modulo pk for each positive integer k (cf. [7, 
p. 205]). Thus if we assume, by induction, that f—g^h^ (modp^1) , where 
gjc-^g (mod/?) and h^-^—h (mod/?), then we prove the existence of polynomials 
r, seZ[X] such that if gk=gk_1+pk~1r and hk=hk_1+pk~1s, then f=gkhk (mod/?fc), 
gk=g (mod/?), and hk=h(modp). We lQtf—gk_1hk_1=pk~'1t, where t eZ[X]. Then 
modulo pk, f-gkhk=f-(gk_1+pk-h)(hk_1+pk-1s) = (^ If u, 
veZ[X] are such that «g-fc_1+i?Afc_1=l (mod/?), then t—(tv)hk__1 — (tu)gk_^1=Q 
(mod/?). Hence, if we take r=tv, s=tu, and we define gk=gk-i+p1c~'1r and hk= 
hjc-i+p^1-*, then gk and hk have the desired properties. 

By means of Theorem 1, we can give examples of monic polynomials/eZ[X] 
such that fis reducible modulo n for each positive integer n>l, while fis ir
reducible in Z[X]. A case of special interest here is that of the cyclotomic poly
nomials Ofc. The factorization of Ofc modulo/?, for/? prime, is known [3, p. 512], 
[1]. In fact, the following is true. 

If (p,k) = l, then Ok factors modulo p into a product of cj>(k)lr nonassociate ir
reducible polynomials, each of degree r, where r is the order ofp modulo k. If(p, k)?£\ 
andifk=pms, where (s,p) = l, then modulop, <Dfc=®f(2>m). 

In particular, <5>k is irreducible modulo some prime/? if and only if the multipli
cative group of units of Z/(£) is cyclic(2). Therefore, <D39 is reducible modulo/? for 
each prime/?, and since <D39 is separable modulo/? for each/? 5^3, 13, it follows that 
0 3 9 has at least two irreducible prime divisors modulo/? if/?7£3 or 13. Moreover, 
13 has order 1 modulo 3 and 3 has order 3 modulo 13, so that <D39 factors modulo 

(2) If « is a positive integer greater than one, then the multiplicative group of units of Zfcri) 
is cyclic if and only if «=2,4, p\ or 2p* for some odd prime/? [6, p. 92]. 
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13 as (X-3)12(Z-9)12, and modulo 3 as f If If If I where the/, are distinct ir
reducible polynomials modulo 3 of degree 3. Hence, Theorem 1 implies that <E>39 is 
reducible modulo n for each positive integer w(3). 
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(3) Other integers k such that <j>k is reducible modulo n for each positive integer n are 55, 95, 
111, 3a135, 5allb, 5°196, and 3a376 for all positive integers a and b. On p. 408 of History of the 
Theory of Numbers, Volume II, L. E. Dickson remarks that the polynomial *4+13f2+81 is ir
reducible in Z[t], but reducible modulo pe for each prime p and each positive integer e. 
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