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Abstract

Selective pressure exerted by the widespread use of antibacterial drugs is accelerating the
development of resistant bacterial populations. The purpose of this scoping review was to
summarise the range of studies that use dynamic models to analyse the problem of bacterial
resistance in relation to antibacterial use in human and animal populations. A comprehensive
search of the peer-reviewed literature was performed and non-duplicate articles (n = 1486)
were screened in several stages. Charting questions were used to extract information from
the articles included in the final subset (n=81). Most studies (86%) represent the system
of interest with an aggregate model; individual-based models are constructed in only seven
articles. There are few examples of inter-host models outside of human healthcare (41%)
and community settings (38%). Resistance is modelled for a non-specific bacterial organism
and/or antibiotic in 40% and 74% of the included articles, respectively. Interventions with
implications for antibacterial use were investigated in 67 articles and included changes to
total antibiotic consumption, strategies for drug management and shifts in category/class
use. The quality of documentation related to model assumptions and uncertainty varies con-
siderably across this subset of articles. There is substantial room to improve the transparency
of reporting in the antibacterial resistance modelling literature as is recommended by best
practice guidelines.

Introduction

The World Health Organisation (WHO) describes antimicrobial resistance (AMR) as ‘a prob-
lem so serious that it threatens the achievements of modern medicine’ [1]. The effective pre-
vention and treatment of an increasing range of bacterial, viral, fungal and parasitic infections
is a challenge in many parts of the world where high rates of resistance are observed. Increases
in mortality, length of hospitalisation and costs of care are associated with the development of
resistance in several important bacterial pathogens [2]. A recent report on AMR [3] estimates
that 10 million more people are expected to die every year by 2050 if resistance is left
unchecked; while the size of this figure has been met with skepticism [4], there is clearly a
large clinical and public health burden related to AMR. Indeed, the World Bank estimates
that the annual global gross domestic product (GDP) would fall by 1.1% by 2050 under
even a modest low impact’ AMR scenario [5].

Selective pressure exerted by the widespread use of antimicrobial drugs is accelerating the
development of resistant populations of bacteria and other pathogens [1, 3]. The development
of resistance is a normal evolutionary process for microorganisms [1] and even the ‘appropri-
ate’ use of antimicrobials selects for preexisting resistant populations in nature [3, 6]. The
AMR issue is exacerbated by the ongoing misuse and overuse of antibiotic drugs in humans
and food-producing animals [1, 3]; further, the ‘collapse of the antibiotic research-and-
development pipeline’ [6] is a related problem underscoring the need for urgent solutions.
The epidemiology of AMR is exceedingly complex and effective solutions must necessarily
involve a coordinated effort by many sectors. Resistant bacteria and resistant genes do not
recognise ecologic and geographic borders [7] and the transmission between human, animal
[8, 9] and environmental [10] domains is of shared concern. The WHO, World
Organisation for Animal Health (OIE) and Food and Agriculture Organisation are thus mobi-
lising a ‘One Health’ response in a tripartite collaboration on AMR [7].
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Systems science and AMR

AMR has been framed by several experts as a ‘super-wicked’ prob-
lem [11], a specific type of policy challenge defined by the pro-
blem’s inherent complexity, the interrelatedness of multiple
fields and the potential for conflict arising from competing
goals. There is a critical role for the ‘systems science approach’
to optimise intervention strategies for problems of this nature
[11, 12]. While traditional scientific approaches might examine
how mechanisms work in isolation, a systems science approach
makes it possible to examine the relationships between many
interdependent components by integrating existing epidemio-
logical data [12-14]. Dynamic modelling methods are used to
develop mathematical representations of systems characterised
by nonlinearities, feedback loops and multiple variables that
evolve over time [15]. Representations of this type are necessarily
a simplification of the system of interest [14, 16], but can help
identify the critical functional aspects of a system via experimen-
tation with scenarios under various conditions [15, 16]. By defin-
ing the conditions under which an intervention is likely to work
[17], dynamic or mathematical models offer insights on which to
build effective policy responses [12, 18]. Furthermore, models of
this sort challenge researchers to both share and scrutinise their
assumptions and/or hypotheses about how a system works. Risk
assessment (RA) is a related and complementary approach
for data integration and was the focus of a parallel review
(unpublished).

Temime et al. [19] previously demonstrated the growing inter-
est in mathematical modelling approaches to evaluate antibiotic
resistance. In particular, these models have been used extensively
to explore the development and spread of multi-drug resistant
bacteria in hospital settings [14, 16, 20, 21]. Interventions of inter-
est include those with implications for physical infection control
strategies (e.g. isolation, hand hygiene) [16] and to a lesser extent,
antibiotic restriction [21] and other prescription strategies [14].
Mathematical modelling is a valuable tool with which to generate
hypotheses about the relationship between antimicrobial use
(AMU) and AMR at the population level [17]. However, the
scope of work undertaken for this purpose in both healthcare
and other relevant domains has yet to be fully characterised
[22, 23]. Of special interest to this research team is the use of
dynamic models as they pertain to AMR in agricultural and
food system settings; this is notably relevant in light of the recent
suggestion that veterinary epidemiologists should progress to the
multi-scale modelling of food animal systems [12].

Scope of inquiry

The purpose of this scoping review was to identify and describe
how researchers have used dynamic modelling techniques to
explore and advance policies that limit AMR-related risk arising
from AMU. To establish an effective search strategy, a broad
research question should be combined with a clearly articulated
scope of inquiry, including the concept, target population and
health outcomes of interest [24]. This review was thus conceived
as a means to summarise the range of studies that use dynamic
models to analyse the problem of bacterial resistance in relation
to antibacterial use in humans and animals. The intended focus
was studies which generate and draw conclusions from simulated
data using aggregate or individual-based dynamic models of
resistance development and spread. Population-level outcomes
of interest included the frequency of resistant hosts, the likelihood
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of morbidity and mortality arising from resistant infections and/
or the costs associated with resistant infections.

Arksey and O’Malley [25] describe several reasons for con-
ducting a scoping review, several of which may be relevant for
the overall purpose [24]. This review combines multiple objec-
tives, namely to describe the specific contexts to which these mod-
els are applied, to summarise the approches to model building
and to identify where gaps exist in the peer-reviewed literature.
Furthermore, the effort was motivated in part by this group’s
interest in the documentation and reporting of models in relation
to recommended guidelines. In 2012, the Good Research Practices
in Modeling Task Force published a series of articles describing
best practices for designing and building dynamic models [26],
analysing uncertainty [27] and achieving transparency [28].
Several of the questions in the ‘Data charting’ section was devel-
oped with reference to this framework [26-28] and to related
materials concerning the responsible conduct of research with
simulation models [29].

Methods

The scoping study team consisted of members with the appropri-
ate content and methodological knowledge to perform this review
[24] and included expertise in the areas of AMR, infectious and
veterinary epidemiology, food system safety, dynamic modelling
and RA techniques and scoping review methodology. As is typical
of scoping reviews, the process of selecting relevant studies and
charting the data was non-linear [24, 25]; frequent team discus-
sions were necessary to refine the inclusion/exclusion criteria
and extraction variables over the course of this review. The criteria
and questions described below reflect the multiple iterations and
improvements gleaned through the team’s increasing familiarity
with the literature.

Search terms and strategy

In consultation with a research librarian, the team developed a
strategy to search the peer-reviewed literature for studies model-
ling AMR in humans, animals and the environments with
which they interact. The search was limited to English language
publications but was otherwise deliberately broad to ensure a
comprehensive review of the literature. There were no limitations
on the date nor geographical origin of publication. Four data-
bases were included in the search (PubMed, Scopus, Agricola
and CAB Abstracts) and identical search terms were modified
only to reflect the differing indexing schemes. The PubMed
search in particular made use of Medical Subject Headings
(MeSH) terms, the US National Library of Medicine’s controlled
vocabulary thesaurus.

The search was comprised of concatenated descriptors from
three general areas: the first concerned study subject and included
variations on the terms humans, patients, hospitals, domestic and
companion animals, farms, water and soils; the second concerned
methodological approach and included variations on the terms
simulation and dynamic models; the third concerned general con-
tent area and included variations on the terms antibacterial use
and resistance. A full list of terms included in the search is avail-
able in the online Supplementary Material. The search was
initially conducted on 28 February 2016 and updated with add-
itional terms on 5 November 2016; in an effort to establish repro-
ducibility, the search was performed independently by two
reviewers (JI and DR). Reference information for the identified
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articles was exported to and de-duplicated using Zotero, a web-
based reference management program. De-duplicated references
were exported to an Excel spreadsheet for sorting and screening.

In order to identify relevant studies missed by the database
search, the team conducted a supplementary review of reference
lists from pertinent articles. Included in this subset of articles
were previous reviews of studies modelling bacterial resistance
[30-32] and studies published between 2013 and 2016 and
retained for inclusion after full-text review (see the ‘Article
screening’ section). The reference lists of retained studies concern-
ing food-producing animals [e.g. 33-34], cost outcomes [e.g. 35]
and network modelling [e.g. 36, 37] were likewise reviewed, given
that these were comparably unique and suggestive of missed
search terms. Retained studies published prior to 2013 were not
reviewed further, as this time period was comprehensively covered
by [30-32] and new articles were no longer being identified. As
the focus of this review was peer-reviewed literature, the team
chose not to include grey literature in the search.

Article screening

Two reviewers (JI and DR) independently performed the title and
abstract screens. A third reviewer (CW) was consulted when
agreement could not be reached on a particular reference at either
the title or abstract screening stages. Articles were excluded if they
were not in English, if they were not published in a peer-reviewed
journal and if they did not present novel findings (e.g. literature
reviews, commentaries, editorials or methodological descrip-
tions). Because the focus of this review was bacterial resistance,
studies which were specific to non-bacterial pathogens (e.g.
viruses, fungi, parasites or mycobacteria) were excluded, as were
those addressing non-infectious disease outcomes. Studies
which were strictly observational in nature, including case series
and prevalence surveys, were likewise excluded at this stage.

Where the article title was not sufficiently informative to make
an inclusion/exclusion decision, the reference was retained for
abstract screening. In addition to the aforementioned criteria,
studies were excluded at this stage if they concerned pharmacody-
namic-pharmacokinetic models, or if they focused exclusively on
susceptible bacterial variants. Studies which were strictly experi-
mental in nature, including microbiological investigations, were
likewise excluded at this stage.

An additional level of screening was performed at the stage of
full-text review and data extraction/charting. A series of questions
was applied to each remaining reference to ensure the final subset
was reflective of the review’s scope of inquiry. The list of questions
appears below and evolved over several iterations of review, ana-
lysis and discussion.

(1) Does this study possess a dynamic component (i.e. does the
outcome vary over time, in contrast to studies where the out-
come is independent of time, as in static assessments of risk)?

(2) Does this study generate data using simulation(s) and/or draw
conclusions from simulated data?

(3) Does this study concern the development or spread of bacter-
ial strains with inherited antibiotic resistance (i.e. is not exclu-
sive to susceptible bacteria and/or bacterial strains with
non-inherited antibiotic resistance)?

(4) Does this study investigate the dynamics of resistant bacteria
in the presence of antibacterial treatment/use, either in the
baseline or counterfactual scenarios?
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(5) Does this study endeavour to examine the dynamics of resist-
ant bacteria at the population or inter-host level (i.e. is not
strictly an intra-host model)?

The reference was excluded if a ‘no’ answer was observed for
any of the above questions. A sample of 30 full-text articles
over several iterations was screened independently by two
reviewers (CW and DR) to evaluate reviewer agreement. As
there were no significant disagreements or challenges related to
study selection using this framework, a single reviewer (DR)
screened the full texts of remaining articles. When the decision
to include/exclude was uncertain, a second reviewer (CW) deter-
mined the final inclusion. Articles were not excluded on the basis
of quality. A PRISMA diagram depicts the flow of information
through the identification, screening and eligibility stages in
Figure 1.

Data charting

The review team developed a data charting form in Microsoft
Excel in which to capture variables relevant to the study’s
scope. As is recommended by Levac et al. [24], the data charting
form was frequently updated in concert with the team’s increasing
familiarity with the studies retained for inclusion (n =81). The
charting questions appear below and are organised by category
to highlight distinct contextual and methodological model
features.

Model type and context

(1) What type of model was built for this study?

(2) What is the setting or context for the system represented by
this model?

(3) Which bacterial host(s) is/are represented in this model, if
any?

(4) Which bacterial organism(s) is/are of interest in this model, if
any?

(5) Which resistance pattern(s) (e.g. cephalosporin resistance) is/
are of interest in this model, if any?

(6) Which particular antibiotic treatment/application(s) is/are
simulated in this model, if any?

Model construction and parameterisation

(1) Does the study describe and/or justify the assumptions made
in constructing this model?

(2) Does the paper provide a visual depiction of the system repre-
sented by this model (e.g. compartmental diagram)?

(3) Does the paper detail and/or solve the differential equations
for the system represented by this model (where applicable,
as in compartmental models)?

(4) What source(s) of data are used to generate input values for
this model?

(5) Do the authors use a range or distribution of values for one or
several parameters in the baseline scenario?

(6) Do the authors calibrate (i.e. fit’) the model to empirical data
in order to generate input values?

Model outputs and validation

(1) Which emergent property or endogenous variable(s) (i.e. out-
puts) of interest is/are generated by this model?

(2) For a particular set of assumptions, is the output of this
model represented by a single possible outcome (arising
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Fig. 1. PRISMA flow diagram depicting the number of articles at each of the identification, screening and eligibility stages.

from deterministic models) or a distribution of possible out-
comes (arising from stochastic processes)?

(3) Does the paper report the time units and/or length of time
over which the output is observed (i.e. the simulation length)?

(4) Do the authors perform sensitivity analyses to identify para-
meters which strongly affect the outputs of this model (i.e.
explicitly characterise the uncertainty associated with model
inputs)?

(5) Do the authors attempt to validate this model by reproducing
observed or empirical data?

Model applications

(1) Does this study attempt to explain an observed epidemio-
logical phenomenon or investigate a future and/or counterfac-
tual state, given a set of initial conditions?

(2) If the model’s purpose is explicative, do the authors compare
competing hypotheses for observed phenomena?

(3) If the model’s purpose is investigative, do the authors exam-
ine the impact of changes to the system in alternative or coun-
terfactual scenarios?
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(4) What type of system change(s) and/or intervention(s) are of
interest in this study, if any?

(5) Do the results or conclusions reported in the paper have the
potential to inform policy development or decision-making?

The required responses were either binary (ie. yes/no) or
restricted to a defined list of descriptors. Data from a sample of
10 included studies were extracted independently by two
reviewers (CW and DR) to evaluate reviewer agreement and con-
sistency. As there were no significant disagreements or challenges
related to data extraction using the charting form, a single
reviewer (DR) charted the data for the remaining articles. The
responses were summarised across the included studies and
reported in a tabular format where appropriate (see the ‘Results’
section).

Results

The review identified 81 articles for inclusion at the stage of full-
text screening and data charting [33-113]. Nine articles (11%)
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were published before 2000, 25 articles (31%) were published
between 2000 and 2009 (inclusive) and 47 (58%) articles were
published between 2010 and the most recent database search in
November 2016. Twenty-two of the included articles (27%)
were published after 2012, the most recent year covered by a
review in our supplemental search [32]. The corresponding
author in nearly half of the articles (43%) was affiliated with an
American institution; 12 articles (15%) and eight articles (10%)
were affiliated with corresponding authors based in France and
the UK, respectively. The map in Figure 2 highlights the national
affiliation of the corresponding author for articles included in the
review.

Model type and context

The studies are summarised by model setting and bacterial host(s)
in Table 1 and are further subdivided by model type and behav-
iour. Thirty-three articles (41%) feature models relevant to health-
care settings (i.e. hospitals or clinics), while 31 articles (38%)
feature models based in human communities; six additional arti-
cles (7%) model the interaction between healthcare and commu-
nity settings [56, 57, 59, 66, 71, 73]. Only two articles examine
antibacterial resistance in an exclusively agricultural setting at
the inter-host level [33, 34]. Humans are the relevant bacterial
hosts in most of the included studies, with some notable excep-
tions where pigs [33, 34], dogs [72] and food-producing animals
[85] are the hosts of interest. In eight articles with non-specific
settings, the model simulates antibacterial resistance develop-
ment/spread in a generic ‘host’ population.
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National affiliation of corresponding author for articles included in the scoping review.

Most of the included studies (86%) represent the system of
interest with a compartmental or aggregate model. Of the 70
compartmental-type models, 84% exhibit exclusively determinis-
tic behaviour (i.e. a single possible outcome is determined by
the system’s initial conditions). Six models treat the transitions
between compartments as random phenomena and thus exhibit
stochastic behaviour [34, 38, 49, 57, 58, 91]. In five studies, the
authors perform both deterministic and stochastic simulations
of the same compartmental model [52, 76, 86, 98, 100].
Individual or agent-based models (ABM) are described in four
studies [55, 69, 72, 87]; a single study combines compartmental
and individual-based components in a hybrid model [56]. In
[47] and [96], the authors compare simulations arising from com-
partmental and individual-based models representing the same
system.

The studies are summarised by the bacterial organism(s) and
resistance pattern(s) of interest in Table 2; an organism was con-
sidered to be ‘of interest’ if it was the motivation for model build-
ing [e.g. 84, 97, 104], or if the model was parameterised and/or
validated with data specific to that bacteria. In 40% of the articles
(n = 32), resistance is modelled for a generic or non-specific bac-
terial organism. An additional six articles model resistance in
otherwise unspecified Enterobacteriaceae species [49, 72] or com-
mensals [61, 77, 110, 112]. Vancomycin-resistant enterococci
(n=5) and methicillin-resistant Staphylococcus aureus (MRSA)
(n =4) are of frequent interest in hospital settings. In the commu-
nity setting, the bacteria of interest are most often Streptococcus
pneumoniae (n =18) and Neisseria gonorrhoeae (n =6).

Of the 43 articles which specify the bacteria of interest, eight
(19%) do not indicate the resistance pattern of interest.
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Table 1. Summary of studies included in the final review (n=81), organised by model context and type

System context Bacterial host(s) Model type Dynamic behaviour Reference(s)
Hospital or clinic Inpatient humans Compartmental Deterministic [39-48, 50, 51, 53, 54, 59-68, 70, 71, 73-75]
Stochastic [38, 49, 57, 58]
Both formulations [52, 76]
Individual-based Stochastic [47, 55, 56, 69]
Healthcare workers Compartmental Deterministic [44, 46, 47, 50, 51, 64, 70]
Stochastic [38]
Individual-based Stochastic [47, 55, 56, 69, 72]

Inpatient dogs

Individual-based

Stochastic [72]

Community or Humans Compartmental Deterministic [35, 56, 59, 66, 71, 73, 77-82, 84, 85, 88-90, 92-97,
household 99, 101-105]
Stochastic [57, 91]
Both formulations [86, 98, 100]
Individual-based Stochastic [87, 96]
Social network Stochastic [36]
Neural network Deterministic [37]
Agricultural setting Pigs Compartmental Deterministic [33]
Stochastic (34]
components
Food-producing Compartmental Deterministic [85]
animals
Non-specific setting Humans Compartmental Deterministic [108, 111]
Monte Carlo Stochastic [110]
Generic hosts Compartmental Deterministic [106, 107, 109, 112, 113]

Resistance to penicillin in Streptococcus pneumoniae is the
most frequently modeled phenotype (n=10); beta-lactamase-
producing bacteria are considered in only three studies [49, 73,
78]. In 74% of the articles (n = 60), the antibiotic applied to the
bacterial host(s) in the model is generic or non-specific. Twelve
studies simulate treatment with antibiotics from multiple classes
[35, 53, 55, 56, 67, 73, 82, 88, 90, 93, 96, 103]. Treatment with
beta-lactams (including carbapenems, cephalosporins and peni-
cillins) is most frequently simulated (n =17), while fluoroquino-
lone [53, 67, 73] and macrolide [82, 90, 93, 103] treatments are
simulated less often. The single example of treatment with tetra-
cycline concerns the spread of tetracycline-resistant Escherichia
coli in pigs [34].

Model construction and parameterisation

Many of the included articles (77%) provide a visual depiction of
the system represented by the model (e.g. a compartmental dia-
gram or other schematic representation, as in [55, 69, 72]). In
84% of the 70 strictly compartmental-style models, the paper
details the differential equations representing the system of inter-
est; the relevant equations are also highlighted for the determin-
istic component or formulation in [47, 56, 96]. While most
articles describe to some extent the source(s) of data used to par-
ameterise the model (86%), 11 articles do not comment on the
source of the input values [41, 68, 71, 74, 77, 84, 85, 89, 107,
108, 113]. An additional eight articles rely solely on expert
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opinion or ‘guesstimates’ to parameterise the model and/or pur-
posively choose values in order to highlight specific dynamic
behaviours [33, 40, 52, 81, 86, 95, 106, 110].

Of the 70 articles for which the source(s) of data are described,
50% make use of empirical data either collected by the study’s
authors (n=11) or published in a report of particular relevance
(n=25). In 22 studies, the authors estimate previously unknown
parameters by calibrating or ‘fitting’ model outputs to empirical
data. The published literature and/or expert opinion was used
to generate at least one parameter in 74% and 64% of studies
for which the input value source could be identified with reason-
able confidence, respectively. These percentages should be inter-
preted as relative trends and not conclusive findings, given that
the data source(s) for unique inputs were frequently unreported
or otherwise not easily gleaned from the article.

Model output and validation

In most of the included articles (84%), the proportion of resistant
patients is an emergent property of primary or secondary interest.
Variations of the term proportion in this subset include ‘fraction’,
‘frequency’, or ‘prevalence’ of resistance; likewise, variants of the
term resistant patients including ‘colonisation with resistant bac-
teria’, ‘resistant infections’ or ‘resistant strains’ were assigned to
this outcome category. Additional outcomes of interest include
the likelihood of and/or time to resistance emergence or extinc-
tion [65, 66, 78, 83, 86, 87, 91, 93, 97, 98, 110], the likelihood
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Table 2. Bacterial organism(s) and resistance pattern(s) of interest for studies included in the final review (n=281)

D. E. Ramsay et al.

System context

Organism(s)

Resistance pattern(s)

Antibacterial class

Antibacterial drug

Reference(s)

Hospital or clinic

Not specified

[39-43, 45, 47, 48, 50, 52,
54, 57, 58, 65, 66, 68-70,

74, 76]

Commensals, unspecified - - [61]
Enterobacteriaceae, unspecified Beta-lactams® - [49]
Ampicillin [72]
Quinolones Nalidixic acid [72]

Enterococcus spp. Glycopeptides Vancomycin® [38, 46, 51, 64, 75]
Streptogramins Virginiamycin [71]
Escherichia coli Aminoglycosides Amikacin [67]
Gentamicin [67]
Beta-lactams?® Cefuroxime [73]
Fluoroquinolones Ciprofloxacin [67]
Klebsiella pneumoniae Aminoglycosides Amikacin [62]
Pseudomonas aeruginosa Aminoglycosides Gentamicin [60]
Tobramycin [60]
Beta-lactams Ceftazidime [53]
Carbapenems Meropenem [53]
Fluoroquinolones Ciprofloxacin [53]

Staphylococcus aureus Penicillins Methicillin® [44, 55, 56, 59]
Streptococcus pneumoniae Penicillins Penicillin [63]
Community or household Not specified - - [57, 66, 81, 85, 89, 95]
Commensals, unspecified - - [77]
Enterococcus spp. Glycopeptides Vancomycin® [97]
Streptogramins Virginiamycin [71]
Escherichia coli Beta-lactams® - [73]
Moraxella catarrhalis Beta-lactams® - [78]

Neisseria gonorrhoeae

[79, 83, 86, 87, 102,
105]

Neisseria meningitidis Beta-lactams - [98]
Staphylococcus aureus Penicillins Methicillin® [56, 59, 92]
Streptococcus pneumoniae - - [80, 91]
Beta-lactams - [82, 93, 96]
Penicillin [36, 37, 78, 90, 94, 98-
101]
Amoxicillin [103]
Fluoroquinolones - [104]
Ketolides - [93]
Macrolides - [82, 84, 93]
Erythromycin [90, 103]
Mixed infections Carbapenems Ertapenem [35, 88]
Penicillins Piperacillin [35, 88]
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Table 2. (Continued.)

Resistance pattern(s)

System context Organism(s) Antibacterial class Antibacterial drug Reference(s)
Agricultural setting Not specified - - [33, 85]
Escherichia coli Tetracyclines Tetracycline [34]

Non-specific setting Not specified - - [106-109, 111, 113]

Commensals, unspecified - - [110, 112]

‘- indicates the antimicrobial class and/or antimicrobial drug was not specified in the study.

“Beta-lactamase or extended-spectrum beta-lactamase-producing bacteria.
bVancomycin-resistant enterococci (VRE).
“Methicillin-resistant staphylococcus aureus (MRSA).

of coexistence (i.e. of sensitive and resistant strains) [59, 62, 80,
106], the fraction of resistant infections attributable to antibiotic
use [71, 96, 97, 101] and the number of treatment failures or
inappropriately-treated patients [58, 66, 104]. The outcome of
interest in four articles [94, 98-100] is the distribution of resist-
ance levels determined by the minimum inhibitory concentration.

The studies are summarised by the characteristics of their
reported outputs in Table 3. ‘Uniquely determined” outputs (i.e.
outcomes with a single possible value) are observed for models
with deterministic behaviour and inputs represented by point esti-
mates (n=52). Conversely, distributions of output values are
observed for models with stochastic behaviour (see Table 1), or
for models with deterministic behaviour that draw multiple par-
ameter sets from input distributions [e.g. 65, 81, 104]. In order
to highlight different scales of temporal abstraction, the articles
are further subdivided by the length of time over which the out-
put is observed (i.e. the simulation time). Models which were
simulated to equilibrium or ‘steady state’ values were classified
based on the time reported in the associated graphical output
[e.g. 44, 54, 77]. There was no specific time associated with the
equilibrium state in eight articles; in six additional articles, time
is measured in otherwise undefined ‘steps’.

In 53% of included articles, the author(s) perform sensitivity
analyses to identify parameters and/or structural features which
exert a strong effect on the model’s outputs. In addition to the
term sensitivity, related concepts including ‘uncertainty’ or
‘robust(ness)’ were suggestive of an attempt to formally character-
ise the impact on the outcome of model assumptions. As with the
sources for input data, relevant analyses are often incompletely
described and this estimate should be interpreted in that context.
An effort is made to formally validate the relevant model by
reproducing empirical data in 17 of the included articles [37,
38, 49, 53, 56, 62, 63, 78, 82, 83, 87, 90, 93, 94, 98, 103, 105].
Less formal comparisons between model outputs and historical
trends are explored in seven additional articles [34, 41, 72, 73,
76, 92, 99].

Model applications

The reported study purpose is to investigate one or several coun-
terfactual and/or future states in 75% of the included articles; in
five articles, the purpose of the study is to explain or interpret
an epidemiological phenomenon [59, 62, 80, 82, 83]. In 15 add-
itional articles, the model is used both to explain phenomena
and to examine the system’s dynamics in competing or alternative
scenarios. ‘Intervention(s)’ representing theoretically modifiable
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system change(s) were explored in 90% of the included articles
(n=73). The intervention type and potential relevance of study
results and/or conclusions for policy development are sum-
marised in Table 4. Note that in 25 articles, the author(s) examine
the effect of multiple intervention types on the system of interest;
the total number of interventions reported in the table is thus lar-
ger than 73.

Interventions involving a change to the overall consumption of
antibiotics were the most frequently investigated (n = 37); pertin-
ent examples explore changes in antibiotic use frequency, dur-
ation and dose. Other interventions with particular relevance
for antibiotic use policy include changes to antibiotic manage-
ment strategies (n=21) and changes to antibiotic category or
class (n=15). In the former category, deployment strategies of
interest include cycling, mixing or combining antibiotics at the
institutional or population level; in the latter, shifts in antibiotic
use within and between classes are highlighted. Eight (10%) of
the included studies do not impose a theoretically modifiable
change on the system of interest. A subset of these articles never-
theless has the potential to inform antibiotic use [37, 80, 83, 90]
and/or hygiene and infection control [80, 83] policies. The results
from six articles have relevant implications for antibiotic use in
companion animals [72] and food-producing animals [33, 34,
71, 85, 97].

Discussion and implications

Given the increasing interest in [19] and projected value of [17]
mathematical modelling to generate hypotheses about the
AMU/AMR relationship, the authors endeavoured to better char-
acterise the peer-reviewed literature in this domain. This review
identified 81 studies which used simulated data from dynamic
models to analyse the problem of bacterial resistance in relation
to antibiotic use in humans or animals [33-113]. Note that the
focus of this work was resistance dynamics at the population or
inter-host level and thus strictly intra-host models are excluded
from this count. As was expected, the number of included articles
grew in each 5-year increment since 2000, in parallel with the
AMR modelling literature more generally. The articles’ corre-
sponding authors are affiliated with 14 countries on five conti-
nents, although most articles (70%) emerged out of three
countries (USA, UK and France). This observation is likely
explained in part by the English language limitations of our
search, but might also indicate that well-resourced institutions
are better able to engage in the ‘systems science approach’ and
with its associated methodologies. In particular, the National
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Table 3. Characteristics of the reported output arising from dynamic modelling effort in included studies (n=281)

Time scale for

Article focus Output value output Reference(s)
Analytical study Equilibrium behaviour - [43, 106, 108]
Numerical simulations Uniquely determined value 1 week <x <1 [75]

month

1 month < x <1 year [42]

[35, 37, 41, 42, 64, 67, 70, 71, 73, 88,
90, 97]

1 year < x <10 years

10 years < x <50 [59, 66, 89, 92, 93, 99, 101, 103]

years

50 years < x [59, 66, 79, 93, 94, 102]

Undefined time
steps

[109]

Undefined steady [46, 51, 53, 63, 110]

state
Distribution of values reported as mean 1 week <x <1 [55]
or range month

1 month < x <1 year [82]

1 year < x <10 years [49, 56, 69, 72, 83]

10 years < x <50 [36, 57, 58, 81, 83, 91, 105]

years
50 years < x [80, 87, 104]
Both formulations 1 month < x <1 year [34, 96]
1 year < x <10 years [52, 98]
10 years < x <50 [76, 98]

years

Both analytical study and numerical
simulations

Uniquely determined value

1 month < x <1 year [33, 44, 50, 54, 61, 74]

1 year < x <10 years [44, 45, 48, 60, 62, 112]

10 years < x <50 [77, 78]
years
50 years < x [111]

Undefined time [39, 40, 85, 107, 113]

steps
Undefined steady [68, 84, 95]
state
Distribution of values reported as mean 1 month < x <1 year [38]
or range
1 year < x <10 years [65]
Both formulations 1 year < x <10 years [47, 86]
10 years < x <50 [86, 100]

years

Institutes of Health (NIH) has played a leading role in the promo-
tion and funding of systems science projects at American
institutions.

Model type and context

Aggregate models comprise the vast majority of studies included
in this subset of articles (86%). In most instances and unless
they are simulated stochastically as in [38, 39, 57, 58, 91], com-
partmental models exhibit deterministic behaviour. Models of
this type describe the average behaviour of a system and are
most appropriate when the population is sufficiently large to
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minimise the impact of differences between individuals. While
compartmental models have the advantage of being comparably
easy to parameterise and calibrate, they cannot account for indi-
vidual heterogeneity nor the substantial impact of chance events
in smaller populations (e.g. closed hospital wards). In contrast,
individual or ABM represent the system as a population of hetero-
geneous entities engaged in local interactions; models of this type
better capture the stochastic behaviour of a system but impose
opportunity costs related to model construction, parameterisation
and computing time [114]. Opatowski and colleagues [30] argue
that increasingly realistic predictions arising from ABM models
are likely to advance the utility of computer simulations for
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Table 4. Modifiable intervention types investigated in hypothetical and/or counterfactual scenarios (n=73)

Potential policy

implications
Number of Antibiotic Other

Intervention type articles use policy Reference(s)
Change to overall consumption of 37 X [34, 36, 38, 46-48, 50, 51, 53, 56, 63, 71-75, 77, 78, 81, 85, 86, 91,
antibiotics 92, 94, 95, 97, 98, 101, 105, 106, 108, 110-112]

X X [44, 61, 89]
Change to antibiotic management 21 X [39-43, 45, 54, 61, 65, 66, 68, 70, 76, 79, 84, 102, 105, 107, 109,
strategy 113]

X X [58]
Change to antibiotic category, class or 15 X [35, 53, 55, 56, 60, 67, 79, 88, 93, 96, 103-105]
type

X X [33, 52]
Change to hygiene or infection control 17 X [38, 44-46, 48, 50, 54, 61, 64, 69, 70, 72-75, 105]
protocols

X X (49]
Change to patient management or other 6 X [46, 48, 64, T2, 75]
operational functions

X X [57]
Change to human behaviour impacting 4 X [45, 84, 95, 108]
antibiotic use
Change to pattern of vaccination, 4 X [91, 99, 101, 103]
including coverage or efficacy
Change to diagnostic capacity impacting 3 X [79, 87, 111]

antibiotic use decisions

decision support. Only seven articles in this series develop
individual-based representations of the system of interest [47,
55, 56, 69, 72, 87, 96], suggesting that ABMs have been infre-
quently used to examine the AMU/AMR relationship at the popu-
lation level.

While experts decidedly agree that AMR is a ‘One Health’
problem requiring multi-sectoral action [7], there are few exam-
ples of inter-host models outside of strictly human contexts.
Further, there are only two models in this subset which incorpor-
ate multiple host species in shared environments [72, 85].
Antibiotic use in agricultural settings accounts for a substantial
proportion of global antimicrobial consumption [8] and global
AMU in livestock is expected to rise significantly through 2030
[115]. These observations highlight the potential role for dynamic
models to inform strategies that limit the inter-ecosystem spread
of AMR arising from AMU in food-producing animals. Recent
and impressive examples exist at the within-host level; for
instance, Volkova and colleagues examine the effect of antibiotic
therapy on the dynamics of ceftiofur-resistant commensal
Escherichia coli in the large intestine of cattle in [116, 117]. At
the inter-host level, dynamic models have been used to investigate
the persistence of resistant bacteria following a clinical outbreak of
Salmonella typhimurium in dairy cows [118] and in the context of
non-AMU interventions targeting Escherichia coli commensals in
beef cattle [119].

Model applications

Models included in the final subset range from general or hypo-
thetical [e.g. 39, 41] to those with a single, specific application
[e.g. 46, 53]. The purpose of the model is primarily theoretical
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in 40% and 74% of articles where resistance is modelled for a gen-
eric bacterial organism and/or a generic antibiotic, respectively.
Articles in which the organism of interest is explicitly identified
are more useful for decision support [30] and frequently concern
‘priority’ [120] or ‘urgent’ [121] AMR disease threats. Indeed,
drug-resistant =~ Streptococcus pneumoniae (n=18), Neisseria
gonnorhoeae (n=6) and MRSA (n=5) are well represented in
this dataset and appear on WHO’s list of bacteria of international
concern [1]. Extended-spectrum beta-lactamase-producing
Enterobacteriaceae are routinely identified as high priority threats
[1, 120, 121], but are the focus of only two studies reported here
[49, 73]; no studies examine the urgent threat of carbapenem-
resistant Enterobacteriaceae. Further, there are no studies which
model resistance in zoonotic bacterial pathogens that are import-
ant sources of infection for humans (e.g. Salmonella spp. or
Campylobacter jejuni). Normally commensal bacteria that may
harbour resistant genes, including Enterococcus spp. (n=7), are
better represented in this dataset.

This review was limited to models in which antibacterial treat-
ment or use is directly simulated; the inclusion criteria are thus
reflected in the scope and types of interventions applied in this
subset of articles. Sixty-seven articles (83%) impose at least one
antibiotic use-related intervention, ranging from institutional
drug management strategies (e.g. cycling antibiotics) to drug cat-
egory changes (e.g. switching from a first to a second-line drug).
Antibiotic stewardship is one component of a necessarily multifa-
ceted approach to the AMR problem [122]; there are only 22 arti-
cles (27%) which examine an antibacterial use intervention in
combination with another approach. Future consideration should
be given to the impact on system behaviour of the interactions
between prudent antibiotic use and other biological or
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behavioural interventions. While they do not simulate treatment
directly, several related models estimate the relative importance
of resistant bacterial acquisition by the endogenous route (i.e. aris-
ing from the selective pressure of antibiotics) [e.g. 123, 124].
There are likewise numerous articles which model the acquisition
of resistant bacteria via the exogenous route (i.e. via direct or
indirect transmission) in the absence of selective treatment pres-
sure [e.g. 125, 126].

Model transparency and uncertainty

Responses to the charting questions were limited to yes/no selec-
tions or an otherwise restricted set of descriptors; this review thus
summarises but does not offer a critical appraisal of the included
studies. Nevertheless, some broad generalisations can be made
with respect to the achievement of transparency and management
of uncertainty in this set of articles. Modelers can enhance cred-
ibility by clearly describing the model structure, assumptions and
parameter values [27, 28]. While several studies offer robust,
defensible explanations for the assumed model properties [e.g.
83, 87], others provide only limited support in this regard.
Rather than assume a particular model structure, some notable
examples [e.g. 37, 80] compare several possible configurations
to arrive at the best representation. The articles likewise vary con-
siderably by both the source of model inputs (see the ‘Model
construction and parameterisation’ section) and the clarity with
which the sources are reported. Readers should be provided
with sufficient information to understand the model’s limitations,
including those arising from uncertain or estimated inputs [28];
parameter tables are used in many studies [e.g. 48, 72] and are
a particularly transparent means of reporting input values.

The Good Research Practices in Modeling Task Force describes
the importance of reporting uncertainty analyses in modeling
studies [26, 27]. As a complement to uncertainty or sensitivity
analyses, ‘scenario analyses’ report alternative outcomes under
discrete assumptions (i.e. values) for a parameter of primary
interest [27]. Only half of the included articles (n = 43) performed
and clearly reported a deterministic or probabilistic sensitivity
analyses [e.g. 99, 104]. In many articles, it is difficult to distin-
guish sensitivity analyses from attempts to examine the impact
of interventions in unique ‘scenarios’. Sensitivity analyses are
one component of the formal process for external validation
[28], wherein a model’s results are compared to actual event
data. Simulated outcomes are compared to observed results in
only 21% of the articles, suggesting that models in this domain
are not routinely assessed for accuracy in making relevant predic-
tions. Most examples in this dataset use the same source to esti-
mate model parameters and to validate the model (ie.
dependent validation) [e.g. 63, 94], which is less rigorous than
independent or blinded validation [28]. In the absence of a full
sensitivity analysis and validation effort, it is a challenge for
decision-makers to ascertain the value of the model for informing
a course of action [27, 28].

Limitations and conclusions

Several limitations of this work deserve mentioning. In addition
to the English language restriction, the team did not search the
grey literature for non-peer-reviewed studies. The inadvertent
exclusion of relevant search terms could have similarly impacted
the number of database ‘hits’. For both reasons, it is possible that
models fitting the inclusion criteria were overlooked in this
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review. Models specific to bacteria with non-inherited resistance
(i.e. phenotypically resistant or ‘persister’ cells) rather than inher-
ited resistance were likewise excluded from consideration [e.g.
127, 128]. The data charting questions were refined and updated
over several iterations, but nevertheless, reflect in part the particu-
lar interests of this review team. The extent to which these models
are constructed in line with best practices [26, 28] may require
further scrutiny. Dynamic models capture the non-linear
relationships and feedback loops characteristic of communicable
disease spread. ABM are only infrequently used to model the
AMU/AMR relationship at the population level, limiting their
usefulness for decision support; the popularity of ABM is likely
to increase as ‘big data’ becomes more readily accessible.
Models investigating AMR in agricultural and/or environmental
settings are critically underrepresented in this dataset, in spite
of recent efforts to promote farm animal populations as models
for disease transmission [129]. Finally, there is substantial room
to improve the clarity and transparency of reporting in the
AMR modelling literature.

Supplementary material. The supplementary material for this article can
be found at https:/doi.org/10.1017/5S0950268818002091.
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