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Abstract

Improved bounds on the copula of a bivariate random vector are computed when partial
information is available, such as the values of the copula on a given subset of [0, 1]2, or
the value of a functional of the copula, monotone with respect to the concordance order.
These results are then used to compute model-free bounds on the prices of two-asset
options which make use of extra information about the dependence structure, such as the
price of another two-asset option.
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1. Introduction

A (two-dimensional) copula is a function C : [0, 1]2 → [0, 1] with the following proper-
ties.

(i) Boundary conditions: C(0, u) = C(u, 0) = 0 and C(1, u) = C(u, 1) = u for all
u ∈ [0, 1].

(ii) C is 2-increasing, i.e. for every 0 ≤ u1 < u2 ≤ 1 and 0 ≤ v1 < v2 ≤ 1, we have

C(u2, v2) + C(u1, v1) − C(u1, v2) − C(u2, v1) ≥ 0. (1)

The classical Fréchet–Hoeffding bounds on the distribution function of a two-dimensional
random vector can be expressed in terms of the copula C of this vector:

W(u, v) := max{0, u + v − 1} ≤ C(u, v) ≤ min{u, v} := M(u, v). (2)

In the presence of additional information on the dependence between the components of the
vector, these bounds can be narrowed. Nelsen et al. [10] computed the improved bounds when
a measure of association, such as Kendall’s τ or Spearman’s ρ, is given, and the Bertino’s
family of copulas [2] yields best-possible bounds when the values of the copula on the main
diagonal are known. More generally, given a nonempty set of bivariate copulas S, Nelsen et
al. [11] introduced pointwise best-possible bounds of S:

A(u, v) = sup{C(u, v) | C ∈ S} and B(u, v) = inf{C(u, v) | C ∈ S}.
These bounds are in general not copulas but quasi-copulas, and a fortiori they do not

necessarily belong to the set S.
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In the theoretical part of this paper (Section 3), we first compute the improved Fréchet
bounds when the values of the copula on an arbitrary subset of [0, 1]2 are given, and provide a
sufficient condition for each bound to be a copula, and, therefore, be the best-possible bound.
This generalizes the findings of [11] on the improved Fréchet bounds for copulas with given
diagonal sections. Next, we compute the best-possible bounds when the value of a real-valued
functional of the copula, monotone with respect to the concordance order and continuous with
respect to pointwise convergence of copulas, is given, extending the results of [10].

Since the work of Rapuch and Roncalli [12], it has been known that the prices of most two-
asset options, when the marginal laws of the two assets are fixed, become monotone functionals
of the copula with respect to the concordance order. The classical Fréchet–Hoeffding bounds
therefore lead to model-free price estimates for such options [1], [4], [5], [12].

In Section 4 we obtain a new representation for the price of a two-asset option, allowing us
to use a quasi-copula. This representation enables us to compute (in Section 5) the improved
model-free estimates of the option’s value when the prices of all single-asset options on each
of the two assets and some extra information about the dependence structure are known. This
extra information may be, for example, the price of a different two-asset option (for example,
zero-strike spread options are often quoted in the market), or the correlation of two assets. This
is similar in spirit to a recent work by Kaas et al. [6], who computed worst-case bounds on the
Value at Risk of a portfolio of two assets when the marginals and a measure of association are
known.

2. Preliminaries

In this section we recall several useful definitions and results, and fix the notation for the
rest of the paper. In the definition of quasi-copula [3], the 2-increasing property (1) is replaced
by weaker assumptions.

Definition 1. A (two-dimensional) quasi-copula is a function Q : [0, 1]2 → [0, 1] with the
following properties.

(i) Q satisfies the boundary conditions: Q(0, u) = Q(u, 0) = 0 and Q(1, u) = Q(u, 1) =
u for all u ∈ [0, 1].

(ii) Q is increasing in each argument.

(iii) Q has the Lipschitz property: |Q(u2, v2) − Q(u1, v1)| ≤ |u2 − u1| + |v2 − v1| for all
(u1, v1, u2, v2) ∈ [0, 1]4.

We denote the set of all copulas on [0, 1]2 by C and the set of all quasi-copulas by Q. The
concordance order is the order on Q defined by Q1 ≺ Q2 if and only if Q1(u) ≤ Q2(u)

for all u ∈ [0, 1]2. It is clear that all quasi-copulas satisfy the Fréchet–Hoeffding bounds (2).
Similarly, we say that Qn → Q pointwise if Qn(u) → Q(u) for all u ∈ [0, 1]2. The Lipschitz
property implies that in this case the convergence is uniform in u.

For a copula or a quasi-copula C and a rectangle R = [u1, u2] × [v1, v2] ⊂ [0, 1]2, we
define VC(R) := C(u2, v2) + C(u1, v1) − C(u1, v2) − C(u2, v1).

A subset S ⊂ [0, 1]2 is called increasing if, for all (a1, b1) ∈ S and (a2, b2) ∈ S, either
a1 ≤ a2 and b1 ≤ b2 or a1 ≥ a2 and b1 ≥ b2. It is called decreasing if, for all (a1, b1) ∈ S and
(a2, b2) ∈ S, either a1 ≤ a2 and b1 ≥ b2 or a1 ≥ a2 and b1 ≤ b2. It is easy to see that, for a
decreasing set S, the set S̄ := {(a, b) : (a, 1 − b) ∈ S} is increasing. In the same spirit, if C is
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a copula, the function C̄(u, v) := u − C(u, 1 − v) is also a copula and if Q is a quasi-copula,
Q̄(u, v) := u − Q(u, 1 − v) is also a quasi-copula.

The following well-known result (see, e.g. Theorem 3.2.3 of [9]) gives the best-possible
bounds of a set of copulas taking a given value at a given point.

Proposition 1. Let C be a copula, and suppose that C(a, b) = θ with (a, b) ∈ [0, 1]2. Then

C
a,b,θ
L (u, v) ≤ C(u, v) ≤ C

a,b,θ
U (u, v), (u, v) ∈ [0, 1]2, (3)

where

C
a,b,θ
U = min{u, v, θ + (u − a)+ + (v − b)+}

and

C
a,b,θ
L = max{0, u + v − 1, θ − (a − u)+ − (b − v)+}

are copulas satisfying C
a,b,θ
U (a, b) = C

a,b,θ
L (a, b) = θ .

Remark 1. A careful examination of the proof or Theorem 3.2.3 of [9] reveals that (3) also
holds if C is a quasi-copula satisfying C(a, b) = θ .

To close this section, we recall a well-known fact on distribution functions. Given a one-
dimensional distribution function F(x), we define its generalized inverse by

F−1(u) = inf{x ∈ R : F(x) ≥ u}, u ∈ (0, 1],
with the convention that inf ∅ = +∞. If the couple (X, Y ) has copula C then (X, Y ) has
the same law as (F−1

X (U), F−1
Y (V )), where (U, V ) are random variables with distribution

function C.

3. Constrained Fréchet bounds

Let S be a compact subset of [0, 1]2, and let Q be a quasi-copula. We denote by CS the
set of all copulas C′ such that C′(a, b) = Q(a, b) for all (a, b) ∈ S, and by QS the set of all
quasi-copulas Q′ such that Q′(a, b) = Q(a, b) for all (a, b) ∈ S. Define

AS,Q(u, v) := min
{
u, v, min

(a,b)∈S
{Q(a, b) + (u − a)+ + (v − b)+}

}
, (4)

BS,Q(u, v) := max
{

0, u + v − 1, max
(a,b)∈S

{Q(a, b) − (a − u)+ − (b − v)+}
}
.

The following theorem establishes that AS,Q and BS,Q are best-possible bounds of the set QS .
This means that they are also bounds of the set CS , but not in general best possible. The
second part of the theorem gives a sufficient condition under which AS,Q or BS,Q is a copula,
and, therefore, a best-possible bound of CS . As a by-product of the second part, we obtain
an example of a copula which coincides with a given quasi-copula on a given increasing or
decreasing set.

Theorem 1. (i) AS,Q and BS,Q are quasi-copulas satisfying

BS,Q(u, v) ≤ Q′(u, v) ≤ AS,Q(u, v) for all (u, v) ∈ [0, 1]2

for every Q′ ∈ QS and

AS,Q(a, b) = BS,Q(a, b) = Q(a, b) (5)

for all (a, b) ∈ S.
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(ii) If the set S is increasing then BS,Q is a copula; if the set S is decreasing then AS,Q is a
copula.

Proof. See Appendix A.

Example 1. This example, similar to Example 2.1 of [11], shows that if S is increasing, AS,Q

may not always be a copula. Let S = {( 1
3 , 1

3 ), ( 2
3 , 2

3 )} and Q = W . Then

AS,Q
( 1

3 , 1
3

) = 0 and AS,Q
( 2

3 , 2
3

) = AS,Q
( 1

3 , 2
3

) = AS,Q
( 2

3 , 1
3

) = 1
3 ,

so that the AS,Q-volume of the rectangle [ 1
3 , 2

3 ]2 is equal to − 1
3 . Similarly, if S is decreasing,

BS,Q is not always a copula.

Let ρ : Q → R be a mapping, continuous with respect to pointwise convergence of copulas
and nondecreasing with respect to the concordance order on Q. We are interested in computing
pointwise best-possible bounds of the sets Cr := {C ∈ C : ρ(C) = r} and Qr := {Q ∈
Q : ρ(Q) = r}. We define

Ar(u, v) := max{C(u, v) | C ∈ Cr} and Br(u, v) := min{C(u, v) | C ∈ Cr},
Ãr (u, v) := max{Q(u, v) | Q ∈ Qr} and B̃r (u, v) := min{Q(u, v) | Q ∈ Qr},

for (u, v) ∈ [0, 1]2.
For (a, b) ∈ [0, 1]2 and θ ∈ Ia,b := [W(a, b), M(a, b)], we define

ρ+(a, b, θ) := ρ(C
a,b,θ
U ), ρ−(a, b, θ) := ρ(C

a,b,θ
L ).

For fixed a and b, the mappings θ 
→ ρ+(a, b, θ) and θ 
→ ρ−(a, b, θ) are nondecreasing and
continuous, and we define the corresponding inverse mappings by

r 
→ ρ−1− (a, b, r) := max{θ ∈ Ia,b : ρ−(a, b, θ) = r},
r 
→ ρ−1+ (a, b, r) := min{θ ∈ Ia,b : ρ+(a, b, θ) = r},

for all r such that the corresponding set over which the maximum or minimum is taken is
nonempty.

Theorem 2. Let r ∈ [ρ(W), ρ(M)]. The bounds Ar, Ãr and Br, B̃r are given by

Ar(u, v) = Ãr (u, v) =
{

ρ−1− (u, v, r) if r ∈ [ρ(W), ρ−(u, v, M(u, v))],
M(u, v) otherwise,

Br(u, v) = B̃r (u, v) =
{

ρ−1+ (u, v, r) if r ∈ [ρ+(u, v, W(u, v)), ρ(M)],
W(u, v) otherwise.

Proof. See Appendix A.

Remark 2. Theorem 2 generalizes Theorems 2 and 4 of [10], which treat the cases when ρ

is Kendall’s τ and Spearman’s ρ. In these two cases, Ar and Br are copulas. However, in
general, this may not be the case. Let (a1, b1) ∈ [0, 1]2, (a2, b2) ∈ [0, 1]2, W(a1, b1) ≤ θ1 ≤
M(a1, b1), and W(a2, b2) ≤ θ2 ≤ M(a2, b2), and define

ρ(C) = (C(a1, b1) − θ1)
+ + (C(a2, b2) − θ2)

+.
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An easy computation shows that

A0(u, v) = min{u, v, θ1 + (u − a1)
+ + (v − b1)

+, θ2 + (u − a2)
+ + (v − b2)

+},

that is, we obtain the copula AS,Q of (4) with S = {(a1, b1), (a2, b2)}, and Q such that
Q(a1, b1) = θ1 and Q(a2, b2) = θ2. Then, Example 1 shows that A0 is not always a copula.

4. Copula-based pricing of multi-asset options

We consider the problem of pricing a European-style option whose payoff depends on the
values of two random variables X and Y . These random variables can represent the terminal
values of two assets (in the context of equity options) or some other risk factors which influence
the value of the option, such as the default dates of two defaultable bonds.

We assume that the law of X and Y under the historical probability P is unknown, or is very
hard to estimate, so that all information comes from the prices of traded options on these assets.

Under the standard assumption of absence of arbitrage opportunities in the market, the option
pricing theory implies that there exists a risk-neutral probability Q such that the option price
is given by the discounted expectation of its payoff under Q. In practice Q is not known, and
only some incomplete information on it can be deduced from the prices of traded options on X

and Y .
We assume that these traded options include single-asset options, allowing us to reconstruct

the cumulative distribution functions FX and FY of X and Y . For example, if X is the price of
an asset at time T and call options on this asset with prices PX(K) := EQ[e−rT (X − K)+] are
available (where r is the interest rate and K is the strike price), the distribution function can be
reconstructed as

FX(K) = 1 − erT ∂PX(K)

∂K
.

Similarly, if X is the default date of a defaultable bond, the distribution function may be
reconstructed from the prices of credit default swaps on this bond with different maturities.

Let the discounted payoff function of a two-asset option be denoted by f (x, y). Its price
then becomes a function of the copula C of X and Y :

π(C) = EQ[f (X, Y )]
=

∫ ∞

0

∫ ∞

0
f (x, y) dC(FX(x), FY (y))

=
∫ 1

0

∫ 1

0
f (F−1

X (u), F−1
Y (v)) dC(u, v). (6)

It is known [8], [13] that, for every 2-increasing function f such that the integral in (6) exists,
the mapping C 
→ π(C) is nondecreasing with respect to the concordance order of copulas.
Therefore, if the payoff function f is 2-increasing, and if we know that the copula C of X and Y

satisfies B ≺ C ≺ A for two copulas A and B, the option price satisfies π(B) ≤ π(C) ≤ π(A).
For example, if no additional information on the joint law of X and Y is available, the standard
Fréchet bounds lead to∫ 1

0

∫ 1

0
f (F−1

X (u), F−1
Y (v)) dW(u, v) ≤ π(C) ≤

∫ 1

0

∫ 1

0
f (F−1

X (u), F−1
Y (v)) dM(u, v).
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Since the support of dM is the diagonal v = u and that of dW is the diagonal v = 1 − u, these
bounds are further simplified to∫ 1

0
f (F−1

X (1 − u), F−1
Y (u)) du ≤ π(C) ≤

∫ 1

0
f (F−1

X (u), F−1
Y (u)) du.

However, if A and B are quasi-copulas, this method no longer applies because the integral in (6)
may not be well defined. The following result provides an alternative representation for π(C)

which can be used for quasi-copulas, and establishes other useful properties of this mapping.
We recall [7, Section 4.5] that, for a 2-increasing function f on [0, ∞)2 which is left continuous
in both arguments, there exists a unique positive measure µ on [0, ∞)2 such that

µ([x1, x2) × [y1, y2)) = f (x1, y1) + f (x2, y2) − f (x1, y2) − f (x2, y1). (7)

Proposition 2. Assume that f is 2-increasing, left continuous in each of its arguments, and let
the marginal laws of X and Y satisfy

E[|f (X, 0)| + |f (0, X)| + |f (Y, 0)| + |f (0, Y )| + |f (X, X)| + |f (Y, Y )|] < ∞.

Then, E[|f (X, Y )|] < ∞ and the mapping C 
→ π(C) is well defined for all C, continuous
with respect to pointwise convergence of copulas, and satisfies

π(C) = −f (0, 0) + E[f (X, 0)] + E[f (0, Y )]
+

∫ ∞

0

∫ ∞

0
µ(dx × dy)(1 − FX(x) − FY (y) + C(FX(x), FY (Y ))), (8)

where µ is the positive measure on [0, ∞)2 induced by f .

Proof. See Appendix A.

Remark 3. Expression (8) can be alternatively written as

π(C) = −f (0, 0) + E[f (X, 0)] + E[f (0, Y )] +
∫ ∞

0

∫ ∞

0
µ(dx × dy)C̄(F̄X(x), F̄Y (Y )),

where C̄ is the survival copula defined by

C̄(u, v) = u + v − 1 + C(1 − u, 1 − v),

and F̄X and F̄Y are survival functions of X and Y .

Table 1 gives several examples of two-asset options whose payoffs are 2-increasing (or 2-
decreasing, meaning that −f is 2-increasing) continuous functions. These are mainly taken
from [12]. For all these payoffs, the integral with respect to µ in (8) reduces to a one-dimensional
integral. Another important example is the function f (X, Y ) = XY , which is also 2-increasing,
which means that, for fixed marginal distributions, the linear correlation coefficient

ρ(X, Y ) = E[XY ] − E[X] E[Y ]
(var X var Y )1/2

is nondecreasing with respect to the concordance order of copulas. The corresponding measure
µ is the Lebesgue measure on [0, ∞)2.
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Table 1: Common two-asset option payoff functions, and the representation of integrals with respect to
the corresponding measure µ. The plus sign indicates that the payoff function is 2-increasing and the

minus sign indicates that it is 2-decreasing.

Option type and f (X, Y ) Increasing?
∫ ∞

0

∫ ∞
0 µ(dx × dy)G(x, y)

Basket option, + if αβ > 0,
(αX + βY − K)+ − if αβ < 0 sgn(αβ)

∫
{z : z/α≥0, (K−z)/β≥0} G(z/α, (K − z)/β) dz

Call on the minimum
(min{X, Y } − K)+ + ∫ ∞

K G(x, x) dx

Put on the minimum
(K − min{X, Y })+ + ∫ K

0 G(x, x) dx

Call on the maximum
(max{X, Y } − K)+ − − ∫ ∞

K G(x, x) dx

Put on the maximum
(K − max{X, Y })+ − − ∫ K

0 G(x, x) dx

Worst-off call
min{(X − K1)

+, (Y − K2)
+} + ∫ ∞

0 G(z + K1, z + K2) dz

Worst-off put
min{(K1 − X)+, (K2 − Y )+} + ∫ min{K1,K2}

0 G(K1 − z, K2 − z) dz

Best-off call
max{(X − K1)

+, (Y − K2)
+} − − ∫ ∞

0 G(z + K1, z + K2) dz

Best-off put
max{(K1 − X)+, (K2 − Y )+} − − ∫ min{K1,K2}

0 G(K1 − z, K2 − z) dz

5. Application: model-free bounds on option prices

In this section we derive model-free bounds on the prices of two-asset options whose payoff
function satisfies the assumptions of Proposition 2 when extra information about the dependence
of X and Y is given. We give four examples corresponding to different kinds of extra information
and different option payoffs.

Example 2. (The case when prices of digital basket options are known.) As in our first example,
we consider an application to credit risk modeling, assuming that X and Y represent the times
of default of two corporate bonds. In this context, an important problem is the pricing of the
so-called ‘first to default’ option with payoff at maturity T given by H 1

T = 1{(X∧Y )≤T } or the
‘second to default’ option with payoff H 2

T = 1{(X∨Y )≤T }. The price of each of these options is
directly related to the value of the copula C of X and Y at the point (FX(T ), FY (T )):

EQ[H 1
T ] = 1 − P[X > T, Y > T ] = FX(T ) + FY (T ) − C(FX(T ), FY (T )),

EQ[H 2
T ] = P[X ≤ T , Y ≤ T ] = C(FX(T ), FY (T )).

In view of the above, we concentrate on the ‘second to default’ options. From the prices
Pk = E[H 2

Tk
] of these options with maturities T1, . . . , Tn, we can recover the values of the

copula C of X and Y on the increasing set (FX(Tk), FY (Tk))k=1,...,n. Therefore, by Theorem 1,
the copula C of X and Y satisfies

B(u, v) ≤ C(u, v) ≤ A(u, v) for all (u, v) ∈ [0, 1]2
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Figure 1: Improved bound on the prices of ‘second to default’ options as a function of time to maturity
T , when the prices of options with two and three years to maturity are known and equal to the price in the

‘Gaussian copula’ model with given correlation ρ. Left: ρ = 0. Right: ρ = −0.7.

with

A(u, v) = min
{
u, v, min

k=1,...,n
{Pk + (u − FX(Tk))

+ + (v − FY (Tk))
+}

}
,

B(u, v) = max
{

0, u + v − 1, max
k=1,...,n

{Pk − (FX(Tk) − u)+ − (FY (Tk) − y)+}
}
.

The price of any two-asset option whose payoff function f (x, y) satisfies the assumption of
Proposition 2 admits the bounds

π(B) ≤ π(C) ≤ π(A).

Since, by Theorem 1, B is a copula, the lower bound is sharp, while the upper bound may not
necessarily be sharp.

As an illustration, we have computed the upper and lower improved bounds for the prices of
‘second to default’ options with different times to maturity. We assume that the marginal laws
of X and Y are exponential with parameters λX = 0.2 and λY = 0.3, respectively, and that the
prices of the ‘second to default’ options with two and three years to maturity are known. In
this example, these two prices are computed assuming that X and Y have Gaussian copula with
correlation ρ (the Gaussian copula is the industry standard). Figure 1 shows the prices of the
‘second to default’ options as a function of the time to maturity for two different values of ρ,
along with the price in the ‘Gaussian copula’ model and the standard Fréchet bounds (without
any information about dependence).

Example 3. (The case when prices of all options on the maximum of two assets are known.)
The knowledge of prices of call or put options on the maximum or the minimum of X and Y ,
for all strikes, allows us to recover (by differentiation) the values of the distribution function
F(K, K) for K ≥ 0, or, equivalently, the values of the copula C on the increasing set
((FX(K), FY (K)), K ≥ 0). Therefore, similarly to the previous example, the copula C of
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Figure 2: Improved bounds on the spread option price as a function of the strike K , when the prices of
all options on the maximum are known and equal to the price in the Black–Scholes (BS) model with given

correlation ρ. Left: ρ = 0. Right: ρ = −0.7.

X and Y satisfies

B(u, v) ≤ C(u, v) ≤ A(u, v) for all (u, v) ∈ [0, 1]2,

where

A(u, v) = min
{
u, v, min

K≥0
{F(K, K) + (u − FX(K))+ + (v − FY (K))+}

}
, (9)

B(u, v) = max
{

0, u + v − 1, max
K≥0

{F(K, K) − (FX(K) − u)+ − (FY (K) − y)+}
}
. (10)

To illustrate this method, we have computed the improved upper and lower bounds for
the spread option with payoff at date T = 1 given by f (XT , YT ) = (XT − YT − K)+.
To fix the marginal laws of X and Y , we assume that Xt = X0 exp(σxW

x
t − σ 2

x t/2) and
Yt = Y0 exp(σyW

y
t −σ 2

y t/2), where σx = 0.2, σy = 0.3, X0 = Y0 = 100, and Wy and Wx are
standard Brownian motions. We further assume that the prices of all options on the maximum
of X and Y are equal to the corresponding prices in a model where W

y
T and Wx

T are jointly
Gaussian with correlation ρ.

In Figure 2 we plot the improved bounds on the spread option price as a function of the
strike K for two different values of the correlation ρ, along with the Black–Scholes price and
the standard Fréchet bounds. For the numerical computation of the bounds, we have taken a
discrete set of 400 strikes in (9) and (10), and used numerical integration to evaluate (8), which
reduces to a one-dimensional integral in this case.

Example 4. (The case when a single option price is known.) Assume now that the extra
information about the dependence structure of X and Y is the expectation of a function f0
which satisfies the assumptions of Proposition 2: ρ(C) := EQ[f0(X, Y )] = r . In this case,
the price of a two-asset option whose payoff f (x, y) satisfies the assumptions of Proposition 2
admits the bounds π(Br) ≤ π(C) ≤ π(Ar) with Ar and Br given by Theorem 2. Although
Ar and Br are best-possible bounds of the set of copulas satisfying ρ(C) = r , if they are not
copulas themselves, the bounds on the option price may not be best possible.
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Figure 3: Improved bounds on the price of the option on the maximum of two assets as a function
of the strike K when the price of the zero-strike spread option is known and equal to the price in the

Black–Scholes (BS) model with given correlation ρ. Left: ρ = 0. Right: ρ = −0.7.

For the actual computation of Ar and Br , we reduce the expressions for ρ+(a, b, θ) and
ρ−(a, b, θ) to one-dimensional integrals using the results of [9, Section 3.2.3]:

ρ+(a, b, θ) =
∫ θ

0
f0(F

−1
X (u), F−1

Y (u)) du +
∫ a

θ

f0(F
−1
X (u), F−1

Y (u + b − θ)) du

+
∫ a+b−θ

a

f0(F
−1
X (u), F−1

Y (u + θ − a)) du

+
∫ 1

a+b−θ

f0(F
−1
X (u), F−1

Y (u)) du,

ρ−(a, b, θ) =
∫ a−θ

0
f0(F

−1
X (u), F−1

Y (1 − u)) du

+
∫ a

a−θ

f0(F
−1
X (u), F−1

Y (a + b − θ − u)) du

+
∫ 1−b+θ

a

f0(F
−1
X (u), F−1

Y (1 + θ − u)) du

+
∫ 1

1−b+θ

f0(F
−1
X (u), F−1

Y (1 − u)) du.

As the first illustration of this approach, we have computed the improved bounds on the
price of the call option on the maximum of two assets, with payoff at date T = 1 given by
f (XT , YT ) = (max{XT , YT } − K)+, assuming that the price of the zero-strike spread option,
with payoff f0(XT , YT ) = (XT −YT )+, is known (these options are indeed often quoted in the
market). The marginal laws of X and Y are the same as in Example 3, and we further assume
that the price of the zero-strike spread option is equal to the corresponding price in a model
where W

y
T and Wx

T are jointly Gaussian with correlation ρ.
In Figure 3 we plot the improved bounds as a function of the strike K for two different values

of the correlation ρ, along with the Black–Scholes price and the standard Fréchet bounds. Since
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Figure 4: Improved bounds on the price of the zero-strike spread option when the correlation of log-
returns ρ is known, as a function of ρ. For comparison, the price in the Black–Scholes model with the

given value of correlation is shown as the BS price.

we now have much less information on the dependence of XT and YT than in Example 3, the
improved bounds are not as narrow as in that example. Still, when the spread option price is close
to one of its extreme values, such as, for example in the right-hand diagram of Figure 3, where
we have taken ρ = −0.7, the improved bounds lead to a considerable narrowing of the price
interval. In the numerical example, ρ+ and ρ− were evaluated by numerical integration, their
inverses were then computed by bisection, and a further numerical integration was performed
to evaluate the bounds.

Example 5. (The case when the linear correlation of log-returns is known.) Very often, the
option trader does not know the full two-dimensional distribution of X and Y under Q, but has
a strong view about the risk-neutral correlation of log-returns

ρ0 = E[log X log Y ] − E[log X] E[log Y ]
(var(log X) var(log Y ))1/2 .

In this case, we can obtain bounds on the prices of two-asset options in the same way as in
Example 4, using the function f0(x, y) = log x log y, which is 2-increasing. In Figure 4 we plot
the bounds on the price of a zero-strike spread option with payoff f (XT , YT ) = (XT − YT )+
when the correlation of log-returns is known, for different correlation values. As we have
already observed in Example 4, these bounds are most useful for extreme correlation scenarios,
and yield little additional information when the correlation is close to 0.

Appendix A. The proofs

Proof of Theorem 1. First, observe that A can be obtained from B by a simple transforma-
tion:

AS,Q(u, v) = u − BS̄,Q̄(u, 1 − v) = BS̄,Q̄(u, v)

(the bar notation was introduced in Section 2). It is therefore sufficient to prove only the
statements involving BS,Q.
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(i) Let us first check that BS,Q is a quasi-copula. The boundary conditions follow from the
Fréchet bounds for Q. The fact that BS,Q is increasing in each argument is obvious, and the
Lipschitz property follows because, for a family of functions (fi)i∈I which are Lipschitz with
constant 1, we have

max
i

fi(y) ≤ |x − y| + max
i

fi(x) and max
i

fi(x) ≤ |x − y| + max
i

fi(y),

which implies that maxi fi(x) is Lipschitz with the same constant. By Proposition 1 and
Remark 1, Ca,b,Q(a,b)

L (u, v) ≤ Q′(u, v) for all (u, v) ∈ [0, 1]2, (a, b) ∈ S, and Q′ ∈ QS . Since

BS,Q is the upper bound of C
a,b,Q(a,b)
L (u, v) over (a, b) ∈ S, we have BS,Q(u, v) ≤ Q′(u, v).

Let us now check property (5). Take (a′, b′) ∈ S. From the Fréchet lower bound for Q, we
obtain

BS,Q(a′, b′) = max
(a,b)∈S

{Q(a, b) − (a − a′)+ − (b − b′)+}.
For every (a, b) ∈ S, using the Lipschitz property of Q and the fact that it is increasing in each
argument, we obtain

Q(a, b) − (a − a′)+ − (b − b′)+ ≤ Q(a′, b′).

Therefore, the max is attained for (a, b) = (a′, b′).
(ii) Let S be an increasing set. By adding to this set the points (0, 0) and (1, 1), we may

without loss of generality simplify the definition of BS,Q:

BS,Q(u, v) := max
(a,b)∈S

{Q(a, b) − (a − u)+ − (b − v)+}.

Given that BS,Q is a quasi-copula, we only need to prove property (1).
Since BS,Q is Lipschitz continuous, for every ε > 0, we can find a finite increasing set

Sε such that sup(u,v)∈[0,1]2 |BSε,Q(u, v) − BS,Q(u, v)| ≤ ε. Therefore, it is enough to prove
property (1) for a set Sn = {(ai, bi)}ni=1, where we suppose without loss of generality that
ai ≤ ai+1 and bi ≤ bi+1 for i = 1, . . . , n − 1.

The proof will be done by induction. For n = 1, property (1) is straightforward. Assume
that it holds for Sn, and let an+1 ≥ an, bn+1 ≥ bn, and Sn+1 := Sn ∪ {(an+1, bn+1)}. To
simplify the notation, we write Bn := BSn,Q, Bn+1 := BSn+1,Q, and Qn+1 := Q(an+1, bn+1).
For convenience, we subdivide the domain [0, 1]2 into four sets A, B, C, and D as shown in
Figure 5.

D

A

C

0 1

1

bn + 1

an + 1

B

Figure 5: Illustration for the proof of Theorem 1(ii).
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To prove that Bn+1 is 2-increasing, we must show that, for every rectangle R ⊂ [0, 1]2,
VBn+1(R) ≥ 0. However, since VB is additive over rectangles, it is sufficient to consider only
the cases R ⊆ A, R ⊆ B, R ⊆ C, and R ⊆ D. By construction, on A, the function Bn+1
depends only on the coordinate u, and, therefore, VBn+1(R) = 0 for every rectangle R ⊆ A.
Similarly, VBn+1(R) = 0 for R ⊆ B because Bn+1 is constant on B and VBn+1(R) = 0 for
R ⊆ C because Bn+1 depends only on the coordinate v on C. It remains to consider the case
R ⊆ D.

Let R = [u1, u2] × [v1, v2] ⊆ D. We must show that

VBn+1(R) = max{Bn(u1, v1), Qn+1 − (an+1 − u1) − (bn+1 − v1)}
+ max{Bn(u2, v2), Qn+1 − (an+1 − u2) − (bn+1 − v2)}
− max{Bn(u1, v2), Qn+1 − (an+1 − u1) − (bn+1 − v2)}
− max{Bn(u2, v1), Qn+1 − (an+1 − u2) − (bn+1 − v1)}

≥ 0.

We consider three cases separately.

• If Bn(u1, v2) ≥ Qn+1−(an+1−u1)−(bn+1−v2) and Bn(u2, v1) ≥ Qn+1−(an+1−u2)−
(bn+1 − v1), then VBn+1(R) ≥ Bn(u1, v1) + Bn(u2, v2) − Bn(u1, v2) − Bn(u2, v1) ≥ 0
by the induction hypothesis.

• Assume that Bn(u1, v2) ≤ Qn+1 − (an+1 − u1) − (bn+1 − v2). Then, by the Lipschitz
property of Bn, necessarily Bn(u2, v2) ≤ Qn+1 − (an+1 − u2) − (bn+1 − v2), and,
therefore, by the Lipschitz property of Bn+1, VBn+1(R) = u2 − u1 + Bn(u1, v1) −
Bn(u2, v1) ≥ 0.

• The remaining case, when Bn(u1, v2) ≥ Qn+1 − (an+1 − u1) − (bn+1 − v2) and
Bn(u2, v1) ≤ Qn+1 − (an+1 − u2) − (bn+1 − v1), is treated similarly to the second
case.

Proof of Theorem 2. We give the proof for the bound Ãr (u, v). Since the proof is based
only on Proposition 1, which holds in the same form both for copulas and for quasi-copulas,
Ar coincides with Ãr . The proofs for the lower bounds B̃r and Br are similar.

Assume that r ∈ [ρ(W), ρ−(u, v, M(u, v))]. Then, since θ 
→ ρ−(u, v, θ) is increasing
and continuous,

ρ(C
u,v,ρ−1− (u,v,r)

L ) = r

and, therefore, Ar(u, v) ≥ ρ−1− (u, v, r). On the other hand,

{ρ(Q) | Q(u, v) = θ} ⊆ [ρ−(u, v, θ), ρ+(u, v, θ)].

By the definition of ρ−1− , for all θ > ρ−1− (u, v, r), ρ−(u, v, θ) > r and, therefore, for every
Q ∈ Q such that Q(u, v) > ρ−1− (u, v, r), ρ(Q) > r . Therefore, Ar(u, v) ≤ ρ−1− (u, v, r).

Assume now that r > ρ−(u, v, M(u, v)), and let Cw := (1 − w)C
u,v,M(u,v)
L + wM(u, v).

Then ρ(C0) < r , ρ(C1) ≥ r (by the assumption of the theorem), and since ρ is continuous,
there exists w ∈ [0, 1] such that ρ(Cw) = r . Since Cw(u, v) = M(u, v) for all w, this proves
that Ar(u, v) ≥ M(u, v). On the other hand, clearly, Ar(u, v) ≤ M(u, v) (Fréchet bound).
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Proof of Proposition 2. Since f is 2-increasing, Vf ([0, x]× [0, y]) = f (x, y)+ f (0, 0)−
f (x, 0) − f (0, y) is increasing in x and y, and, therefore,

|f (x, y)| = |Vf ([0, x] × [0, y]) − f (0, 0) + f (x, 0) + f (0, y)|
≤ |f (0, 0)| + |f (x, 0)| + |f (0, y)| + |Vf ([0, x]2)| + |Vf ([0, y]2)|
≤ C{|f (0, 0)| + |f (0, x)| + |f (x, 0)| + |f (0, y)| + |f (y, 0)| + |f (x, x)|

+ |f (y, y)|}
for some C > 0, which implies that E[|f (X, Y )|] < ∞.

Let p(dx × dy) be the law of (X, Y ). By Fubini’s theorem and (7) we then get

π(C) = E[f (X, Y )]
= −f (0, 0) + E[f (X, 0)] + E[f (0, Y )]

+
∫ ∞

0

∫ ∞

0

∫ ∞

0

∫ ∞

0
1{x′<x} 1{y′<y} µ(dx′ × dy′)p(dx × dy)

= −f (0, 0) + E[f (X, 0)] + E[f (0, Y )]
+

∫ ∞

0

∫ ∞

0
µ(dx′ × dy′) P[X > x′, Y > y′]

= −f (0, 0) + E[f (X, 0)] + E[f (0, Y )]
+

∫ ∞

0

∫ ∞

0
µ(dx × dy)(1 − FX(x) − FY (y) + C(FX(x), FY (Y ))).

In the last integral, the integrand is positive and bounded from above by the function 1−FX(x)−
FY (y) + min{FX(x), FY (y)}, which corresponds to the copula of complete dependence and is
integrable by the first part of the proposition. Therefore, the dominated convergence theorem
implies that π(C) is continuous with respect to pointwise convergence of copulas.
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