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Abstract

In this paper we consider the filtering of partially observed multidimensional diffusion
processes that are observed regularly at discrete times. This is a challenging problem
which requires the use of advanced numerical schemes based upon time-discretization
of the diffusion process and then the application of particle filters. Perhaps the state-
of-the-art method for moderate-dimensional problems is the multilevel particle filter of
Jasra et al. (SIAM J. Numer. Anal. 55 (2017), 3068–3096). This is a method that com-
bines multilevel Monte Carlo and particle filters. The approach in that article is based
intrinsically upon an Euler discretization method. We develop a new particle filter based
upon the antithetic truncated Milstein scheme of Giles and Szpruch (Ann. Appl. Prob.
24 (2014), 1585–1620). We show empirically for a class of diffusion problems that,
for ε > 0 given, the cost to produce a mean squared error (MSE) of O(ε2) in the esti-
mation of the filter is O(ε−2 log (ε)2). In the case of multidimensional diffusions with
non-constant diffusion coefficient, the method of Jasra et al. (2017) requires a cost of
O(ε−2.5) to achieve the same MSE.
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1. Introduction

We are given a diffusion process

dXt = α(Xt)dt + β(Xt)dWt, (1.1)

where X0 = x0 ∈R
d is given, α : Rd →R

d, β : Rd →R
d×d, and {Wt}t≥0 is a standard

d-dimensional Brownian motion. We consider the problem where this is a latent process and
we observe it only through a sequence of data that are discrete and regular in time, and in
particular where the structure of the observations is a special case of the structure in a state-
space or hidden Markov model (HMM). More specifically, we suppose that data are observed
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2 A. JASRA ET AL.

at regular and unit times, forming a sequence of random variables (Y1, Y2, . . . ). In particu-
lar, at time k we assume that, conditioning on all other random variables in the sequence and
given the diffusion process {Xt}t≥0, Yk has a probability density function that depends on xk

only and is denoted by g(xk, yk). These models have a wide class of applications from finance,
econometrics, and engineering; see [3, 5, 6, 12, 22] for some particular examples in various
contexts.

In this paper we consider the problems of filtering and normalizing constant (marginal
likelihood) estimation—that is, the recursive-in-time (k is the time index) computation of
expectations with respect to the conditional distribution of Xk|y1, . . . , yk (filtering) and the
calculation of the associated marginal likelihood of the data (y1, . . . , yk). For standard HMMs,
that is, where the latent process is a discrete-time Markov chain, this is a notoriously challeng-
ing problem, requiring the application of advanced numerical (Monte Carlo) methods such as
the particle filter; see e.g. [5, 6] for a survey. The particle filter simulates a collection of N
samples in parallel, with the samples undergoing transitions such as sampling and resampling.
The first of these uses the hidden Markov chain and the resampling samples with replacement
amongst the collection samples using a weight (proportional to g(xk, yk)). The scenario which
we consider is even more challenging, as typically the transition density associated to (1.1),
assuming it exists, is intractable. This can limit the applicability of particle filters; although
there are some exceptions [8] and exact simulation methods [1, 4], these are often not general
enough or too expensive to be of practical use in the filtering problem. As a result, we focus
on the case where one discretizes the process (1.1) in time.

In recent years, one of the most successful methods for improving Monte-Carlo-based esti-
mators associated to probability laws under time-discretization has been the multilevel Monte
Carlo (MLMC) method [9, 10, 13]. This is an approach that considers a collapsing-sum repre-
sentation of an expectation with respect to a probability law at a given level of discretization.
The collapsing element is associated to differences in expectations with increasingly coarse
discretization levels, with a final (single) expectation at a course level. Then, if one can
sample appropriate couplings of the probability laws at consecutive levels, it is possible to
reduce the cost to achieve a certain mean squared error (MSE) in several examples, diffusions
being one of them. This method has been combined with the particle filter in several articles,
resulting in the multilevel particle filter (MLPF); see [14, 15, 16], as well as [17] for a review
and [18] for extensions.

The method of [14] is intrinsically based upon the ability to sample couplings of discretized
diffusion processes. In almost all of the applications that we are aware of, this is based upon the
synchronous coupling of Brownian motion for an Euler or Milstein scheme. These particular
couplings inherit properties of the strong error of the associated time-discretization. The impor-
tance of the strong error rate is that it can help determine the efficiency gain of any MLMC
approach, of which the MLPF is one. As is well known, in dimensions larger than two (d > 2),
the Milstein scheme, which is of higher (strong) order than the Euler method, can be difficult
to implement numerically because of the need to simulate Lévy areas. Giles and Szpruch [11]
consider computing expectations associated to the law of (1.1) at a given terminal time. They
show that by eliminating the Lévy area and including an antithetic-type modification of the
traditional MLMC estimator, one can maintain the strong error rate of the Milstein scheme
even in a multidimensional setting. Moreover, the cost of the simulation is of the same order
as for Euler discretizations, which are the ones most often used in multidimensional cases.

We develop a new particle filter based upon the antithetic truncated Milstein scheme of [11].
We show empirically for a class of diffusion problems that, for ε > 0 given, the cost to produce
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Antithetic multilevel particle filters 3

an MSE of O(ε2) in the estimation of the filter is O(ε−2 log (ε)2
)
. In the case of multidimen-

sional diffusions with non-constant diffusion coefficient, the method of [14] requires a cost of
O(ε−2.5

)
to achieve the same MSE. We also show how this new particle filter can be used to

compute the normalizing constant recursively in time, but we do not prove anything about the
efficiency gains. Our theoretical results are not optimal and show only that the cost of the new
method is O(ε−2.5

)
for the MSE of O(ε2). We highlight exactly where the proof loses the rate

needed.
To provide a more detailed summary of the contribution of this paper, we state the follow-

ing. First, the main point is to understand how the rather clever discretization scheme of [11]
can be leveraged in the context of filtering and the multilevel method. Generally, for ordinary
discretization schemes in MLMC, one has to simulate coupled samples at two levels of time-
discretization, one that is fine and another that is coarse. Then this can be extended to the case
of filtering diffusion processes, as was done in [14] by constructing a coupling in the resam-
pling mechanism of particle filters. In the method of [11], the authors sample a third ‘antithetic’
process at the finer level. We show how such a process can be incorporated into the context of
particle filters with, to the best of our knowledge, a new resampling scheme. Second, there are
significant technical challenges in showing that this new antithetic particle filter can provide
the improvements in terms of cost and MSE that the approach of [11] does for ordinary dif-
fusion processes. Unfortunately, we obtain a non-optimal rate; again, we highlight where the
proof misses the extra rate.

The article is structured as follows. In Section 2 we give details on the model to be con-
sidered and the time-discretization associated to the process (1.1). In Section 3 we present our
algorithm. Section 4 details our mathematical results and their algorithmic implications. In
Section 5 we give numerical results that support our theory. Most of our mathematical proofs
can be found in the appendices at the end of the article.

2. Model and discretization

2.1. State-space model

Our objective is to consider the filtering problem and normalizing constant estimation for a
specific class of state-space models associated to the diffusion process (1.1). In particular, we
will assume that (1.1) is subject to a certain assumption (A1) which is described in Section 4.
This assumption is certainly strong enough to guarantee that (1.1) has a unique solution and in
addition that the diffusion has a transition probability, which we denote, over one unit of time,
by P(x, dx′). We are then interested in filtering associated to the state-space model

p(dx1:n, y1:n) =
n∏

k=1

P(xk−1, dxk)g(xk, yk),

where y1:n = (y1, . . . , yn)� ∈ Yn are observations, each with conditional density g(xk, ·). The
filter associated to this measure is, for k ∈N,

πk(dxk) =
∫

Xk−1 p(dx1:k, y1:k)∫
Xk p(dx1:k, y1:k)

,

where X =R
d. The denominator

p(y1:k) :=
∫

Xk
p(dx1:k, y1:k)
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4 A. JASRA ET AL.

Algorithm 1 Truncated Milstein scheme on [0, 1].

1. Input level l and starting point xl
0.

2. Generate Zk
i.i.d.∼ Nd(0, �lId), k ∈ {1, 2, . . . , �−1

l

}
.

3. Generate level l: for k ∈ {0, 1, . . . , �−1
l − 1

}
with Xl

0 = xl
0

Xl
(k+1)�l

= Xl
k�l

+ α
(
Xl

k�l

)
�l + β

(
Xl

k�l

)
Zk+1 + H�l

(
Xl

k�l
, Zk+1

)
.

4. Output Xl
1.

is the normalizing constant or marginal likelihood. This latter object is often used in statistics
for model selection.

In practice, we assume that working directly with P is not possible, because of either
intractability or cost of simulation. We therefore propose to work with an alternative collection
of filters based upon time-discretization, which is what we now describe.

2.2. Time-discretization

Typically one must time-discretize (1.1). We consider a time-discretization at equally
spaced times, separated by �l = 2−l. To continue with our exposition, we define the d-vector
H : R2d ×R

+ →R
d, H�(x, z) = (H�,1(x, z), . . . , H�,d(x, z))�, where, for i ∈ {1, . . . , d},

H�,i(x, z) =
∑

(j,k)∈{1,...,d}2

hijk(x)(zjzk − �),

hijk(x) = 1

2

∑
m∈{1,...,d}

βmk(x)
∂βij(x)

∂xm
.

We denote by Nd(μ, �) the d-dimensional Gaussian distribution with mean vector μ and
covariance matrix �; if d = 1 we drop the subscript d. Id is the d × d identity matrix. A single-
level version of the truncated Milstein scheme, which is the focus of this article, is presented
in Algorithm 1. Ultimately, we will consider the antithetic truncated Milstein scheme in [11],
which can be simulated as described in Algorithm 2. The method in Algorithm 2 is a means
of approximating differences of expectations with respect to discretized laws at consecutive
levels, as is used in MLMC; this latter approach will be detailed in Section 3.

To understand the use of Algorithms 1 and 2, consider computing the expectation∫
X

x1P(x0, dx1),

which is generally approximated by considering
∫

X x1Pl(x0, dx1), where we denote the tran-
sition kernel induced by Algorithm 1 by Pl(x0, dx1). This latter integral can certainly be
approximated using Monte Carlo and Algorithm 1. However, there is an alternative using both
Algorithms 1 and 2, which has been established by [11] as more efficient. Clearly one can
write ∫

X
x1Pl(x0, dx1) =

∫
X

x1Pl(x0, dx1) −
∫

X
x1Pl−1(x0, dx1) +

∫
X

x1Pl−1(x0, dx1).
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Algorithm 2 Antithetic truncated Milstein scheme on [0, 1].

1. Input level l and starting points
(
xl

0, xl−1
0 , xl,a

0

)
.

2. Generate Zk
i.i.d.∼ Nd(0, �lId), k ∈ {1, 2, . . . , �−1

l

}
.

3. Generate level l: for k ∈ {0, 1, . . . , �−1
l − 1

}
with Xl

0 = xl
0

Xl
(k+1)�l

= Xl
k�l

+ α
(
Xl

k�l

)
�l + β

(
Xl

k�l

)
Zk+1 + H�l

(
Xl

k�l
, Zk+1

)
.

4. Generate level l − 1: for k ∈ {0, 1, . . . , �−1
l−1 − 1

}
with Xl−1

0 = xl−1
0

Xl−1
(k+1)�l−1

= Xl−1
k�l−1

+ α
(
Xl−1

k�l−1

)
�l−1 + β

(
Xl−1

k�l−1

){
Z2(k+1)−1 + Z2(k+1)

}+
H�l−1

(
Xl−1

k�l−1
, Z2(k+1)−1 + Z2(k+1)

)
.

5. Generate antithetic level l: for k ∈ {0, 1, . . . , �−1
l − 1

}
with Xl,a

0 = xl,a
0

Xl,a
(k+1)�l

= Xl,a
k�l

+ α
(
Xl,a

k�l

)
�l + β

(
Xl,a

k�l

)
Zρk + H�l

(
Xl,a

k�l
, Zρk

)
where ρk = k + 2I{0,2,4,... }(k).

6. Output
(
Xl

1, Xl−1
1 , Xl,a

1

)
.

Now the rightmost term on the right-hand side of the above equation can be approximated by
Monte Carlo and running Algorithm 1 at level l − 1. We then consider the difference on the
right-hand side, independently, which can be approximated using Algorithm 2 N times:

1

N

N∑
i=1

(
1
2

{
Xi,l

1 + Xi,l,a
1

}
− Xi,l−1

1

)
,

where the superscript i denotes the ith sample generated. The reason such an approximation
works so well is that marginally Xi,l−1

1 has the same distribution as any sample generated by

running Algorithm 1 at level l − 1; similarly, both Xi,l
1 and Xi,l,a

1 have the same distribution as
any sample generated by running Algorithm 1 at level l. Moreover, the second moment of the
term, which converges to zero as l increases,∥∥∥ 1

2

{
Xi,l

1 + Xi,l,a
1

}
− Xi,l−1

1

∥∥∥ , (2.1)

where ‖ · ‖ is the usual Euclidean norm, is of the same order (as a function of l) as if one con-
sidered a synchronous coupling of two discretizations of the exact Milstein scheme—that is, if
one could sample an exact Milstein discretization at level l

(
Xl,M

1

)
and using the same Brownian

motion as at level l − 1
(
Xl−1,M

1

)
, and consider the second moment of

∥∥Xl,M
1 − Xl−1,M

1

∥∥. The
reason why this is so important is that the rate of decrease of the aforementioned quantities
is what enables MLMC (here we have described two levels) to improve over ordinary Monte
Carlo. The key is that by using antithetic variates of the quantity (2.1) (in terms of square expec-
tation) one has replicated the Milstein scheme without ever having to compute intractable Lévy
areas.
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6 A. JASRA ET AL.

For a given l ∈N, we will be concerned with the filter induced by the following joint
measure:

pl(dx1:n, y1:n) =
n∏

k=1

Pl(xk−1, dxk)g(xk, yk).

The filter associated to this measure is, for k ∈N,

π l
k(dxk) =

∫
Xk−1 pl(dx1:k, y1:k)∫
Xk pl(dx1:k, y1:k)

.

The associated normalizing constant is

pl(y1:k) =
∫

Xk
pl(dx1:k, y1:k).

Ultimately, we will seek to approximate expectations with respect to π l
k and to estimate pl(y1:k)

as k increases, then study the MSE of a numerical approximation relative to considering the
exact filter πk and associated normalizing constant p(y1:k).

3. Antithetic multilevel particle filters

3.1. Multilevel particle filter

Let ϕ ∈Bb(X), the latter denoting the collection of bounded and measurable real-valued
functions; we write π l

k(ϕ) = ∫X ϕ(xk)π l
k(dxk). Let (L, L) ∈N0 ×N, with L < L given. Our

objective is the approximation of πL
k (ϕ) sequentially in time; this is the filtering problem. This

can be achieved using the MLMC identity

πL
k (ϕ) = π

L
k (ϕ) +

L∑
l=L+1

[
π l

k − π l−1
k

]
(ϕ). (3.1)

As noted in the introduction, the computational cost of approximating the right-hand side of
(3.1) can be lower than that of approximating the left-hand side, when one is seeking to achieve
a pre-specified MSE. The right-hand side of (3.1) can be approximated by the method in [14],
but we shall consider a modification which can improve on the computational effort to achieve
a given MSE. Often L = 1 in the literature, but we have found in previous work that one needs
to set it higher for the aforementioned improvement in computational effort.

We begin by approximating π
L
k (ϕ), which can be done using the standard particle filter

as described in Algorithm 3. Algorithm 3 generates NL samples in parallel, and these samples
undergo sampling operations (Steps 1 and 3) and resampling operations (Step 2). The sampling
step uses Algorithm 1, and the resampling step is the well-known multinomial method. We
refer the reader to e.g. [6] for an introduction to particle filter methods. It is by now standard
in the literature that

π
NL,L
k (ϕ) :=

NL∑
i=1

g
(
Xi,L

k , yk
)

∑Nl
j=1 g

(
Xj,L

k , yk
)ϕ(Xi,L

k

)

will converge almost surely to π
L
k (ϕ), where the samples Xi,L

k are after Step 1 or 3 of

Algorithm 3. Therefore, recalling (3.1), at this stage we can approximate π
L
k (ϕ) recursively

in time.
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Algorithm 3 Particle filter at level L.

1. Initialization: for i ∈ {1, . . . , NL}, generate Xi,L
1 independently using Algorithm 1 with

level L and starting point x0. Set k = 1.

2. Resampling: compute⎛
⎝ g

(
x1,L

k , yk
)

∑NL

j=1 g
(
xj,L

k , yk
) , . . . ,

g
(
x

NL,L
k , yk

)
∑NL

j=1 g
(
xj,L

k , yk
)
⎞
⎠ . (3.2)

For i ∈ {1, . . . , NL} generate an index ai
k using the probability mass function in (3.2) and

set X̃i,L
k = X

ai
k,L

k . Then set X
1 : NL,L
k = X̃

1 : NL,L
k .

3. Sampling: for i ∈ {1, . . . , NL}, generate Xi,L
k+1|X

1 : NL,L
k conditionally independently using

Algorithm 1 with level L and starting point xi,L
k . Set k = k + 1.

In reference to (3.1), we will approximate the differences
[
π l

k − π l−1
k

]
(ϕ) sequentially in

time and independently of using Algorithm 3 and for each l. As stated in the introduction,
our objective is to leverage the work of [11] as described in Algorithm 2 and be able to insert
this within a particle filter as given in Algorithm 3. The particle filter has two main oper-
ations, which are sampling and resampling. The sampling mechanism is to be achieved by
using Algorithm 2. The problem is now the resampling approach. The main idea is to ensure
that we resample the level-l coordinate just as if we had done so using the particle filter at
level l; similarly, we want the same for the antithetic-level coordinate and finally we resample
the level-(l − 1) coordinate just as if we had used the particle filter at level l − 1. Critically,
the resampling for these three coordinates should be correlated, because if this is not the case,
the effect of using Algorithm 2 is lost; see [19] for a theoretical justification of this point. The
reason we want to maintain the resampling as if the particle filter had been used is that we
know this will produce consistent estimates of the filter. We seek to correlate the resampling
because this can help ensure that we reduce the cost of achieving a pre-specified MSE, relative
to using the particle filter.

Algorithm 4 presents a new resampling method which we shall employ. This resampling
method achieves the objectives discussed above and gives rise to the new coupled particle
filter, which is described in Algorithm 5. Algorithm 5 consists of propagating Nl samples of
the three coordinates sequentially in time, using Algorithm 2 for the sampling and Algorithm 4
for the resampling. In this context one can define, for (k, l, Nl, ϕ) ∈N

3 ×Bb(X),

π
Nl,l
k (ϕ) :=

Nl∑
i=1

Wi,l
k ϕ
(
Xi,l

k

)
, (3.3)

π̄
Nl,l−1
k (ϕ) :=

Nl∑
i=1

W̄i,l−1
k ϕ

(
Xi,l−1

k

)
,

π
Nl,l,a
k (ϕ) :=

Nl∑
i=1

Wi,l,a
k ϕ

(
Xi,l,a

k

)
,
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8 A. JASRA ET AL.

Algorithm 4 Maximal coupling-type resampling.

1. Input
(
U1:N

1 , U1:N
2 , U1:N

3

)
and probabilities

(
W1:N

1 , W1:N
2 , W1:N

3

)
.

2. For i ∈ {1, . . . , N} generate U ∼ U[0,1] (uniform distribution on [0, 1]):

• If U <
∑N

i=1 min
{
Wi

1, Wi
2, Wi

3

}
generate ai ∈ {1, . . . , N} using the probability

mass function

P(i) = min
{
Wi

1, Wi
2, Wi

3

}
∑N

j=1 min
{
Wj

1, Wj
2, Wj

3

}
and set Ũi

j = Uai

j , j ∈ {1, 2, 3}.
• Otherwise generate

(
ai

1, ai
2, ai

3

) ∈ {1, . . . , N}3 using any coupling of the
probability mass functions

Pj(i) = Wi
j − min

{
Wi

1, Wi
2, Wi

3

}
∑N

k=1

[
Wk

j − min
{
Wk

1, Wk
2, Wk

3

}] ,
and set Ũi

j = U
ai

j
j , j ∈ {1, 2, 3}. In all of our implementations,

(
ai

1, ai
2, ai

3

)
are

generated independently with the given marginals.

3. Set Ui
j = Ũi

j , (i, j) ∈ {1, . . . , N} × {1, 2, 3}.
4. Output

(
U1:N

1 , U1:N
2 , U1:N

3

)
.

and estimate
[
π l

k − π l−1
k

]
(ϕ) as

[
π l

k − π l−1
k

]Nl (ϕ) := 1

2

{
π

Nl,l
k (ϕ) + π

Nl,l,a
k (ϕ)

}
− π̄

Nl,l−1
k (ϕ).

The samples in
(
π

Nl,l
k (ϕ), π

Nl,l,a
k (ϕ), π̄

Nl,l−1
k (ϕ)

)
are obtained after Step 1 or Step 3 in

Algorithm 5.

3.2. Final algorithm

To conclude, the antithetic multilevel particle filter (AMLPF) is as follows:

1. At level L run Algorithm 3 sequentially in time.

2. At level l ∈ {L + 1, L + 2, . . . , L}, independently of all other l and of Step 1, run
Algorithm 3 sequentially in time.

To approximate the right-hand side of (3.1) at any time k, one can use the estimator

π
L,ML
k (ϕ) := π

NL,L
k (ϕ) +

L∑
l=L+1

[
π l

k − π l−1
k

]Nl (ϕ),

where π
NL,L
k (ϕ) has the definition (3.3) when l = L and has been obtained using Algorithm 3.
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Algorithm 5 A new coupled particle filter for l ∈N given.

1. Initialization: for i ∈ {1, . . . , Nl}, generate Ui,l
1 = (Xi,l

1 , X̄i,l−1
1 , Xi,l,a

1

)
independently

using Algorithm 2 with level l and starting points
(
xl

0, x̄l−1
0 , xl,a

0

)
. Set k = 1.

2. Coupled resampling: compute

W1:Nl,l
k =

⎛
⎝ g

(
x1,l

k , yk
)

∑Nl
j=1 g

(
xj,l

k , yk
) , . . . ,

g
(
xNl,l

k , yk
)

∑Nl
j=1 g

(
xj,l

k , yk
)
⎞
⎠ ,

W̄1:Nl,l−1
k =

⎛
⎝ g

(
x̄1,l−1

k , yk
)

∑Nl
j=1 g

(
x̄j,l−1

k , yk
) , . . . ,

g
(
x̄Nl,l−1

k , yk
)

∑Nl
j=1 g

(
x̄j,l−1

k , yk
)
⎞
⎠ ,

W1:Nl,l,a
k =

⎛
⎝ g

(
x1,l,a

k , yk
)

∑Nl
j=1 g

(
xj,l,a

k , yk
) , . . . ,

g
(
xNl,l,a

k , yk
)

∑Nl
j=1 g

(
xj,l,a

k , yk
)
⎞
⎠ .

Then, using
(

X1:Nl,l
k , X̄1:Nl,l−1

k , X1:Nl,l,a
k

)
and

(
W1:Nl,l

k , W̄1:Nl,l−1
k , W1:Nl,l,a

k

)
, call

Algorithm 4.

3. Coupled sampling: for i ∈ {1, . . . , Nl}, generate Ui,l
k+1|U1:Nl,l

k conditionally

independently using Algorithm 2 with level l and starting point
(

xi,l
k , x̄i,l−1

k , xi,l,a
k

)
.

Set k = k + 1.

The normalizing constant pL(y1:k) can also be approximated using the AMLPF. For any
(k, l, Nl, ϕ) ∈N

3 ×Bb(X), we define

η
Nl,l
k (ϕ) :=

Nl∑
i=1

ϕ
(
Xi,l

k

)
, (3.4)

η̄
Nl,l−1
k (ϕ) :=

Nl∑
i=1

ϕ
(
Xi,l−1

k

)
,

η
Nl,l,a
k (ϕ) :=

Nl∑
i=1

ϕ
(
Xi,l,a

k

)
.

Then we have the following approximation:

pL,ML(y1:k) :=
k∏

j=1

η
NL,L
j (gj) +

L∑
l=L+1

{
1
2

k∏
j=1

η
Nl,l,
j (gj) + 1

2

k∏
j=1

η
Nl,l,a
j (gj) −

k∏
j=1

η̄
Nl−1,l−1,

j (gj)

}
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where gj(x) = g(x, yj) is used as shorthand, gj is assumed bounded and measurable for each

j ∈N, and η
NL,L
k (ϕ) has the definition (3.4) when l = L and has been obtained using

Algorithm 3. This new estimator approximates the quantity

pL(y1:k) +
L∑

l=L+1

[
pl(y1:k) − pl−1(y1:k)

]

as was done in [15] and essentially uses the ordinary particle filter normalizing constant esti-
mator to approximate pL(y1:k) (see e.g. [6]). The approximation of the increment

[
pl(y1:k) −

pl−1(y1:k)
]

follows the approach used for the filter based upon the output from the AMLPF.

This estimator is unbiased in terms of pL(y1:k) (see e.g. [6]) and is consistent as the number of
samples used at each level grows. We note, however, that there is nothing in the estimator that
ensures that it is almost surely positive, whereas it does approximate a positive quantity.

4. Mathematical results

We now present our main mathematical result, which relates to the L2-convergence of our
estimator of the filter. We remark that we will consider the estimation of the normalizing con-
stant in a sequel paper. The result is proved under two assumptions (A1) and (A2), which are
stated below. We write X2 =R

d×d. By C2
b (X,R) we denote the collection of twice continu-

ously differentiable functions from X to R (resp. X2) with bounded derivatives of orders 1
and 2. Similarly, C2(X, X) and C2(X, X2) are respectively the collections of twice continuously
differentiable functions from X to X and from X to X2. For ϕ ∈Bb(X) we use the notation
πL

k (ϕ) = ∫X ϕ(x)πL
k (dx). By E we denote the expectation with respect to the law used to gener-

ate the AMLPF. We drop the dependence upon the data in g(xk, yk) and simply write gk(xk) in
this section.

Our assumptions are as follows:

(A1) • For each (i, j) ∈ {1, . . . , d}, αi ∈Bb(X), βij ∈Bb(X).

• We have α ∈ C2(X, X), β ∈ C2(X, X2).

• We have that β(x)β(x)� is uniformly positive definite.

• There exists a C < +∞ such that for any (x, i, j, k, m) ∈ X × {1, . . . , d}4,

max

{∣∣∣∣ ∂αi

∂xm
(x)

∣∣∣∣ ,
∣∣∣∣ ∂βij

∂xm
(x)

∣∣∣∣ ,
∣∣∣∣∂hijk

∂xm
(x)

∣∣∣∣ ,
∣∣∣∣ ∂2αi

∂xk∂xm
(x)

∣∣∣∣ ,
∣∣∣∣∣ ∂2βij

∂xk∂xm
(x)

∣∣∣∣∣
}

≤ C.

(A2) • For each k ∈N, gk ∈Bb(X) ∩ C2(X,R).

• For each k ∈N there exists a 0 < C < +∞ such that for any x ∈ X gk(x) ≥ C.

• For each k ∈N there exists a 0 < C < +∞ such that for any (x, j, m) ∈ X ×
{1, . . . , d}2,

max

{∣∣∣∣∂gk

∂xj
(x)

∣∣∣∣,
∣∣∣∣ ∂2gk

∂xj∂xm
(x)

∣∣∣∣
}

≤ C.
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Theorem 1. Assume (A1)–(A2). Then, for any (k, ϕ) ∈N×Bb(X) ∩ C2
b (X,R), there exists a

C < +∞ such that for any
(
L, L, l, NL, . . . , NL

) ∈N
2
0 × {L, . . . , L} ×N

L−L+1 with L < L,

E

[(
π

L,ML
k (ϕ) − πL

k (ϕ)
)2
]

≤ C

(
1

NL
+

L∑
l=L+1

�

1
2
l

Nl
+

∑
(l,q)∈DL,L

�

1
2
l

NlNq

)
,

where DL,L = {(l, q) ∈ {L, . . . , L} : l = q}.
Proof. This follows by using the C2-inequality to separate the terms π

NL,L
k (ϕ) − π

L
k (ϕ) and∑L

l=L+1

[
π l

k − π l−1
k

]Nl (ϕ) −∑L
l=L+1

[
π l

k − π l−1
k

]
(ϕ). Then one uses standard results for par-

ticle filters (see e.g. [2, Lemma A.3]) for the π
NL,L
k (ϕ) − π

L
k (ϕ), and one multiplies out the

brackets and uses Theorems 2 and 3 for the other term. �
The implication of this result is as follows. We know that the bias

∣∣πL
k (ϕ) − πk(ϕ)

∣∣ is O(�L).
This can be proved in a similar manner to [14, Lemma D.2], using the fact that the truncated
Milstein scheme is a first-order (weak) method. Therefore, for ε > 0 given, one can choose
L such that �L =O(ε) (so that the squared bias is O(ε2)). Then, to choose NL, . . . , NL, one

can set NL =O(ε−2) and, just as in e.g. [9], Nl =O(ε−2�
3/4
l �

−1/4
L

)
, l ∈ {L + 1, . . . , L}. If

one does this, one can verify that the upper bound in Theorem 1 is O(ε2), so the MSE is also

O(ε2). The cost to run the algorithm per time step is O(∑L
l=L Nl�

−1
l

)=O(ε−2.5
)
. However,

as we see in our simulations, the cost should be lower, at O(ε−2 log (ε)2
)
; this indicates that

our proof is not optimal. In the case that (1.1) has a non-constant diffusion coefficient with
d > 2, the approach in [14], based upon using Euler discretizations, would obtain an MSE of
O(ε2) at a cost of O(ε−2.5

)
.

5. Numerical results

5.1. Models

We consider three different models for our numerical experiments.

5.1.1. Model 1: geometric Brownian motion (GBM) process. The first model we use is

dXt = μXtdt + σXtdWt, X0 = x0.

We set Yn|Xn = x ∼N ( log (x), τ 2
)
, where τ 2 = 0.02 and N (x, τ 2) is the Gaussian distribution

with mean x and variance τ 2. We choose x0 = 1, μ = 0.02, and σ = 0.2.

5.1.2. Model 2: Clark–Cameron SDE. The second model we consider is the Clark–Cameron
stochastic differential equation (SDE) model (e.g. [11]) with initial conditions x0 = (0, 0)�:

dX1,t = dW1,t,

dX2,t = X1,tdW2,t,

where Xj,t denotes the jth dimension of Xt, j ∈ {1, . . . , d}. In addition, Yn|Xn = x ∼
N (X1+X2

2 , τ 2
)
, where τ 2 = 0.1.
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5.1.3. Model 3: multidimensional SDEs with a nonlinear diffusion term (NLMs). For our last
model we use the following multidimensional SDEs, with x0 = (0, 0)�:

dX1,t = θ1(μ1 − X1,t)dt + σ1√
1 + X2

1,t

dW1,t,

dX2,t = θ2(μ2 − X1,t)dt + σ2√
1 + X2

1,t

dW2,t.

We set Yn|Xn = x ∼L
(

X1+X2
2 , s

)
, where L(m, s) is the Laplace distribution with location m

and scale s. The values of the parameters that we choose are (θ1, θ2) = (1, 1), (μ1, μ2) = (0, 0),
(σ1, σ2) = (1, 1), and s = √

0.1.

5.2. Simulation settings

We will consider a comparison of the particle filter, MLPF (as in [14]), and AMLPF.
For our numerical experiments, we consider multilevel estimators at levels l ∈ {3, 4, 5, 6, 7}.
Resampling is performed adaptively. For the particle filters, resampling is done when the
effective sample size (ESS) is less than 1/2 of the particle numbers. Suppose that we have
a collection of weights which sum to one, (W1, . . . , WN), for instance

(
W1,l

k , . . . , WNl,l
k

)
in

Algorithm 5. Then the ESS can be calculated using the formula

1∑N
i=1 (Wi)2

.

This is a number between 1 and N and is a measure of the variability of the weights. Typically
one would like this measure to be close to N. For the coupled filters, we use the ESS of the
coarse filter as the measure of discrepancy, and resampling occurs at the same threshold as the
particle filter. Each simulation is repeated 100 times.

5.3. Simulation results

We now present our numerical simulations to show the benefits of the AMLPF for the three
models under consideration. In Figures 1 and 2 we present the rate of the cost and the MSE
for the estimator for the filter and normalizing constant. The cost is computed using the CPU
time, although we found similar results using the formula of Section 4. The figures show that
as we increase the level from l = 3 to l = 7, the difference between the costs of the two methods
increases. In particular, the figures show the advantage and accuracy of using AMLPF. Table 1
presents the estimated rates of the MSE with respect to cost for the normalizing constant and
filter. The results agree with the theory [14] and the results of this article, which predicts a rate
of −1.5 for the particle filter, −1.25 for the MLPF, and −1 for the AMLPF.

Appendix A. Introduction and some notation

The purpose of this appendix is to provide the necessary technical results to prove
Theorem 1. For a full understanding of the arguments, we advise the reader to read the proofs
in order. It is possible to skip Section B and simply refer to the proofs, but the reader may miss
some notation or nuances.

The structure of this appendix is as follows. We first consider some properties of the anti-
thetic truncated Milstein scheme of [11]. We present several new results which are needed
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FIGURE 1. Cost rates as a function of the MSE. The results are for the filter.
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FIGURE 2. Cost rates as a function of the MSE in our algorithms, with results for the normalizing
constants.

https://doi.org/10.1017/apr.2024.12 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2024.12


Antithetic multilevel particle filters 15

TABLE 1. Estimated rates of MSE with respect to cost. ‘NC’ stands for normalizing constant.

Model PF (filter) MLPF (NC) MLPF (filter) AMLPF (NC) AMLPF (filter)

GBM –1.53 –1.21 –1.23 –1.04 –1.02
Clark–Cameron –1.55 –1.28 –1.26 –1.07 –1.05
NLMs –1.56 –1.29 –1.27 –1.08 –1.06

directly for the subsequent proofs. In Section C we consider the coupled particle filter as in
Algorithm 5. This section is split into three subsections. The first of these, Section C.1, consid-
ers the application of the results in Section B to a coupled particle filter. These results feed into
the final two subsections, which consider the convergence of

[
π l

k − π l−1
k

]Nl (ϕ) in Lp (Section
C.2) and the associated bias (Section C.3). This is the culmination of the work in this appendix
and is summarized in Theorems 2 and 3. To prove our results we use two major assumptions,
(A1) and (A2), which can be found in Section 4 of the main text.

A.1. Some notation

Let (V, V) be a measurable space. For ϕ : V →R we write Bb(V) for the collection of
bounded measurable functions. Let ϕ : Rd →R, and let Lip(Rd) denote the collection of real-
valued functions that are Lipschitz with respect to ‖ · ‖ (where ‖ · ‖ denotes the L2-norm of a
vector x ∈R

d). That is, ϕ ∈ Lip(Rd) if there exists a C < +∞ such that for any (x, y) ∈R
2d,

|ϕ(x) − ϕ(y)| ≤ C‖x − y‖.

For ϕ ∈Bb(V), we write the supremum norm as ‖ϕ‖∞ = supx∈V |ϕ(x)|. For a measure μ on
(V, V) and a function ϕ ∈Bb(V), the notation μ(ϕ) = ∫V ϕ(x)μ(dx) is used. For A ∈ V , the
indicator function is written as IA(x). If K : V × V → [0, ∞) is a non-negative operator and μ

is a measure, we use the notation μK(dy) = ∫V μ(dx)K(x, dy), and for ϕ ∈Bb(V), K(ϕ)(x) =∫
V ϕ(y)K(x, dy). Throughout, we use C to denote a generic finite constant whose value may

change at each appearance and whose dependencies (on model and simulation parameters) are
clear from the context.

Appendix B. Proofs for antithetic truncated Milstein scheme

The proofs of this section focus on the antithetic truncated Milstein discretization over a
unit of time (i.e. as in Algorithm 2). The case we consider is almost identical to that in [11],
except that we impose that our initial points

(
xl

0, xl−1
0 , xl,a

0

)
need not be equal. This constraint is

important in our subsequent proofs for the coupled (and multilevel) particle filter. Our objective
is to prove a result similar to [11, Theorem 4.10], and to that end we make the assumption
(A1), which is stronger than [11, Assumption 4.1]. The stronger assumption is related to the
boundedness of the drift and diffusion coefficients of (1.1). The reason we require this is that
it greatly simplifies our (subsequent) proofs if the constants in the results below do not depend
on the initial points

(
xl

0, xl−1
0 , xl,a

0

)
; this would be the case otherwise. In this section, E denotes

the expectation with respect to the law associated to Algorithm 2.
The final result in this section, Proposition B.1, is our adaptation of [11, Theorem 4.10] and

is proved using simple modifications of Lemmata 4.6, 4.7, and 4.9 and Corollary 4.8 in [11].
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The proofs of Lemma 4.7 and Corollary 4.8 in [11] need not be modified, so we proceed to
prove analogues of Lemmata 4.6 and 4.9.

Lemma B.1. Assume (A1). Then for any p ∈ [1, ∞) there exists a C < +∞ such that for any
l ∈N,

E

⎡
⎣ max

k∈
{

0,2,...,�−1
l

} ∥∥Xl
k�l

− Xl,a
k�l

∥∥p

⎤
⎦≤ C

(
�

p
2
l + ∥∥xl

0 − xl−1
0

∥∥p + ∥∥xl,a
0 − xl−1

0

∥∥p
)

.

Proof. Using the Cp-inequality, we have that

E

⎡
⎣ max

k∈
{

0,2,...,�−1
l

} ∥∥Xl
k�l

− Xl,a
k�l

∥∥p

⎤
⎦

≤ C

⎛
⎝E

⎡
⎣ max

k∈
{

0,2,...,�−1
l

} ∥∥Xl
k�l

− Xl−1
k�l

∥∥p

⎤
⎦+E

⎡
⎣ max

k∈
{

0,2,...,�−1
l

} ∥∥Xl,a
k�l

− Xl−1
k�l

∥∥p

⎤
⎦
⎞
⎠ .

Denoting by Xx
t the solution of (1.1) with initial point x at time t, we have

E

⎡
⎣ max

k∈
{

0,2,...,�−1
l

} ∥∥Xl
k�l

− Xl,a
k�l

∥∥p

⎤
⎦

≤ C

(
E

⎡
⎣ max

k∈
{

0,2,...,�−1
l

} ∥∥∥Xl
k�l

− X
xl

0
k�l

∥∥∥p

⎤
⎦+E

⎡
⎣ max

k∈
{

0,2,...,�−1
l

} ∥∥∥X
xl

0
k�l

− X
xl−1

0
k�l

∥∥∥p

⎤
⎦

+E

⎡
⎣ max

k∈
{

0,2,...,�−1
l

} ∥∥∥Xl−1
k�l

− X
xl−1

0
k�l

∥∥∥p

⎤
⎦+E

⎡
⎣ max

k∈
{

0,2,...,�−1
l

} ∥∥∥Xl,a
k�l

− X
xl,a

0
k�l

∥∥∥p

⎤
⎦

+E

⎡
⎣ max

k∈
{

0,2,...,�−1
l

} ∥∥∥X
xl,a

0
k�l

− X
xl−1

0
k�l

∥∥∥p

⎤
⎦+E

⎡
⎣ max

k∈
{

0,2,...,�−1
l

} ∥∥∥Xl−1
k�l

− X
xl−1

0
k�l

∥∥∥p

⎤
⎦
)

.

The proof is then easily concluded via the strong convergence result [11, Lemma 4.2] and
standard results for diffusion processes (e.g. via Gronwall and [20, Corollary V.11.7]). �
Remark B.1. Note that the proof also establishes the following: for any p ∈ [1, ∞) there exists
a C < +∞ such that for any l ∈N,

E

⎡
⎣ max

k∈
{

0,2,...,�−1
l

} ∥∥Xl
k�l

− Xl−1
k�l

∥∥p

⎤
⎦≤ C

(
�

p
2
l + ∥∥xl

0 − xl−1
0

∥∥p
)

and

E

⎡
⎣ max

k∈
{

0,2,...,�−1
l

} ∥∥Xl,a
k�l

− Xl−1
k�l

∥∥p

⎤
⎦≤ C

(
�

p
2
l + ∥∥xl,a

0 − xl−1
0

∥∥p
)

.

To state our next result, which mirrors [11, Lemma 4.9], we need to introduce a sig-

nificant amount of notation directly from [11]. Below, we set X
l
k�l

= 1
2

(
Xl

k�l
+ Xl,a

k�l

)
, k ∈{

0, . . . , �−1
l

}
. For (i, k) ∈ {1, . . . , d} × {2, 4, . . . , �−1

l

}
we define
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R(1)
i,k =

{
1

2

(
αi
(
Xl

k�l

)+ αi
(
Xl,a

k�l

))− αi
(
X

l
k�l

)}
�l−1,

M(1)
i,k =

d∑
j=1

{
1

2

(
βij
(
Xl

k�l

)+ βij
(
Xl,a

k�l

))− βij
(
X

l
k�l

)} [
Wj,(k+2)�l − Wj,k�l

]
,

M(2)
i,k =

∑
(j,m)∈{1,...,d}2

{
1

2

(
hijm

(
Xl

k�l

)+ hijm
(
Xl,a

k�l

))− hijm
(
X

l
k�l

)} ([
Wj,(k+2)�l − Wj,k�l

]

×[Wm,(k+2)�l − Wm,k�l ] − �l−1

)
,

M(3)
i,k =

∑
(j,m)∈{1,...,d}2

1

2

(
hijm

(
Xl

k�l

)− hijm
(
Xl,a

k�l

)) ([
Wj,(k+1)�l − Wj,k�l

][
Wm,(k+2)�l

−Wm,(k+1)�l

]− [Wm,(k+1)�l − Wm,k�l

][
Wj,(k+2)�l − Wj,(k+1)�l

])
,

Rl
i,k =

d∑
j=1

∂αi

∂xj

(
Xl

k�l

)(
αj
(
Xl

k�l

)
�l +

∑
(m,n)∈{1,...,d}2

himn
(
Xl

k�l

)([
Wm,(k+1)�l

−Wm,k�l

][
Wn,(k+1)�l − Wn,k�l

]− �l

))
�l + 1

2

∑
(j,m)∈{1,...,d}2

∂2αi

∂xj∂xm

(
ξ l

1

)[
Xl

j,(k+1)�l

−Xl
j,k�l

][
Xl

m,(k+1)�l
− Xl

m,k�l

]
�l,

M(1,l)
i,k =

∑
(j,m)∈{1,...,d}2

∂αi

∂xj

(
Xl

k�l

)
βjm
(
Xl

k�l

)[
Wm,(k+1)�l − Wm,k�l

]
�l,

M(2,l)
i,k =

∑
(j,m)∈{1,...,d}2

∂βij

∂xm

(
Xl

k�l

)(
αm
(
Xl

k�l

)
�l +

∑
(n,p)∈{1,...,d}2

hmnp
(
Xl

k�l

)[[
Wn,(k+1)�l − Wn,k�l

]

×[Wp,(k+1)�l − Wp,k�l

]− �l
])[

Wj,(k+2)�l − Wj,(k+1)�l

]
,

M(3,l)
i,k =

∑
(j,m)∈{1,...,d}2

{
hijm

(
Xl

(k+1)�l

)− hijm
(
Xl

k�l

)} ([
Wj,(k+2)�l − Wj,(k+1)�l

][
Wm,(k+2)�l

−Wm,(k+1)�l

]− �l

)
,

where, in Rl
i,k, ξ l

1 is some point which lies on the line between Xl
k�l

and Xl
(k+1)�l

. In the case of

Rl
i,k and M(j,l)

i,k , j ∈ {1, 2, 3}, one can substitute Xl
k�l

, ξ l
1, Xl

(k+1)�l
for Xl,a

k�l
, ξ

l,a
1 , Xl,a

(k+1)�l

(
where

ξ
l,a
1 is some point which lies on the line between Xl,a

k�l
and Xl,a

(k+1)�l

)
; when we do so, we use

the notation Rl,a
i,k and M(j,l,a)

i,k , j ∈ {1, 2, 3}. Finally we set

Mk =
3∑

j=1

M(j)
k + 1

2

3∑
j=1

{
M(j,l)

k + M(j,l,a)
k

}
,

Rk = R(1)
k + 1

2

{
Rl

i,k + Rl,a
i,k

}
.

We are now in a position to give our analogue of [11, Lemma 4.9].
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Lemma B.2. Assume (A1). Then the following hold:

• For any p ∈ [1, ∞) there exists a C < +∞ such that for any l ∈N,

max
k∈{2,4,...,�l}

E[|Rk|p] ≤ C�
p
l

(
�

p
l + ∥∥xl

0 − xl−1
0

∥∥2p + ∥∥xl,a
0 − xl−1

0

∥∥2p
)

.

• For any p ∈ [1, ∞) there exists a C < +∞ such that for any l ∈N,

max
k∈{2,4,...,�l}

E[|Mk|p]

≤ C

(
�

3p
2

l + �

p
2
l

{∥∥xl
0 − xl−1

0

∥∥2p + ∥∥xl,a
0 − xl−1

0

∥∥2p
}

+ �
p
l

{∥∥xl
0 − xl−1

0

∥∥p + ∥∥xl,a
0 − xl−1

0

∥∥p
})

.

Proof. The proof of this result essentially follows from [11] and controlling the terms

(in Lp). The expressions 1
2

∑3
j=1

{
M(j,l)

k + M(j,l,a)
k

}
and 1

2

{
Rl

i,k + Rl,a
i,k

}
can be dealt with

exactly as in [11, Lemma 4.7], so we need only consider the terms
∑3

j=1 M(j)
k and R(1)

k . It
will suffice to control in Lp any of the d coordinates of the aforementioned vectors, which is
what we do below.

Beginning with R(1)
i,k , using the second-order Taylor expansion in [11], one has

R(1)
i,k = 1

8

∑
(j,m)∈{1,...,d}2

(
∂2αi

∂xj∂xm

(
ξ l

1

)+ ∂2αi

∂xj∂xm

(
ξ l

2

)) (
Xl

j,k�l
− Xl,a

j,k�l

)(
Xl

m,k�l
− Xl,a

m,k�l

)
�l,

where ξ l
1 is some point between X

l
k�l

and Xl
k�l

and ξ l
2 is some point between X

l
k�l

and Xl,a
k�l

.
Then it follows easily that

E
[∣∣R(1)

i,k

∣∣p]≤ C�
p
l E

[∥∥∥Xl
k�l

− Xl,a
k�l

∥∥∥2p]
.

Application of Lemma B.1 yields that

E
[∣∣R(1)

i,k

∣∣p]≤ C�
p
l

(
�

p
l + ∥∥xl

0 − xl−1
0

∥∥2p + ∥∥xl,a
0 − xl−1

0

∥∥2p
)

,

which is the desired result.
For M(1)

i,k , again one has

M(1)
i,k = 1

16

∑
(j,m,n)∈{1,...,d}3

{
∂2βij

∂xm∂xn

(
ξ l

3

)+ ∂2βij

∂xm∂xn

(
ξ l

4

)} (
Xl

m,k�l
− Xl,a

m,k�l

)(
Xl

n,k�l
− Xl,a

n,k�l

)

×[Wj,(k+2)�l − Wj,k�l

]
,

where ξ l
3 is some point between X

l
k�l

and Xl
k�l

and ξ l
4 is some point between X

l
k�l

and

Xl,a
k�l

. Then, using the independence of the Brownian increment (with the random variables(
Xl

m,k�l
− Xl,a

m,k�l

)(
Xl

n,k�l
− Xl,a

n,k�l

))
and the same approach as above, one has

E
[∣∣M(1)

i,k

∣∣p]≤ C�
p/2
l E

[∥∥Xl
k�l

− Xl,a
k�l

∥∥2p]
,
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and applying Lemma B.1 yields

E
[∣∣M(1)

i,k

∣∣p]≤ C�
p/2
l

(
�

p
l + ∥∥xl

0 − xl−1
0

∥∥2p + ∥∥xl,a
0 − xl−1

0

∥∥2p
)

.

For M(2)
i,k one has

M(2)
i,k = 1

4

∑
(j,m,n)∈{1,...,d}3

{
∂hijm

∂xn

(
ξ l

5

)+ ∂hijm

∂xn

(
ξ l

6

)} (
Xl

n,k�l
− Xl,a

n,k�l

)

×
([

Wj,(k+2)�l − Wj,k�l

][
Wm,(k+2)�l − Wm,k�l

]− �l−1

)
,

where ξ l
5 is some point between X

l
k�l

and Xl
k�l

and ξ l
6 is some point between X

l
k�l

and Xl,a
k�l

.

As the Brownian increments are independent of
(

Xl
n,k�l

− Xl,a
n,k�l

)
and the dimensions are also

independent of each other, one obtains

E
[∣∣M(2)

i,k

∣∣p]≤ C�
p
l E
[∥∥Xl

k�l
− Xl,a

k�l

∥∥p].
Lemma B.1 gives

E
[∣∣M(2)

i,k

∣∣p]≤ C�
p
l

(
�

p/2
l + ∥∥xl

0 − xl−1
0

∥∥p + ∥∥xl,a
0 − xl−1

0

∥∥p
)

.

For M(3)
i,k , one has

M(3)
i,k = 1

4

∑
(j,m,n)∈{1,...,d}3

{
∂hijm

∂xn

(
ξ l

7

)+ ∂hijm

∂xn

(
ξ l

8

)} (
Xl

k�l
− Xl,a

k�l

)([
Wj,(k+1)�l − Wj,k�l

]

×[Wm,(k+2)�l − Wm,(k+1)�l

]− [Wm,(k+1)�l − Wm,k�l

][
Wj,(k+2)�l − Wj,(k+1)�l

])
,

where ξ l
7 is some point between X

l
k�l

and Xl
k�l

and ξ l
8 is some point between X

l
k�l

and Xl,a
k�l

.

Using essentially the same approach as for M(2)
i,k , one obtains

E
[∣∣M(3)

i,k

∣∣p]≤ C�
p
l

(
�

p/2
l + ∥∥xl

0 − xl−1
0

∥∥p + ∥∥xl,a
0 − xl−1

0

∥∥p
)

,

which concludes the proof. �
Proposition B.1. Assume (A1). Then for any p ∈ [1, ∞) there exists a C < +∞ such that for
any l ∈N,

E

⎡
⎣ max

k∈
{

0,2,...,�−1
l

} ∥∥X
l
k�l

− Xl−1
k�l

∥∥p

⎤
⎦

≤ C

(
�

p
l +

{∥∥xl
0 − xl−1

0

∥∥2p + ∥∥xl,a
0 − xl−1

0

∥∥2p
}

+ �

p
2
l

{∥∥xl
0 − xl−1

0

∥∥p + ∥∥xl,a
0 − xl−1

0

∥∥p
})

.

Proof. We omit the proof, because it is identical to that of [11, Theorem 4.10], except that
one uses Lemma B.2 above instead of [11, Lemma 4.9]. �
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Appendix C. Proofs for coupled particle filter

In this section, E denotes the expectation with respect to the law that generates the AMLPF.

C.1. Rate proofs

Our analysis will apply to any coupling used in the second bullet point of Algorithm 4,
Step 2. At any time point k of Algorithm 5, we will denote the resampled index of particle i ∈
{1, . . . , Nl} by Ii,l

k (level l), Ii,l−1
k (level l − 1), and Ii,l,a

k (level l antithetic). Now let Il
k(i) = Ii,l

k ,

Il−1
k (i) = Ii,l−1

k , Il,a
k (i) = Ii,l,a

k , and define Sl
k as the collection of indices that choose the same

ancestor at each resampling step, i.e.

Sl
k = {i ∈ {1, . . . , Nl} : Il

k(i) = Il−1
k (i) = Il,a

k (i), Il
k−1 ◦ Il

k(i) = Il−1
k−1 ◦ Il−1

k (i) = Il,a
k−1 ◦ Il,a

k (i), . . . ,

Il
1 ◦ Il

2 ◦ · · · ◦ Il
k(i) = Il−1

1 ◦ Il−1
2 ◦ · · · ◦ Il−1

k (i) = Il,a
1 ◦ Il,a

2 ◦ · · · ◦ Il,a
k (i)

}
.

We use the convention that Sl
0 = {1, . . . , Nl}. Denote the σ -field generated by the simulated

samples, resampled samples, and resampled indices up to time k by F̂ l
k, and denote the σ -field

which does the same, except excluding the resampled samples and indices, by F l
k.

Lemma C.1. Assume (A1)–(A2). Then for any (p, k) ∈ [1, ∞) ×N there exists a C < +∞
such that for any (l, Nl) ∈N

2,

E

⎡
⎢⎣ 1

Nl

∑
i∈Sl

k−1

{∥∥∥Xi,l
k − Xi,l−1

k

∥∥∥p +
∥∥∥Xi,l,a

k − Xi,l−1
k

∥∥∥p +
∥∥∥Xi,l

k − Xi,l,a
k

∥∥∥p}⎤⎥⎦≤ C�
p/2
l .

Proof. The case k = 1 follows from the work in [11] (the case p = [1, 2) can be adapted
from that paper), so we assume k ≥ 2. By conditioning on F̂ l

k−1 and applying Lemma B.1 (see
also Remark B.1), we have

E

⎡
⎢⎣ 1

Nl

∑
i∈Sl

k−1

{∥∥∥Xi,l
k − Xi,l−1

k

∥∥∥p +
∥∥∥Xi,l,a

k − Xi,l−1
k

∥∥∥p +
∥∥∥Xi,l

k − Xi,l,a
k

∥∥∥p}⎤⎥⎦

≤ C

⎛
⎜⎝�

p/2
l +E

⎡
⎢⎣ 1

Nl

∑
i∈Sl

k−1

{∥∥∥X̂i,l
k−1 − X̂i,l−1

k−1

∥∥∥p +
∥∥∥X̂i,l,a

k−1 − X̂i,l−1
k−1

∥∥∥p +
∥∥∥X̂i,l

k−1 − X̂i,l,a
k−1

∥∥∥p}⎤⎥⎦
⎞
⎟⎠ .

One can exchangeably write the expectation on the right-hand side as

E

⎡
⎢⎣ 1

Nl

∑
i∈Sl

k−1

{∥∥∥∥X̂
Ii,l
k−1,l

k−1 − X̂
Ii,l−1
k−1 ,l−1

k−1

∥∥∥∥
p

+
∥∥∥∥X̂

Ii,l,a
k−1 ,l,a

k−1 − X̂
Ii,l−1
k−1 ,l−1

k−1

∥∥∥∥
p

+
∥∥∥∥X̂

Ii,l
k−1,l

k−1 − X̂
Ii,l,a
k−1 ,l,a

k−1

∥∥∥∥
p}⎤⎥⎦ .

The proof from here is then essentially identical (up to the fact that one has three indices instead
of two) to that of [14, Lemma D.3] and is hence omitted. �
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Lemma C.2. Assume (A1)–(A2). Then for any (p, k) ∈ [1, ∞) ×N there exists a C < +∞
such that for any (l, Nl) ∈N

2,

E

⎡
⎢⎣ 1

Nl

∑
i∈Sl

k−1

∥∥∥X
i,l
k − Xi,l−1

k

∥∥∥p

⎤
⎥⎦≤ C�

p
l .

Proof. Following the start of the proof of Lemma C.1, except using Proposition B.1 instead
of Lemma B.1, one can deduce that

E

⎡
⎢⎣ 1

Nl

∑
i∈Sl

k−1

∥∥∥X
i,l
k − Xi,l−1

k

∥∥∥p

⎤
⎥⎦≤

C

(
�

p
l +E

⎡
⎢⎣ 1

Nl

∑
i∈Sl

k−1

{∥∥∥∥X̂
Ii,l
k−1,l

k−1 − X̂
Ii,l−1
k−1 ,l−1

k−1

∥∥∥∥
2p

+
∥∥∥∥X̂

Ii,l,a
k−1 ,l,a

k−1 − X̂
Ii,l−1
k−1 ,l−1

k−1

∥∥∥∥
2p}⎤⎥⎦

+�
p/2
l E

⎡
⎢⎣ 1

Nl

∑
i∈Sl

k−1

{∥∥∥∥X̂
Ii,l
k−1,l

k−1 − X̂
Ii,l−1
k−1 ,l−1

k−1

∥∥∥∥
p

+
∥∥∥∥X̂

Ii,l,a
k−1 ,l,a

k−1 − X̂
Ii,l−1
k−1 ,l−1

k−1

∥∥∥∥
p}⎤⎥⎦

)
.

From here, one can follow the calculations in [14, Lemma D.3] to deduce that

E

⎡
⎢⎣ 1

Nl

∑
i∈Sl

k−1

∥∥∥X
i,l
k − Xi,l−1

k

∥∥∥p

⎤
⎥⎦≤

C

(
�

p
l +E

⎡
⎢⎣ 1

Nl

∑
i∈Sl

k−2

{∥∥∥Xi,l
k−1 − Xi,l−1

k−1

∥∥∥2p +
∥∥∥Xi,l,a

k−1 − Xi,l−1
k−1

∥∥∥2p +
∥∥∥Xi,l

k−1 − Xi,l,a
k−1

∥∥∥2p
}⎤⎥⎦

+�
p/2
l E

⎡
⎢⎣ 1

Nl

∑
i∈Sl

k−2

{∥∥∥Xi,l
k−1 − Xi,l−1

k−1

∥∥∥p +
∥∥∥Xi,l,a

k−1 − Xi,l−1
k−1

∥∥∥p +
∥∥∥Xi,l

k−1 − Xi,l,a
k−1

∥∥∥p}⎤⎥⎦
)

.

Application of Lemma C.1 concludes the result.

Lemma C.3. Assume (A1)–(A2). Then for any k ∈N there exists a C < +∞ such that for any
(l, Nl) ∈N

2,

E

⎡
⎣ISl

k−1
(i)

∣∣∣∣∣∣
⎧⎨
⎩ gk

(
Xi,l

k

)
∑Nl

j=1 gk
(
Xj,l

k

) − gk
(
Xi,l,a

k

)
∑Nl

j=1 gk
(
Xj,l,a

k

)
⎫⎬
⎭
∣∣∣∣∣∣
⎤
⎦

≤ C

(
�

1/2
l

Nl
+ 1

Nl

{
1 −E

[
Card

(
Sl

k−1

)
Nl

]})
.
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Proof. We have the elementary decomposition

gk
(
Xi,l

k

)
∑Nl

j=1 gk
(
Xj,l

k

) − gk
(
Xi,l,a

k

)
∑Nl

j=1 gk
(
Xj,l,a

k

) = gk
(
Xi,l

k

)− gk
(
Xi,l,a

k

)
∑Nl

j=1 gk
(
Xj,l

k

)

+ gk
(
Xi,l,a

k

) ⎛⎝∑Nl
j=1 gk

(
Xj,l,a

k

)−∑Nl
j=1 gk

(
Xj,l

k

)
∑Nl

j=1 gk
(
Xj,l,a

k

)∑Nl
j=1 gk

(
Xj,l

k

)
⎞
⎠ .

So application of the triangle inequality along with the lower and upper bounds on gk (which
are uniform in x) yields

E

⎡
⎣ISl

k−1
(i)

∣∣∣∣∣∣
⎧⎨
⎩ gk

(
Xi,l

k

)
∑Nl

j=1 gk
(
Xj,l

k

) − gk
(
Xi,l,a

k

)
∑Nl

j=1 gk
(
Xj,l,a

k

)
⎫⎬
⎭
∣∣∣∣∣∣
⎤
⎦≤

C

Nl

(
E

[
ISl

k−1
(i)
∣∣∣gk
(
Xi,l

k

)− gk
(
Xi,l,a

k

)∣∣∣]+ 1

Nl
E

⎡
⎢⎣ ∑

j∈Sl
k−1

∣∣∣gk

(
Xj,l

k

)
− gk

(
Xj,l,a

k

)∣∣∣
⎤
⎥⎦

+ 1 −E

[
Card

(
Sl

k−1

)
Nl

])
.

Using the Lipschitz property of gk along with Lemma C.1 allows one to conclude the
result. �

The following is a useful lemma that we will need below. Its proof is a matter of direct
computation and is hence omitted.

Lemma C.4. Let
(
Gl, f l, Ga, f a, Gl−1, f l−1

) ∈R
6 with

(
f l, f a, f l−1

)
non-zero; then

1
2 Gl

f l
+

1
2 Ga

f a
− Gl−1

f l−1
= 1

f l−1

(
1
2 Gl + 1

2 Ga − Gl−1
)

+ 1

f af lf l−1

(
1
2 (Gl − Ga)

(
f l−1 − f l)f a +

1
2 Ga

[
(f a − f l)

(
f l−1 − f l)− 2f l

{
1
2 f l + 1

2 f a − f l−1
}])

.

Lemma C.5. Assume (A1)–(A2). Then for any k ∈N there exists a C < +∞ such that for any
(l, Nl) ∈N

2,

E

⎡
⎣ISl

k−1
(i)

∣∣∣∣∣∣
⎧⎨
⎩

1
2 gk
(
Xi,l

k

)
∑Nl

j=1 gk
(
Xj,l

k

) +
1
2 gk
(
Xi,l,a

k

)
∑Nl

j=1 gk
(
Xj,l,a

k

) − gk
(
Xi,l−1

k

)
∑Nl

j=1 gk
(
Xj,l−1

k

)
⎫⎬
⎭
∣∣∣∣∣∣
⎤
⎦

≤ C

(
�l

Nl
+ 1

Nl

{
1 −E

[
Card

(
Sl

k−1

)
Nl

]})
.

Proof. One can apply Lemma C.4 to see that

1
2 gk
(
Xi,l

k

)
∑Nl

j=1 gk
(
Xj,l

k

) +
1
2 gk
(
Xi,l,a

k

)
∑Nl

j=1 gk
(
Xj,l,a

k

) − gk
(
Xi,l−1

k

)
∑Nl

j=1 gk
(
Xj,l−1

k

) =
4∑

j=1

Tj,
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where

T1 = 1∑Nl
j=1 gk

(
Xj,l−1

k

) { 1
2 gk

(
Xi,l

k

)
+ 1

2 gk

(
Xi,l,a

k

)
− gk

(
Xi,l−1

k

)}
,

T2 = 1

2
[∑Nl

j=1 gk

(
Xj,l

k

)][∑Nl
j=1 gk

(
Xj,l−1

k

)] (gk

(
Xi,l

k

)

−gk

(
Xi,l,a

k

))⎛⎝ Nl∑
j=1

[
gk

(
Xj,l−1

k

)
− gk

(
Xj,l

k

)]⎞⎠ ,

T3 =
gk

(
Xi,l,a

k

)
2
[∑Nl

j=1 gk

(
Xj,l,a

k

)][∑Nl
j=1 gk

(
Xj,l

k

)][∑Nl
j=1 gk

(
Xj,l−1

k

)]
⎛
⎝ Nl∑

j=1

[
gk

(
Xj,l,a

k

)
− gk

(
Xj,l

k

)]⎞⎠

×
⎛
⎝ Nl∑

j=1

[
gk

(
Xj,l−1

k

)
− gk

(
Xj,l

k

)]⎞⎠ ,

T4 = −
gk

(
Xi,l,a

k

)
[∑Nl

j=1 gk

(
Xj,l,a

k

)][∑Nl
j=1 gk

(
Xj,l−1

k

)]
⎧⎨
⎩

Nl∑
j=1

[
1
2 gk

(
Xj,l

k

)
+ 1

2 gk

(
Xj,l,a

k

)
− gk

(
Xj,l−1

k

)]⎫⎬
⎭.

The terms T1 (resp. T2) and T4 (resp. T3) can be dealt with in a similar manner, so we only
consider T1 (resp. T2).

For the case of T1 we have the upper bound

E

[
ISl

k−1
(i)T1

]
≤ C

Nl
E

[
ISl

k−1
(i)
∣∣ 1

2 gk
(
Xi,l

k

)+ 1
2 gk
(
Xi,l,a

k

)− gk
(
Xi,l−1

k

)∣∣] .

Then one can apply [11, Lemma 2.2] along with Lemmata C.1 and C.2 to deduce that

E

[
ISl

k−1
(i)T1

]
≤ C�l

Nl
.

For the case of T2 we have the upper bound

E

[
ISl

k−1
(i)T2

]
≤ C

N2
l

(
E

⎡
⎢⎣ISl

k−1
(i)
∣∣gk
(
Xi,l,a

k

)− gk
(
Xi,l

k

)∣∣ ∑
j∈Sl

k−1

[
gk
(
Xj,l−1

k

)− gk
(
Xj,l,a

k

)]∣∣∣
⎤
⎥⎦

+E

[
ISl

k−1
(i)|gk

(
Xi,l,a

k

)− gk
(
Xi,l

k

)∣∣∣(Nl − Card
(
Sl

k−1

))] )
.

For the first term on the right-hand side one can use the Lipschitz property of gk, Cauchy–
Schwarz, and Lemma C.1, and for the second term one can use the boundedness of gk, to
obtain

E

[
ISl

k−1
(i)T2

]
≤ C

(
�l

Nl
+ 1

Nl

{
1 −E

[
Card

(
Sl

k−1

)
Nl

]})
,

which concludes the proof. �
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Lemma C.6. Assume (A1)–(A2). Then for any k ∈N0 there exists a C < +∞ such that for any
(l, Nl) ∈N

2,

1 −E

[
Card

(
Sl

k

)
Nl

]
≤ C�

1/2
l .

Proof. We note that

1 −E

[
Card

(
Sl

k

)
Nl

]
= 1 −E

⎡
⎣ Nl∑

i=1

min

⎧⎨
⎩ gk

(
Xi,l

k

)
∑Nl

j=1 gk
(
Xj,l

k

) gk
(
Xi,l,a

k

)
∑Nl

j=1 gk
(
Xj,l,a

k

) , gk
(
Xi,l−1

k

)
∑Nl

j=1 gk
(
Xj,l−1

k

)
⎫⎬
⎭
⎤
⎦

+E

⎡
⎢⎣ ∑

i/∈Sl
k−1

min

⎧⎨
⎩ gk

(
Xi,l

k

)
∑Nl

j=1 gk
(
Xj,l

k

) gk
(
Xi,l,a

k

)
∑Nl

j=1 gk
(
Xj,l,a

k

) , gk
(
Xi,l−1

k

)
∑Nl

j=1 gk
(
Xj,l−1

k

)
⎫⎬
⎭
⎤
⎥⎦

≤ 1 −E

⎡
⎣ Nl∑

i=1

min

⎧⎨
⎩ gk

(
Xi,l

k

)
∑Nl

j=1 gk
(
Xj,l

k

) gk
(
Xi,l,a

k

)
∑Nl

j=1 gk
(
Xj,l,a

k

) , gk
(
Xi,l−1

k

)
∑Nl

j=1 gk
(
Xj,l−1

k

)
⎫⎬
⎭
⎤
⎦

+C

(
1 −E

[
Card

(
Sl

k−1

)
Nl

])
. (C.1)

As our proof strategy is via induction (the initialization is trivially true since Sl
0 = {1, . . . , Nl}),

we need to focus on the first term on the right-hand side of (C.1).
Now, applying twice the result that min{a, b} = 1

2 (a + b − |a − b|) for any (a, b) ∈R
2, we

easily obtain that

1 −
Nl∑

i=1

min

⎧⎨
⎩ gk

(
Xi,l

k

)
∑Nl

j=1 gk
(
Xj,l

k

) gk
(
Xi,l,a

k

)
∑Nl

j=1 gk
(
Xj,l,a

k

) , gk
(
Xi,l−1

k

)
∑Nl

j=1 gk
(
Xj,l−1

k

)
⎫⎬
⎭

= 1

2

Nl∑
i=1

{
1

2

∣∣∣∣∣ gk
(
Xi,l

k

)
∑Nl

j=1 gk
(
Xj,l

k

) − gk
(
Xi,l,a

k

)
∑Nl

j=1 gk
(
Xj,l,a

k

)
∣∣∣∣∣+

∣∣∣∣∣
1
2 gk
(
Xi,l

k

)
∑Nl

j=1 gk
(
Xj,l

k

) +
1
2 gk
(
Xi,l,a

k

)
∑Nl

j=1 gk
(
Xj,l,a

k

)

− gk
(
Xi,l−1

k

)
∑Nl

j=1 gk
(
Xj,l−1

k

) − 1

2

∣∣∣∣∣ gk
(
Xi,l

k

)
∑Nl

j=1 gk
(
Xj,l

k

) − gk
(
Xi,l,a

k

)
∑Nl

j=1 gk
(
Xj,l,a

k

)
∣∣∣∣∣
∣∣∣∣∣
}

.

To shorten the subsequent notation, we set

αi = 1

2

∣∣∣∣∣ gk
(
Xi,l

k

)
∑Nl

j=1 gk
(
Xj,l

k

) − gk
(
Xi,l,a

k

)
∑Nl

j=1 gk
(
Xj,l,a

k

)
∣∣∣∣∣

βi =
1
2 gk
(
Xi,l

k

)
∑Nl

j=1 gk
(
Xj,l

k

) +
1
2 gk
(
Xi,l,a

k

)
∑Nl

j=1 gk
(
Xj,l,a

k

) − gk
(
Xi,l−1

k

)
∑Nl

j=1 gk
(
Xj,l−1

k

) .
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In this notation, we have that

1 −E

⎡
⎣ Nl∑

i=1

min

⎧⎨
⎩ gk

(
Xi,l

k

)
∑Nl

j=1 gk
(
Xj,l

k

) gk
(
Xi,l,a

k

)
∑Nl

j=1 gk
(
Xj,l,a

k

) , gk
(
Xi,l−1

k

)
∑Nl

j=1 gk
(
Xj,l−1

k

)
⎫⎬
⎭
⎤
⎦

= 1

2
E

[ Nl∑
i=1

{αi + |βi − αi|}
]

(C.2)

≤ 1

2
E

⎡
⎢⎣ ∑

i∈Sl
k−1

{αi + |βi − αi|}
⎤
⎥⎦+ C

(
1 −E

[
Card

(
Sl

k−1

)
Nl

])
. (C.3)

Then by induction, via Lemmata C.3 and C.5, it trivially follows that

1 −E

[
Card

(
Sl

k

)
Nl

]
≤ C�

1/2
l . �

Remark C.1. Lemma C.6 is the place where the rate is lost. It is clear that this particular
quantity cannot fall faster than O(�1/2

l

)
, as the right-hand side of (C.2) is exactly equal to

Nl∑
i=1

max{αi, βi}.

The expectation of this quantity falls exactly at O(�1/2
l

)
. We could not find a way to enhance

the proof to deal with this point, so we leave it to future work.

Lemma C.7. Assume (A1)–(A2). Then for any k ∈N there exists a C < +∞ such that for any
(l, Nl, i) ∈N

2 × {1, . . . , Nl},

E

[
min

{∥∥∥X
i,l
k − Xi,l−1

k

∥∥∥p
, 1
}]

≤ C�
1/2
l .

Proof. This follows from Lemmata C.2 and C.6; see e.g. the corresponding proof in
[14, Theorem D.5]. �
Remark C.2. In a similar manner to the proofs of Lemma C.7 and [14, Theorem D.5], one can
establish, assuming (A1)–(A2), that the following hold:

• For any k ∈N there exists a C < +∞ such that for any (l, Nl, i) ∈N
2 × {1, . . . , Nl},

E

[
min

{∥∥∥Xi,l
k − Xi,l−1

k

∥∥∥p
, 1
}]

≤ C�
1/2
l .

• For any k ∈N there exists a C < +∞ such that for any (l, Nl, i) ∈N
2 × {1, . . . , Nl},

E

[
min

{∥∥∥Xi,l
k − Xi,l,a

k

∥∥∥p
, 1
}]

≤ C�
1/2
l .
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C.2. Particle convergence proofs: Lp-bounds

For a function ϕ ∈Bb(X) ∩ Lip(X), we set ‖ϕ‖ = max{‖ϕ‖∞, ‖ϕ‖Lip}, where ‖ · ‖Lip is the
Lipschitz constant. We denote the Nl-empirical measures by

η
Nl,l
k (dx) = 1

N

Nl∑
i=1

δ{Xi,l
k }(dx),

η
Nl,l−1
k (dx) = 1

N

Nl∑
i=1

δ{Xi,l−1
k }(dx),

η
Nl,l,a
k (dx) = 1

N

Nl∑
i=1

δ{Xi,l,a
k }(dx),

where k ∈N and δA(dx) is the Dirac mass on a set A. We define the predictors as follows: for
l ∈N0, ηl

1(dx) = Pl(x0, dx), and for k ≥ 2, ηl
k(dx) = ηl

k−1(gk−1Pl(dx))/ηl
k−1(gk−1).

Lemma C.8. Assume (A1)–(A2). Then for any (k, p) ∈N× [1, ∞) there exists a C < +∞
such that for any (l, Nl, ϕ) ∈N

2 ×Bb(X) ∩ Lip(X),

E

[∣∣∣[ηNl,l
k − η

Nl,l−1
k

]
(ϕ) − [ηl

k − ηl−1
k

]
(ϕ)
∣∣∣p]≤ C‖ϕ‖p

�

1
2
l

N
p
2
l

.

Proof. The proof is by induction, with initialization following easily from the
Marcinkiewicz–Zygmund (MZ) inequality (the case p ∈ [1, 2) can be dealt with using the
bound p ∈ [2, ∞) and Jensen’s inequality) and strong convergence results for Euler discretiza-
tions. We therefore proceed to the induction step. We have that

E

[∣∣∣[ηNl,l
k − η

Nl,l−1
k

]
(ϕ) − [ηl

k − ηl−1
k

]
(ϕ)
∣∣∣p]1/p ≤ T1 + T2,

where

T1 =E

[∣∣∣[ηNl,l
k − η

Nl,l−1
k

]
(ϕ) −E

[[
η

Nl,l
k − η

Nl,l−1
k

]
(ϕ)|F l

k−1

]∣∣∣p]1/p
,

T2 =E

[∣∣∣E[[ηNl,l
k − η

Nl,l−1
k

]
(ϕ)
∣∣∣Fk−1

]
−
[
ηl

k − ηl−1
k

]
(ϕ)
∣∣∣p]1/p

.

We deal with the two terms in turn. For the case of T1, one can apply the (conditional) MZ
inequality to obtain

T1 ≤ C√
Nl

E

[∣∣ϕ(X1,l
k

)− ϕ
(
X1,l−1

k

)∣∣p]1/p
.

Using ϕ ∈Bb(X) ∩ Lip(X) along with Remark C.2 yields

T1 ≤ C‖ϕ‖�

1
2p
l√

Nl
. (C.4)
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For T2, we first note that

E
[[

η
Nl,l
k − η

Nl,l−1
k

]
(ϕ)|F l

k−1

]− [ηl
k − ηl−1

k

]
(ϕ)

=
{

η
Nl,l
k−1

(
gk−1Pl(ϕ)

)
η

Nl,l
k−1(gk−1)

− η
Nl,l−1
k−1

(
gk−1Pl−1(ϕ)

)
η

Nl,l−1
k−1 (gk−1)

}
−
{

ηl
k−1

(
gk−1Pl(ϕ)

)
ηl

k−1(gk−1)
− ηl−1

k−1

(
gk−1Pl−1(ϕ)

)
ηl−1

k−1(gk−1)

}
,

where we recall that Pl (resp. Pl−1) represents the truncated Milstein kernel over unit time with
discretization level �l (resp. �l−1). This can be further decomposed to

E
[[

η
Nl,l
k − η

Nl,l−1
k

]
(ϕ)|Fk−1

]− [ηl
k − ηl−1

k

]
(ϕ)

=
{

η
Nl,l
k−1

(
gk−1

[
Pl − P

]
(ϕ)
)

η
Nl,l
k−1(gk−1)

− ηl
k−1

(
gk−1

[
Pl − P

]
(ϕ)
)

ηl
k−1(gk−1)

}

−
{

ηl
k−1

(
gk−1

[
Pl−1 − P

]
(ϕ)
)

ηl
k−1(gk−1)

− ηl−1
k−1

(
gk−1

[
Pl−1 − P

]
(ϕ)
)

ηl−1
k−1(gk−1)

}

+
{

η
Nl,l
k−1

(
gk−1P(ϕ)

)
η

Nl,l
k−1(gk−1)

− η
Nl,l−1
k−1

(
gk−1P(ϕ)

)
η

Nl,l−1
k−1 (gk−1)

}
−
{

ηl
k−1

(
gk−1P(ϕ)

)
ηl

k−1(gk−1)
− ηl−1

k−1

(
gk−1P(ϕ)

)
ηl−1

k−1(gk−1)

}
.

Therefore we have that

T2 ≤ T3 + T4 + T5,

where

T3 =E

[∣∣∣∣∣η
Nl,l
k−1

(
gk−1

[
Pl − P

]
(ϕ)
)

η
Nl,l
k−1(gk−1)

− ηl
k−1

(
gk−1

[
Pl − P

]
(ϕ)
)

ηl
k−1(gk−1)

∣∣∣∣∣
p]1/p

, (C.5)

T4 =E

[∣∣∣∣∣η
Nl,l−1
k−1

(
gk−1

[
Pl−1 − P

]
(ϕ)
)

η
Nl,l−1
k−1 (gk−1)

− ηl−1
k−1

(
gk−1

[
Pl−1 − P

]
(ϕ)
)

ηl−1
k−1(gk−1)

∣∣∣∣∣
p]1/p

,

T5 =E

[∣∣∣∣∣
{

η
Nl,l
k−1

(
gk−1P(ϕ)

)
η

Nl,l
k−1(gk−1)

− η
Nl,l−1
k−1

(
gk−1P(ϕ)

)
η

Nl,l−1
k−1 (gk−1)

}
−

{
ηl

k−1

(
gk−1P(ϕ)

)
ηl

k−1(gk−1)
− ηl−1

k−1

(
gk−1P(ϕ)

)
ηl−1

k−1(gk−1)

} ∣∣∣∣∣
p]1/p

.

The quantities T3 and T4 can be treated using similar calculations, so we only consider T3. For
the case of T3, clearly we have the upper bound

T3 ≤ T6 + T7,
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where

T6 =E

[∣∣∣∣∣η
Nl,l
k−1

(
gk−1

[
Pl − P

]
(ϕ)
)− ηl

k−1

(
gk−1

[
Pl − P

]
(ϕ)
)

η
Nl,l
k−1(gk−1)

∣∣∣∣∣
p]1/p

,

T7 =E

⎡
⎢⎣
∣∣∣∣∣∣
ηl

k−1

(
gk−1

[
Pl − P

]
(ϕ)
)[

ηl
k−1 − η

Nl,l
k−1

]
(gk−1)

η
Nl,l
k−1(gk−1)ηl

k−1(gk−1)

∣∣∣∣∣∣
p⎤⎥⎦

1/p

.

For T6 we have that

T6 ≤ CE

[∣∣∣[ηNl,l
k−1 − ηl

k−1

](
gk−1

[
Pl − P

]
(ϕ)
)∣∣∣p]1/p

.

By using standard results for particle filters (e.g. [14, Proposition C.6]) we have

T6 ≤ C‖[Pl − P
]
(ϕ)‖∞√

Nl
.

Then, using standard results for weak errors (the truncated Milstein scheme is a first-order
method), we have

T7 ≤ C‖ϕ‖�l√
Nl

.

For T7, again using weak errors, we have

T7 ≤ C‖ϕ‖�lE

[∣∣∣[ηl
k−1 − η

Nl,l
k−1

]
(gk−1)

∣∣∣p]1/p
,

and again using standard results for particle filters, we obtain

T7 ≤ C‖ϕ‖�l√
Nl

.

Hence we have shown that

max{T3, T4} ≤ C‖ϕ‖�l√
Nl

. (C.6)

For T5, one can apply [14, Lemma C.5] to show that

T5 ≤
6∑

j=1

Tj+7,
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where

T8 =E

[∣∣∣∣∣ 1

η
Nl,l
k−1(gk−1)

{[
η

Nl,l
k−1 − η

Nl,l−1
k−1

](
gk−1P(ϕ)

)
−
[
ηl

k−1 − ηl−1
k−1

](
gk−1P(ϕ)

)}∣∣∣∣∣
p]1/p

,

T9 =E

⎡
⎢⎣
∣∣∣∣∣∣

η
Nl,l−1
k−1

(
gk−1P(ϕ)

)
η

Nl,l
k−1(gk−1)ηNl,l−1

k−1 (gk−1)

{[
η

Nl,l
k−1 − η

Nl,l−1
k−1

]
(gk−1) −

[
ηl

k−1 − ηl−1
k−1

]
(gk−1)

}∣∣∣∣∣∣
p⎤⎥⎦

1/p

,

T10 =E

[∣∣∣∣∣ 1

η
Nl,l
k−1(gk−1)ηl

k−1(gk−1)

{[
ηl

k−1 − η
Nl,l
k−1

]
(gk−1)

}{[
ηl

k−1 − ηl−1
k−1

](
gk−1P(ϕ)

)}∣∣∣∣∣
p]1/p

,

T11 =E

[∣∣∣∣∣ 1

η
Nl,l
k−1(gk−1)ηNl,l−1

k−1 (gk−1)

{[
η

Nl,l−1
k−1 − ηl−1

k−1

](
gk−1P(ϕ)

)}{[
ηl

k−1 − ηl−1
k−1

]
(gk−1)

}∣∣∣∣∣
p]1/p

,

T12 =E

⎡
⎢⎣
∣∣∣∣∣∣

ηl−1
k−1

(
gk−1P(ϕ)

)
ηl

k−1(gk−1)ηNl,l−1
k−1 (gk−1)ηl−1

k−1(gk−1)

{[
η

Nl,l−1
k−1 − ηl−1

k−1

]
(gk−1)

}{[
ηl

k−1 − ηl−1
k−1

]
(gk−1)

}∣∣∣∣∣∣
p⎤⎥⎦

1/p

,

T13 =E

⎡
⎢⎣
∣∣∣∣∣∣

ηl−1
k−1

(
gk−1P(ϕ)

)
η

Nl,l
k−1(gk−1)ηl

k−1(gk−1)ηNl,l−1
k−1 (gk−1)

{[
η

Nl,l
k−1 − ηl

k−1

]
(gk−1)

}{[
ηl

k−1 − ηl−1
k−1

]
(gk−1)

}∣∣∣∣∣∣
p⎤⎥⎦

1/p

.

Since T8 and T9 can be bounded using similar approaches, we consider only T8. Similarly,
T10, . . . , T13 can be bounded in almost the same way, so we consider only T10. For T8 we have
the upper bound

T8 ≤ CE

[∣∣∣{[ηNl,l
k−1 − η

Nl,l−1
k−1

](
gk−1P(ϕ)

)− [ηl
k−1 − ηl−1

k−1

](
gk−1P(ϕ)

)}∣∣∣p]1/p
.

Since gk−1P(ϕ) ∈Bb(X) ∩ Lip(X) (see e.g. [7, Equation (2.6)]), it follows by the induction
hypothesis that

T8 ≤ C‖ϕ‖�

1
2p
l√

Nl
.

For T10, we have the upper bound

T10 ≤ C
∣∣[ηl

k−1 − ηl−1
k−1

](
gk−1P(ϕ)

)∣∣E[∣∣([ηl
k−1 − η

Nl,l
k−1

]
(gk−1)

)∣∣p]1/p.

Then, using [14, Lemma D.2] and standard results for particle filters, we have

T10 ≤ C‖ϕ‖�l√
Nl

.

Therefore we deduce that

T5 ≤ C‖ϕ‖�

1
2p
l√

Nl
. (C.7)

The proof is then easily completed by combining (C.4), (C.6), and (C.7). �
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Remark C.3. One can also deduce the following result using an argument that is similar to (but
simpler than) the proof of Lemma C.8. Assume (A1)–(A2). Then for any (k, p) ∈N× [1, ∞)
there exists a C < +∞ such that for any (l, Nl, ϕ) ∈N

2 ×Bb(X) ∩ Lip(X),

E

[∣∣[ηNl,l
k − η

Nl,l,a
k

]
(ϕ)
∣∣p]≤ C‖ϕ‖p

�

1
2
l

N
p
2
l

.

Below, C2
b (X,R) denotes the collection of twice continuously differentiable functions from

X to R with bounded derivatives of orders 1 and 2.

Lemma C.9. Assume (A1)–(A2). Then for any (k, p, ϕ) ∈N× [1, ∞) ×Bb(X) ∩ C2
b (X,R)

there exists a C < +∞ such that for any (l, Nl) ∈N
2,

E

[∣∣[ 1
2η

Nl,l
k + 1

2η
N,l,a
k − η

Nl,l−1
k

]
(ϕ) − [ηl

k − ηl−1
k

]
(ϕ)|p

]
≤ C

⎛
⎜⎝ �

1
2
l

Np/2
l

+ �

1
2
l

Np
l

⎞
⎟⎠ .

Proof. The proof is by induction. Initialization follows easily by the MZ inequality and [11,
Lemma 2.2, Theorem 4.10] (the case p ∈ [1, 2) can also be covered with the theory of [11]), so
we proceed immediately to the induction step.

As in the proof of Lemma C.8, one can add and subtract the conditional expectation to
obtain an upper bound

E

[∣∣[ 1
2η

Nl,l
k + 1

2η
N,l,a
k − η

Nl,l−1
k

]
(ϕ) − [ηl

k − ηl−1
k

]
(ϕ)
∣∣p]1/p ≤ T1 + T2,

where

T1 =E

[
|[ 1

2η
Nl,l
k + 1

2η
N,l,a
k − η

Nl,l−1
k ](ϕ) −E[ 1

2η
Nl,l
k + 1

2η
N,l,a
k − η

Nl,l−1
k ](ϕ)|Fk−1]|p

]1/p
,

T2 =E

[
|E[ 1

2η
Nl,l
k + 1

2η
N,l,a
k − η

Nl,l−1
k ](ϕ)|Fk−1] − [ηl

k − ηl−1
k ](ϕ)|p

]1/p
.

For T1 one can use the conditional MZ inequality along with the boundedness of ϕ, [11,
Lemma 2.2], Lemma C.7, and Remark C.2 to deduce that

T1 ≤ C�
1/(2p)
l√
Nl

. (C.8)

The case of T2 is more challenging. We have the decomposition

T2 ≤ T3 + T4,
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where

T3 =E

[∣∣∣∣∣
{

1
2η

Nl,l
k−1

(
gk−1

[
Pl − P

]
(ϕ)
)

η
Nl,l
k−1(gk−1)

+
1
2η

Nl,l,a
k−1

(
gk−1

[
Pl − P

]
(ϕ)
)

η
Nl,l,a
k−1 (gk−1)

− η
Nl,l−1
k−1

(
gk−1

[
Pl−1 − P

]
(ϕ)
)

η
Nl,l−1
k−1 (gk−1)

}

−
{

1
2ηl

k−1

(
gk−1

[
Pl − P

]
(ϕ)
)

ηl
k−1(gk−1)

+
1
2ηl

k−1

(
gk−1

[
Pl − P

]
(ϕ)
)

ηl
k−1(gk−1)

− ηl−1
k−1

(
gk−1

[
Pl−1 − P

]
(ϕ)
)

ηl−1
k−1(gk−1)

}∣∣∣∣∣
p]1/p

,

T4 =E

[∣∣∣∣∣
{

1
2η

Nl,l
k−1

(
gk−1P(ϕ)

)
η

Nl,l
k−1(gk−1)

+
1
2η

Nl,l,a
k−1

(
gk−1P(ϕ)

)
η

Nl,l,a
k−1 (gk−1)

− η
Nl,l−1
k−1

(
gk−1P(ϕ)

)
η

Nl,l−1
k−1 (gk−1)

}

−
{

1
2ηl

k−1

(
gk−1P(ϕ)

)
ηl

k−1(gk−1)
+

1
2ηl

k−1

(
gk−1P(ϕ)

)
ηl

k−1(gk−1)
− ηl−1

k−1

(
gk−1P(ϕ)

)
ηl−1

k−1(gk−1)

}∣∣∣∣∣
p]1/p

. (C.9)

For T3 one has the upper bound

T3 ≤
3∑

j=1

Tj+4,

where

T5 =E

[∣∣∣∣∣
{

1
2η

Nl,l
k−1

(
gk−1

[
Pl − P

]
(ϕ)
)

η
Nl,l
k−1(gk−1)

−
1
2ηl

k−1

(
gk−1

[
Pl − P

]
(ϕ)
)

ηl
k−1(gk−1)

∣∣∣∣∣
p]1/p

,

T6 =E

[∣∣∣∣∣
{

1
2η

Nl,l,a
k−1

(
gk−1

[
Pl − P

]
(ϕ)
)

η
Nl,l,a
k−1 (gk−1)

−
1
2ηl

k−1

(
gk−1

[
Pl − P

]
(ϕ)
)

ηl
k−1(gk−1)

∣∣∣∣∣
p]1/p

,

T7 =E

[∣∣∣∣∣
{

1
2η

Nl,l−1
k−1

(
gk−1

[
Pl−1 − P

]
(ϕ)
)

η
Nl,l−1
k−1 (gk−1)

−
1
2ηl−1

k−1

(
gk−1

[
Pl−1 − P

]
(ϕ)
)

ηl−1
k−1(gk−1)

∣∣∣∣∣
p]1/p

.

Each of these terms can be controlled (almost) exactly as is done for (C.5) in the proof of
Lemma C.8, so we do not give the proof; rather, we simply state that

T3 ≤ C�
1/2
l√
Nl

. (C.10)

For T4 one can apply Lemma C.4 along with Minkowski to deduce that

T4 ≤
4∑

j=1

Tj+7,
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where

T8 =E

[∣∣∣∣∣ 1

η
Nl,l−1
k−1 (gk−1)

[
1
2η

Nl,l
k−1 + 1

2η
Nl,l,a
k−1 − η

Nl,l−1
k−1

](
gk−1P(ϕ)

)

− 1

ηl−1
k−1(gk−1)

[
1
2ηl

k−1 + 1
2ηl

k−1 − ηl−1
k−1

](
gk−1P(ϕ)

)∣∣∣∣∣
p]1/p

,

T9 =E

[∣∣∣∣∣ 1

η
Nl,l
k−1(gk−1)ηNl,l−1

k−1 (gk−1)
1
2

{[
η

Nl,l
k−1 − η

Nl,l,a
k−1

](
gk−1P(ϕ)

)}{[
η

Nl,l−1
k−1

− η
Nl,l
k−1

]
(gk−1)

}∣∣∣∣∣
p]1/p

,

T10 =E

[∣∣∣∣∣
1
2η

Nl,l,a
k−1

(
gk−1P(ϕ)

)
η

Nl,l,a
k−1 (gk−1)ηNl,l

k−1(gk−1)ηNl,l−1
k−1 ](gk−1)

{[
η

Nl,l,a
k−1 − η

Nl,l
k−1

]
(gk−1)

}{[
η

Nl,l−1
k−1

− η
Nl,l
k−1

]
(gk−1)

}∣∣∣∣∣
p]1/p

,

T11 =E

[∣∣∣∣∣ η
Nl,l,a
k−1

(
gk−1P(ϕ)

)
η

Nl,l,a
k−1 (gk−1)ηNl,l−1

k−1 (gk−1)

[
1
2η

Nl,l
k−1 + 1

2η
Nl,l,a
k−1 − η

Nl,l−1
k−1

]
(gk−1)

− ηl
k−1

(
gk−1P(ϕ)

)
ηl

k−1(gk−1)ηl−1
k−1(gk−1)

×
[

1
2ηl

k−1 + 1
2ηl

k−1 − ηl−1
k−1

]
(gk−1)

∣∣∣∣∣
p]1/p

.

As the arguments for dealing with T8 (resp. T9) and T11 (resp. T10) are similar, we only prove
bounds for T8 (resp. T9). For T8 we have the upper bound

T8 ≤ T12 + T13,

where

T12 =E

[∣∣∣∣∣ 1

η
Nl,l−1
k−1 (gk−1)

{[
1
2η

Nl,l
k−1 + 1

2η
Nl,l,a
k−1 − η

Nl,l−1
k−1

](
gk−1P(ϕ)

)− [ 1
2ηl

k−1 + 1
2ηl

k−1

− ηl−1
k−1

](
gk−1P(ϕ)

)}∣∣∣∣∣
p]1/p

,

T13 =E

[∣∣∣∣∣
[

1
2ηl

k−1 + 1
2ηl

k−1 − ηl−1
k−1

](
gk−1P(ϕ)

)
η

Nl,l−1
k−1 (gk−1)ηl−1

k−1(gk−1)

[
ηl−1

k−1 − η
Nl,l−1
k−1

]
(gk−1)

∣∣∣∣∣
p]1/p

.

For T12 one can use the lower bound on gk−1 along with gk−1P(ϕ) ∈ C2
b (X,R) (see e.g. [23,

Corollary 2.2.8]) and the induction hypothesis to obtain

T12 ≤ C�
1/(2p)
l√
Nl

.
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For T13 we apply [14, Lemma D.2] and standard results for particle filters to obtain

T13 ≤ C�
1/2
l√
Nl

.

Thus

T8 ≤ C�
1/(2p)
l√
Nl

.

For T9 we have the upper bound

T9 ≤ T14 + T15,

where

T14 =E

[∣∣∣∣∣ 1

η
Nl,l
k−1(gk−1)ηNl,l−1

k−1 (gk−1)
1
2

{[
η

Nl,l
k−1 − η

Nl,l,a
k−1

](
gk−1P(ϕ)

)}{[
η

Nl,l−1
k−1 − η

Nl,l
k−1

]
(gk−1)

−
[
ηl−1

k−1 − ηl
k−1

]
(gk−1)

}∣∣∣∣∣
p]1/p

,

T15 =E

[∣∣∣∣∣ 1

η
Nl,l
k−1(gk−1)ηNl,l−1

k−1 (gk−1)
1
2

{[
η

Nl,l
k−1 − η

Nl,l,a
k−1

](
gk−1P(ϕ)

)}{[
ηl−1

k−1 − ηl
k−1

]
(gk−1)

}∣∣∣∣∣
p]1/p

.

For T14 one can use the lower bound on gk−1, Cauchy–Schwarz, Remark C.3, and Lemma C.8
to obtain

T14 ≤ C�
1/(2p)
l

Nl
.

For T15 one can use the lower bound on gk−1, [14, Lemma D.2], and Remark C.3 to obtain

T15 ≤ C√
Nl

(
�

p+1/2
l

)1/p
;

thus,

T9 ≤ C�
1/(2p)
l√
Nl

+ C�
1/(2p)
l

Nl
.

Therefore we have shown that

T4 ≤ C√
Nl

⎛
⎜⎝�

1/2
l + �

1
2
l

Np/2
l

⎞
⎟⎠

1/p

. (C.11)

The proof can be completed by combining the bounds (C.8), (C.10), and (C.11). �
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Theorem 2. Assume (A1)–(A2). Then for any (k, p, ϕ) ∈N× [1, ∞) ×Bb(X) ∩ C2
b (X,R)

there exists a C < +∞ such that for any (l, Nl) ∈N
2,

E

[∣∣[π l
k − π l−1

k

]Nl (ϕ) − [π l
k − π l−1

k

]
(ϕ)
∣∣p]≤ C

⎛
⎜⎝�

1/2
l

Np/2
l

+ �

1
2
l

Np
l

⎞
⎟⎠ .

Proof. This follows from Lemma C.8, Lemma C.9, Remark C.3, and a similar approach to
controlling (C.9) as in the proof of Lemma C.9; we omit the details. �

C.3. Particle convergence proofs: bias bounds

Lemma C.10. Assume (A1)–(A2). Then for any k ∈N there exists a C < +∞ such that for any
(l, Nl, ϕ) ∈N

2 ×Bb(X) ∩ Lip(X),

∣∣∣E [[ηNl,l
k − η

Nl,l−1
k

]
(ϕ) − [ηl

k − ηl−1
k

]
(ϕ)
]∣∣∣≤ C‖ϕ‖�

1
4
l

Nl
.

Proof. The proof is by induction. The case k = 1 is trivial as there is no bias, so we proceed
to the induction step. Following the proof of Lemma C.8, we have the decomposition∣∣∣E [[ηNl,l

k − η
Nl,l−1
k

]
(ϕ) − [ηl

k − ηl−1
k

]
(ϕ)
]∣∣∣≤ T1 + T2 + T3,

where

T1 =
∣∣∣∣∣E
[

η
Nl,l
k−1

(
gk−1

[
Pl − P

]
(ϕ)
)

η
Nl,l
k−1(gk−1)

− ηl
k−1

(
gk−1

[
Pl − P

]
(ϕ)
)

ηl
k−1(gk−1)

]∣∣∣∣∣ ,

T2 =
∣∣∣∣∣E
[

η
Nl,l−1
k−1

(
gk−1

[
Pl−1 − P

]
(ϕ)
)

η
Nl,l−1
k−1 (gk−1)

− ηl−1
k−1

(
gk−1

[
Pl−1 − P

]
(ϕ)
)

ηl−1
k−1(gk−1)

]∣∣∣∣∣ ,

T3 =
∣∣∣∣∣E
[{

η
Nl,l
k−1

(
gk−1P(ϕ)

)
η

Nl,l
k−1(gk−1)

− η
Nl,l−1
k−1

(
gk−1P(ϕ)

)
η

Nl,l−1
k−1 (gk−1)

}

−
{

ηl
k−1

(
gk−1P(ϕ)

)
ηl

k−1(gk−1)
− ηl−1

k−1

(
gk−1P(ϕ)

)
ηl−1

k−1(gk−1)

}]∣∣∣∣∣.
T1 and T2 can be bounded using almost the same calculations, so we consider only T1. The

latter can easily be bounded above by
∑4

j=1 Tj+3, where

T4 =
∣∣∣∣∣∣E
⎡
⎣
⎧⎨
⎩ 1

η
Nl,l
k−1(gk−1)

− 1

ηl
k−1(gk−1)

⎫⎬
⎭
[
η

Nl,l
k−1 − ηl

k−1

](
gk−1[Pl − P](ϕ)

)⎤⎦
∣∣∣∣∣∣ ,

T5 =
∣∣∣∣∣E
[

1

ηl
k−1(gk−1)

[
η

Nl,l
k−1 − ηl

k−1

](
gk−1[Pl − P](ϕ)

)]∣∣∣∣∣ ,
T6 =

∣∣∣∣∣∣E
⎡
⎣ηl

k−1

(
gk−1[Pl − P](ϕ)

)⎧⎨
⎩ 1

η
Nl,l
k−1(gk−1)ηl

k−1(gk−1)
− 1

ηl
k−1(gk−1)2

⎫⎬
⎭
[
ηl

k−1 − η
Nl,l
k−1

]
(gk−1)

⎤
⎦
∣∣∣∣∣∣ ,

T7 =
∣∣∣∣∣∣E
⎡
⎣ηl

k−1

(
gk−1[Pl − P](ϕ)

)
ηl

k−1(gk−1)2

[
ηl

k−1 − η
Nl,l
k−1

]
(gk−1)

⎤
⎦
∣∣∣∣∣∣ .

https://doi.org/10.1017/apr.2024.12 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2024.12


Antithetic multilevel particle filters 35

For both T4 and T6, one can use the Cauchy–Schwarz inequality, along with [14, Proposition
C.6], the lower bound on gk−1, and weak-error results for diffusions to show that

max{T4, T6} ≤ C‖ϕ‖�l

Nl
.

For T5 and T7 one can use standard bias bounds for particle filters (see e.g. the proof of [14,
Lemma C.3]), the lower bound on gk−1, and weak-error results for diffusions to obtain

max{T5, T7} ≤ C‖ϕ‖�l

Nl
;

hence

max{T1, T2} ≤ C‖ϕ‖�l

Nl
. (C.12)

For T3, using [14, Lemma C.5] we have the upper bound T3 ≤∑6
j=1 Tj+7, where

T8 =
∣∣∣∣∣E
[

1

η
Nl,l
k−1(gk−1)

{[
η

Nl,l
k−1 − η

Nl,l−1
k−1

](
gk−1P(ϕ)

)− [ηl
k−1 − ηl−1

k−1

](
gk−1P(ϕ)

)}]∣∣∣∣∣ ,

T9 =
∣∣∣∣∣E
[

η
Nl,l−1
k−1

(
gk−1P(ϕ)

)
η

Nl,l
k−1(gk−1)ηNl,l−1

k−1 (gk−1)

{[
η

Nl,l
k−1 − η

Nl,l−1
k−1

]
(gk−1) −

[
ηl

k−1 − ηl−1
k−1

]
(gk−1)

}]∣∣∣∣∣ ,

T10 =
∣∣∣∣∣E
[

1

η
Nl,l
k−1(gk−1)ηl

k−1(gk−1)

{[
ηl

k−1 − η
Nl,l
k−1

]
(gk−1)

}
{
[
ηl

k−1 − ηl−1
k−1

](
gk−1P(ϕ)

)}
]∣∣∣∣∣ ,

T11 =
∣∣∣∣∣E
[

1

η
Nl,l
k−1(gk−1)ηNl,l−1

k−1 (gk−1)

{[
η

Nl,l−1
k−1 − ηl−1

k−1

](
gk−1P(ϕ)

)}{[
ηl

k−1 − ηl−1
k−1

]
(gk−1)

}]∣∣∣∣∣ ,

T12 =
∣∣∣∣∣E
[

ηl−1
k−1

(
gk−1P(ϕ)

)
ηl

k−1(gk−1)ηNl,l−1
k−1 (gk−1)ηl−1

k−1(gk−1)

{[
η

Nl,l−1
k−1 − ηl−1

k−1

]
(gk−1)

}{[
ηl

k−1 − ηl−1
k−1

]
(gk−1)

}]∣∣∣∣∣ ,

T13 =
∣∣∣∣∣E
[

ηl−1
k−1

(
gk−1P(ϕ)

)
η

Nl,l
k−1(gk−1)ηl

k−1(gk−1)ηNl,l−1
k−1 (gk−1)

{[
η

Nl,l
k−1 − ηl

k−1

]
(gk−1)

}{[
ηl

k−1 − ηl−1
k−1

]
(gk−1)

}]∣∣∣∣∣ .

Since T8 and T9 can be bounded using similar approaches, we consider only T8. Similarly,
T10, . . . , T13 can be bounded in almost the same way, so we consider only T10. For T8 one has
T8 ≤ T14 + T15, where

T14 =
∣∣∣∣∣E
[{

1

η
Nl,l
k−1(gk−1)

− 1

ηl
k−1(gk−1)

}{[
η

Nl,l
k−1 − η

Nl,l−1
k−1

](
gk−1P(ϕ)

)

−
[
ηl

k−1 − ηl−1
k−1

](
gk−1P(ϕ)

)}]∣∣∣∣∣,
T15 =

∣∣∣∣∣E
[

1

ηl
k−1(gk−1)

{[
η

Nl,l
k−1 − η

Nl,l−1
k−1

](
gk−1P(ϕ)

)− [ηl
k−1 − ηl−1

k−1

](
gk−1P(ϕ)

)}]∣∣∣∣∣ .
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For T14 one can use Cauchy–Schwarz, the lower bound on gk−1, [14, Proposition C.6], and
Lemma C.8. For T15 we can apply the lower bound on gk−1 and the induction hypothesis.
These two arguments give that

max{T14, T15} ≤ C‖ϕ‖�

1
4
l

Nl

and hence that

T8 ≤ C‖ϕ‖�

1
4
l

Nl
.

For T10 we have the upper bound T10 ≤ T16 + T17, where

T16 =
∣∣∣∣∣E
[{

1

η
Nl,l
k−1(gk−1)ηl

k−1(gk−1)
− 1

ηl
k−1(gk−1)2

}{[
ηl

k−1 − η
Nl,l
k−1

]
(gk−1)

}

×
{[

ηl
k−1 − ηl−1

k−1

](
gk−1P(ϕ)

)}]∣∣∣∣∣,
T17 =

∣∣∣∣∣E
[

1

ηl
k−1(gk−1)2

{[
ηl

k−1 − η
Nl,l
k−1

]
(gk−1)

}{[
ηl

k−1 − ηl−1
k−1

](
gk−1P(ϕ)

)}]∣∣∣∣∣ .

For T15 one can use Cauchy–Schwarz, the lower bound on gk−1, [14, Proposition C.6] (twice),
and [14, Lemma D.2]. For T16 we can apply the lower bound on gk−1, [14, Lemma D.2], and
bias results for particle filters. These two arguments give

max{T15, T16} ≤ C‖ϕ‖�l

Nl

and thus

T9 ≤ C‖ϕ‖�l

Nl
.

Thus we have proved that

T2 ≤ C‖ϕ‖�

1
4
l

Nl
. (C.13)

The proof can be completed by combining (C.12) and (C.13). �
Remark C.4. Using the approach in the proof of Lemma C.10, one can also prove the follow-
ing result. Assume (A1)–(A2). Then for any k ∈N there exists a C < +∞ such that for any
(l, Nl, ϕ) ∈N

2 ×Bb(X) ∩ Lip(X),

∣∣∣E [[ηNl,l
k − η

Nl,a
k

]
(ϕ)
]∣∣∣≤ C‖ϕ‖�

1
4
l

Nl
.
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Lemma C.11 . Assume (A1)–(A2). Then for any (k, ϕ) ∈N×Bb(X) ∩ C2
b (X,R) there exists a

C < +∞ such that for any (l, Nl, ε) ∈N
2 × (0, 1/2),

∣∣∣E [[ 1
2η

Nl,l
k + 1

2η
N,l,a
k − η

Nl,l−1
k

]
(ϕ) −

[
ηl

k − ηl−1
k

]
(ϕ)
]∣∣∣≤ C�

1
4
l

Nl
.

Proof. The proof is by induction. The case k = 1 is trivial as there is no bias, so we proceed
to the induction step. Following the proof of Lemma C.9, we have the decomposition∣∣∣E [[ 1

2η
Nl,l
k + 1

2η
N,l,a
k − η

Nl,l−1
k

]
(ϕ) −

[
ηl

k − ηl−1
k

]
(ϕ)
]∣∣∣≤ T1 + T2,

where

T1 =
∣∣∣∣∣E
[{

1
2η

Nl,l
k−1

(
gk−1

[
Pl − P

]
(ϕ)
)

η
Nl,l
k−1(gk−1)

+
1
2η

Nl,l,a
k−1

(
gk−1

[
Pl − P

]
(ϕ)
)

η
Nl,l,a
k−1 (gk−1)

− η
Nl,l−1
k−1

(
gk−1

[
Pl−1 − P

]
(ϕ)
)

η
Nl,l−1
k−1 (gk−1)

}
−

{
1
2ηl

k−1

(
gk−1

[
Pl − P

]
(ϕ)
)

ηl
k−1(gk−1)

+
1
2ηl

k−1

(
gk−1

[
Pl − P

]
(ϕ)
)

ηl
k−1(gk−1)

− ηl−1
k−1

(
gk−1

[
Pl−1 − P

]
(ϕ)
)

ηl−1
k−1(gk−1)

}]∣∣∣∣∣,

T2 =
∣∣∣∣∣E
[{

1
2η

Nl,l
k−1

(
gk−1P(ϕ)

)
η

Nl,l
k−1(gk−1)

+
1
2η

Nl,l,a
k−1

(
gk−1P(ϕ)

)
η

Nl,l,a
k−1 (gk−1)

− η
Nl,l−1
k−1

(
gk−1P(ϕ)

)
η

Nl,l−1
k−1 (gk−1)

}

−
{

1
2ηl

k−1

(
gk−1P(ϕ)

)
ηl

k−1(gk−1)
+

1
2ηl

k−1

(
gk−1P(ϕ)

)
ηl

k−1(gk−1)
− ηl−1

k−1

(
gk−1P(ϕ)

)
ηl−1

k−1(gk−1)

}]∣∣∣∣∣. (C.14)

For T1 one can match the empirical and limit terms across the l, a, l − 1 and adopt the same
proof approach as used for T1 in the proof of Lemma C.10; since the proof would be repeated,
we omit it and remark only that

T1 ≤ C�
1/2
l

Nl
. (C.15)

For T2, using Lemma C.4 and the triangle inequality, we have that T2 ≤∑4
j=1 Tj+2,

where

T3 =
∣∣∣∣∣E
[

1

η
Nl,l−1
k−1 (gk−1)

[
1
2η

Nl,l
k−1 + 1

2η
Nl,l,a
k−1 − η

Nl,l−1
k−1

](
gk−1P(ϕ)

)− 1

ηl−1
k−1(gk−1)

[
1
2ηl

k−1

+ 1
2ηl

k−1 − ηl−1
k−1

](
gk−1P(ϕ)

)]∣∣∣∣∣,
T4 =

∣∣∣∣∣E
[

1

η
Nl,l
k−1(gk−1)ηNl,l−1

k−1 (gk−1)
1
2

{[
η

Nl,l
k−1 − η

Nl,l,a
k−1

](
gk−1P(ϕ)

)}{[
η

Nl,l−1
k−1 − η

Nl,l
k−1

]
(gk−1)

}]∣∣∣∣∣,
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T5 =
∣∣∣∣∣E
[

1
2η

Nl,l,a
k−1

(
gk−1P(ϕ)

)
η

Nl,l,a
k−1 (gk−1)ηNl,l

k−1(gk−1)ηNl,l−1
k−1 ](gk−1)

{[
η

Nl,l,a
k−1 − η

Nl,l
k−1

]
(gk−1)

}{[
η

Nl,l−1
k−1

− η
Nl,l
k−1

]
(gk−1)

}]∣∣∣∣∣,
T6 =

∣∣∣∣∣E
[

η
Nl,l,a
k−1

(
gk−1P(ϕ)

)
η

Nl,l,a
k−1 (gk−1)ηNl,l−1

k−1 (gk−1)

[
1
2η

Nl,l
k−1 + 1

2η
Nl,l,a
k−1 − η

Nl,l−1
k−1

]
(gk−1)

− ηl
k−1

(
gk−1P(ϕ)

)
ηl

k−1(gk−1)ηl−1
k−1(gk−1)

×
[

1
2ηl

k−1 + 1
2ηl

k−1 − ηl−1
k−1

]
(gk−1)

]∣∣∣∣∣.
As T3 (resp. T4) and T6 (resp. T5) can be dealt with using similar arguments, we only prove
bounds for T3 (resp. T4). For T3 we have the upper bound T3 ≤∑4

j=1 Tj+6, where

T7 =
∣∣∣∣∣E
[{

1

η
Nl,l−1
k−1 (gk−1)

− 1

ηl−1
k−1(gk−1)

}{[
1
2η

Nl,l
k−1 + 1

2η
Nl,l,a
k−1 − η

Nl,l−1
k−1

](
gk−1P(ϕ)

)

−
[
ηl

k−1 − ηl−1
k−1

](
gk−1P(ϕ)

)}]∣∣∣∣∣,
T8 =

∣∣∣∣∣E
[

1

ηl−1
k−1(gk−1)

{[
1
2η

Nl,l
k−1 + 1

2η
Nl,l,a
k−1 − η

Nl,l−1
k−1

](
gk−1P(ϕ)

)

−
[
ηl

k−1 − ηl−1
k−1

](
gk−1P(ϕ)

)}]∣∣∣∣∣,
T9 =

∣∣∣∣∣E
[[

ηl
k−1 − ηl−1

k−1

](
gk−1P(ϕ)

){ 1

η
Nl,l−1
k−1 (gk−1)ηl−1

k−1(gk−1)
− 1

ηl−1
k−1(gk−1)2

}

× [ηl−1
k−1 − η

Nl,l−1
k−1

]
(gk−1)

]∣∣∣∣∣,

T10 =
∣∣∣∣∣E
[[

ηl
k−1 − ηl−1

k−1

](
gk−1P(ϕ)

)
ηl−1

k−1(gk−1)2

[
ηl−1

k−1 − η
Nl,l−1
k−1

]
(gk−1)

]∣∣∣∣∣.
For T7 one can use Cauchy–Schwarz, the lower bound on gk−1, [14, Proposition C.6], and
Lemma C.9. For T8 we can apply the lower bound on gk−1 and the induction hypothesis.
These arguments yield

max{T7, T8} ≤ C�

1
4
l

Nl
.

For T9 we can use [14, Lemma D.2], Cauchy–Schwarz, the lower bound on gk−1, and [14,
Proposition C.6] twice. For T10 we can use [14, Lemma D.2], the lower bound on gk−1, and
standard bias results for particle filters. This gives

max{T9, T10} ≤ C�
1/2
l

Nl
.
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Collecting the above arguments, we have shown that

T3 ≤ C�

1
4
l

Nl
.

For T4 we have the upper bound T4 ≤∑3
j=1 Tj+10, where

T11 =
∣∣∣∣∣E
[

1

η
Nl,l
k−1(gk−1)ηNl,l−1

k−1 (gk−1)
1
2

{[
η

Nl,l
k−1 − η

Nl,l,a
k−1

](
gk−1P(ϕ)

)}{[
η

Nl,l−1
k−1 − η

Nl,l
k−1

]
(gk−1)

−
[
ηl−1

k−1 − ηl
k−1

]
(gk−1)

}]∣∣∣∣∣,
T12 =

∣∣∣∣∣E
[

1
2

{[
η

Nl,l
k−1 − η

Nl,l,a
k−1

](
gk−1P(ϕ)

)}[
ηl−1

k−1 − ηl
k−1

]
(gk−1)

{
1

η
Nl,l
k−1(gk−1)ηNl,l−1

k−1 (gk−1)

− 1

ηl
k−1(gk−1)ηl−1

k−1(gk−1)

}]∣∣∣∣∣,
T13 =

∣∣∣∣∣E
[

[ηl−1
k−1 − ηl

k−1](gk−1)

ηl
k−1(gk−1)ηl−1

k−1(gk−1)

{[
η

Nl,l
k−1 − η

Nl,l,a
k−1

](
gk−1P(ϕ)

)}]∣∣∣∣∣.
For T11 one can use the lower bound on gk−1, Cauchy–Schwarz, Remark C.3, and Lemma C.9.
For T12 we can apply [14, Lemma D.2], Cauchy–Schwarz, the lower bound on gk−1, [14,
Proposition C.6], and Remark C.3. For T13 we can use the lower bound on gk−1, Remark C.4,
and [14, Lemma D.2]. Putting these results together, we have established that

max{T11, T12, T13} ≤ C�

1
4
l

Nl
,

and thus we can deduce the same upper bound (up to a constant) for T4. As a result of the
above arguments, we have established that

T2 ≤ C�

1
4
l

Nl
. (C.16)

The proof can be completed by combining (C.15) and (C.16). �
Theorem 3. Assume (A1)–(A2). Then for any (k, ϕ) ∈N×Bb(X) ∩ C2

b (X,R) there exists a
C < +∞ such that for any (l, Nl) ∈N

2,

∣∣∣E [[π l
k − π l−1

k

]Nl (ϕ) − [π l
k − π l−1

k

]
(ϕ)
]∣∣∣≤ C�

1
4
l

Nl
.

Proof. This can be proved using Lemma C.11, Remark C.4, and the approach used to deal
with (C.14) in the proof of Lemma C.11. The proof is omitted for brevity. �
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