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In turbulent planar Couette flow under anticyclonic spanwise system rotation,
large-scale roll-cell structures arise due to a Coriolis-force-induced instability. The
structures are superimposed on smaller-scale turbulence, and with increasing angular
velocity (Ωz) such roll cells dominate the flow field and small-scale turbulence is
instead suppressed in a certain rotation number range 0 < Ro . 0.1 (Ro = 2Ωzh/Uw,
where h is the channel half-width, Uw the wall velocity). At low rotation numbers
around Ro ≈ 0.02 both large-scale roll cells and smaller-scale turbulence coexist.
In the present study, we investigate interaction between these structures through a
scale-by-scale analysis of the Reynolds stress transport. We show that at low rotation
numbers Ro ≈ 0.01 the turbulence productions by the mean flow gradient and the
Coriolis force occur at different scales and thereby the turbulent energy distribution
over a wide range of scales is maintained. On the other hand at higher rotation
numbers Ro & 0.05, a zero-absolute-vorticity state is established and production
of small scales from the mean shear disappears although large-scale turbulence
production is maintained through the Coriolis force. At high enough Reynolds
numbers, where scale separation between the near-wall structures and the roll cells
is relatively distinct, transition between these different Ro regimes is found to occur
rather abruptly around Ro≈ 0.02, resulting in a non-monotonic behaviour of the wall
shear stress as a function of Ro. It is also shown that at such an intermediate rotation
number the roll cells interact with smaller scales by moving near-wall structures
towards the core region of the channel, by which the Reynolds stress is transported
from relatively small scales near the wall towards larger scales in the channel centre.
Such Reynolds stress transport by scale interaction becomes increasingly significant
as the Reynolds number increases, and results in a reversed mean velocity gradient
at the channel centre at high enough Reynolds numbers.
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1. Introduction

Nonlinear interaction between different scales is an important aspect of turbulence.
The interscale interaction induces transport of turbulence both in physical and scale
space. The role of such turbulent transports in wall turbulence has been gaining
attention in recent years, mainly motivated by the recent overwhelming evidence of
interference by the large-scale structures away from the wall to the near-wall structures
(see, for example, Hutchins & Marusic (2007), Mathis, Hutchins & Marusic (2009),
Smits, McKeon & Marusic (2011), Dogan et al. (2019)). In order to examine the
role of such scale interaction in detail, some attempts have been recently reported
which investigate the turbulence transport scale-by-scale based on spectral analysis of
the Reynolds stress transport equation (e.g. Lee & Moser 2015, 2017, 2019; Mizuno
2016; Cho, Hwang & Choi 2018; Kawata & Alfredsson 2018), the generalised
Kolmogorov equation (e.g. Hill 2002; Marati, Casciola & Piva 2004; Saikrishnan
et al. 2012; Cimarelli, De Angelis & Casciola 2013; Cimarelli et al. 2016), as well
as a newly defined energy density equation (Hamba 2018), etc.

In turbulent shear flows under system rotation the interscale interaction may play
an even more significant role, since in such flows the instability induced by the
Coriolis force gives rise to coherent vortical structures coexisting with small-scale
turbulence. As rotating shear flows are found not only in industrial applications but
also in geophysical contexts, it is important from both applied and fundamental points
of view to investigate how the nonlinear interaction between these structures affects
the transport of momentum and turbulent energy.

We focus in this paper on the spanwise-rotating planar Couette flow (hereafter
simply referred to as rotating plane Couette flow (RPCF)), where a plane Couette
flow is under system rotation with angular velocity Ωz and the rotation axis being
parallel or antiparallel to the base-flow vorticity, as is schematically shown in figure 1.
In the RPCF linear instabilities by the Coriolis force give rise to streamwise roll cells
that are similar to those observed in the Taylor–Couette flow, and this flow actually
corresponds to the extreme cases of the Taylor–Couette flow where the radius ratio
of the inner to outer cylinder is close enough to unity that the curvature effect
can be ignored (e.g. Faisst & Eckhardt 2000; Dubrulle et al. 2005; Brauckmann,
Salewski & Eckhardt 2016). The linear stability of this flow has been well studied
as we summarise in § 2. Briefly describing the behaviours of this flow the governing
parameters are the Reynolds and rotation numbers defined in the present study as
follows:

Re=
Uwh
ν
, Ro=

2Ωzh
Uw

, (1.1a,b)

respectively, and in the cyclonic rotation case (Ro < 0, where the system is rotating
in the same direction as the base-flow vorticity) the flow is stabilised whereas in the
anticyclonic case (Ro> 0) the flow is destabilised (e.g. Tritton & Davies 1985). In the
destabilising rotation case the roll-cell structure emerges even at very low Reynolds
numbers (Lezius & Johnston 1976; Tillmark & Alfredsson 1996). The physical origin
of this linear instability is an imbalance between the wall-normal pressure gradient and
the Coriolis force. In the laminar regime with the destabilising system rotation the roll-
cell structure can take several different forms depending on the Reynolds and rotation
numbers (Tsukahara, Tillmark & Alfredsson 2010; Suryadi, Segalini & Alfredsson
2014; Kawata & Alfredsson 2016a).

In the turbulent regimes the roll cells coexist with smaller-scale turbulence. The roll
cells become increasingly energetic as Ro increases up to Ro≈ 0.2, but start to decay
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FIGURE 1. (Colour online) Geometry of rotating plane Couette flow. Reproduced from
Kawata & Alfredsson (2016a).
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FIGURE 2. (Colour online) The rotation-number dependency of (a) the wall shear stress
and (b) the mean velocity gradient at the channel centre reproduced from the experimental
data of our previous work (Kawata & Alfredsson 2016b). The values shown in panels (a)
and (b) are scaled by the base-flow case value τw = µUw/h and Uw/h, respectively, and
the black dashed line in panel (b) represents the state of zero absolute vorticity, Ω∗a =
−dU∗/dy∗ + Ro= 0.

at higher Ro (Bech & Andersson 1997; Gai et al. 2016). It is particularly noteworthy
that in this moderate Ro range (Ro . 0.2) the small-scale turbulence is significantly
attenuated with increasing Ro in contrast to the large-scale roll cells dominating the
flow field (Bech & Andersson 1996; Salewski & Eckhardt 2015; Gai et al. 2016;
Kawata & Alfredsson 2016b). At intermediate rotation numbers around Ro ≈ 0.02,
roll cells and turbulence are both energetic, and the wall shear stress and the mean
velocity profile exhibit an interesting behaviour at high enough Reynolds numbers;
as shown in figure 2(a), the variation of the wall shear stress with Ro exhibits a
non-monotonic behaviour around Ro≈ 0.02 for Re& 2000 (Salewski & Eckhardt 2015;
Kawata & Alfredsson 2016b), and the mean velocity gradient at the channel centre
becomes negative at similar Ro for Re & 1000 (Salewski & Eckhardt 2015; Gai et al.
2016; Kawata & Alfredsson 2016b) as presented in figure 2(b). Since in the PRCF
configuration the total shear stress, i.e. the sum of the viscous and Reynolds shear
stresses, is constant throughout the channel and equal to the wall shear stress, the
reversed mean velocity gradient indicates that the Reynolds shear stress at the channel
centre locally exceeds the wall shear stress. As both the wall and Reynolds shear
stresses are closely related with the momentum transport by flow structures, such a
phenomenon may indicate that interaction between the roll cells and smaller-scale
turbulence enhances momentum transport at high enough Reynolds numbers.
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258 T. Kawata and P. H. Alfredsson

In the present study, we investigate the scale-by-scale Reynolds stress transport in
turbulent RPCF focusing on how interaction between the roll cells and small-scale
turbulence is related to the momentum and turbulence transport, with a particular
interest in the Ro effect to attenuate small-scale turbulence and the characteristic
behaviours of the wall shear stress and the mean velocity gradient at Ro≈ 0.02. The
present analysis is based on the experimental dataset in Kawata & Alfredsson (2016b),
and we follow the scale-by-scale analysis introduced by Kawata & Alfredsson (2018),
where the Reynolds stress transport equations are decomposed into their large- and
small-scale parts by spatial filtering.

The layout of this paper is as follows: in § 2 we briefly summarise the basic
governing equations and the linear instabilities of the RPCF, and in § 3 the
experimental dataset and the formulation for the scale-by-scale analysis are described.
The overall rotation number effects on the flow structures and the turbulence
transports are described in § 4, followed by a more detailed discussion based on
the scale-by-scale Reynolds stress transport for different Ro regimes in § 5. The
transport phenomena at Ro≈ 0.02 are investigated in § 6, and the conclusion is finally
given in § 7.

2. Basic instability and the roll-cell structures of the RPCF
2.1. Governing equations

The governing equations are the continuity and Navier–Stokes equations for an
incompressible fluid observed in a rotating frame,

∇ · ũ = 0, (2.1)
∂ũ
∂t
+ ũ · (∇ũ) = −

1
ρ
∇p̃+ ν∇2ũ− 2Ωzez × ũ, (2.2)

where ũ (= ũex + ṽey + w̃ez; ex, ey, and ez are the base vectors in the coordinates
defined in figure 1) represents the instantaneous velocity including both the mean and
fluctuating components and p̃ is the instantaneous hydrostatic pressure including both
static pressure and the centrifugal acceleration. In this flow configuration the flow can
be assumed statistically homogeneous in the x- and z-directions as well as in time,
and we consider in this study the statistical quantities averaged in these directions.
The mean velocity is then given by (U(y), 0, 0), and the mean streamwise momentum
balance is obtained by averaging the x-component of (2.2) as

0=
d
dy

(
ν

dU
dy
+ 〈−uv〉

)
, (2.3)

where the lowercase characters represent the velocity fluctuation, and 〈 〉 denotes the
averaging operation. As shown here the Coriolis force does not appear in the mean
streamwise momentum balance, and integrating (2.3) from one of the walls to an
arbitrary wall-normal position (y) one obtains the shear stress balance in this flow,

µ
dU
dy
+ ρ〈−uv〉 = const.= τw, (2.4)

which is exactly the same form as in the non-rotating case.
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The transport equation of the Reynolds stress 〈uiuj〉 is

∂〈uiuj〉

∂t
+Uk

∂〈uiuj〉

∂xk
= Pij −Θij +Φij +Dν

ij +Dt
ij, (2.5)

where the terms on the right-hand side are the production (Pij) including the Coriolis
force effect, viscous dissipation (Θij), pressure-work (Φij), viscous diffusion (Dν

ij) and
turbulent transport (Dt

ij), which are, respectively, defined as follows:

Pij =−〈uiuk〉
∂Uj

∂xk
− 〈ujuk〉

∂Ui

∂xk
− 2Ωz(εi3m〈ujum〉 + εj3m〈uium〉)

Θij = 2ν
〈
∂ui

∂xk

∂uj

∂xk

〉
, Φij =−

1
ρ

(〈
∂p
∂xi

uj

〉
+

〈
∂p
∂xj

ui

〉)
,

Dν
ij = ν

∂2
〈uiuj〉

∂x2
k
, Dt

ij =−
∂〈uiujuk〉

∂xk
,


(2.6)

where εlmn is the permutation tensor. It should be noted here that the Coriolis force
is always perpendicular to the velocity vector and does not do any work; it only
redirects fluid motion without changing the kinetic energy. The Coriolis force effect
is, therefore, rather an inter-component energy transfer between the normal stresses
〈u2
〉, 〈v2

〉 and 〈w2
〉 than their ‘production’. However, for the Reynolds-shear-stress

component 〈−uv〉 the Coriolis force terms do represent an additional production,
which plays a central role in the Reynolds stress transport in RPCF. Hence in this
study we define the production terms as shown above including the Coriolis force
effect.

2.2. Linear instabilities and various roll-cell structures of the RPCF
The stability of the spanwise-rotating shear flows including the RPCF is a rather
classical hydrodynamic stability problem and has been studied since the 1960s. Early
theoretical investigations (for example, Bradshaw (1969), Hart (1971), Johnston,
Halleen & Lezius (1972), Lezius & Johnston (1976), Tritton & Davies (1985))
showed that the inviscid local linear stability criterion is given based on the vorticity
ratio S= 2Ωz/(−dU/dy) as follows:

unstable when −1< S< 0,
stable otherwise, (2.7)

indicating that even with the anticyclonic rotation (S < 0) the flow can be stabilised
if the system rotation rate is high enough. The neutral stability boundary S = −1
corresponds to the state where the vorticities by the mean flow and background system
rotation cancel each other, i.e. the absolute vorticity is zero,

Ω∗a =−
dU∗

dy∗
+ Ro= 0. (2.8)

Here the superscript ∗ represents quantities normalised by Uw and/or h. Interestingly,
the state of zero absolute vorticity has been observed in both laminar and
turbulent regimes of rotating shear flows at high enough system rotation rates,
such as the RPCFs (Bech & Andersson 1997; Suryadi et al. 2014; Gai et al. 2016;
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Kawata & Alfredsson 2016a,b) and on the leading side of spanwise-rotating channel
flows (Kristoffersen & Andersson 1993; Tanaka et al. 2000; Hamba 2006; Xia, Shi
& Chen 2016; Brethouwer 2017). One can see in figure 2(b) that the profiles of the
mean velocity gradient start following the line of the zero absolute vorticity state
from Ro≈ 0.05. As shown later in § 5, the establishment of the zero-absolute-vorticity
state plays a significant role in determining the scale-by-scale balance of the Reynolds
stress transport.

Lezius & Johnston (1976) showed that the stability problem of the RPCF is
mathematically equivalent to that of the Rayleigh–Bénard convection and gave the
neutral stability curve as follows:

Recrit =Ω +
107
Ω
, (2.9)

where Ω is the alternative rotation number based on a viscous (diffusion) time scale,
Ω = 2Ωzh2/ν, and related with the other definition of the rotation number as Ro =
Ω/Re. Equation (2.9) gives the lowest critical Reynolds number as approximately 20.7
at Ω ≈ 10.3. One can also deduce from (2.9) that for a given Re (�

√
107) the

unstable Ro range is approximately

107
Re2

< Ro< 1−
107
Re2

, (2.10)

and this can be further simplified for sufficiently high Reynolds numbers as 0<Ro<1,
which no longer depends on Re. One can see that the inviscid local stability
criteria (2.7) also gives the same unstable Ro range by letting dU/dy≈Uw/h.

The linear analysis predicts that the primary instability of the RPCF appears in
the form of two-dimensional roll cells that are streamwise independent and regularly
spaced in the spanwise direction. Such roll cells were experimentally observed at
very low Ro in the vicinity of the lower limit of the neutral stability boundary (2.10)
in the laminar regime (Tillmark & Alfredsson 1996). As Ro increases secondary
instabilities set in and wavy roll cells are observed (Hiwatashi et al. 2007). These
correspond to the tertiary state found by Nagata (1998) that bifurcates from the
two-dimensional roll cells. Tsukahara et al. (2010) investigated the RPCF over a
wide range in the Re–Ω space (0 6 Re 6 1000, −30<Ω < 30) by flow-visualisation
experiments and summarised the various types of roll cells observed on a Re–Ω
flow map, identifying 17 different flow states. Suryadi et al. (2014) and Kawata
& Alfredsson (2016a) investigated the laminar roll cells at Re = 100 over the full
unstable Ro range 0<Ro< 1 and showed that the wavy roll cells observed at Ro≈ 0.1
further bifurcate to different types of roll cells at higher Ro and the roll cells indeed
disappear around the upper limit of the neutral stability boundary Ro≈ 1. The exact
solutions corresponding to those various roll cells observed by experiments were also
found theoretically by Daly et al. (2014) later.

The Coriolis force effect is significant also in the turbulent flow regime. As already
mentioned in § 1, for the anticyclonic rotation case the roll cells emerge and coexist
with small-scale turbulence at low rotation numbers of the order of Ro ≈ 0.01, and
particularly in a narrow Ro range around Ro ≈ 0.02 the aforementioned transport
phenomena are observed at high enough Reynolds number. In the higher Ro range
(of the order of Ro≈ 0.1) the roll cells dominate the flow field, while at even higher
Ro (& 0.5) the roll cells disappear and the dominance is taken over by the small-scale
turbulence. As Ro approaches the neutral stability boundary Ro ≈ 1 the flow tends
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to become relaminarised (Bech & Andersson 1997; Gai et al. 2016). In the cyclonic
system rotation case, on the other hand, the flow is significantly stabilised; the
transitional Re range where the intermittent structures such as turbulent stripes are
observed is expanded and the critical Re of transition to turbulence clearly increases
as the system rotation rate increases (Tsukahara et al. 2010; Tsukahara 2011).

3. Experimental dataset and analytical procedure
3.1. Experimental dataset

The analysis in the present study is based on an experimental dataset from our
previous work on turbulent RPCF (Kawata & Alfredsson 2016b), where detailed
velocity field measurements by stereoscopic particle image velocimetry (stereo-PIV)
were performed with the RPCF apparatus at the Fluid Physics Laboratory of Kungliga
Tekniska högskolan (KTH) Mechanics. The details of the apparatus have already been
described elsewhere, see Tillmark & Alfredsson (1991, 1992, 1996) for the details
of the RPCF apparatus and Suryadi, Tillmark & Alfredsson (2013) and Kawata &
Alfredsson (2016a) for the details of the PIV measurement system. The laser sheet
of the stereo-PIV measurement was oriented parallel to the walls as schematically
shown in figure 3, and the wall-normal location could be changed across the channel
by traversing the reflecting mirror by a motorised linear traverse. The distance
(2h) between the moving walls was 17.6 mm, the sliding speed of the wall Uw

and the angular velocity of the turntable Ωz could be changed up to approximately
270 mm s−1 and 0.58 rad s−1, respectively. The measurements were done at Re= 500,
1000, 1500 and 2000 for the rotation number range of 06Ω 6 90. It should be noted
that for a given rotational rate Ωz the rotation number Ω is fixed independent from
Re, whereas Ro changes with Re since Ro = Ω/Re; for example, at the lowest
Reynolds number case Re= 500 the investigated Ro range is 0 6 Ro 6 0.18, while at
the highest Reynolds number Re= 2000 the observed range is 0 6 Ro 6 0.045.

The stereo-PIV measurements were carried out at several different y-positions
in the range −0.8 6 y/h 6 0.45. The measurement domain size was approximately
8.6h× 10.6h in the x- and z-directions, respectively, and the in-plane spatial resolution
was approximately 1x × 1z = 0.23h × 0.18h, with the light sheet thickness of
approximately 1.5 mm, which corresponds to 0.17h. Approximately 300 statistically
independent snapshots (separated by approximately 20 s, which is at least an order
of magnitude larger than the integral time scale of the flow) of instantaneous velocity
fields were obtained at each wall-normal position for evaluation of statistical quantities.
In the present study, the wall shear stress τw was evaluated indirectly based on the
measured profiles of the mean velocity and the Reynolds-shear-stress, by averaging
the total shear stress values at data points in the central region of the channel
−0.56 y/h6 0.45. For further details of the stereo-PIV measurements used to obtain
the current experimental data, see Kawata & Alfredsson (2016b).

3.2. Decomposition of the Reynolds stress transport equations
In the present study we focus on how interaction between the large-scale roll cells
and smaller-scale turbulence influences the transport of momentum and turbulence in
RPCF. To this end, we decompose the Reynolds stress transport equation into the
large- and small-scale parts and thereby formulate the spatial and interscale transport
of the Reynolds stresses caused by scale interaction. This decomposition has been
already introduced in our previous work focusing on the non-rotating planar Couette
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(b)
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FIGURE 3. (Colour online) Experimental apparatus of the RPCF with a stereo-PIV
measurement system; (a) isometric view of the apparatus and (b) top view of the test
section. Reprinted with permission from Kawata & Alfredsson (2016a).

flow (Kawata & Alfredsson 2018), but here we give a more detailed description of
the derivation and physical meanings of the each term of the decomposed Reynolds
stress transport equations. We now consider such a decomposition of the fluctuating
velocities,

ui = u′i + u′′i , (3.1)
〈u′iu

′′

j 〉 = 〈u
′′

i u′j〉 = 0, (3.2)

where u′i and u′′i are the large- and small-scale parts of the fluctuating velocities,
respectively, and the second equation (3.2) means that the cross-correlation between
the large- and small-scale parts is zero for any combination of velocity component.
Such decomposition is possible with spatial filtering based on, for example, the Fourier
modes with a sharp cutoff wavenumber or the proper orthogonal decomposition. In
this study we decompose the fluctuating velocities based on the spanwise Fourier
mode, and do not consider the decomposition based on the streamwise Fourier modes
since the streamwise extent of the present measurement domain is not large enough
to capture the largest streamwise wavelength of the roll-cell structure.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

66
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.668


Scale interactions in turbulent RPCF 263

With such a decomposition the Reynolds stresses 〈uiuj〉 are simply decomposed into
their large- and small-scale parts as follows:

〈uiuj〉 = 〈u′iu
′

j〉 + 〈u
′′

i u′′j 〉. (3.3)

On the other hand, the triple correlation of the fluctuating velocities 〈uiujuk〉, which
represents the spatial transport flux of the Reynolds stress 〈uiuj〉 in the xk-direction, is
expanded into eight different terms,

〈uiujuk〉 = 〈u′iu
′

ju
′

k〉 + 〈u
′

iu
′

ju
′′

k〉 + 〈u
′′

i u′ju
′′

k〉 + 〈u
′

iu
′′

j u′′k〉

+ 〈u′′i u′′j u′′k〉 + 〈u
′′

i u′′j u′k〉 + 〈u
′

iu
′′

j u′k〉 + 〈u
′′

i u′ju
′

k〉, (3.4)

and unlike decomposing the Reynolds stress there is no term that vanishes on the
right-hand side of (3.4).

The transport equations of 〈u′iu
′

j〉 and 〈u′′i u′′j 〉 are obtained in a similar manner as the
derivation of the ‘full’ Reynolds stress transport equation (2.5); the governing equation
of the fluctuating velocity ui is

∂ui

∂t
+Uk

∂ui

∂xk
+ uk

∂Ui

∂xk
+ uk

∂ui

∂xk
−
∂〈uiuk〉

∂xk
=−

1
ρ

∂p
∂xi
+ ν

∂2ui

∂x2
k
− 2Ωzεi3kuk. (3.5)

Multiplying the ith and jth components of (3.5) by u′j and u′i, respectively, and then
taking sum of them, averaging both sides of the equation, and using (3.2) yields the
transport equation of the large-scale part of the Reynolds stress 〈u′iu

′

j〉. The equation
for the small-scale part 〈u′′i u′′j 〉 is obtained in a similar manner, and the decomposed
transport equations are obtained as follows:

∂〈u′iu
′

j〉

∂t
+Uk

∂〈u′iu
′

j〉

∂xk
= PL

ij −Θ
L
ij +Φ

L
ij +Dν,L

ij +Dt,L
ij − Trij, (3.6)

∂〈u′′i u′′j 〉

∂t
+Uk

∂〈u′′i u′′j 〉

∂xk
= PS

ij −Θ
S
ij +Φ

S
ij +Dν,S

ij +Dt,S
ij + Trij, (3.7)

where the terms on the right-hand side of (3.6) are the large-scale part of the
corresponding terms of (2.5), which, respectively, are defined as

PL
ij =−〈u

′

iu
′

k〉
∂Uj

∂xk
− 〈u′ju

′

k〉
∂Ui

∂xk
− 2Ωz(εi3m〈u′ju

′

m〉 + εj3m〈u′iu
′

m〉)

ΘL
ij = 2ν

〈
∂u′i
∂xk

∂u′j
∂xk

〉
, ΦL

ij =−
1
ρ

(〈
u′i
∂p′

∂xj

〉
+

〈
u′j
∂p′

∂xi

〉)
, Dν,L

ij = ν
∂2
〈u′iu

′

j〉

∂x2
k
,


(3.8)

and the corresponding small-scale part in (3.7) are those with the superscript ′
interchanged with ′′. The terms related with nonlinear interaction between the large-
and small-scale parts of the velocity field are the turbulent spatial transport terms,

Dt,L
ij = −

∂

∂xk
(〈u′iu

′

ju
′

k〉 + 〈u
′

iu
′

ju
′′

k〉 + 〈u
′′

i u′ju
′′

k〉 + 〈u
′

iu
′′

j u′′k〉), (3.9)

Dt,S
ij = −

∂

∂xk
(〈u′′i u′′j u′′k〉 + 〈u

′′

i u′′j u′k〉 + 〈u
′

iu
′′

j u′k〉 + 〈u
′′

i u′ju
′

k〉), (3.10)
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and the turbulent interscale transport term,

Trij =−

〈
u′′i u′′k

∂u′j
∂xk

〉
−

〈
u′′j u′′k

∂u′i
∂xk

〉
+

〈
u′iu
′

k

∂u′′j
∂xk

〉
+

〈
u′ju
′

k
∂u′′i
∂xk

〉
. (3.11)

It can be easily seen that the sum of the transport equations (3.6) and (3.7) yields the
classical Reynolds stress transport equation (2.5).

Dt,L
ij and Dt,S

ij represent the spatial redistribution of 〈u′iu
′

j〉 and 〈u′′i u′′j 〉, respectively,
and one can clearly see by comparing (3.9) and (3.10) with (3.4) that the first four
terms of the expansion of the triple velocity correlation 〈uiujuk〉 appear in the large-
scale part of the transport equation (3.6), and the other four terms in the small-scale
part (3.7). Hence, we can define the large- and small-scale parts of the triple velocity
correlation 〈uiujuk〉,

〈uiujuk〉
L
= 〈u′iu

′

ju
′

k〉 + 〈u
′

iu
′

ju
′′

k〉 + 〈u
′′

i u′ju
′′

k〉 + 〈u
′

iu
′′

j u′′k〉, (3.12)

〈uiujuk〉
S
= 〈u′′i u′′j u′k〉 + 〈u

′′

i u′′j u′′k〉 + 〈u
′

iu
′′

j u′k〉 + 〈u
′′

i u′ju
′

k〉, (3.13)

which physically represent the spatial turbulent fluxes of 〈u′iu
′

j〉 and 〈u′′i u′′j 〉 in the xk-
direction.

Clearly, Trij represents the interscale flux of the Reynolds stress from the large- to
small-scale side of the flow field across the cutoff wavenumber kz. It is interesting
to note here that the first two terms and the two last terms on the right-hand side
of (3.11) have different signs and each of them is similar to the production term,
since they are products of the second moment of the velocity fluctuations and velocity
gradients. From the analogy to the Reynolds stress production, one may interpret that
the first two terms indicate energy transfer from the larger to smaller scales, whereas
the others represent the transfer in the other direction. It is also worth mentioning
here that in the case where the velocity decomposition (3.1) is done based on the
streamwise Fourier mode with the cutoff wavenumber kx= 0 the decomposed transport
equations (3.6) and (3.7) are identical to those analysed by Bech & Andersson (1996)
and Gai et al. (2016), who focused on the turbulent energy exchange between the
streamwise-independent secondary flows and turbulence. In that case the third and
fourth terms on the right-hand side of (3.11) are zero, which might indicate that
there is no reversed energy cascade from turbulence to two-dimensional large-scale
structure.

By the decomposition of the Reynolds stress transport equation introduced above,
it is now formulated how interaction between different scales is related to the spatial
and interscale transport of turbulence. In the next section, the scale-by-scale transport
equation of the Reynolds stress is introduced based on these decomposed transport
equations, which is the main focus of the analysis in the present study.

3.3. Scale-by-scale transport of the Reynolds stresses
The Reynolds stress spectra Eij can be obtained by differentiating the decomposed
Reynolds stress by the cutoff wavenumber kz as, Eij = ∂〈u′iu

′

j〉/∂kz. Therefore, similar
differentiation of the decomposed Reynolds stress equation (3.6) by the cutoff
wavenumber kz yields the scale-by-scale transport equation of the Reynolds stress,

DEij

Dt
= prij − θij + φij + dνij + dt

ij + trij, (3.14)
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where the terms on the right-hand side are the derivatives of the corresponding terms
in (3.6). Except dt

ij and trij, they can be expressed in the form of Fourier spectra
and represent the spectral contribution from each scale to overall production, viscous
dissipation, etc. For example, the scale-by-scale production and viscous diffusion are
expressed by the Reynolds stress spectra as follows:

prij =
∂PL

ij

∂kz
=−Eik

∂Uj

∂xk
− Ejk

∂Ui

∂xk
+ 2Ωz(εi3mEjm + εj3mEim), (3.15)

dνij =
∂Dν,L

ij

∂kz
= ν

∂2Eij

∂x2
k
. (3.16)

The scale-by-scale dissipation θij and pressure work φij are also expressed as the
spectra of the velocity gradients and the cospectra of the velocities and pressure
gradients, respectively.

On the other hand, the turbulent spatial transport dt
ij and the interscale transport trij

defined as

dt
ij =

∂Dt,L
ij

∂kz
=

∂

∂kz

(
−
∂〈uiujuk〉

L

∂xk

)
, trij =−

∂Trij

∂kz
, (3.17a,b)

consist of a number of combinations of the triad interaction between the fluctuating
velocities and velocity gradients, and are therefore not simply expressed in the form of
the Fourier spectra. For the spatial transport, one can define the spectra of the spatial
flux of the Reynolds stress as

Eijk =
∂〈uiujuk〉

L

∂kz
=

∂

∂kz
(〈u′iu

′

ju
′

k〉 + 〈u
′

iu
′

ju
′′

k〉 + 〈u
′′

i u′ju
′′

k〉 + 〈u
′

iu
′′

j u′′k〉). (3.18)

Then, dt
ij is viewed as dt

ij = −∂Eijk/∂xk, indicating that dt
ij represents the spatial

redistribution of the Reynolds stress at each scale by the scale-by-scale spatial flux
Eijk. As for the interscale transport, Trij is, as already described above, the Reynolds
stress flux from the larger- to smaller-scale side across the wavenumber kz, and their
reversed derivatives trij = −∂Trij/∂kz therefore represent the local gain or loss at kz
by such interscale flux Trij.

3.4. Evaluation of the scale-by-scale spatial and interscale transport of the Reynolds
stress based on the experimental dataset

The fluctuating velocity fields measured by the stereo-PIV were transformed into
Fourier coefficients by a fast Fourier transform algorithm, and the large-scale part of
the velocity field u′i was obtained by further applying the inverse Fourier transform
after replacing the Fourier coefficients by zero at higher wavenumbers than the cutoff
wavenumber kz. Then, the small-scale part u′′i was obtained according to the definition
u′′i = ui − u′i. With u′i and u′′i obtained in such a way, the large- and small-scale parts
of the Reynolds stress 〈u′iu

′

j〉 and 〈u′′i u′′j 〉 and the terms in the decomposed Reynolds
stress equations (3.6) and (3.7) were evaluated.

As one can see from (3.11), the interscale transport Trij contains the instantaneous
velocity gradients in all directions, one of which, namely ∂/∂y, cannot be directly
evaluated based on the present stereo-PIV data, and hence for evaluation of Truu and
Trww such terms related with ∂/∂y are omitted. However, for Trvv and Tr−uv all the
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FIGURE 4. (Colour online) Snapshot of (a–c) instantaneous fluctuating velocity field at
y/h=−0.7 for Re= 1000 and Ro= 0.09 decomposed with a cutoff wavelength λz/h= 2.8,
and the corresponding distributions of the instantaneous interscale fluxes of (d) the wall-
normal Reynolds stress T̃rvv and (e) the Reynolds-shear-stress T̃r−uv . In the panels (a–c),
the colours represent the wall-normal velocity component, i.e. (a) v, (b) v′, (c) v′′, while
the black arrows represent the corresponding in-plane velocity vectors. The arrows are
shown downsampled by a factor of 4 for clarity, with their length scale such that 2h length
corresponds to Uw. The values shown by colours in each panel are scaled by (a–c) Uw
and (d,e) u3

τ/h.

terms including ∂/∂y components can be obtained via the continuity equation. The
details are given in appendix A.

An example of such large- and small-scale decomposition is given in figure 4,
where the decomposed instantaneous velocity fields in the near-wall region y/h=−0.7
are presented for Re = 1000 and Ro = 0.09. The cutoff wavelength chosen here is
λz/h= 2.8, where the interscale fluxes Trvv and Tr−uv are most significant (as will be
shown later in figure 7). As seen in figure 4(b) the nearly streamwise-independent
roll cells are extracted in the large-scale part of the flow field, and the small-scale
part given in the panel (c) is also shown to still retain some coherent structures. Here
the decomposed instantaneous velocity fields are presented with the corresponding
distributions of the instantaneous interscale fluxes T̃rvv and T̃r−uv, which are defined by
removing 〈〉 from (3.11). T̃rij is derived by considering the transport of instantaneous
Reynolds stresses u′iu

′

j and u′′i u′′j and represents the instantaneous energy exchange
between them observed from the frame of reference that is convecting with the mean
flow, as detailed in appendix B. The instantaneous interscale transfer fluxes T̃rvv and
T̃r−uv present both positive (from larger to smaller scales) and negative (from smaller
to larger scales) transfers locally, while their net mean fluxes Trvv and Tr−uv at this
cutoff wavelength λz/h= 2.8 show significant inverse (i.e. negative) interscale transfer
as will be shown in § 4.2.

In order to investigate the scale-by-scale Reynolds stress transport, such large- and
small-scale decomposition was repeated at various cutoff wavenumbers over the range
0 6 kz 6 Nz/2Lz, where Lz = 10.6h and Nz is the number of data points in the z-
direction, which is approximately 100 for all measurement cases. The large- and small-
scale parts of the Reynolds stresses and their productions and turbulent transports were
evaluated at every cutoff wavenumber, and the Reynolds stress spectra Eij and their
scale-by-scale productions and turbulent transports in (3.14) were then obtained by
evaluating the gradient with respect to kz.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

66
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.668


Scale interactions in turbulent RPCF 267

4

2

0

-2

-4

z/h

x/h
-2 0 2

x/h
-2 0 2

x/h
-2 0 2

x/h
-2 0 2

-0.5
√/Uw

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

Ø = 0 (Ro = 0)(a) Ø = 10 (Ro = 0.01) Ø = 20 (Ro = 0.02) Ø = 70 (Ro = 0.07)

1.0(b) (c)

0.5

R √
√(

Î
x)

0 2
Îx/h y/h

4 6 -1.0 -0.5 0 0.5

1.0

0.5

¯√
2 ˘/

2k
t

0

Ro = 0
Ro = 0.01
Ro = 0.02
Ro = 0.055
Ro = 0.09

FIGURE 5. (Colour online) The Ro dependency of flow structure at Re= 1000 as a typical
example of the Ro effect in the RPCF; (a) snapshots of instantaneous velocity fields on
the channel centre plane at four different Ro for Re= 1000; (b) the streamwise two-point
autocorrelation functions based on the wall-normal velocity Rvv(1xi) at y/h = 0; (c) the
profiles of 〈v2

〉/2kt = 〈v
2
〉/(〈u2

〉 + 〈v2
〉 + 〈w2

〉) across the channel. The colours and black
arrows in the panel (a) represent the values of the instantaneous wall-normal velocity
component v/Uw and the pattern of the in-plane velocity vectors (u,w), respectively. The
black arrows are shown downsampled by a factor of 4 for clarity, and their length scale
are the same as in figure 4(a–c).

4. Turbulent Reynolds stress fluxes at different rotation numbers
4.1. Overview of the Ro dependency of the flow structure

In this section, we first briefly summarise how the flow structures change with Ro,
and then present the interscale and spatial flux of the Reynolds stresses at different
rotation numbers. Figure 5(a) presents snapshots of instantaneous flow fields on the
channel centre plane (xz-plane at y/h= 0) at Re= 1000, comparing four different Ro
cases from no system rotation to a relatively high rotation of the order of Ro≈ 0.1,
and it is shown here that as Ro increases the roll cells emerge and dominate the
flow field. One can also see that the flow structures become more two-dimensional
in the streamwise direction with increasing Ro, and such tendency is clearly depicted
in figure 5(b), which gives the streamwise two-point autocorrelation functions at the
channel centre. As shown here, the streamwise coherence of the structure increases as
Ro increases. In particular, at relatively high rotation numbers Ro= 0.055 and 0.09 the
Rvv(1x) profile keeps a high degree of correlation throughout the measurement range,
indicating that the flow structure is nearly two-dimensional.
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The other important aspect of the rotation number effect on the flow structure of
the RPCF is the anisotropy between the Reynolds normal stresses, especially between
〈u2
〉 and 〈v2

〉, at the channel centre. As shown in figure 5(c), the wall-normal
component 〈v2

〉, which is smallest amongst the Reynolds normal stresses in wall
turbulence, increases its fraction of the turbulent kinetic energy with increasing Ro
and is approximately 80 % of 〈u2

〉 + 〈v2
〉 + 〈w2

〉 at Ro= 0.09. Such unique anisotropy
of the Reynolds stress is due to the Coriolis force effect in the Reynolds stress
equation (2.5). In the present flow configuration the production of 〈u2

〉 and 〈v2
〉 are

P∗uu =−2〈u∗v∗〉
dU∗

dy∗
+ 2Ro〈u∗v∗〉,

P∗vv =−2Ro〈u∗v∗〉,

 (4.1)

where the superscript ∗, as before, means normalisation with Uw and h as the case may
be. It is easily seen here that in the anticyclonic rotation case (Ro > 0) the energy
input to 〈u2

〉 by the mean shear is partly transferred to 〈v2
〉 by the Coriolis force

term, and the effect of such energy transfer becomes increasingly significant as Ro
increases. Such an anomalous anisotropy observed in figure 5(c) is a characteristic of
the roll cells at relatively high rotation numbers Ro ≈ 0.1, rather than of turbulence.
At even higher rotation numbers Ro & 0.5, the flow field is dominated by turbulence
again, but the strong anisotropy (〈v2

〉� 〈u2
〉) still persists (Bech & Andersson 1997).

Figure 6 presents the space-scale (y–λz) diagrams of the premultiplied Reynolds
stress spectra Euu, Evv, and E−uv comparing several different rotation numbers at Re=
1000. As shown in figure 6(a), the streamwise normal-stress spectrum Euu at Ro= 0
indicates an energy peak in the near-wall region at λz/h ≈ 2.5 and the energy is
distributed broadly over a relatively wide range of scales. At higher Ro, on the other
hand, the near-wall energy peak is shown to be shifted towards larger scales with
increasing magnitude as Ro increases, while the energies at smaller scales instead
decrease. It should be noted here that the near-wall peak at Ro = 0 is located in
terms of the viscous unit approximately at (η+, λ+z ) = (ηuτ/ν, λzuτ/ν) ≈ (18, 160),
where η (= y + h) is the distance from the wall at y/h = −1, indicating that the
near-wall peak observed at Ro = 0 corresponds to the turbulent near-wall structure
(the friction Reynolds number Reτ = uτh/ν = 63 in this case). The large-scale energy
peak observed at higher Ro is, on the other hand, rather scaled by the outer length
scale h and corresponds to the roll cells. It is also seen that at relatively high rotation
numbers Ro= 0.055 and 0.09, Euu is very small around the channel centre throughout
the investigated λz range, except around λz/h≈ 1 where a slight amount of energy is
distributed.

In figure 6(b), the wall-normal spectra Evv are shown to increase at large scales with
increasing Ro while decreasing at small scales, similarly to the behaviour of Euu. In
the non-rotating case Evv shows a peak around λz/h≈ 1.7 at the channel centre, but
as Ro increases another energy peak emerges at larger scales around λz/h≈ 4, which
is at the same scale as the Euu peak at this Ro. The large-scale peak significantly
grows in magnitude with increasing Ro, while the first energy peak at the smaller scale
is attenuated and disappears for Ro > 0.055. Such variations of Euu and Evv clearly
demonstrate the Ro effect on flow structure to enhance energy at large scales while
suppressing at small scales with increasing Ro. It should also be noted that at Ro=
0.055 and 0.09 the wall-normal spectra Evv are much larger than Euu at large scales
in the channel central region, which corresponds to the strong anisotropy caused by
the Coriolis force effect mentioned above.
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FIGURE 6. (Colour online) The rotation number dependency of the space-scale (y–λz)
distribution of the premultiplied spanwise spectra of the Reynolds stresses at Re =
1000; (a) the streamwise Reynolds-normal-stress spectra kzEuu; (b) the wall-normal
Reynolds-normal-stress spectra kzEvv; (c) the Reynolds-shear-stress cospectra kzE−uv . The
values shown here are scaled by u2

τ . Note that in the panel (b) the results for Ro 6 0.02
and Ro > 0.055 are shown with different colour scales. The dashed line shown in the
Ro = 0.09 case in each panel represents the cutoff wavelength for the decomposition
presented in figure 4.

The shear-stress cospectra E−uv also present a similar Ro dependency; as Ro
increases the contribution by large scales becomes increasingly significant. It is also
noteworthy that at Ro = 0.01 the contribution by the roll cells and the near-wall
structures are separately observed, as a small peak of the cospectra E−uv can be
found in the near-wall region at relatively small scales apart from a significant
energy peak at large scales λz/h ≈ 4 that spans over a wide region of the channel.
As Ro increases the cospectra E−uv at small scales decrease with increasing Ro
similarly to the normal stress components Euu and Evv. At Ro = 0.055 and 0.09 the
E−uv distribution interestingly presents a negative E−uv region near the wall and a
secondary positive peak at the channel centre at λz/h≈ 1.
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FIGURE 7. (Colour online) Space–wavelength (y–λz) diagrams of the interscale flux
of (a) the wall-normal Reynolds stress Trvv and (b) the Reynolds-shear-stress Tr−uv at
different rotation numbers Ro for Re= 1000. The values are scaled by u3

τ/h. The dashed
line shown in the Ro= 0.09 case in each panel represents the cutoff wavelength for the
decomposition presented in figure 4.

The dashed lines in the spectra distributions at Ro = 0.09 indicate the cutoff
wavelength λz/h = 2.8 used for the velocity field decomposition shown in figure 4,
and one can see here that the large-scale part of the velocity field covers only the
distinct peaks of the Reynolds stress spectra located at large scales λz/h > 3, and
the small-scale part includes the rest. It should be particularly noted here that the
negative E−uv in the near-wall region is included in the small-scale part, and the
correlation between u′′ and v′′ presented in figure 4(c) actually is positive. Such
positive correlation between the streamwise and wall-normal velocity components
can be mainly found in the upwelling region of the large-scale roll cells (i.e. the
region of v′> 0); comparing of figure 4(b) and 4(c) one can see that in the roll-cell’s
upwelling region (around z ≈ −4, 0, 4) the black arrows in the panel (c) point
towards the negative x-direction with v′′ < 0, resulting in a positive correlation. In
the large-scale part of the velocity field presented in figure 4(b), on the other hand,
u′ and v′ are clearly correlated negatively. Gai et al. (2016) reported that a reversed
circulation region appears near the wall between roll cells at Re= 1300 and Ro= 0.25
(see their figure 11). Although the present Re and Ro are smaller compared to the case
of their investigation, the reversed velocity correlation observed here may correspond
to a similar flow structure.

4.2. The interscale and spatial transport flux of the Reynolds stresses
The interscale flux of the wall-normal velocity fluctuation Trvv and the Reynolds
shear stress Tr−uv at different rotation numbers are presented in figure 7. Note here
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that all terms on the right-hand side of (3.11) are included for the evaluation of
these components, and their positive values represent the interscale flux from larger
to smaller scales across the wavelength λz while the negative values indicate transfer
in the opposite direction. As shown in panel (a) the interscale flux of wall-normal
stress Trvv mostly indicates energy transfer from larger to smaller scales at lower
rotation numbers Ro = 0 and 0.01, while at higher Ro it presents inverse energy
transfer in the near-wall region. The shear stress interscale flux Tr−uv is shown to
mostly transfer the Reynolds shear stress from smaller to larger scales throughout the
channel for the non-rotating case, as already reported in our previous study (Kawata
& Alfredsson 2018), and at relatively high rotation numbers Ro = 0.055 and 0.09
positive interscale flux is found around the channel centre for λz/h 6 2, while the
inverse interscale flux is further strengthened in the near-wall region. Such inverse
interscale transports by Trvv and Tr−uv in the near-wall region might be related to the
attenuation of small-scale turbulence at relatively high rotation numbers as discussed
in § 5.3.

As shown by the dashed lines in the Ro= 0.09 case, the instantaneous velocity field
at y/h = −0.7 presented in figure 4 is decomposed at the wavelength at which the
inverse interscale fluxes by Trvv and Tr−uv are most significant in the near-wall region.
As presented in figures 4(d,e), the instantaneous values of these interscale fluxes take
both positive and negative values, and their distributions are rather intermittent as the
extremely large values in magnitude are concentrated in narrow spots. It also should
be noted that the instantaneous magnitudes of these interscale fluxes are larger by
one order compared to their averaged values (see the corresponding colour ranges
in figures 4 and 7). Although such observations might be partly because of the
noise involved in the stereo-PIV measurement that can be amplified when evaluating
instantaneous velocity gradients, such an intermittent behaviour of interscale energy
transport was also reported by earlier investigations (for example, Piomelli et al.
(1991)).

The spatial transport of turbulence is also remarkably affected by the emergence of
the roll cells. Figure 8 presents the profiles of the triple velocity correlations 〈u2v〉,
〈v3
〉 and 〈−uv2

〉 at different Ro for Re = 1000, which represent the transport in the
y-direction of the 〈u2

〉, 〈v2
〉 and 〈−uv〉, respectively. As shown here, the spatial flux

of the streamwise velocity fluctuation 〈u2v〉 indicates a transport of 〈u2
〉 towards the

channel centre from the near-wall region at all Ro, while the magnitude is somewhat
enhanced at higher Ro. The transport of the wall-normal velocity fluctuation 〈v3

〉

is shown to notably increase in magnitude with increasing Ro, indicating transport
from the central to near-wall region of the channel. The shear-stress transport 〈−uv2

〉

presents the most remarkable Ro dependency amongst the components shown here.
As shown in the panel (c), the 〈−uv2

〉 profiles at lower rotation numbers Ro= 0 and
0.01 indicate spatial fluxes of 〈−uv〉 towards the channel centre, while the direction
of the transport is reversed as Ro increases and the 〈−uv2

〉 profiles at relatively high
rotation numbers Ro = 0.055 and 0.09 indicate significant fluxes from the central
towards the near-wall region of the channel.

The spectral content of 〈u2v〉 and 〈−uv2
〉 are presented in figure 9 as typical

examples of the Ro dependencies of the spectra of triple velocity correlations. First,
it is an interesting observation that at Ro = 0 the transport of 〈u2

〉 and 〈−uv〉
are mainly significant at two different scales λz/h ≈ 3.4 and 0.85, corresponding to
λ+z ≈ 200 and 50, respectively, and at both these scales the Euuv and E−uvv distributions
indicate transport towards the channel centre. As Ro increases these spatial transport
spectra are shown to qualitatively change their behaviours. As shown in panel (a), at
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FIGURE 8. (Colour online) The spatial flux of the Reynolds stresses at different rotation
numbers at Re= 1000; (a) 〈u2v〉; (b) 〈v3

〉; (c) 〈−uv2
〉. The values are scaled by u3
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FIGURE 9. (Colour online) Space–wavelength (y–λz) diagrams of the premultiplied
scale-by-scale spatial flux of (a) the streamwise Reynolds normal stress kzEuuv and (b) the
Reynolds shear stress kzE−uvv at different rotation numbers for Re= 1000. The values are
scaled by u3

τ .

relatively high rotation numbers Ro= 0.055 and 0.09 the distribution of Euuv presents
significant transport flux towards the channel centre for λz/h < 3, while at larger
scales the direction of the flux is reversed in the near-wall region. The scale-by-scale
flux of the shear stress E−uvv remarkably changes its behaviour corresponding to the
〈−uv2

〉 profiles presented in figure 8(c). As shown in figure 9(b), as Ro increases
from Ro= 0 the shear stress transports towards the channel centre at relatively small
scales λz/h ≈ 0.8 is suppressed whereas those at larger scales are enhanced. At
Ro = 0.05 and 0.09 the outward transport effects appear at large and smaller scales,
which results in the overall net shear-stress transport from the central to the near-wall
region of the channel as presented in figure 8(c).
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FIGURE 10. (Colour online) Distributions of the (a) spatial and (b) interscale flux of the
Reynolds-shear-stress and (c) the spanwise autocorrelation functions at different y-positions
in the laminar roll-cell case Re= 100 and Ro= 0.4. The values of kzE−uvv and Tr−uv are
scaled by u3

τ and u3
τ/h, respectively. Note that the y-ranges presented here are −0.74 6

y/h6 0.74 symmetric with respect to the channel centre, while the measured range in the
turbulent cases is asymmetric as −0.82 6 y/h 6 0.45.

The distributions of the interscale and spatial fluxes at Ro = 0.055 and 0.09
shown above display their typical behaviours in the relatively high rotation number
range Ro & 0.05, and similar distributions are found also at other Reynolds numbers
investigated in the present study. In fact, such a trend can be found even in the laminar
roll-cell case. Figure 10 gives the distributions of E−uvv and Tr−uv at Re = 100 and
Ro = 0.4, where the ‘skewed’ roll cells are found (Suryadi et al. 2014; Kawata &
Alfredsson 2016a). One can see here that despite the flow being laminar the E−uvv
distribution presents a similar tendency as the turbulent case at Ro= 0.055 and 0.09
in figure 9(b), presenting spatial transport in different directions at different scales.
The interscale flux Tr−uv in this laminar case also presents a similar distribution to the
turbulent cases at Ro=0.055 and 0.09 presented in figure 7(b). It should be mentioned
here that basically the same tendencies are found at other Ro where other types of
laminar roll cells are found, such as the wavy roll cells or the two-dimensional roll
cells, as long as the secondary motion of the roll cells is strong enough.

To explain the reason for such interscale and spatial Reynolds stress transport
in the laminar case, we present the spanwise autocorrelation functions Ruu(1z) at
different wall-normal locations in this case in figure 10(c). As shown there, while
the profiles of Ruu at all y-positions present similar periodic behaviours with the
periodicity corresponding to the width of the roll cells, the profile at the channel
centre is shown to be somewhat skewed, indicating that the velocity spectra at the
channel centre include additional higher harmonics. Such variation of the spectral
contents of the roll cells across the channel results in the interscale and spatial
Reynolds stress transport even in the laminar case. Such resemblance between the
laminar and turbulent cases suggests that the spatial and interscale transport of the
Reynolds stresses observed at relatively high rotation numbers Ro ≈ 0.1 are, even
in the turbulent regime, mostly due to the secondary motion of the roll cells alone,
rather than interaction between the roll cells and turbulence.

As shown above, the Reynolds stress transport in the RPCF transitions from those
driven by the wall turbulence (Ro . 0.01) to those governed by secondary motion of
the roll cells (Ro ≈ 0.1) as Ro increases, and it is also shown that those at Ro =
0.02 exhibit an intermediate behaviour between these two regimes. It is particularly
noteworthy that, as shown in figure 9(b), the spatial flux of the Reynolds shear stress
towards the channel centre at the middle scales λz/h≈ 2, which roughly correspond to
half of the roll-cell width, is especially enhanced at Ro= 0.02. Such enhancement of
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the Reynolds stress flux becomes increasingly significant at higher Reynolds numbers
and closely related to the appearance of the reversed mean velocity gradient at the
channel centre, as described later in § 6. In the next section, we further investigate the
role of the above-described spatial and interscale transports for different Ro regimes
by comparison with the Reynolds stress production at each scale, and discuss how
turbulent energy at small scales is attenuated at relatively high Ro.

5. The scale-by-scale Reynolds stress transport in different rotation number
regimes
We have investigated the scale-by-scale balance between the Reynolds stress

production and the turbulent transports at various rotation numbers for 0 6 Ro . 0.1,
and found that in this Ro range there are roughly three different Ro regimes.

(i) Very low rotation number regime of the order of Ro≈ 10−3, where the Coriolis
force effect is negligibly small compared to the mean shear, and the scale-by-
scale balance is therefore essentially similar to the non-rotating plane Couette
turbulence.

(ii) Relatively low rotation number regime Ro ≈ 0.01, where the influence by the
Coriolis force is observed in the productions of the Reynolds stresses while the
interscale and spatial transports still exhibit similar behaviours as for the non-
rotating case.

(iii) Zero-absolute-vorticity regime Ro & 0.05, where the Coriolis force effect is so
significant that the zero absolute vorticity is established around the channel
centre and both the Reynolds stress productions and turbulent transports exhibit
qualitatively different behaviours as compared to lower Ro regimes.

In the following we present the scale-by-scale budgets for the (ii) Ro≈ 0.01 and the
(iii) Ro & 0.05 cases. As for the details of the scale-by-scale budget of non-rotating
wall turbulence, readers are referred to our previous work (Kawata & Alfredsson
2018) focusing on the Reynolds-shear-stress transport of the non-rotating planar
Couette turbulence, as well as to other recent studies analysing the scale-by-scale
energy transport of turbulent channel flows by different methodologies (such as,
Cimarelli et al. (2013, 2016), Mizuno (2016), Cho et al. (2018), Hamba (2018), Lee
& Moser (2019)).

5.1. In the relatively low rotation number regime Ro≈ 0.01
We first investigate the scale-by-scale balance of the Reynolds stress transport at
low rotation numbers Ro ≈ 0.01. In figure 11 the Reynolds stress spectra, their
scale-by-scale productions as well as interscale and spatial transports at Ro = 0.01
and Re= 1000 are presented. As already shown in figure 6, at this Ro the wall-normal
stress spectrum Evv indicates two energy peaks at the channel centre, and the
cospectrum E−uv also presents the contributions by the roll cells and the near-wall
structure separately. As in the RPCF configuration the averaged quantities are only
functions of the wall-normal coordinate y, the scale-by-scale productions of the
Reynolds stresses are evaluated as follows:

pr∗uu = 2E∗
−uv

dU∗

dy∗
− 2RoE∗

−uv, (5.1)

pr∗vv = 2RoE∗
−uv, (5.2)

pr∗
−uv = E∗vv

dU∗

dy∗
+ Ro(E∗uu − E∗vv), (5.3)
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FIGURE 11. (Colour online) Space–wavelength (y–λz) diagrams of the premultiplied
energy spectra or shear-stress cospectra and their scale-by-scale production, interscale
transport, and spatial transport at Ro = 0.01 and Re = 1000; (a) 〈u2

〉 spectra and the
scale-by-scale budget; (b) 〈v2

〉 spectra and the scale-by-scale budget; (c) 〈−uv〉 cospectra
and the scale-by-scale budget. The values shown here are scaled by u2

τ for the Reynolds
stress spectra or cospectra and by u3

τ/h for the scale-by-scale productions and turbulent
transports.

and the scale-by-scale spatial redistribution dt
ujuj

is also simplified as

dt
uu =−

dEuuv

dy
, dt

vv =−
dEvvv

dy
, dt

−uv =−
dE−uvv

dy
. (5.4a−c)

The interscale transport trij is evaluated according to the definition given in § 2, and
in figure 11 the interscale transfer of the streamwise stress truu is also given for
comparison, despite that the ∂/∂y-related terms are not included in the evaluation.

At this Ro the Coriolis force effect is not negligible compared to the mean-shear
effect, and the Ro-related terms in the productions (5.1)–(5.3) play a certain role in the
scale-by-scale transport of each Reynolds stress component. As shown in figure 11(b)
the production of the wall-normal stress prvv = 2RoEuv by the Coriolis force effect
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is comparable to the other transport terms, unlike at lower rotation numbers where
prvv is negligible and the main energy source for Evv is the energy redistribution by
the pressure-strain correlation effect at relatively small scales. One can see that the
Evv peak located at larger scales is produced by prvv, while the one at smaller scales
is likely supported through the pressure-strain energy redistribution as at lower Ro.
The shear-stress production pr−uv indicate two main peaks at different scales in the
near-wall region as presented in figure 11(c). The one located at relatively small scales
λz/h≈ 1 is due to the mean-shear effect Evv dU/dy, i.e. the first term in (5.3), whereas
the peak at larger scales λz/h ≈ 4 is partly contributed by the Coriolis force term
Ro(E∗uu − E∗vv) due to the significant peak of Euu near the wall. The aforementioned
large-scale and near-wall peaks in the distribution of E−uv are attributable to such
productions by different effects at different scales, which eventually results in the Euu
production at different scales near the wall as shown in figure 11(a).

As indicated by the truu and trvv distributions the Reynolds normal stresses 〈u2
〉

and 〈v2
〉 are shown to be interscale-transferred basically from larger to smaller scales

throughout the channel, as considered in the general picture of a turbulent energy
cascade. The spatial transport dt

uu carries 〈u2
〉 from the near-wall to the central region

of the channel basically at all scales investigated, but dt
vv indicates spatial transport

in different directions depending on the scale. On the other hand, the Reynolds shear
stress 〈−uv〉 is shown to be transferred from relatively small scales λz/h ≈ 1 to
larger scales λz/h > 2 by the interscale transport tr−uv throughout the channel, and at
both these large and small scales the spatial transport dt

−uv is shown to transport the
Reynolds shear stress from the near-wall towards the central region of the channel.
Such tendencies of the interscale and spatial transports are essentially similar to the
non-rotating case in contrast to the productions, and in particular the trends of the
Reynolds-shear-stress transports tr−uv and dt

−uv can be interpreted as an influence
from the near-wall structures to the large-scale structures in the core region of the
channel (Kawata & Alfredsson 2018).

5.2. In the zero-absolute-vorticity regime Ro & 0.05
We next investigate the relatively high Ro case, i.e. Ro & 0.05. The Reynolds stress
spectra and their productions and transports at Ro= 0.09 for Re= 1000 are presented
in figure 12, and as one can see in figure 2(b) the state of zero absolute vorticity
is established around the channel centre in this case. It is shown in figure 12
that at this relatively high Ro both the production and turbulent transport terms
indicate qualitatively different tendencies from the non-rotating case. In particular, the
interscale and spatial transports of 〈v2

〉 and 〈−uv〉 are significant. Their magnitudes
are larger by nearly one order than those in the lower Ro regimes, and all transport
terms are comparable to the production of each Reynolds stress component. Such
remarkable contributions by the turbulent transports are not observed in the lower Ro
cases.

Due to the zero absolute vorticity, the scale-by-scale productions pruu and prvv in
the channel core region are

pr∗uu = 2E∗
−uv

(
dU∗

dy∗
− Ro

)
= 0, (5.5)

pr∗vv = 2RoE∗
−uv, (5.6)

indicating that the energy input from the mean flow to the streamwise velocity
fluctuations is almost absorbed by the wall-normal component through the Coriolis
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FIGURE 12. (Colour online) Space–wavelength (y–λz) diagrams of the premultiplied
energy spectra or shear-stress cospectra and their scale-by-scale production, interscale
transport, and turbulent spatial transport at Ro = 0.09 and Re = 1000; (a) 〈u2

〉 spectra
and the scale-by-scale budget; (b) 〈v2

〉 spectra and the scale-by-scale budget; (c) 〈−uv〉
cospectra and the scale-by-scale budget. The values shown here are scaled by u2

τ for the
Reynolds stress spectra or cospectra and by u3

τ/h for the scale-by-scale productions and
turbulent transports.

force effect. Figure 12(a,b) indeed shows that the production of the streamwise
normal-stress spectra pruu is negligibly small around the channel centre at all scales
and the wall-normal stress production prvv is instead significant at large scales, which
gives the strong anisotropy in the channel core region. On the other hand, the shear
stress production is

pr∗
−uv = RoEuu + Evv

(
dU∗

dy∗
− Ro

)
= RoEuu, (5.7)

and one can see here by the above equations (5.5)–(5.7) that the mean shear effect
disappears from the production of any component under the zero-absolute-vorticity
state. Due to such absence of the energy input by the mean shear, the production of

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

66
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.668


278 T. Kawata and P. H. Alfredsson

the shear stress component pr−uv is also very small across the channel, while it still
presents slight positive values due to the remaining Coriolis force effect through Euu.

It is shown in figure 12(a) that the production of the streamwise energy spectra pruu
is remarkable near the wall presenting significant positive and negative contributions,
and the negative production is due to the negative shear-stress cospectra at the
corresponding location, see the E−uv distribution in the panel (c). Comparing the
distributions of pruu with the turbulent transports truu and dt

uu, one can see that
the streamwise energy produced by pruu at large scales near the wall is transferred
towards smaller scales by the interscale transport truu, a part of which is depleted
by the negative production, but the rest is further transported towards the channel
centre, which results in the certain energy Euu distributed at small scales around the
channel centre. As for the scale-by-scale budget of the wall-normal spectra Evv, the
interscale transport trvv shows a ‘forward’ and ‘reversed’ cascade in the channel-core
and near-wall region, respectively, corresponding to the Trvv distribution presented in
figure 7(c), and the spatial transport dt

vv presents a strong wallward transport from
the central to near-wall region of the channel at both large and small scales. Such
significant contributions by trvv and dt

vv, however, nearly cancel each other out at
small scales (compare the trvv and dt

vv distributions in figure 12(b), they are quite
similar in λz/h 6 3 with opposite sign) and the net total effect by these turbulent
transports together, (trvv + dt

vv), is a significant transport from the core to near-wall
region of the channel at large scales.

The shear stress production pr−uv is also significant at large scales near the wall,
resulting in the near-wall peak of E−uv at the corresponding large scales. The transport
terms tr−uv and dt

−uv present a somewhat complex pattern of distribution which
changes sign a few times throughout the investigated y and λz range, corresponding
to the distribution of Tr−uv and E−uvv presented in figures 7(c) and 8(c). However,
their contributions, similar to trvv and dt

vv, nearly cancel each other in the channel
core region, and their total contribution tr−uv + dt

−uv is an inverse interscale transport
in the near-wall region of the channel that removes a significant amount of 〈−uv〉
from relatively small scales λz/h ≈ 2 and brings it to larger scales. As shown later
in detail, such a negative contribution by tr−uv + dt

−uv at relatively small scales in
the near-wall region is as significant as the local production and therefore can be
attributed to the appearance of the negative E−uv region. On the other hand, since the
total transport tr−uv + dt

−uv is nearly zero at the channel centre, the secondary peak
of E−uv at small scales is mainly attributable to the slight positive production pr−uv
at the channel centre by the Coriolis force effect.

While the discussions described above are based on prij, trij and dt
ij, the role

of pressure can also be affected by the system rotation because the source term
of the Poisson equation for pressure involves the Coriolis force term. As one can
see in figure 12, the residual of three terms presented here is obviously not zero. In
particular, in the wall-normal stress transport prvv, trvv and dt

vv all present a significant
positive peak at large wavelengths near the wall, and also in the shear-stress transport
the significant gain by p−uv in the near-wall region is obviously not balanced by
tr−uv + dt

−uv. These positive residuals should be compensated by the other terms, and
here the role of the pressure-related terms is implied. Some earlier numerical studies
on the rotating Poiseuille flow (e.g. Ishida, Tsukahara & Kawaguchi 2014; Brethouwer
2017) reported that the pressure-strain correlations play a central role in the transport
of 〈v2

〉 and −〈uv〉 in the near-wall region on the pressure side, transferring the
energy from 〈v2

〉 to 〈w2
〉 and dissipating 〈−uv〉 in the near-wall region. As the flow

structures there are dominated by the roll-cell structures similarly to the present flow

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

66
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.668


Scale interactions in turbulent RPCF 279

configuration, it can be inferred from these results that the significant residuals near
the wall shown in figures 12(b) and 12(c) would be compensated mainly by the
pressure-strain correlations. Such effect of transferring energy from 〈v2

〉 to 〈w2
〉 near

the wall corresponds to the blocking effect by the wall which redirects the secondary
motion of the roll cells towards the wall into the spanwise direction, and the tendency
of the pressure-strain correlation to act as the main sink in the 〈−uv〉 transport is
similar to its role in the non-rotating wall turbulence.

As shown above, the distributions of Euu and Evv at relatively high rotation numbers
Ro ≈ 0.1 are clearly concentrated at large scales corresponding to the width of the
roll cells, and less energy is distributed at smaller scales. This is in contrast to the
non-rotating case where turbulent energy is broadly distributed over a wide range
of scales. The primary difference in the scale-by-scale energy budget between the
non-rotating and Ro≈ 0.1 cases is the energy supply to the wall-normal stress spectra
Evv. In the non-rotating case there is no production for this component and the
only energy source is the energy redistribution from Euu through the pressure-strain
correlation at relatively small scales, which results in the distribution of Evv at
relatively small scales compared to Euu (see figure 6). Such an Evv distribution leads
to shear-stress production at relatively small scales as pr−uv = Evv dU/dy, and the
shear stress 〈−uv〉 thus produced at small scales is transferred to larger scales by
the interscale transport, which leads to turbulent energy production at larger scales
(Kawata & Alfredsson 2018). Hence, the energy source to different Reynolds stress
components at different scales might be a key factor in maintaining the energy
distributions over a wide range of scales. In the relatively high Ro regime, on the
other hand, the wall-normal spectrum Evv has a significant energy gain at large
scales as the streamwise component Euu, as shown in figure 12, and the shear stress
component E−uv is, therefore, also produced at the same scale as its production pr−uv

depends on Euu and Evv (see (5.3)). Therefore, all Reynolds stress productions are
‘locked’ at the same scales under the presence of a significant Coriolis force effect.

5.3. On the Ro effect to attenuate small-scale structures
As shown in figures 6 and 12, the energies at relatively small scales are clearly
attenuated in the relatively high Ro regime (Ro = O(0.1)). This energy suppression
at small scales is particularly significant in the near-wall region as illuminated
in figure 13(a-1) and (b-1), where the turbulent kinetic energy spectra Ekt =

(Euu+Evv +Eww)/2 and the Reynolds-shear-stress cospectra E−uv at near-wall location
η+= 20 at Re= 1000 are shown to clearly decrease at small scales with increasing Ro.
The decrease of the shear-stress cospectra E−uv is particularly remarkable. It is shown
that the broad peak of E−uv shown at Ro = 0 around λ+z ≈ 100, which corresponds
to the near-wall structure, disappears at Ro = 0.02 (see the yellow profile), and at
higher Ro the E−uv profiles present negative values around λ+z ≈ 200. This wavelength
corresponds to half of the roll-cell width, as already mentioned above.

As the Reynolds shear stress is closely related by the turbulent kinetic energy
production as prkt = E−uv dU/dy, this behaviour of the shear-stress cospectra indicates
a remarkable suppression of the turbulent energy production at small scales near the
wall. In figure 13(a-2), the scale-by-scale turbulent energy production prkt is shown
to significantly decrease at small scales corresponding to the behaviour of E−uv, and
at relatively high Ro the energy production is nearly zero for λ+z 6 100 and even
negative around λ+z ≈ 200, in contrast to the significant production at large scales. In
general, the energy source at small scales is the energy cascade from larger scales;
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FIGURE 13. (Colour online) Premultiplied spectra of the turbulent kinetic energy and the
Reynolds stress and their productions and turbulent transports at wall-normal location η+=
Reτ (1+ y/h)= 25 for Re= 1000; (a-1) kzEkt , (a-2) kzprkt , (a-3) kz(trkt + dt

kt
); (b-1) kzE−uv ,

(b-2) kzpr−uv , (b-3) kz(tr−uv + dt
−uv). The values are scaled by u2

τ for the premultiplied
spectra kzEkt and kzE−uv and by u4

τ/ν for their scale-by-scale productions and turbulent
transports. The grey lines represent all Ro cases at Re = 1000, and some representative
cases are highlighted with the other colours; (blue) Ro= 0, (red) Ro= 0.01, (yellow) Ro=
0.02, (purple) Ro = 0.04, (green) Ro = 0.09. The black arrows indicate the direction of
variation with increasing Ro.

the turbulent energy produced at large scales is cascaded to smaller scales and a part
of such energy gain by interscale transfer is further transported elsewhere by the
spatial transport, the residual of which is the local energy gain at small scales. Such
residual energy gain by the transport terms trkt + dt

kt
is also presented in figure 13(a-3)

for comparison, and it is shown that the energy supply by trkt + dt
kt

at relatively small
scales λ+z ≈ 200 is nearly cancelled by the negative contribution by the production
prkt . Therefore, the negative energy production observed at relatively small scales in
the near-wall region can be attributed to the significant energy suppression at small
scales in the relatively high Ro regime.

Despite such negative values of the Reynolds stress cospectra E−uv at relatively high
Ro, the production of this component pr−uv still shows positive contributions at all
scales in all Ro cases, while the magnitude decreases with increasing Ro at small
scales. On the contrary, the pr−uv profiles even show a secondary positive peak at the
wavelengths corresponding to the negative peak of the cospectra E−uv, which is mainly
due to the contribution by the additional shear stress production by the Coriolis force
effect. What can be attributed to the negative E−uv instead is the turbulent transports
given in figure 13(b-3), which indicate a significant loss of the shear stress at these
scales at relatively high Ro. As shown in figure 12(c), this negative contribution is
mainly due to the spatial transport dt

−uv which moves the energy from the near-wall
to the core region at relatively small scales, and the interscale transport tr−uv also
transfers a certain amount of the energy from these scales towards larger scales. As
shown in figure 13(b-3) the negative contribution by such turbulent transports tr−uv +

dt
−uv is significant enough to cancel the positive contribution by the production pr−uv.

Hence, it can be viewed that such significant turbulent transports of the Reynolds shear
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FIGURE 14. (Colour online) The space-scale (y–λz) diagrams of the premultiplied
(a) streamwise Reynolds-normal-stress spectra kzEuu and (b) Reynolds-shear-stress
cospectra kzE−uv at different Ro for Re = 2000. The values are scaled by u2

τ , and the
distance from the wall at y/h=−1 in wall units, η+ = uτ (y+ h)/ν, is also indicated on
the upper abscissa of each panel.

stress eventually leads to the suppression of turbulent energy at small scales in the
near-wall region.

6. The Reynolds number effect
6.1. The transition from the low to relatively high Ro regime at Re= 2000

In this section we shift our focus to the Reynolds number effect. Although the Ro
range observed at higher Re is relatively narrow, for example 06Ro6 0.045 at Re=
2000, the rotation-number dependencies of the flow structure similar to those observed
at Re= 1000 are also observed at higher Reynolds numbers. As presented in figure 14,
the Reynolds stress spectra at Re= 2000 indicate quite similar tendencies to the Re=
1000 case presented in figure 6, and the distributions of Euu and E−uv at Ro= 0.045
resemble those observed at Ro= 0.055 and 0.09 for Re= 1000.

The primary effect of increasing the Reynolds number is the enhanced scale
separation between the large-scale structure in the channel core region and the
near-wall structure. It is shown in figure 14 that in the non-rotating case at Re= 2000
the Euu peaks corresponding to the near-wall structure and the large-scale structure in
the core region can be separately observed, unlike the Re= 1000 case where only the
near-wall peak is observed due to insufficient scale separation. Note that as indicated
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on the upper abscissa of each panel in figure 14 the measured y-range in the cases
of Re= 2000 starts at η+ = 27 (slightly different depending on τw in each Ro case),
and the near-wall peak Euu is therefore only partly captured, for example, as observed
around λz/h≈ 1 at Ro= 0, which corresponds to λz ≈ 100. Such separation between
the near-wall and channel-centre peaks is shown to be enhanced as the rotation
number increases up to Ro = 0.02, as shown by the variation of the Euu and E−uv

distributions for 0 6 Ro 6 0.02. In particular, the near-wall and the large-scale peaks
of the Reynolds-shear-stress cospectra E−uv become clearly separated with increasing
Ro. Comparing the variations of the E−uv distribution at Re = 1000 (figure 6) and
Re = 2000 (figure 14) one can see that the near-wall peak of E−uv survives longer
at Re = 2000, as it is still clearly observed at Ro = 0.02 in the case of Re = 2000
while in the Re= 1000 case the near-wall peak had already disappeared at Ro= 0.02
and the negative E−uv region near the wall instead is about to emerge, which is the
typical tendency of the E−uv distribution for relatively high Ro.

Such variation of the Reynolds-shear-stress cospectra is closely related with
the non-monotonic variation of the wall shear stress around Ro ≈ 0.02 shown in
figure 2(a). The wall shear stress can generally be split into its laminar value τw,lam

and the increase from it due to the Reynolds shear stress distribution 1τw (Fukagata,
Iwamoto & Kasagi 2002). In the RPCF configuration the Fukagata–Iwamoto–Kasagi
(FIK) identity becomes

τw =µ
Uw

h︸ ︷︷ ︸
τw,lam

+
ρ

2h

∫ h

−h
(−〈uv〉) dy︸ ︷︷ ︸
1τw

, (6.1)

which indicates that the Reynolds shear stress spatially averaged over the channel is
equivalent to the increase of the wall shear stress from its laminar and no-rotation
case value. In terms of the shear stress cospectra E−uv the Reynolds-shear-stress
contribution is written as follows:

1τw =
ρ

2h

∫ h

−h

∫
∞

0
E−uv(y, kz) dkz dy= ρ

∫
∞

0

(
1

2h

∫ h

−h
E−uv(y, kz) dy

)
dkz, (6.2)

and one can therefore see that the channel-averaged Reynolds-shear-stress cospectrum

E−uv(kz)=
1
2h

∫ h

−h
E−uv(y, kz) dy (6.3)

represents the spectral content of the turbulent part of the wall shear stress 1τw.
Figure 15 presents the profiles of E−uv obtained by integrating the E−uv distribution,

comparing several different Ro cases at Re = 1000 and 2000 in the panels (a) and
(b), respectively. As shown in figure 15(a), at the lower Reynolds number case
(Re = 1000), the channel-averaged spectra E−uv rapidly decrease at relatively small
scale (λz/h< 3) with increasing Ro. Such a decrease at small scales is compensated
by the significant increase at large scales λz/h > 3 and the overall value of τw thus
increases monotonically with increasing Ro, as shown in figure 2(a). At higher Ro
the contributions at such large scales continue to grow with increasing Ro, and the
spectra at small scales present only slight contributions.

At the higher Reynolds number (Re = 2000), the contributions from small scales
is generally more significant for all Ro cases compared to the corresponding profiles
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FIGURE 15. (Colour online) Premultiplied spectral content of the turbulent part of the
wall sear stress kzE−uv at different rotation numbers around Ro≈ 0.02 for (a) Re= 1000
and (b) Re= 2000 with blue, Ro= 0; red, Ro= 0.01; yellow, Ro= 0.02; purple, Ro= 0.03;
green, Ro≈ 0.04. The values are normalised by the laminar base flow value τw,lam/ρ.
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FIGURE 16. (Colour online) Variation of the wall shear stress 1τw with the rotation
number Ro, comparing the large-scale part 1τ L

w and small-scale part 1τ S
w decomposed at

λz/h= 3. The values are normalised by the laminar base-flow case value τw,lam =µUw/h.

at Re= 1000, and this is clearly due to the near-wall peak of the E−uv distributions
that survives up to higher Ro. In particular, between Ro = 0.01 and Ro = 0.02 the
values of E−uv at relatively small scales (λz/h 6 3) are nearly unchanged while E−uv

at larger scales increases slightly. This is in contrast to the Re = 1000 cases where
the spectrum E−uv at small scales decreases considerably between Ro= 0.01 and 0.02
and the contributions from these scales are nearly zero at Ro=0.02. However, between
Ro= 0.02 and 0.03 at Re= 2000 the E−uv profile is shown to decrease over a wide
range of scales for λz/h6 3, corresponding to decay of the near-wall peak of the E−uv

distribution. Although E−uv at larger scales somewhat increases between Ro=0.02 and
0.03, the integrated decrease at the small scales exceeds the increase at larger scales.
This results in a decrease of the overall value of the wall shear stress around Ro≈0.02
shown in figure 2(a), and at higher Ro the wall shear stress τw increases again as E−uv

at large scales increases. This observation suggests that the non-monotonic variation
of the wall shear stress around Ro≈ 0.02 is actually a narrow deficit, or valley, rather
than a narrow peak, which is caused by a suppression of the near-wall structure.
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FIGURE 17. (Colour online) The Re–Ω diagram of flow regimes reported by Tsukahara
et al. (2010) (reprinted with permission). The blue dashed lines newly added in the present
study indicate Ro(=Ω/Re)= 0.01, 0.02 and 0.05.

Such a tendency may be more clearly depicted by splitting the turbulent part of
the wall shear stress 1τw into its large- and small-scale part. As the large-scale peak
of the cospectra E−uv corresponding to the roll cells basically resides in λz/h > 3
(see figures 6c and 14b), we divide 1τw into 1τ L

w and 1τ S
w at λz/h = 3 as 1τ L

w =∫ 2π/3h
0 ρE−uvdkz and 1τ S

w =1τw−1τ
L
w and present in figure 16 their variations for all

Re cases. As shown, the large-scale contribution 1τ L
w increases while 1τ S

w decreases
with increasing Ro in all cases. However, only at Re=2000 the variations of both 1τ L

w
and 1τ S

w have a plateau around Ro = 0.02, after which 1τ S
w significantly decreases.

The effect of this rapid decrease of 1τ S
w defeats the increase of the large-scale part

1τ L
w , which results in the appearance of the small valley of the total wall shear stress

variation around Ro≈ 0.03.
As shown above, the flow structures of the turbulent RPCF in the low (Ro≈ 0.01)

and relatively high (Ro& 0.05) regimes are qualitatively different in that the turbulent
near-wall structures are still retained in the former regime while not observed in the
latter, and the rotation numbers Ro ≈ 0.02 are in the intermediate range between
them. Tsukahara et al. (2010) reported that in the turbulent regime the flow structure
transitions from ‘Turbulence with roll cells’ to ‘Contained turbulence in roll cells’, as
the rotation number increases. Their flow-structure diagram is reproduced in figure 17
with added dashed lines indicating Ro= 0.01, 0.02 and 0.05. One can see here that
the boundary between regimes of the turbulence with roll cell and the contained
turbulence is located between Ro = 0.02 and Ro = 0.05, suggesting that the flow
structure observed at relatively high Ro where the near-wall structures are suppressed
corresponds to the contained turbulence observed by Tsukahara et al. (2010). It is
also interesting to note that the low rotation numbers Ro ≈ 0.01 fall in the regime
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of the turbulence with two-dimensional (i.e. straight in the streamwise direction) roll
cells, while the transitional range Ro≈ 0.02 lies in the regime of the turbulence with
three-dimensional (wavy) roll cells. This is consistent with the numerical observation
by Salewski & Eckhardt (2015) that the flow structure associated with the narrow
peak of the wall shear stress variation includes a streamwise modulation of roll cells,
resembling the wavy vortex flow identified in the Taylor–Couette system.

As mentioned in § 1, the RPCF corresponds to the Taylor–Couette flow with the
ratio of the inner to outer radii being almost unity. Indeed, a similar non-monotonic
behaviour of torque has been observed in small cylinder-gap cases where the rotation
number (or the angular velocity ratio) is changed with a fixed Taylor number
(Brauckmann, Eckhardt & Schumacher 2017). Apart from the small cylinder-gap
cases, another interesting transition of flow structure is observed in the Taylor–Couette
flow, where (as the Taylor number increases) the flow transitions from ‘Classical
Taylor–Couette turbulence’ to ‘Ultimate regime’; in the former regime the bulk
region of the cylinder gap is turbulent while the boundary layers on the inner and
outer cylinder surfaces are still laminar, whereas in the latter both the bulk and
boundary layers are turbulent (see, for instance, Grossmann, Lohse & Sun (2016),
and references therein). The transition in the RPCF observed in the present study
can be viewed as a similar phenomenon to such transition in the Taylor–Couette
system in that the flow structure near the wall qualitatively changes its behaviour.
However, it is unclear from the present experimental results whether the near-wall
region is relaminarised in the turbulent RPCF due to the limited measurement range
(e.g. η+> 27 at Re= 2000). Although both the results by Salewski & Eckhardt (2015)
and the present study observe the sudden drop of the wall shear stress approximately
at Ro= 0.02 at different Reynolds numbers, the Reynolds numbers investigated so far
for the RPCF are still limited to low Re range (the highest is Re= 5200 numerically
observed by Salewski & Eckhardt (2015), roughly corresponds to Reτ ≈ 230 at
no system rotation), and it would be an interesting future task, for example, to
investigate whether the near-wall region of the contained turbulence transitions to
turbulence again by increasing the Reynolds number, similarly to the transition to the
ultimate regime in the Taylor–Couette turbulence.

6.2. The Reynolds stress transport caused by interaction between the roll cells and
smaller-scale turbulence

As shown above, the rotation numbers around Ro≈ 0.02 are in the transitional range
between the low (Ro≈ 0.01) and relatively high (Ro& 0.05) rotation number regimes,
and it is noteworthy here that the reversed mean velocity gradient appears in this
Ro range as shown in figure 2(b). As mentioned in § 1 the negative mean velocity
gradient means that the Reynolds shear stress 〈−uv〉 locally exceeds the wall shear
stress τw (see (2.4)), and furthermore the value of τw is equivalent to the 〈−uv〉 value
averaged across the channel as indicated by the FIK identity, equation (6.1). Therefore,
the appearance of the reversed mean velocity gradient depends on the shape of the
〈−uv〉 profile rather than the local magnitude of 〈−uv〉 at the channel centre, which
indicates that the spatial transport of 〈−uv〉 across the channel is closely related.

Such a connection between the negative mean velocity gradient and the Reynolds-
shear-stress transport was already suggested in our previous study (Kawata &
Alfredsson 2016b), where we reported that in the cases where the reversed mean
velocity gradient is observed, significant spatial transport of the Reynolds shear stress
〈−uv〉 towards the channel centre is found. This is reproduced in figure 18(a), where
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FIGURE 18. (Colour online) The turbulent spatial flux of the Reynolds-shear-stress 〈−uv〉
around Ro ≈ 0.02 for different Reynolds numbers; (a) the ‘total’ turbulent spatial flux
〈−uv2

〉; (b) the space-scale (y–λz) diagrams of their premultiplied spectral content kzE−uvv
at (from left to right) Re= 500 and Ro= 0.04, Re= 1000 and Ro= 0.02, Re= 1500 and
Ro= 0.0267, Re= 2000 and Ro= 0.03. The values are scaled by u3

τ .

the profiles of the shear-stress transport 〈−uv2
〉 is compared for the cases around

Ro ≈ 0.02 at different Re where the profile of dU/dy presented in figure 2(b) takes
the minimum at each Re. It is seen here that for the lowest Re case, Re = 500 and
Ro = 0.04, where dU/dy is positive, the 〈−uv2

〉 profile shows a wallward 〈−uv〉
transport from the channel centre to the near-wall region. However, the direction
of the 〈−uv〉 transport is reversed as Re increases, and at higher Reynolds number
cases, Re = 1500 and 2000, where dU/dy at the channel centre is clearly negative
(see figure 2b), the 〈−uv2

〉 profiles indicate significant transport of 〈−uv〉 from the
near-wall to the central region of the channel.

The spectral contents of such spatial transports of 〈−uv〉 are presented in
figure 18(b). In the lowest Re case, Re = 500 and Ro = 0.04, E−uvv presents the
typical tendency of the roll-cell-driven transport at relatively high Ro, presenting
both inward and outward transports at different scales. Integrating this distribution
over the λz range investigated yields the net spatial flux from the central to the
near-wall region of the channel as already presented in figure 18(a). However, in
the higher Re cases the spatial flux towards the channel centre at the middle scales,
i.e. λz/h ≈ 2.5 approximately corresponding to half of the roll-cell width, is shown
to be enhanced with increasing Re while the transports in the opposite direction at
larger and smaller scales are suppressed instead. In the highest Reynolds number
case, Re= 2000 and Ro= 0.03, the transports towards the near-wall region disappear
and the E−uvv distribution presents transport towards the channel centre at all scales,
which results in a significant net transport presented in figure 18(a). Such tendency
of the shear-stress transport is qualitatively different from both the non-rotating plane
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FIGURE 19. (Colour online) Instantaneous decomposed velocity fields and corresponding
instantaneous spatial transport of the Reynolds-shear-stress −ũvvL and −ũvvS at the
wall-normal location y/h ≈ −0.4, comparing the (a) Re = 500 and Ro = 0.04 with the
(b) Re= 2000 and Ro= 0.03 cases. The velocity fields are decomposed at (a) λz/h≈ 3.1
and (b) 3.4, so that the large-scale part includes only the largest E−uv peak corresponding
to the roll cells. The wall-normal location presented here is (a) y/h=−0.35 and (b) y/h=
−0.45 depending on the location of the E−uvv peak in each case. The colours and
black arrows in the figures of the decomposed velocity fields represent the values of the
corresponding wall-normal velocity component (v, v′, or v′′) scaled by Uw and the pattern
of the in-plane velocity vectors, respectively, and the black arrows are shown downsampled
and with the same length scale as in figures 4 and 5. The values of −ũvvL and −ũvvS

are scaled by u3
τ .

Couette turbulence and the roll-cell-dominating relatively high-Ro case, and observed
only at the transitional rotation numbers around Ro≈ 0.02 at high enough Reynolds
numbers.

In figure 19 the instantaneous velocity fields at the wall-normal locations y/h≈−0.4
are compared for Re = 500 and Ro = 0.04 as well as Re = 2000 and Ro = 0.03.
In both cases large-scale roll cells are clearly captured, and the flow structure is
decomposed with cutoff wavelength around λz/h ≈ 3 so that the large-scale part
covers only the distinct spectra peak corresponding to the roll cells and the rest,
smaller-scale structures are included in the small-scale part. It is shown here that
similar large-scale roll cells are extracted in both cases and the small-scale part
becomes more chaotic at higher Reynolds number.

The decomposed instantaneous spatial fluxes of the Reynolds shear stress,
i.e. −ũvvL and −ũvvS are also presented in figure 19 for each case. Here −ũvvL and
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FIGURE 20. (Colour online) (a) Space–wavelength (y–λz) diagrams of the premultiplied
Reynolds-shear-stress cospectra and their scale-by-scale production, interscale transport,
and turbulent spatial transport at Ro = 0.03 and Re = 2000. (b,c) The profiles at the
channel centre of (b) the Reynolds-shear-stress cospectra kzE−uv and (c) the scale-by-scale
production and turbulent transports; (blue) production kzpr−uv , (red) kztr−uv , (yellow) kzdt

−uv .
The values are scaled by u2

τ for kzE−uv and u3
τ/h for the scale-by-scale production and the

turbulent transports.

−ũvvS are defined based on (3.12) and (3.13) as

− ũv2
L
= −u′v′2 − u′v′v′′ − u′′v′v′′ − u′v′′2, (6.4)

− ũv2
S
= −u′′v′′2 − u′′v′′v′ − u′v′′v′ − u′′v′2, (6.5)

respectively, and physically represent the instantaneous flux of 〈−u′v′〉 and 〈−u′′v′′〉
in the wall-normal direction, respectively. It can be seen here that in both cases
the positive regions of both the −ũvvL and −ũvvS distributions correspond well
to the large-scale roll-cells’ upwelling (the regions of v′ > 0), indicating that both
〈−u′v′〉 and 〈−u′′v′′〉 are carried towards the core region of the channel by secondary
motion of the roll cells. Such Reynolds stress flux by the roll-cells’ upwelling is
shown to be enhanced at higher Reynolds number, resulting in a significant 〈−uv〉
flux towards the channel centre presented in figure 18(a). On the other hand, in the
roll-cells’ downwelling (v′ < 0) region the magnitude of both −ũvvL and −ũvvS are
not significantly changed by increase of Re.

The contribution by such spatial transport of the Reynolds shear stress is further
examined for the case of Re = 2000 and Ro = 0.03 in figure 20, by comparison
with the scale-by-scale production and interscale transport. Figure 20(a) gives the
space–wavelength diagrams of the Reynolds-shear-stress cospectrum E−uv and its
scale-by-scale production and turbulent transports, and their profiles at the channel
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centre y/h= 0 are also presented in panels (b,c). The distribution of the cospectrum
E−uv in panel (a) weakly indicates the typical tendency of the relatively high Ro
regime, showing the distinct peak at large scales with a secondary peak at relatively
small scales λz/h ≈ 1.6 at the channel centre, while the near-wall peak is also still
found. The scale-by-scale production pr−uv is significant in the outer region of the
channel y/h 6−0.5 over a wide range of scales, which is due to the production by
the mean shear at small scales and the additional production by the Coriolis force
at large scales. In the channel central region, on the other hand, the production is
nearly zero throughout the λz/h range despite the significant magnitude of 〈−uv〉
at the channel centre. The interscale transport tr−uv is shown to inversely transfer
〈−uv〉 from λz/h6 2 to larger scales around the channel centre. The spatial transport
dt
−uv =−dE−uvv/dy brings the Reynolds shear stress from the near-wall to core region

of the channel for a wide range of scales, corresponding to the E−uvv distribution
presented in figure 18. Combining the distributions of pr−uv, tr−uv and dt

−uv, one
can interpret that the Reynolds shear stress produced in the near-wall region of the
channel over a wide range of scales is spatially transported towards the central region
by dt

−uv, and further transferred to larger scales by tr−uv.
Further detailed balance between the productions and turbulent transports at the

channel centre is given in figure 20(b,c). The profile of E−uv shows a primary peak
located at λz/h ≈ 4.7 with a secondary peak at the middle scale λz/h ≈ 1.6, and
integrating this E−uv profile over the investigated λz range yields the overall Reynolds
shear stress that exceeds the wall shear stress. Despite such significant local E−uv
at the channel centre, the production pr−uv is nearly zero for λz/h 6 3 and even
negative at larger scales that correspond to the primary peak location of E−uv. Such
negative production is due to the negative mean velocity gradient around the channel
centre. The spatial transport dt presents significant positive contributions throughout
the investigated λz range, and the interscale transport tr−uv is shown to remove a
part of such positive gain by dt

−uv mainly from λz/h ≈ 2.3 and to bring it to larger
scales, which compensates the negative contribution by the production pr−uv. Thus,
the significant Reynolds shear stress at the channel centre is mainly maintained by
the spatial transport from the near-wall region of the channel, which are as discussed
above likely caused by a scale interaction whereby the near-wall structures are lifted
up by secondary motion of the roll cells towards the core region of the channel.

As shown above, the significant Reynolds shear stress in the central region of the
channel is mainly maintained by the spatial transport from the near-wall region, which
is driven by the secondary motion of the roll cells as observed in figure 19(b). One
may find that the instantaneous distributions of −ũvvL and −ũvvS in figure 19(b)
are quite similar despite the fact that they represent the Reynolds-shear-stress flux at
different scales. As shown by (6.4) and (6.5), −ũvvL and −ũvvS have their second and
third terms in common (the second term of the former is the third term of the latter,
and vice versa). Among them, −u′′v′v′′ have a significant contribution to both −ũvvL

and −ũvvS in the case of Re=2000 and Ro=0.03, and thus their distributions become
similar. Given that in this higher Re case the near-wall structure is still retained despite
the existence of the roll cells as indicated by the E−uv distribution in figure 20(a), such
contribution by −u′′v′v′′ may indicate the interaction between the near-wall structures
and the roll cells, where the former (responsible for −u′′v′′) is lifted up from the
near-wall towards the central region of the channel by upwelling secondary motion
of the roll cells (v′). In figure 19(b) it is indeed shown that the positive regions of
both −ũvvL and −ũvvS correspond well to the roll-cells’ upwelling (i.e. the region of
v′> 0), and include a somewhat chaotic distribution with small-scale patterns. Hence,
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the remarkable spatial transport of the Reynolds shear stress observed in the case of
Re= 2000 and Ro= 0.03 can be interpreted as the consequence of interaction between
the near-wall structures and the roll cells.

Although the contributions by the other terms in the transport equation, such as
the pressure-strain correlation, the viscous dissipation and the pressure and viscous
diffusions, are not included in the discussion above, they are not likely to positively
contribute to the Reynolds-shear-stress transport in the channel-core region. As already
discussed in § 5.2, in non-rotating wall turbulence the pressure-strain correlation acts
as the main sink of the Reynolds shear stress, instead of the viscous dissipation
that has only a minor contribution throughout the channel, and earlier studies on
the rotating Poiseuille flow showed that such tendencies are basically the same even
under a significant destabilising effect of system rotation. The pressure-strain term is,
therefore, hardly expected to act as a gain. The effect by the pressure transport is
usually limited to the vicinity of the wall, and so is the contribution by the viscous
diffusion if the Reynolds number is sufficiently high. Hence, the turbulent spatial
transport of 〈−uv〉 is the most likely effect resulting in the significant Reynolds shear
stress at the channel centre.

7. Conclusion

In this paper, we have investigated the role of scale interaction between the roll cells
and turbulence in turbulent RPCF through the scale-by-scale analysis of the Reynolds
stress transport introduced by Kawata & Alfredsson (2018), with a particular interest
in the rotation number effect to attenuate small-scale structures and the significant
transport of momentum and turbulence around Ro ≈ 0.02 at high enough Reynolds
numbers. It has been revealed that with increasing Ro the turbulent RPCF transitions
from the low-Ro regime (Ro≈ 0.01), where the turbulent near-wall structures coexist
with the large-scale roll cells, to the relatively high-Ro regime (Ro& 0.05), where the
roll cells dominate the flow and the near-wall structures are significantly suppressed.
The non-monotonic behaviour of the wall shear stress around Ro ≈ 0.02 observed
in the earlier studies (Salewski & Eckhardt 2015; Kawata & Alfredsson 2016b) is
a consequence of such a transition. Such flow structures at the low (Ro≈ 0.01) and
relatively high (Ro & 0.05) rotation numbers correspond to ‘Turbulence with roll cell’
and ‘Turbulence contained in roll cell’, respectively, as identified by Tsukahara et al.
(2010). In the transitional Ro range between these two different regimes Ro ≈ 0.02,
the interaction between the roll cells and turbulence is observed where the near-wall
structures are moved towards the central region of the channel by secondary motion of
the roll cells, which results in significant spatial transport of the Reynolds shear stress
towards the channel centre. Such interaction between the roll cells and the turbulent
near-wall structures becomes increasingly significant with increasing Reynolds number,
and leads to the appearance of a reversed mean velocity gradient at the channel centre
at high enough Reynolds numbers.

Although the mechanism of the Ro effect to suppress small-scale structures is still
not fully elucidated, the scale-by-scale analysis of the Reynolds stress transport has
illuminated the essential difference between the low (Ro ≈ 0.01) and relatively high
(Ro& 0.05) rotation-number regimes. At low rotation numbers the additional Reynolds
stress production by the Coriolis force effect is comparable to the primary productions
by the mean shear, and such productions by different effects occur at different scales,
by which both the roll cells and the near-wall structures are maintained. At the
relatively high rotation numbers, on the other hand, the Reynolds stress productions,
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dominated by the Coriolis force effect due to the zero-absolute-vorticity state, occur
only at large scales corresponding to the roll cell, and the energies are not directly
supplied to small scales from the mean flow. The scale-by-scale budget in this Ro
regime is also characterised by remarkable interscale and spatial transports of the
Reynolds stresses mainly driven by secondary motion of the roll cells, rather than
by interaction between the roll cells and turbulence. In particular, the significant
transports of the Reynolds shear stress results in the negative cospectra E−uv at
relatively small scales in the near-wall region. This directly leads to the negative
turbulent energy production at small scales in the near-wall region, which can be
attributed to the suppression of the turbulent near-wall structures in this Ro regime.
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Appendix A. Evaluation of ∂/∂y-related terms in Trij

As mentioned in § 3.4, the instantaneous velocity gradient in the wall-normal
direction cannot be directly measured by the present stereo-PIV measurement and is,
therefore, omitted for Truu. Hence, the scale-by-scale interscale transport truu presented
in § 5 was evaluated based on Truu approximated as follows:

Truu ≈−2
(〈

u′′2
∂u′

∂x

〉
+

〈
u′′w′′

∂u′

∂z

〉)
+ 2

(〈
u′2
∂u′′

∂x

〉
+

〈
u′w′

∂u′′

∂z

〉)
. (A 1)

On the other hand, the wall-normal gradients included in Trvv are ∂v′/∂y and ∂v′′/∂y,
which are easily obtained via the continuity equation. The Tr−uv includes ∂u′/∂y and
∂u′′/∂y as well as ∂v′/∂y and ∂v′′/∂y, and these terms can also be obtained; for
example, the term including ∂u′/∂y is converted as〈

v′′
2 ∂u′

∂y

〉
=

d〈u′v′′v′′〉
dy

−

〈
u′
∂v′′

2

∂y

〉
=

d〈u′v′′v′′〉
dy

− 2
〈

u′v′′
∂v′′

∂y

〉
, (A 2)

and the continuity equation is used to obtain the wall-normal derivative. The term with
∂u′′/∂y is also obtained in a similar manner. Thus, Trvv and Tr−uv are obtained with
all the terms evaluated as

Trvv = −2
(〈

u′′v′′
∂v′

∂x

〉
−

〈
v′′

2
(
∂u′

∂x
+
∂w′

∂z

)〉
+

〈
v′′w′′

∂v′

∂z

〉)
+ 2

(〈
u′v′

∂v′′

∂x

〉
−

〈
v′

2
(
∂u′′

∂x
+
∂w′′

∂z

)〉
+

〈
v′w′

∂v′′

∂z

〉)
, (A 3)
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Tr−uv =

〈
u′′2
∂v′

∂x

〉
−

〈
u′′v′′

(
∂u′

∂x
+
∂w′

∂z

)〉
+

〈
u′′w′′

∂v′

∂z

〉
+

〈
u′′v′′

∂u′

∂x

〉
+

(
d〈u′v′′v′′〉

dy
+ 2

〈
u′v′′

(
∂u′′

∂x
+
∂w′′

∂z

)〉)
+

〈
v′′w′′

∂u′

∂z

〉
−

〈
u′2
∂v′′

∂x

〉
+

〈
u′v′

(
∂u′′

∂x
+
∂w′′

∂z

)〉
−

〈
u′w′

∂v′′

∂z

〉
−

〈
u′v′

∂u′′

∂x

〉
−

(
d〈u′′v′v′〉

dy
+ 2

〈
u′′v′

(
∂u′

∂x
+
∂w′

∂z

)〉)
−

〈
v′w′

∂u′′

∂z

〉
.

(A 4)

Appendix B. Instantaneous interscale flux T̃rij

The transport equations of the instantaneous Reynolds stresses u′iu
′

j and u′′i u′′j can
also be derived by considering the transport equation of u′i and u′′i , and thereby the
instantaneous interscale flux of the Reynolds stresses between the large- and small-
scale side of the velocity field is also defined. Filtering equation (3.5) one obtains the
equations of u′i and u′′i ,

∂u′i
∂t
+Uk

∂u′i
∂xk
+ u′k

∂Ui

∂xk
+

(
uk
∂ui

∂xk

)′
−
∂〈uiuj〉

∂xk
= −

1
ρ

∂p′

∂xi
+ ν

∂2u′i
∂x2

k
, (B 1)

∂u′′i
∂t
+Uk

∂u′′i
∂xk
+ u′′k

∂Ui

∂xk
+

(
uk
∂ui

∂xk

)′′
= −

1
ρ

∂p′′

∂xi
+ ν

∂2u′′i
∂x2

k
. (B 2)

Note here that the Reynolds stress term ∂〈uiuj〉/∂xk does not appear in the small-scale
velocity equation (B 2) as the Reynolds stress is a mean quantity, and the Coriolis
force term is omitted here considering the general case of turbulence. Based on these
equations one can easily obtain the transport equations of the instantaneous Reynolds
stresses,

∂u′iu
′

j

∂t
+Uk

∂u′iu
′

j

∂xk
= P̃L

ij − Θ̃
L
ij + Φ̃

L
ij + D̃ν,L

ij + D̃t,L
ij − T̃rij

+

(
uk
∂ui

∂xk

)′′
u′j +

(
uk
∂uj

∂xk

)′′
u′i +

∂〈uiuk〉

∂xk
u′i +

∂〈ujuk〉

∂xk
u′i, (B 3)

∂u′′i u′′j
∂t
+Uk

∂u′′i u′′j
∂xk

= P̃S
ij − Θ̃

S
ij + Φ̃

S
ij + D̃ν,S

ij + D̃t,S
ij + T̃rij

+

(
uk
∂ui

∂xk

)′
u′′j +

(
uk
∂uj

∂xk

)′
u′′i , (B 4)

where the first six terms on the right-hand side of each equation are the instantaneous
production, viscous dissipation, . . . , interscale flux which are defined by removing the
〈〉 of the corresponding averaged term in (3.6) and (3.7). The other terms are, on the
other hand, the additional terms that do not appear in the averaged transport equations

as their averaged values are zero. It should be noted that P̃L(S)
ij , Θ̃

L(S)
ij , . . . , T̃rij represent

the instantaneous production, dissipation, . . . , interscale flux that are observed from
the frame of reference convecting with the mean flow, as the left-hand sides of (B 3)
and (B 4) are expressed by ∂/∂t+Uk∂/∂xk.
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The instantaneous interscale fluxes T̃rvv and T̃r−uv presented in figures 5(d) and 5(e)
were obtained as follows:

T̃rvv = −2
(

u′′v′′
∂v′

∂x
− v′′

2
(
∂u′

∂x
+
∂w′

∂z

)
+ v′′w′′

∂v′

∂z

)
+ 2

(
u′v′

∂v′′

∂x
− v′

2
(
∂u′′

∂x
+
∂w′′

∂z

)
+ v′w′

∂v′′

∂z

)
, (B 5)

T̃r−uv ≈ u′′2
∂v′

∂x
− u′′v′′

(
∂u′

∂x
+
∂w′

∂z

)
+ u′′w′′

∂v′

∂z

+ u′′v′′
∂u′

∂x
+

(
d〈u′v′′v′′〉

dy
+ 2u′v′′

(
∂u′′

∂x
+
∂w′′

∂z

))
+ v′′w′′

∂u′

∂z

− u′2
∂v′′

∂x
+ u′v′

(
∂u′′

∂x
+
∂w′′

∂z

)
− u′w′

∂v′′

∂z

− u′v′
∂u′′

∂x
−

(
d〈u′′v′v′〉

dy
+ 2u′′v′

(
∂u′

∂x
+
∂w′

∂z

))
− v′w′

∂u′′

∂z
. (B 6)

Here, v′′v′′∂u′/∂y and v′v′∂u′′/∂y (corresponding, respectively, to the 5th and 11th
term of T̃r−uv) are approximated as

v′′
2 ∂u′

∂y
≈

d〈u′v′′v′′〉
dy

+ 2u′v′′
(
∂u′′

∂x
+
∂w′′

∂z

)
, (B 7)

v′
2 ∂u′′

∂y
≈

d〈u′′v′v′〉
dy

+ 2u′′v′
(
∂u′

∂x
+
∂w′

∂z

)
. (B 8)
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