Continued Fractions Associated with $\mathrm{SL}_{3}(\mathbf{Z})$ and Units in Complex Cubic Fields

L. Ya. Vulakh

Abstract. Continued fractions associated with $\mathrm{GL}_{3}(\mathbf{Z})$ are introduced and applied to find fundamental units in a two-parameter family of complex cubic fields.

1 Introduction

Denote by \mathcal{P} the symmetric space $\mathrm{SL}_{3}(\mathbf{R}) / \mathrm{SO}_{3}(\mathbf{R})$ which can be identified with the set of definite quadratic forms in three real variables with the leading coefficient 1 (see e.g. [9] or [18]). In [21] and [22], a continued fraction algorithm associated with a discrete group acting in a hyperbolic space was defined. The purpose of this work is to extend this definition to the case of the group $\Gamma=\mathrm{GL}_{3}(\mathbf{Z}) /\{ \pm 1\}$ acting in \mathcal{P} and apply the algorithm to find a fundamental unit of a complex cubic field.

In Section 2, the notion of the height of a point in \mathcal{P} is introduced. The set $K(w)$ in \mathcal{P} is defined so that, for every point $A \in \mathcal{P}$, the points in the Γ-orbit of A with the largest height belong to $K(w)$. The images $K(g w)$ of $K(w), g \in \Gamma$, under the action of Γ form the K-tessellation of \mathcal{P}.

Assume that $g \in \mathrm{GL}_{3}(\mathbf{R})$ has only one real eigenvalue. The set of points $L_{P} \in \mathcal{P}$ fixed by g will be called the axis of $g . L_{P}$ is a geodesic in \mathcal{P} (see e.g. [9]). The intervals $R(u)=L_{P} \cap K(u) \neq \varnothing$ form a tessellation of L_{P}. The corresponding vectors $u \in \mathbf{Z}^{3}$ are called the convergents of L_{P}. Let $a_{1}, a_{2}, \bar{a}_{2}$ be the eigenvectors of g. In Section 3, it is shown that if u is a convergent of L_{P} then $\left|\left(a_{1}, u\right)\left(a_{2}, u\right)^{2} / \operatorname{det}\left(a_{1}, a_{2}, \bar{a}_{2}\right)\right|$ is small (Theorem 4).

In Section 4, Algorithm I is defined. It is similar to Voronoi's algorithm (see [19] or e.g. [26]) but it is not the same (see Section 6, Example 2). Algorithm I can be used to find all the convergents of the axis L_{P} of $g \in \mathrm{GL}_{3}(\mathbf{R})$ which has only one real eigenvalue. It can be considered as an extension to group Γ of the algorithm which is introduced in [21] and [22]. If $g \in \Gamma$ then there are only finitely many intervals $R(u)$ which are not congruent modulo the action of Γ. Let Γ_{L} denote the torsion free subgroup of the stabilizer of L_{P} in Γ. The union of non-congruent intervals $R(u)$ form a fundamental domain of Γ_{L} in L_{P}. Thus, for $g \in \Gamma$, the continued fraction expansion is periodic (Theorem 7). Review of the multi-dimensional continued fraction algorithms and their properties known by 1980 can be found in [3].

In Section 5, Diophantine approximation properties of the convergents of the axes of g and g^{T} are discussed.

[^0]Let ϵ be an eigenvalue of g. As explained in Section 6, the problem of finding a unit ϵ_{1} in the ring of integers \mathbf{Z}_{F} of the field $F=\mathbf{Q}(\epsilon)$ such that $\mathbf{Z}_{F}^{\times} /\{ \pm 1\}=\left\langle\epsilon_{1}\right\rangle$ is equivalent to the problem of finding a generator of Γ_{L} provided the characteristic polynomial of g is irreducible. In [25], systems of fundamental units of families of some totally real fields and quadric fields with signature $(2,1)$ are found. In [24], Algorithm I associated with Bianchi groups (see [21] or [22]) is used to find fundamental units in families of totally complex quadric fields.

In Example 1, Algorithm I is applied to the well known family of real quadratic fields $\mathbf{Q}\left(\sqrt{t^{2}+4}\right)$ with period length $p=1$. In Example 2, we consider two families of complex cubic fields with period length of the corresponding continued fraction $p=1$. In [26, p. 254], H. Williams applies Voronoi's algorithm to the same families of fields. He shows that $p=1$ for one family and $p=2$ for the other. It follows that Algorithm I introduced in Section 4 does not coincides with Voronoi's algorithm. The following new result is proved in Example 3.

Theorem 1 Let $f(x)=x^{3}-t x^{2}-u x-1$ where t and u are integers such that $t>$ $u(u+1) / 2$ if u is odd and $t \geq u(u+2) / 2$ if u is even. Assume that $f(x)$ has only one real root ϵ. Let $F=\mathbf{Q}(\epsilon)$. Assume that the discriminant of $f(x)$ is square free. Then $\left\{1, \epsilon, \epsilon^{2}\right\}$ is a basis of the ring of integers \mathbf{Z}_{F} of F and $\mathbf{Z}_{F}^{\times} /\{ \pm 1\}=\langle\epsilon\rangle$.

Acknowledgement The author thanks the referee for useful remarks which led to an improvement of this work.

2 Fundamental Domains and K-Tessellation

Let V_{3} be the vector space of symmetric 3×3 real matrices. The dimension of V_{3} is 6. The action of $g \in G=\mathrm{GL}_{3}(\mathbf{R})$ on $X \in V_{3}$ is given by

$$
X \longmapsto X[g]=g^{T} X g
$$

For a subset S of V_{3}, denote $S[g]=\left\{X[g] \in V_{3}: X \in S\right\}$.
The one-dimensional subspaces of V_{3} form the the five-dimensional real projective space V, so that, for any fixed nonzero $X \in V_{3}$, all the vectors $k X, 0 \neq k \in \mathbf{R}$, represent one point in V. Denote by $\mathcal{P} \subset V$ the set of (positive) definite elements of V and by C the boundary of \mathcal{P} (C can be identified with non-negative elements of V of rank less than 3). The group G preserves both \mathcal{P} and C as does its arithmetic subgroup $\Gamma=\mathrm{GL}_{3}(\mathbf{Z})$.

The space V_{3} (and V) can be also identified with the set of quadratic forms $A[x]=$ $x^{T} A x, A \in V_{3}, x \in \mathbf{R}^{3}$. With each point $a=\left(a_{1}, a_{2}, a_{3}\right)^{T} \in \mathbf{R}^{3}$, we associate the matrix $A=a a^{T} \in C$ and quadratic form

$$
\begin{equation*}
A[x]=(a, x)^{2}=\left(a_{1} x_{1}+a_{2} x_{2}+a_{3} x_{3}\right)^{2} \tag{1}
\end{equation*}
$$

of rank 1 . For $g \in G$, we have $(g a, x)=a^{T} g^{T} x=\left(a, g^{T} x\right)$.
Denote $w=(1,0,0)^{T}$ and $W=w w^{T}$. Then $(w, x)^{2}=x_{1}^{2}$ and $W[g]=U=$ $u u^{T} \in C$ where $u=g^{T} w$.

Denote the stabilizer of W in $G(\Gamma)$ by $G_{\infty}\left(\Gamma_{\infty}\right)$. Then

$$
G_{\infty}=\{g \in G: g w=w\}=\left\{g \in G: g_{1}=w\right\}
$$

where g_{1} is the first column of g. Thus, $g \in G_{\infty}$ iff $W\left[g^{T}\right]=W$.
We shall say that $A=\left(a_{i j}\right) \in V$ is w-extremal if $|A[x]| \geq|A[w]|=a_{11}^{2}$ for any $x \in \mathbf{Z}^{n} /(0,0,0)$. Let $\mathcal{A}_{3}=\{X \in V: X[w] \neq 0\}$. The elements of \mathcal{A}_{3} will be normalized so that $X[w]=1$. Evidently, $\mathcal{P} \subset \mathcal{A}_{3}$. For $X \in V$, we shall say that

$$
\operatorname{ht}(X)=|\operatorname{det}(X)|^{1 / 3} /|X[w]|
$$

is the height of X and, for a subset S of V, we define the height of S as

$$
\operatorname{ht}(S)=\operatorname{maxht}(X), \quad X \in S
$$

Thus, if $X \in \mathcal{A}_{3}$ then $h t(X)=|\operatorname{det}(X)|^{1 / 3}$. For a fixed $g \in \Gamma$, the set

$$
p(g)=\left\{X \in \mathcal{A}_{3}:|X[g w]|<1\right\}
$$

is called the g-strip (cf. [23], [20] where this definition is introduced for $\Gamma=\mathrm{GL}_{2}(\mathbf{Z})$). It is clear that $p(g h)=p(g)$ and $\operatorname{ht}(X[h])=h t(X)$ for any $h \in \Gamma_{\infty}$. The set

$$
L^{+}(g)=\left\{X \in \mathcal{A}_{3}: X[g w]=1\right\}
$$

is the boundary of the g-strip $p(g)$ which cuts \mathcal{P}. The set \mathcal{R}_{w} of all w-extremal points of V will be called the w-reduction region of Γ. We denote

$$
K(w)=\mathcal{P} \cap \mathcal{R}_{w} .
$$

(In the notation of [2, p. 148], $K(w)$ is the dual core of $K_{p \text { erf. }}$.) Note that $K(w) \subset \mathcal{A}_{3}$ is bounded by the planes $L^{+}(g)$. By Margulis' theorem [15], all the points of $\mathcal{R}_{w}-\mathcal{P}$ are rational.

Let D be any of the fundamental domains of Γ obtained by Minkowski, Korkine and Zolotarev (see e.g. [17, p. 13]), or Grenier [11]. For $X \in D, X[w]=\inf X[g w]$, $g \in \Gamma$, in any of these cases. Hence $\bigcup D[g]=K(w)$, the union being taken over all $g \in \Gamma_{\infty}$. Note that the fundamental domain described in [11] coincides with the domain found by Korkine and Zolotarev in 1873 (see [13] or [17]). In Section 6, to prove that a point $X \in \mathcal{P}$ is extremal we shall show that, for some $h \in \Gamma_{\infty}, X[h]$ is Minkowski reduced.

For $g \in \Gamma$, let

$$
K(g w)=\{X \in \mathcal{P}: X[g] \in K(w)\}
$$

If $X \in K(w)$, then $X[h] \in K(w)$ for any $h \in \Gamma_{\infty}$. Hence if $X \in K(g w)$ then $X[g h] \in K(w)$ for any $h \in \Gamma_{\infty}$. Thus, the sets $K(g w)$ are parameterized by the classes Γ / Γ_{∞} or by primitive vectors $u \in \mathbf{Z}^{3} /(0,0,0)$ so that $\pm u$ represent the same $K(u)$.

The sets $K(g w), g \in \Gamma / \Gamma_{\infty}$, form a tessellation of \mathcal{P} which will be called the $K-$ tessellation. All the vertices of $K(w)$ are congruent to $v=x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{1} x_{2}+x_{2} x_{3}+x_{3} x_{1}$ which is called a perfect form (see e.g. [2] or [17]). Thus, the Hermite's constant $\gamma_{3}=1 / \inf \operatorname{ht}(X)=1 / \operatorname{ht}(v)=2^{-1 / 3}$. Here the infimum is taken over all $X \in K(w)$.

3 Axes of Irreducible Elements of Γ

Given $a_{1}, \alpha, \beta \in \mathbf{R}^{3}$. Let $P=\left(a_{1}, a_{2}, \overline{a_{2}}\right)$ be the matrix with columns $a_{1}, a_{2}, \overline{a_{2}}$ where $a_{2}=\alpha+i \beta$. Denote $A_{1}=a_{1} a_{1}^{T}$ and $A_{2}=\alpha \alpha^{T}+\beta \beta^{T}$. Let L_{P} be the interval in \mathcal{P} with endpoints $A_{1}, A_{2} \in C$. The stabilizer of L_{P} in G consists of $g=P H P^{-1}$, $H=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \overline{\lambda_{2}}\right), \lambda_{1} \in \mathbf{R}, \overline{\lambda_{2}} \neq \lambda_{2} \in \mathbf{C}$, so that $g a_{i}=\lambda_{i} a_{i}$, where a_{i} is the fixed eigenvector of g corresponding to its eigenvalue λ_{i}. Assume that $\left(a_{i}, w\right) \neq 0, i=1,2$. Then we can choose a_{i} so that

$$
\begin{equation*}
\left(a_{i}, w\right)=1, \quad i=1,2 . \tag{2}
\end{equation*}
$$

Assume that (2) holds. The geodesic L_{P} in \mathcal{P} fixed by g will be called the axis of g. It can be identified with the interval $q=\mu A_{1}+(1-\mu) A_{2}$ or with the set of quadratic forms in \mathcal{A}_{3} :

$$
\begin{equation*}
q[x]=\mu\left(x, a_{1}\right)^{2}+(1-\mu)\left|\left(x, a_{2}\right)\right|^{2}, \quad 0 \leq \mu \leq 1 . \tag{3}
\end{equation*}
$$

Since $\operatorname{det} P=2 i \operatorname{det}\left(a_{1}, \beta, \alpha\right)$ and $q[x]=\mu\left(x, a_{1}\right)^{2}+(1-\mu)\left((x, \alpha)^{2}+(x, \beta)^{2}\right)$, we have

$$
\operatorname{det} q=-\mu(1-\mu)^{2}(\operatorname{det} P)^{2} / 4
$$

Hence, $|\operatorname{det} q| \leq|\operatorname{det} P|^{2} / 27$ where the equality is attained when $\mu=1 / 3$. It follows that, for any $L_{P}, \operatorname{ht}(X)=|\operatorname{det}(X)|^{1 / 3} \rightarrow 0$ as X approaches the boundary of L_{P}, and the point

$$
q_{m}[x]=\frac{1}{3}\left(x, a_{1}\right)^{2}+\frac{2}{3}\left|\left(x, a_{2}\right)\right|^{2}
$$

is the summit of L_{P} that is $\operatorname{det}\left(q_{m}\right)=\max \operatorname{det}(q)$, the maximum being taken over all $q \in L_{P}$ and, since $q_{m} \in \mathcal{A}_{3}, \operatorname{ht}\left(L_{P}\right)=\operatorname{ht}\left(q_{m}\right)=\left(\operatorname{det} q_{m}\right)^{1 / 3}=|\operatorname{det} P|^{2 / 3} / 3$. It is clear that if $R=L_{P} \cap K(w) \neq \varnothing$ then $q_{m} \in R$. Note that $3 q_{m}[x]$ is the form size $\left(M_{x}\right)$ from [5, p. 169].

Let $N_{P}(x)=\left(x, a_{1}\right)\left|\left(x, a_{2}\right)\right|^{2}$ where $\left(x, a_{i}\right)=x^{T} a_{i}$. Define

$$
\begin{equation*}
\nu\left(L_{P}\right)=\inf \left|\frac{N_{P}(g w)}{\operatorname{det} P}\right| \tag{4}
\end{equation*}
$$

where the infimum is taken over all $g \in \Gamma$. Evidently $\nu\left(L_{P}\right)=\nu\left(L_{M P}[h]\right)$ for any $h \in \Gamma$ and $M=\operatorname{diag}\left(\mu_{1}, \mu_{2}, \overline{\mu_{2}}\right), \mu_{1} \mu_{2} \neq 0$. The projective invariant $\nu\left(L_{P}\right)$ is well known in Geometry of Numbers (see e.g. [4]). Since ht $\left(L_{P}\right)=|\operatorname{det} P|^{2 / 3} / 3$ when (2) hold we have obtained the following.

Lemma 2 Let L_{P} be the geodesic in \mathcal{P} fixed by $g \in G$ and defined by (3) where $g a_{i}=$ $\lambda_{i} a_{i}$. Let $P=\left(a_{1}, a_{2}, \overline{a_{2}}\right)$ be the matrix with columns $a_{1}, a_{2}, \overline{a_{2}}$. Then

$$
\operatorname{ht}\left(L_{P}\right)=\frac{1}{3}\left|\frac{\operatorname{det} P}{N_{P}(w)}\right|^{2 / 3}
$$

and

$$
\nu\left(L_{P}\right)=\inf \left(3 \operatorname{ht}\left(L_{P}[h]\right)\right)^{-3 / 2}, \quad h \in \Gamma
$$

Assume that $L_{P} \cap K(w)=\varnothing$. Let q_{m} be the summit of L_{P}. Since $q_{m} \notin K(w)$ there is $g \in \Gamma$ such that $\operatorname{ht}\left(L_{P}[g]\right) \geq \operatorname{ht}\left(q_{m}[g]\right)>\operatorname{ht}\left(q_{m}\right)=\operatorname{ht}\left(L_{P}\right)$. We have obtained the following.

Lemma 3 Let L_{P} be the totally geodesic manifold fixed by $g \in G$ and defined by (3) where $g a_{i}=\lambda_{i} a_{i}$. Then

$$
\nu\left(L_{P}\right)=\inf \left(3 \operatorname{ht}\left(L_{P}\left[h_{i}\right]\right)\right)^{-3 / 2}, \quad L_{P} \cap K\left(h_{i} w\right) \neq \varnothing
$$

Thus, $\nu\left(L_{P}\right)<\left(\gamma_{3} / 3\right)^{3 / 2}=\sqrt{2 / 27}=0.2722$.
It was shown by Davenport (see [8]) that $\sup \nu\left(L_{P}\right)=1 / \sqrt{23}=0.2085$ where the equality holds only if $g a_{i}=\left(1, \alpha_{i}, \alpha_{i}^{2}\right), i=1,2,3$, for some $g \in \Gamma$. Here α_{i} are the roots of $x^{3}-x-1=0$.

Assume that $L_{P} \cap K(g w) \neq \varnothing$ where $g \in \Gamma$. Since $L_{P}[g] \cap K(w) \neq \varnothing$, by Lemma 1,

$$
\operatorname{ht}\left(L_{P}[g]\right)=\operatorname{ht}\left(L_{g^{T} P}\right)=\frac{1}{3}\left|\frac{\operatorname{det} P}{N_{g^{T} P}(w)}\right|^{2 / 3}>2^{-1 / 3}
$$

But $N_{g^{T} P}(x)=\left(x, g^{T} a_{1}\right)\left|\left(x, g^{T} a_{2}\right)\right|^{2}=\left(g x, a_{1}\right)\left|\left(g x, a_{2}\right)\right|^{2}$. Hence $N_{g^{T} P}(w)=$ $N_{P}(g w)$.

The vector $g w \in \mathbf{Z}^{3}$ such that $L_{P} \cap K(g w) \neq \varnothing$ will be called a convergent of L_{P}. We have proved the following.

Theorem 4 If vector u is a convergent of L_{P}, that is if $L_{P} \cap K(u) \neq \varnothing$, then

$$
\left|N_{P}(u)\right|<\sqrt{\frac{2}{27}}|\operatorname{det} P| .
$$

Hence if L_{P} cuts infinitely many sets $K(u)$ then this inequality has infinitely many solutions in $u \in \mathbf{Z}^{3}$.

We shall say that the intervals $R(u), R\left(u^{\prime}\right) \subset L_{P}$ are neighbors if $\bar{R}(u) \cap \bar{R}\left(u^{\prime}\right) \neq \varnothing$ in which case the convergents u and u_{i} are neighbors. The following lemma can be used to find the endpoints of $R=L_{P} \cap K(w) \neq \varnothing$.

Lemma 5 Let L_{P} be the axis of $g \in G$. Assume that $R=L_{P} \cap K(w) \neq \varnothing$. Let $R^{\prime}=L_{P} \cap K\left(u^{\prime}\right)$ be a neighbor of R and $\bar{R} \cap \bar{R}^{\prime}=X$. Then the point $X \in L^{+}\left(u^{\prime}\right)$ and $X=L_{P} \cap L^{+}\left(u^{\prime}\right)$.

Proof Assume that $K(w)$ and $K(g w)$ have a common face and that $X \in \bar{K}(w) \cap$ $\bar{K}(g w)$. By the definition of $K(g w), X[g] \in \bar{K}(w)$. Hence $X[w]=X[g w]=1$ and $X \in L^{+}(g w)$. Thus, the common face of $K(w)$ and $K(g w)$ lies in $L^{+}(g w)$.

4 Continued Fractions

The axis of $h \in G$ is a geodesic $L=L_{P}$ in \mathcal{P}. It can be identified with the interval $X(\mu)=\mu\left(x, a_{1}\right)^{2}+(1-\mu)\left|\left(x, a_{2}\right)\right|^{2}, 0<\mu<1$, where a_{1} and a_{2} are eigenvectors of h corresponding to its real and complex eigenvalues respectively. Denote

$$
\begin{equation*}
R_{i}=\left[X_{i}, X_{i+1}\right]=L \cap K\left(u_{i}\right), \quad X_{i}=X\left(\mu_{i}\right), \quad u_{i}=g_{i} w, \quad g_{i} \in \Gamma \tag{5}
\end{equation*}
$$

The intervals R_{i} form a tessellation of $L=L_{P}$. We say that this tessellation is periodic if there are only finitely many non-congruent R_{i} 's modulo the action of the stabilizer Γ_{L} of L in Γ. In that case, the union of all non-congruent R_{i} 's is a fundamental domain of Γ_{L} in L and $\operatorname{vol}\left(L / \Gamma_{L}\right)<\infty$. The number of non-congruent R_{i} 's in the tessellation of L will be called the period length.

The (continued fraction) Algorithm I can be used to find the sequence $\left\{g_{i}\right\} \subset \Gamma$ such that $L \cap K\left(u_{i}\right) \neq \varnothing$ and the sequence of convergents $u_{i}=g_{i} w$ of L explicitly. The corresponding shift operator is defined on the sequences

$$
\begin{equation*}
\ldots, R_{-1}, R_{0}, R_{1}, R_{2}, \ldots, R_{i}, \ldots \tag{6}
\end{equation*}
$$

and

$$
\ldots, u_{-1}, w, u_{1}, u_{2}, \ldots, u_{i}, \ldots
$$

Let D be the Minkowski fundamental domain of $\Gamma^{\prime}=\Gamma /\{\operatorname{diag}(1, \pm 1, \pm 1)\}$, that is

$$
A=\left(\begin{array}{ccc}
1 & x_{1} & x_{2} \tag{7}\\
x_{1} & a & x_{3} \\
x_{2} & x_{3} & b
\end{array}\right)
$$

belongs to D iff $1 \leq a \leq b, 0 \leq\left|x_{1}\right|,\left|x_{2}\right| \leq 1 / 2,0 \leq\left|x_{3}\right| \leq a / 2,2\left(\left|x_{1}\right|+\left|x_{2}\right|+\left|x_{3}\right|\right) \leq$ $1+a$ [6, pp. 396-397]. Recall that the floor of D consists of the faces of D which do not pass through w. Denote

$$
S_{1}=\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Lemma 6 A point A in (7) belongs to the floor of the fundamental domain D of Γ^{\prime} is Minkowski reduced if and only if

$$
1=a \leq b, \quad 0 \leq\left|x_{1}\right|,\left|x_{2}\right|,\left|x_{3}\right| \leq 1 / 2, \quad\left|x_{1}\right|+\left|x_{2}\right|+\left|x_{3}\right| \leq 1
$$

Hence the floor of D lies in the boundary $L^{+}\left(S_{1}\right)$ of the strip $p\left(S_{1}\right)$.

Proof Let $\left\{e_{1}, e_{2}, e_{3}\right\}$ be the standard basis in \mathbf{Z}^{3}. It follows that $A\left[e_{2}\right]=a \leq A\left[e_{3}\right]=$ $b, A\left[e_{2} \pm e_{3}\right]=a \pm 2 x_{3}+b \geq b \geq a$ (similarly, $A\left[e_{i} \pm e_{j}\right] \geq a, i \neq j$), and $A\left[e_{1} \pm e_{2} \pm e_{3}\right]=1 \pm 2 x_{1} \pm 2 x_{2}+a \pm 2 x_{3}+b \geq b \geq a$. Thus, if A is a boundary point then $A\left[e_{2}\right]=a=1$.

By Lemma 6, the floor of D consists of one face ϕ of D which lies in $L^{+}\left(S_{1}\right)$. It is clear that

$$
\phi=\bar{D} \cap \bar{D}\left[S_{1}\right] .
$$

Since for any orbit $z[\Gamma]$ of $z \in \mathcal{P}$, a point of the largest height in the orbit belongs to the fundamental domain D, we can confine ourself to the geodesics which pass through D.

We now introduce the natural orientation of a geodesic $L^{\prime}=L[g]$ (from $\mu=0$ to $\mu=1$ so that $\mu_{i} \rightarrow 0$ as $\left.i \rightarrow \infty\right)$. The partition of L^{\prime} into intervals R_{i}^{\prime} is defined by (5). It is clear that this partition is invariant under the action of $g \in \Gamma$, that is $R_{i}^{\prime}=R_{i}[g]$ for all i.

We shall say that a geodesic L^{\prime} is reduced if it passes through D and the initial point of $R^{\prime}=L^{\prime} \cap K(w)$ lies in ϕ, the floor of D.

Algorithm I

Step 0 If L does not cut $K(w)$ take a point $X \in L$ and find $h \in \Gamma$ such that $X[h] \in$ $K(w)$. (Any of the reduction algorithms (see e.g. [6] for references) can be used to find such an h.) Then $L[h]$ cuts $K(w)$. Thus we can assume that $\left[X^{\prime}, X^{\prime \prime}\right]=L \cap K(w)$. Suppose that $X^{\prime} \in \phi\left[U_{0}\right], U_{0} \in \Gamma_{\infty}$. Denote $L_{0}^{\prime}=L\left[U_{0}^{-1}\right]$. Clearly, L_{0}^{\prime} cuts the floor ϕ of D and it is not reduced.

Step 1 Let $X_{1} \in \phi$ be the point of intersection of L_{0}^{\prime} with the floor of D. Denote $g_{0}=T_{0}=S_{1} U_{0}$, and $L_{1}=L_{0}^{\prime}\left[S_{1}\right]$. Then $L=L_{1}\left[g_{0}\right]$ where L_{1} is reduced.

Assume that the elements T_{1}, \ldots, T_{i-1} in Γ are determined. Let $g_{k}=T_{k} g_{k-1}$ and $L_{k}=L_{k+1}\left[T_{k}\right], k=1, \ldots, i-1$. Then $L=L_{i}\left[T_{i-1} \cdots T_{0}\right]$.

Step $i+1$ Let $R_{i}=\left[X_{i}, X_{i+1}\right]=L_{i} \cap K(w)$. Let $L_{i}^{\prime}=L_{i}\left[U_{i}^{-1}\right]$ where $U_{i} \in \Gamma_{\infty}$ is determined so that $X_{i+1}\left[U_{i}^{-1}\right]$ lies in the floor ϕ of D. Denote $T_{i}=S_{1} U_{i}$, and $L_{i+1}=L_{i}^{\prime}\left[S_{1}\right]$. Then

$$
g_{i}:=T_{i} g_{i-1}
$$

and

$$
L_{i}=L_{i+1}\left[T_{i}\right], \quad L=L_{i+1}\left[T_{i} \cdots T_{0}\right]
$$

It is clear that Algorithm I enumerates $g_{i} \in \Gamma$ in the same order as L passes through the sets $K\left(g_{i} w\right)$, and that there is a 1-1 correspondence between the intervals R_{i} of L and $T_{i} \in \Gamma$ as defined by Algorithm I. The corresponding convergents $u_{i}=g_{i} w$ satisfy the relation $u_{i}=T_{i} u_{i-1}$.

Remark Denote

$$
S_{2}=\left(\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right)
$$

In the Voronoi continued fraction algorithm [19], $T_{i}=S_{2} U_{i}$ where $U_{i} \in \Gamma_{\infty}$. Since $S_{1}=S_{2} \tau$ where $\tau \in \Gamma_{\infty}$, in Algorithm I, T_{i} can be also written in this form. But these two algorithms do not coincide (see Section 6, Example 2).

Let L be the axis of an irreducible element $h \in \Gamma$ with only one real eigenvalue. Let L^{o} be the a fundamental domain of the cyclic group generated by h on L chosen so that it consists of whole intervals R_{1}, \ldots, R_{p}. Note that $R_{i+p}=h\left(R_{i}\right)$ and $L_{i+p}=L_{i}$ for all i. Thus the sequence T_{i}, as generated by Algorithm I, is also periodic, $T_{i+p}=T_{i}$ for all i, and $h=T_{p} \cdots T_{1}$. We have the following.

Theorem 7 The sequence of intervals (6) of a geodesic L is periodic if and only if L is the axis of an irreducible element in Γ. (If $R_{i+p}=R_{i}$ and $h=T_{p} \cdots T_{1}$, then $L[h]=L$.)

Suppose that $L=L_{0}$ is reduced. There are only finitely many reduced geodesics $L_{1}, \ldots, L_{p}=L_{0}$ in the Γ-orbit of L and Algorithm I can be used to find all of them. Also,

$$
\nu(L)=\inf \left(3 \operatorname{ht}\left(L_{i}\right)\right)^{-3 / 2}, \quad 1 \leq i \leq p
$$

where $L=L_{i+1}\left[T_{i} \cdots T_{0}\right]$ and the sequence T_{i} is generated by Algorithm I.
In particular, if the fundamental domain of $\operatorname{Stab}(L, \Gamma)$ on L belongs to $K(w)$ (in which case $p=1)$, then $\nu(L)=(3 \operatorname{ht}(L))^{-3 / 2}$.

If the tessellation of a geodesic L is periodic and $R\left(u_{1}\right) \cup \cdots \cup R\left(u_{p}\right)=D_{L}$, a fundamental domain of $\Gamma_{L}=\langle h\rangle$, then the set of all convergents of L_{P} is $\left\{h^{n} u_{i}\right.$, $i=1, \ldots, p, n \in \mathbf{Z}\}$.

5 Diophantine Approximations

Let vectors $b_{j} \in \mathbf{C}^{3}$ be defined by

$$
\left(b_{j}, a_{i}\right)=\delta_{i j}, \quad i, j=1,2,3
$$

Here $a_{3}=\overline{a_{2}}, b_{3}=\overline{b_{2}}$ and $\delta_{i i}=1, \delta_{i j}=0$ if $i \neq j$. Thus, $\left(P^{T}\right)^{-1}=P^{*}=\left(b_{1}, b_{2}, \overline{b_{2}}\right)$ and, assuming $\left(b_{k}, w\right) \neq 0, k=1,2$, the axis $L^{*}=L_{P^{T}}$ of $g^{*}=P^{*} H^{-1} P^{T}$ can be identified with the set of positive definite quadratic forms $q^{*}[x]=\mu\left(x, b_{1}^{\prime}\right)^{2}+$ $(1-\mu)\left|\left(x, b_{2}^{\prime}\right)\right|^{2}, 0<\mu<1$, where $b_{k}^{\prime}=b_{k} /\left(b_{k}, w\right), k=1,2$. The rank of the quadratic form $A_{2}[x]=\left|\left(x, a_{2}\right)\right|^{2}$ is two and $A_{2}\left[b_{1}\right]=0$ since $\left(b_{1}, a_{2}\right)=0$. It is easily seen that L^{*} can be described as follows.

Lemma 8 Let L_{P} be the axis of $g \in G$. Then

$$
L^{*}=\left\{q \in \mathcal{P}: q^{-1} \in L_{P}\right\}
$$

is the axis of $g^{*}=\left(g^{T}\right)^{-1}$.

Lemma 9 Let $R_{i}=L_{P} \cap K\left(u_{i}\right)$, $u_{i}=g_{i} w, g_{i} \in \Gamma$. If $R_{i} \rightarrow A_{1}$ then $\left(u_{i}, a_{1}\right) \rightarrow 0$, and if $R_{i} \rightarrow A_{2}$ then $u_{i} /\left(u_{i}, w\right) \rightarrow b_{1}^{\prime}$.

Let $R_{i}^{*}=L^{*} \cap K\left(v_{i}\right), v_{i}=h_{i} w, h_{i} \in \Gamma$. Similarly, if $R_{i}^{*} \rightarrow B_{1}$ then $\left(v_{i}, b_{1}\right) \rightarrow 0$, and if $R_{i}^{*} \rightarrow B_{2}$ then $v_{i} /\left(v_{i}, w\right) \rightarrow a_{1}$.

Here $B_{1}[x]=\left(x, b_{1}\right)^{2}$ and $B_{2}[x]=\left|\left(x, b_{2}\right)\right|^{2}$.
Proof Let $X_{i} \in R_{i}$. Then $X_{i}^{\prime}=X_{i}\left[g_{i}\right] \in K(w)$. Hence $\operatorname{ht}\left(X_{i}^{\prime}\right) \geq 2^{-1 / 3}$. Since $\operatorname{ht}\left(X_{i}\right)=\left|\operatorname{det}\left(X_{i}\right)\right|^{1 / 3}$ and $\operatorname{ht}\left(X_{i}^{\prime}\right)=\left|\operatorname{det}\left(X_{i}\right)\right|^{1 / 3} / X_{i}\left[u_{i}\right]$, we have

$$
X_{i}\left[u_{i}\right]=\operatorname{ht}\left(X_{i}\right) / \operatorname{ht}\left(X_{i}^{\prime}\right) \leq 2^{1 / 3} \operatorname{ht}\left(X_{i}\right) .
$$

Since $X_{i} \rightarrow A_{1}, \operatorname{ht}\left(X_{i}\right) \rightarrow 0$ and therefore $X_{i}\left[u_{i}\right] \rightarrow 0$ and $A_{1}\left[u_{i}\right]=\left(a_{1}, u_{i}\right)^{2} \rightarrow 0$ as required.

Similarly the other cases can be considered.
In Lemma 9, when L_{P} is the axis of a primitive $h \in \Gamma$, the rate of convergence in $\left(u_{i}, a_{1}\right) \rightarrow 0$ and $\left(v_{i}, b_{1}\right) \rightarrow 0$ can be specified. Assume that $h a_{k}=\lambda_{k} a_{k}$, $k=1,2$, where $\lambda_{1} \in \mathbf{R}, \lambda_{2}=\bar{\lambda}_{3} \in \mathbf{C}$ and $\left|\lambda_{1}\right|<1<\left|\lambda_{2}\right|$. Then the sequence (6) is periodic. Let R_{1}, \ldots, R_{p} be a period of this sequence. Let the corresponding convergents be $u_{i}, i=1, \ldots, p$. Then the convergents of L_{P} are $u_{i+n p}=$ $\left(h^{T}\right)^{n} u_{i}$ for any integer n and $1 \leq i \leq p$. Similarly, by Lemma 6 , if $R_{1}^{*}, \ldots, R_{s}^{*}$ is a period for L^{*} and the corresponding convergents are $v_{j}, j=1, \ldots, s$, then the convergents of L^{*} are $v_{j+n s}=h^{n} v_{j}$ for any integer n and $1 \leq j \leq s$. Hence $\left(a_{1}, u_{i+n p}\right)=\left(a_{1},\left(h^{T}\right)^{n} u_{i}\right)=\left(h^{n} a_{1}, u_{i}\right)=\lambda_{1}^{n}\left(a_{1}, u_{i}\right) \rightarrow 0,1 \leq i \leq p$, and $\left(b_{1}, v_{j+n s}\right)=\left(b_{1}, h^{n} v_{j}\right)=\left(\left(h^{T}\right)^{n} b_{1}, v_{j}\right)=\lambda_{1}^{n}\left(b_{1}, v_{j}\right) \rightarrow 0,1 \leq j \leq s$, as $n \rightarrow \infty$.

Let L be a 1 -flat defined by $X(\mu)=\mu\left(x, a_{1}\right)^{2}+(1-\mu)\left|\left(x, a_{2}\right)\right|^{2}$ where $x=$ $\left(x_{1}, x_{2}, x_{3}\right) \in \mathbf{Z}^{3}$, and let $a_{1}=(1, \alpha, \beta)$ and a_{2} be the eigenvectors of $g \in G$ corresponding to the real and complex eigenvalues of g respectively so that $L\left[g^{T}\right]=L$. Assume that $x_{1}+\alpha x_{2}+\beta x_{3} \neq 0$ for any $\left(x_{1}, x_{2}, x_{3}\right) \in \mathbf{Z}^{3} /(0,0,0)$. The main property of the constant $\nu(L)$ is that the inequality

$$
\left|N_{P}(x)\right|=\left|\left(x, a_{1}\right)\left(x, a_{2}\right)^{2}\right|<k|\operatorname{det} P|
$$

or

$$
\begin{equation*}
\left|\left(x, a_{1}\right)\right|=\left|x_{1}+\alpha x_{2}+\beta x_{3}\right|<k \frac{|\operatorname{det} P|}{A_{2}[x]}, \tag{8}
\end{equation*}
$$

has infinitely many solutions $x \in \mathbf{Z}^{3}$ for $k \geq \nu(L)$ and only a finite number of solutions if $k<\nu(L)$. Here $A_{2}[x]=\left|\left(x, a_{2}\right)\right|^{2}$ is a quadratic form of rank two.

Let $b_{1}^{\prime}=\left(1, \alpha_{1}, \beta_{1}\right), a_{2}=\left(1, \gamma_{1}+i \delta_{1}, \gamma_{2}+i \delta_{2}\right)$, and $\left(a_{2}, b_{1}^{\prime}\right)=0$. Then $\alpha_{1}=$ $-\delta_{2} / \Delta, \beta_{1}=\delta_{1} / \Delta$ where $\Delta=\gamma_{1} \delta_{2}-\gamma_{2} \delta_{1}$. For $y=\left(0, y_{2}, y_{3}\right), q_{2}\left(y_{2}, y_{3}\right)=$ $\left|\left(y, a_{2}\right)\right|^{2}$ is a positive definite binary quadratic form with $\operatorname{det}\left(q_{2}\right)=-\Delta^{2}$. If $\left(x, a_{2}\right) \rightarrow 0$ then

$$
\left|\left(x, a_{2}\right)\right|^{2}=\left|\left(x-x_{1} b_{1}^{\prime}, a_{2}\right)\right|^{2}=x_{1}^{2} q_{2}\left(\frac{x_{2}}{x_{1}}-\alpha_{1}, \frac{x_{3}}{x_{1}}-\beta_{1}\right) \rightarrow 0
$$

and

$$
\frac{x_{2}}{x_{1}}-\alpha_{1} \longrightarrow 0, \quad \frac{x_{3}}{x_{1}}-\beta_{1} \longrightarrow 0
$$

since $x-x_{1} b_{1}^{\prime}=\left(0, x_{2}-x_{1} \alpha_{1}, x_{3}-x_{1} \beta_{1}\right)$. It follows that $\left(x, a_{1}\right)=x_{1}\left(1+\frac{x_{2}}{x_{1}} \alpha+\frac{x_{3}}{x_{1}} \beta\right) \approx$ $x_{1}\left(1+\alpha \alpha_{1}+\beta \beta_{1}\right)=x_{1}\left(b_{1}^{\prime}, a_{1}\right)$. Since $\operatorname{det} P=(-2 i)\left(\Delta-\delta_{2} \alpha+\delta_{1} \beta\right)=-2 i \Delta\left(b_{1}^{\prime}, a_{1}\right)$, the inequality $\left|N_{P}(x)\right|=\left|\left(x, a_{1}\right)\left(x, a_{2}\right)^{2}\right|<k|\operatorname{det} P|$ implies

$$
\begin{equation*}
q_{2}\left(\frac{x_{2}}{x_{1}}-\alpha_{1}, \frac{x_{3}}{x_{1}}-\beta_{1}\right)<\frac{2 k}{\left|x_{1}\right|^{3}} \sqrt{\left|\operatorname{det} q_{2}\right|} . \tag{9}
\end{equation*}
$$

In [7], it is shown that, for any irrational α_{1}, β_{1}, this inequality has infinitely many solutions in $x \in \mathbf{Z}^{3}$ if $k \geq 1 / \sqrt{23}$ and that this constant is exact in the case when $q_{2}\left(y_{2}, y_{3}\right)=y_{2}^{2}+y_{3}^{2}$.

As $x_{1}+\alpha x_{2}+\beta x_{3} \rightarrow 0$, we have $x_{1} \approx-\alpha x_{2}-\beta x_{3}$ and $A_{2}[x] \approx q_{1}(x)=$ $\left|\left(x, a_{2}-a_{1}\right)\right|^{2}$. Here q_{1} is a binary quadratic form in x_{2} and x_{3} with $\operatorname{det}\left(q_{1}\right)=$ $-\left(\Delta-\delta_{2} \alpha+\delta_{1} \beta\right)^{2}=-|\operatorname{det} P|^{2} / 4$. Hence $|\operatorname{det} P|=2 \sqrt{\left|\operatorname{det} q_{1}\right|}$ and the inequality (8) can be rewritten as

$$
\begin{equation*}
\left|x_{1}+\alpha x_{2}+\beta x_{3}\right|<2 k \frac{\sqrt{\left|\operatorname{det} q_{1}\right|}}{q_{1}(x)} . \tag{10}
\end{equation*}
$$

By Theorem 4 and Lemma 9, the inequality (9) holds with $k=\sqrt{2 / 27}$ for almost all $x=u_{i}$ such that $R_{i} \rightarrow A_{2}$, and (10) holds with the same constant for almost all $x=u_{i}$ such that $R_{i} \rightarrow A_{1}$.

In general, if we replace $q_{1}(x)$ by another binary positive quadratic form then $\operatorname{det} P$ and $\nu(L)$ can be changed. Thus, to compare diophantine approximation properties of different vectors $(1, \alpha, \beta)$ we have to fix the form $q_{1}(x)$. Choose $q_{1}(x)=x_{2}^{2}+x_{3}^{2}$. As mentioned above, for this particular $q_{1}(x)$, Davenport and Mahler [7] proved that $\sup \nu(L)=1 / \sqrt{23}$ and that the supremum is attained when $a_{1}=\left(1, \phi, \phi^{2}\right)$ where ϕ is the real root of the equation $t^{3}-t-1=0$. Since $\nu(L)=1 / \sqrt{23}$ when $a_{2}=\left(1, \theta, \theta^{2}\right), \theta$ being a complex root of $t^{3}-t-1=0$, the inequality (10) also holds for the same a_{1} with the constant $k=1 / \sqrt{23}$ and $q_{1}(x)=\left|\left(x, a_{2}-a_{1}\right)\right|^{2}$.

Note that the isotropic vector b_{1} of the quadratic form $\left|\left(x, a_{2}\right)\right|^{2}$ is used in [1] to find the Voronoi-algorithm expansion for units in two families of complex cubic fields with period length going to infinity introduced by Levesque and Rhim [14]. In [12], the same approach is applied to a similar family of fields.

6 Units in Complex Cubic Fields

As in [5], we denote by \mathbf{Z}_{F} the ring of integers of an algebraic number field F. A \mathbf{Z}-basis of the free \mathbf{Z}-module \mathbf{Z}_{F} will be called a basis of \mathbf{Z}_{F}. If, for some $\delta \in \mathbf{Z}_{F}$, numbers $1, \delta, \delta^{2}, \ldots, \delta^{n-1}, n=\operatorname{deg}(F)$, form a basis of \mathbf{Z}_{F}, it is called a power basis (cf. [16, p. 64]).

Let F be a complex cubic field. Let $\left\{1, \omega_{2}, \omega_{3}\right\}$ be a basis of \mathbf{Z}_{F}. Denote $a_{1}=$ $\left(1, \omega_{2}, \omega_{3}\right)^{T}$. Let ϵ_{1} be a unit in \mathbf{Z}_{F}. Then $\epsilon_{1} a_{1}=E a_{1}$ where $E \in \Gamma$. Hence ϵ_{1} is an
eigenvalue of E and a_{1} is the eigenvector of E corresponding to ϵ_{1}. Assume that ϵ_{1} is real. Let σ_{i} be the three distinct embeddings of F in \mathbf{C}. Let $a_{2}=\sigma_{2}\left(a_{1}\right)=\alpha+i \beta$, $\alpha, \beta \in \mathbf{R}^{3}, a_{3}=\overline{a_{2}}$ and $\epsilon_{i}=\sigma_{i}\left(\epsilon_{1}\right)$. Then $\epsilon_{i} a_{i}=E a_{i}$ and the axis L of E is the interval $X(\mu)=\mu A_{1}+(1-\mu) A_{2}, 0 \leq \mu \leq 1$, where $A_{1}=a_{1} a_{1}^{T}$ and $A_{2}=\alpha \alpha^{T}+\beta \beta^{T}$. On the other hand, if the characteristic polynomial of $h \in \Gamma$ is irreducible and it has only one real eigenvalue ϵ, then ϵ is a unit in \mathbf{Z}_{F}, the maximal order in $F=\mathbf{Q}(\epsilon)$. Thus, the problem of finding a generator of $\mathbf{Z}_{F}^{\times} /\{ \pm 1\}$, which is an infinite cyclic group, is equivalent to the problem of finding a generator of the stabilizer of the axis of $h \in \Gamma$.

Assume that \mathbf{Z}_{F} has the power basis $\left\{1, \delta, \delta^{2}\right\}$ where $p(\delta)=\delta^{3}+c_{2} \delta^{2}+c_{1} \delta+c_{0}=0$, $c_{0}, c_{1}, c_{2} \in \mathbf{Z}$. Let $C a_{1}=\delta a_{1}$. Then

$$
C=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
-c_{0} & -c_{1} & -c_{2}
\end{array}\right]
$$

is said to be the companion matrix of $p(x)$.
Theorem 10 Let L be the axis of an irreducible element $h \in \Gamma$ with only one real eigenvalue ϵ. Assume that the discriminant of the characteristic polynomial of h is square free. Then $\mathbf{Z}_{F}^{\times} /\{ \pm 1\}=\langle\epsilon\rangle$. Here \mathbf{Z}_{F} is the maximal order of the complex cubic field $F=\mathbf{Q}(\epsilon)$.

Proof By assumption, \mathbf{Z}_{F} has basis $\left\{1, \epsilon, \epsilon^{2}\right\}$. Thus, any $\gamma \in \mathbf{Z}_{F}$ can be uniquely represented as $\gamma=p(\epsilon)=c_{0}+c_{1} \epsilon+c_{2} \epsilon^{2}, c_{k} \in \mathbf{Z}$. Let C be the companion matrix of the characteristic polynomial of h. Then $\gamma=p(\epsilon)$ can be represented by $p(C)$ in the algebra of 3×3 matrices over $\mathbf{Z}(c f .[5, \mathrm{p} .160])$. Assume that $\mathbf{Z}_{F}^{\times} /\{ \pm 1\}=\left\langle\epsilon_{0}\right\rangle$. Then $\epsilon=\epsilon_{0}^{n}$ for some $n \in \mathbf{Z}$. Let $\epsilon_{0}=a_{0}+a_{1} \epsilon+a_{2} \epsilon^{2}, a_{k} \in \mathbf{Z}$. Then $h_{0}=a_{0} I+a_{1} C+a_{2} C^{2} \in$ Γ and $h=h_{0}^{n}$. Since h is irreducible, $n=1$ or -1 .

Example 1 Let $\Gamma=\mathrm{GL}_{2}(\mathbf{Z})$. Then \mathcal{P} is the Klein model of the hyperbolic plane. Denote

$$
U=\left[\begin{array}{ll}
1 & t \\
0 & 1
\end{array}\right], \quad S=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]
$$

where $t \in \mathbf{Z}$. The characteristic polynomial of $E_{0}^{T}=S U$ is $f(x)=x^{2}-t x-1$. Note that $E_{0}=E_{0}^{T}$. Let L be the axis of E_{0}. Then I, the identity matrix, is the intersection of L with $L^{+}(E)$ and the interval $[I, I[E])$ is a fundamental domain of Γ_{L} on L. Let ϵ be an eigenvalue of E_{0}. Assume that $t^{2}+4$ or $t^{2} / 4+1$ is a square free integer. Then $\mathbf{Z}_{F}^{\times} /\{ \pm 1\}=\langle\epsilon\rangle$. Here \mathbf{Z}_{F} is the maximal order of the field $F=\mathbf{Q}(\epsilon)$. The period length of the corresponding continued fraction $p=1$. Many other examples related to this algorithm can be found in [21] and [22].

Example 2 (cf. [26, p. 254]) Let t be a positive integer, $\delta=\left(t^{3}+\eta\right)^{1 / 3}, \eta= \pm 1$, and $f(x)=x^{3}-\delta^{3}$. Let C be the companion matrix of $f(x)$. Let $F=\mathbf{Q}(\delta)$. Assume that $\left\{1, \delta, \delta^{2}\right\}$ is a basis of \mathbf{Z}_{F}. Since $\epsilon=\delta-t \in \mathbf{Z}_{F}^{\times}$, the matrix $E=C-t I \in \Gamma$. Let
$a_{1}=\left(1, \delta, \delta^{2}\right)^{T}, a_{2}=\left(1, \delta \rho,(\delta \rho)^{2}\right)^{T}=a_{2 R}+i a_{2 I}$ where $\rho=(-1+\sqrt{-3}) / 2$ and $a_{2 R}, a_{2 I} \in \mathbf{R}^{3}$. Then $E a_{1}=\epsilon a_{1}$ and the interval L with equation $X(\mu)=\mu a_{1} a_{1}^{T}+$ $(1-\mu)\left(a_{2 R} a_{2 R}^{T}+a_{2 I} a_{2 I}^{T}\right), 0<\mu<1$, is the axis of E. The point of intersection of L with $L^{+}\left(E^{T}\right)$ is $B_{0}=X\left(\mu_{0}\right), \mu_{0}=1-\left(1-\epsilon^{2}\right) /(3 t \delta)$.

First let t be even. Denote

$$
h=\left[\begin{array}{ccc}
1 & -t & -t^{2} / 2 \\
0 & 1 & -t / 2 \\
0 & 0 & 1
\end{array}\right]
$$

Then $B_{0}[h]=X_{0}=\left(x_{i j}\right)$ is Minkowski reduced and $x_{11}=x_{22}=1, x_{33} \sim \frac{3}{4} t^{2}$, $x_{12} \sim-1 /(2 t), x_{13} \sim-1 / 4, x_{23} \sim-\eta /\left(6 t^{2}\right)$ as $t \rightarrow \infty$. Therefore B_{0} and X_{0} are extremal. Denote $B_{1}=B_{0}\left[E^{T}\right]$. The interval $\left[B_{0}, B_{1}\right)$ is a fundamental domain of Γ_{L} on L. Hence $\mathbf{Z}_{F}^{\times} /\{ \pm 1\}=\langle\epsilon\rangle$.

Now let t be odd. Denote

$$
h=\left[\begin{array}{ccc}
1 & -t & -\left(t^{2}-t\right) / 2 \\
0 & 1 & -(t-\eta) / 2 \\
0 & 0 & 1
\end{array}\right]
$$

Then $B_{0}[h]=X_{0}=\left(x_{i j}\right)$ is Minkowski reduced and $x_{11}=x_{22}=1, x_{33} \sim \frac{3}{4} t^{2}+\frac{1}{4}$, $x_{12} \sim-1 /(2 t), x_{13} \sim-1 / 4, x_{23} \sim \eta\left(1 / 2-1 /\left(6 t^{2}\right)\right)$ as $t \rightarrow \infty$. Therefore B_{0} and X_{0} are extremal. Denote $B_{1}=B_{0}\left[E^{T}\right]$. The interval $\left[B_{0}, B_{1}\right)$ is a fundamental domain of Γ_{L} on L. Hence $\mathbf{Z}_{F}^{\times} /\{ \pm 1\}=\langle\epsilon\rangle$.

Denote $E_{0}=h^{T} E h^{*}$. Let $X_{1}=B_{1}[h]$. Let

$$
U=\left[\begin{array}{ccc}
1 & -3 t / 2 & -3 t^{2} / 4 \\
0 & 0 & \eta \\
0 & 1 & -3 t / 2
\end{array}\right] \quad \text { or } \quad\left[\begin{array}{ccc}
1 & -3 t / 2-\eta / 2 & -3 t^{2} / 4-1 / 4 \\
0 & 0 & \eta \\
0 & 1 & -3 t / 2+\eta / 2
\end{array}\right]
$$

for d even or odd respectively. Then $E_{0}^{T}=S_{1} U$ and $X_{1}=X_{0}\left[E_{0}^{T}\right]$. Thus, $L_{0}=L[h]$ is reduced, the interval $\left[X_{0}, X_{1}\right]=L_{0} \cap K(w)$, and the period length of the corresponding continued fraction $p=1$. Note that, for the Voronoi continued fraction, $p=1$ if $\eta=1$ and $p=2$ if $\eta=-1$ (see [26, p. 254]). Thus, Algorithm I does not coincides with Voronoi's algorithm.

Example 3 Let $f(x)=x^{3}-t x^{2}-u x-1$. The discriminant of $f(x)$ is $D_{L}=$ $-27-18 u t+u^{2} t^{2}+4 u^{3}-4 t^{3}$. (Note that the particular case of $u=0$ is considered in [10, p. 202].) Assume that $f(x)$ has only one real root ϵ. The other two roots of f are $\epsilon_{1,2}=\left(t-\epsilon \pm\left((t+\epsilon)^{2}-4 \epsilon^{2}+4 u\right)^{1 / 2}\right) / 2$. Let $F=\mathbf{Q}(\epsilon)$. Assume that D_{L} is square free. Then $\left\{1, \epsilon, \epsilon^{2}\right\}$ is a basis of \mathbf{Z}_{F}.

Let E be the companion matrix of $f(x)$. Let L be the axis of E. Denote by B_{0} the intersection of L with $L^{+}(E)$. Let $E a=\epsilon a, E a_{i}=\epsilon_{i} a_{i}, i=1,2$. Then the equation of L is $X(\mu)=\mu a_{1} a_{1}^{T}+(1-\mu)\left(a_{2 R} a_{2 R}^{T}+a_{2 I} a_{2 I}^{T}\right), 0<\mu<1$, and $B_{0}=X\left(1 /\left(\epsilon^{2}+\epsilon+1\right)\right)$. Let $v=[u / 2]$,

$$
h=\left[\begin{array}{ccc}
1 & 0 & -v \\
0 & 1 & 1-t \\
0 & 0 & 1
\end{array}\right]
$$

and $X_{0}=\left(x_{i j}\right)=B_{0}[h]$.
Let first $u=2 v$. Then

$$
\begin{gathered}
x_{11}=x_{22}=1, \\
x_{12}=-(v-1) / \epsilon-\mu(3 \epsilon-2 v+3) /(2 \epsilon), \\
x_{13}=-(v-1 / 2) / \epsilon-\mu(2 v \epsilon-3 \epsilon+2 v) /(2 \epsilon), \\
x_{23}=\left(v^{2}+v\right) / \epsilon+\mu\left((v+4) \epsilon^{2}\right. \\
\left.-\left(2 v^{2}-v-1\right) \epsilon+1\right) /\left(2 \epsilon^{2}\right), \\
x_{33}=t-v^{2}+v+1+\left(2 v^{2}+3 v-1\right) / \epsilon+\mu\left(2 v^{2}+v+6\right) \\
-\mu\left(\left(2 v^{2}-4 v-3\right) \epsilon-3\right) / \epsilon^{2} .
\end{gathered}
$$

Let now $u=2 v+1$. Then

$$
\begin{gathered}
x_{11}=x_{22}=1, \\
x_{12}=-(v-1 / 2) / \epsilon-\mu(3 \epsilon-2 v+2) /(2 \epsilon), \\
x_{13}=1 / 2-v / \epsilon+\mu(2 v \epsilon-2 \epsilon+2 v-1) /(2 \epsilon), \\
x_{23}=\left(2 v^{2}+3 v+2\right) /(2 \epsilon)+\mu\left((v+3) \epsilon^{2}-2 v \epsilon+1\right) /\left(2 \epsilon^{2}\right), \\
x_{33}=t-v^{2}-v-1+\left(2 v^{2}+4 v+1\right) / \epsilon+\mu\left(2 v^{2}+4 v+6\right) \\
-\mu\left(\left(2 v^{2}-3 v-5\right) \epsilon-3\right) / \epsilon^{2} .
\end{gathered}
$$

Assume that $t \geq 2 v^{2}+2 v$ for $u=2 v$, and $t \geq 2 v^{2}+3 v+2$ for $u=2 v+1$. Then $B_{1}=B_{0}\left[E^{T}\right]$ is Minkowski reduced (see e.g. [6, p. 397]). Hence B_{0} is extremal and the interval $\left[B_{0}, B_{1}\right]=L \cap K(w)$ is a fundamental domain of Γ_{L} on L. Thus, $\mathbf{Z}_{F}^{\times} /\{ \pm 1\}=\langle\epsilon\rangle$.

Let $E_{0}=h^{T} E h^{*}$. As in the preceding example, $L_{0}=L[h]$ is reduced, E_{0}^{T} fixes L_{0}, and $S_{1} E_{0}^{T}=U \in \Gamma_{\infty}$. Thus, $p=1$.

References

[1] B. Adams, Voronoi-algorithm expansion of two families with period length going to infinity. Math. Comp. 64(1995), 1687-1704.
[2] A. Ash, D. Mumford, M. Rapoport and Y. Tai, Smooth Compactification of Locally Symmetric Varieties. Math. Sci. Press, Brookline, Mass., 1975.
[3] A. T. Brentjes, Multi-dimensional continued fraction algorithms. Amsterdam, 1981.
[4] J. W. S. Cassels, An Introduction to the Geometry of Numbers. Springer-Verlag, 1959.
[5] H. Cohen, A Course in Computational Algebraic Number Theory. Graduate Texts in Math. 138, Springer-Verlag, 1996.
[6] J. H. Conway and N. J. A. Sloane, Sphere packings, lattices and groups. Springer-Verlag, New York and Berlin, 1988.
[7] H. Davenport and K. Mahler, Simultaneous Diophantine approximation. Duke Math. J. 13(1946), 105-111.
[8] H. Davenport and C. A. Rogers, Diophantine inequalities with an infinity of solutions. Philos. Trans. Roy. Soc. London 242(1950), 311-344.
[9] P. B. Eberlein, Geometry of Nonpositively Curved Manifolds. The University of Chicago Press, 1996.
[10] A. Fröhlich and M. Taylor, Algebraic Number Theory. Cambridge Stud. Adv. Math. 27, Cambridge Univ. Press, 1991.
[11] D. Grenier, Fundamental domains for the general linear group. Pacific J. Math. 132(1988), 293-317.
[12] Kan Kaneko, Voronoi-algorithm expansion of a family with period length going to infinity. SUT J. Math. 34(1998), 49-62.
[13] A. Korkine and G. Zolotarev, Sur les formes quadratiques. Math. Ann. 6(1873), 366-389.
[14] C. Levesque and G. Rhim, Two families of periodic Jacobi algorithms with period lengths going to infinity. J. Number Theory 37(1991), 173-180.
[15] G. A. Margulis, Indefinite quadratic forms and unipotent flows on homogeneous spaces. C. R. Acad. Sci. Paris Ser. 1 Math. (10) 304(1987), 251-257.
[16] Wladislaw Narkiewicz, Elementary and Analytic Theory of Algebraic Numbers. Springer-Verlag, Berlin and New York, 1990.
[17] S. S. Ryshkov and E. P. Baranovskii, Classical methods in the theory of lattice packings. Russian Math. Surveys 34(1979), 1-68.
[18] A. Terras, Harmonic analysis on symmetric spaces and applications. II. Springer-Verlag, Berlin-New York, 1988.
[19] G. Voronoi, On a generalization of the Algorithm of Continued Fractions. Doctoral dissertation, Warsaw, 1896; Collected Works, Vol. 1. Izdat. Akad. Nauk Ukrain. SSR, Kiev 1952, 197-391 (Russian).
[20] L. Ya. Vulakh, The Markov spectrum for triangle groups. J. Number Theory 67(1997), 11-28.
[21] , Farey polytopes and continued fractions associated with discrete hyperbolic groups. Trans Amer. Math. Soc. 351(1999), 2295-2323.
[22] Diophantine approximation in Euclidean spaces. CRM Proceedings and Lecture Notes 19(1999), 341-351.
[23] 19(1
, The Markov spectrum for Fuchsian groups. Trans. Amer. Math. Soc. 352(2000), 4067-4094
[24] Continued fractions associated with Bianchi groups and units in some quadric fields. Preprint.
[25] _ Units in some families of algebraic number fields. Preprint.
[26] H. C. Williams, The period length of Voronoi's algorithm for certain cubic orders. Publ. Math. Debrecen (3-4) 37(1990), 245-265.

Department of Mathematics
The Cooper Union
51 Astor Place
New York, NY 10003
USA
email: vulakh@cooper.edu

[^0]: Received by the editors August 28, 2001; revised May 6, 2002.
 The author was supported in part by NSA Grant MDA904-99-1-0052.
 AMS subject classification: 11R27, 11J70, 11J13.
 Keywords: fundamental units, continued fractions, diophantine approximation, symmetric space.
 (C)Canadian Mathematical Society 2002.

