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SHORT NOTES 

THE INVERSE PROBLEM FOR VALLEY GLACIER FLOW 

By DIDIER HANTZ and LOUIS LLIBOUTRY 

(Laboratoire de Glaciologie, 2, rue Tres-Cloitres, 38031 Grenoble Ctdex, France) 

ABSTRACT. We seek to infer the velocities within a cylindrical valley glacier from measured surface 
velocities. In the Newtonian viscous case, an explicit finite-difference scheme does not fulfil von Neumann's 
condition for numerical stability. How this fact does not contradict the existence of Somigliana's analytical 
solution is explained. A procedure is given which delays the onset of instability and allows velocities at 
shallow depths to be determined. 

RESUME. Le probleme inverse pour l'eeoulement d'un glacier de valUe. Nous cherchons a deduire les vitesses a 
l'intt~rieur d'un glacier de vallee cylindrique des vitesses mesurees en surface. L'equation aux differences 
finies correspondante, dans le cas de la viscosite newtonienne, ne remplit pas la condition de stabilite 
numerique de von Neumann. On explique comment ce fait n'est pas contradictoire avec l'existence de la 
solution analytique de Somigliana. On indique une procedure qui retarde l'apparition de l'instabilite et 
permet de determiner les vitesses aux faibles profondeurs. 

ZUSAMMENFASSUNG. Das inverse Problem zum Fliessen der Talgletseller. Es wird versucht, die Geschwindig­
keiten in einem zylindrischen Talgletscher aus gemessenen Oberflachengeschwindigkeiten herzuleiten. Die 
entsprechende finite Differenzengleichung fur den Fall Newton'scher Viskositat erfullt nicht die von 
Neumann'sche Bedingung fur numerische Stabilitat. Es wird dargelegt, wieso diese Tatsache nicht im 
Widerspruch zur Existenz von Somiglianas analytischer Losung steht. Eine Prozedur wird angegeben, die 
den Eintritt der Instabilitat verzogert und Geschwindigkeiten in geringen Tiefen zu bestimmen gestattet. 

INTRODUCTION 

The classical and simplest studies which are done on a temperate mountain glacier are to measure 
mass balance and surface velocity at a set of stakes. Since the rh eo logical law for permanent (tertiary) 
steady creep of glacier ice is today more or less well known (Duval, 1981 ), we can tackle next the 
inverse problem, that is the calculation from these surface data of the velocities at depth. Then, in 
particular, if the bedrock depth has been determined by seismic exploration or boring, sliding velocities 
may be determined. 

This problem is a very difficult three-dimensional one. As a first step only the two-dimensional 
problem, when the valley glacier is cylindrical and all the velocities are parallel, will be considered. 
Assuming an isotropic viscous rheological law (i.e. at a given point deviatoric stresses and strain-rates 
are proportional), the generalized Navier-Stokes equations hold. In this two-dimensional case, only 
one of them has to be considered. Mass balances are assumed to be negligible and the glacier surface 
to be a plane xOy with slope tan cc. With Ox in the direction of the velocity and Oz pointing downwards. 
This Navier-Stokes equation is (Lliboutry, 1971, equation 65) 

~ ("I au) +i ("I au) + pg sin 0: = o. ay ay az az 
Assuming Glen's rheological law, the viscosity "I is given by 

The Navier-Stokes equation then becomes 

[; (~~y + (~:)'] + ~~ [(~~y +~ (~:) z] _ 
2(n- I) azu au aU+B'ln . - ------- pg Sill 0: 

n ay az ay 8z 
In our calculations the value n = 3 has been adopted. 
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The direct problem has been solved numerically by Nye ( 1965) assuming no sliding, or a uniform 
sliding velocity. It has b een solved by Reynaud (1973) assuming a solid friction law with a uniform 
friction coefficient and assuming the presence of water with a single well-defined piezometric surface 
at the ice- bedrock interface. Although R eynaud's assumption seems more realistic, it is only a rough 
approximation. It involves two unknown parameters and only one of them can be d educed from global 
equilibrium. The computation needs a large computer, and to solve the inverse problem by trial and 
error would waste a great deal of computer time. 

Let us then proceed directly and try to solve Equation (3) numerically from the surface downwards 
with the initial boundary conditions: 

U(o,y) = us(y), } 

~;)z-o = o. 

If we can determine the velocity at each successive step in z, the computation will be simple enough 
to be done on a mere desk computer. It turns out that such an extrapolation downwards is unstable, 
contrary to what might be thought from the existence of Somigliana's (1925) solution in the Newtonian 
viscous case. Nevertheless a more careful procedure allows significant velocities to be computed down 
to some depth. 

TWO-DIMENSIONAL EXPLICIT FINITE DIFFERENCE METHOD 

As a first trial, partial derivatives at the point (y = mh, z = pk), where the velocity is Um P , were 
approximated to the second order by the following expressions: 

iJu Um+IP- um_IP iJu 3UmP-4UmP-'+umP-' 

iJy = 2h iJz = 2k 

iJ·U U1n+lP-2UmP + Um _ IP 

iJyz = h' 
iJ·U Um pH -2UmP +U",P-I 

iJz' = k' 
(5) 

iJ·U Um+I P+1 -Um_I PH -um+I P- 1 + Um_I P- 1 

iJyiJz = ¥k 

The value umPH does not appear in the approximation of iJu/iJz in order to keep the finite-difference 
equation linear for the unknown values um_I PH , umpH, U1n+I P+I, at depth z = (p+ I)k. The same 
assymetric formulae were used for the mesh-points on the left and right boundaries. For the pth line of 
the grid, a linear system was solved and gave the values umP +1 at the (p+ I ) th line. This method was 
programmed on an IBM 5100 desk computer and tested for the cases of an infinitely deep channel and 
of a channel with a semicircular cross-section. For any value of meshes hand k, a numerical instability 
appeared at shallow depth. 

Such an instability could have been predicted using the heuristic principle of fixed coefficients, which 
allows von Neumann's stability condition (Godunov and Rabiyenki, 1977, chapter 8) to be applied. 
Putting constants in place of the coefficients of second-order partial derivatives, and k /h = r, the homo­
geneous part of our finite-difference equation (which controls the behaviour at infinite distance) 
becomes: 

arZ(Um+I P -2UmP +Um_I P) + b(umPH - 2UmP + Um P- I) + 

er + - (Um+IPH-Um_IPH-Um+IP-I+Um_IP-I) = o. (6) 
2 

It is obvious that this recurrence scheme is not stable against a perturbation if Um PH is equal to 
AUmP, where A is a constant independent from p, and if I AI > 1. With a perturbation proportional 
to exp(i,sm) it is easy to compute the A(,s) for which umPH = AUmP (i.e. the eigenvalues of the operator 
which transforms um P into UmP+I). Von Neumann's necessary (but not sufficient) condition for stability 
is then that a full spectrum of eigenvalues exists with moduli all less than I, for any ,so 
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Putting um1' ,\1' exp(i,8m), Equation (6) becomes: 

,\2(b+ icT sin,8) - 2'\[ar2(I - cos .8)+ b+ I] + (b-icT sin.8) = o. 

For any ,8 there are two eigenvalues '\" ,\. for which 1,\, I· 1 '\21 = I. Thus the equation with fixed 
coefficients does not satisfy von Neumann's condition. 

SOME CONSIDERATIONS CONCERNING SOMIGLIANA'S SOLUTION 

Assuming Newtonian viscosity (n = I), Equation (3) reduces to the Poisson equation 

T) (a.u + 8'u) + pg sin et = o. 
ay> 8z2 

(8) 

The corresponding explicit finite-difference equation is then precisely Equation (6) with C = 0 

and a = b. Thus for a Newtonian viscosity the numerical instability of this finite-difference equation is 
mathematically proved. ( In the general case we had only an heuristic argument in favour.) This 
statement will surprise many glaciologists since it is well known that Somigliana (1925) has given the 
following analytical solution for the inverse problem. 

Let u = us (y ) be an analytical expression of the surface velocity. The function of a complex variable 
us ( y + iz) may then be defined. Let us consider its real and imaginary parts 

us(y + iz) = U(y, z )+iU*(y, z), (9) 

and consider the solution 

sin et 
u(y, z) = U(y, z) -pg -- Z2. (10) 

2T) 

For z = 0, us(y + iz) is real and then from Equation (9) us(y) U(y, 0). Also from Equation (9) 

au) + i 8U*) = idus . (11) 
Tz Z-o & z-o dy 

Thus 8Uj8z vanishes for z = 0, and the second boundary condition at the surface T) du jdz = 0 is 
also satisfied. The inverse problem has then been solved, theoretically at least. 

Actually us(y) is known only at a set of stakes. Assuming that the distance between these is h, the 
analytical expression which is adopted for us(y) may be wrong by terms in sin (mry jh), where n is an 
integer. Then our analytical solution may be wrong by terms in 

Re [sin (mr(y+ iz)jh)] = cosh (nrrzjh) sin (nrryjh), 

where n is any integer. These terms would grow exponentially if z > hj(nrr ). The lack of information 
between stakes introduces high-frequency noise, which may be removed by smoothing. Whether this 
optimistic conclusion remains true for non-Newtonian viscosity is an open question. 

The fact that we have only a limited number of surface velocities, because the glacier width is finite 
is much more troublesome. The adopted analytical us(y) may be wrong by a polynomial of any degree 
n ;;. N - I. The corresponding error in the solution has terms in zn (if n is an even integer) or zn-I (if 
n is odd) . The same kind of error may come from any small inaccuracy in the velocity measurements 
(and, when using a computer, from truncation errors). Let the glacier extend between y = -L and 
y = +L, and ± £ be the inaccClracy. Then we cannot assert that an error: 

has not been introduced. This will lead to an error in the solution which, for y = 0, if n is even, amounts 
to: 

This error cannot be suppressed by any smoothing procedure and means we have little chance of 
obtaining valuable velocities for z > L. Nevertheless, coming back to the non-Newtonian case, it would 
be sufficient if the computation remained more or less stable down to z = L, since the maximum 
depth of valley glaciers is seldom larger than half their width. 
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"ONE-DIMENSIONAL" FINITE-DIFFERENCE METHOD 

In the non-Newtonian case several finite-difference schemes have been tried. The one which 
remains stable at largest depths is as follows. 

The N given surface velocities us(y) are represented by a polynomial of degree N - I. In order to 
smooth as much as possible without loosing the input of information, velocities at any depth will also be 
represented by polynomials of d egree N - I : 

N-I 

U = L am(z)ymlm!. 

m=Q 

Horizontal derivatives are then calculated directly as polynomials in y, while vertical ones are 
approximated by finite-difference expressions. 

At the start the N coefficients am(O) are known and am'(O) = o. Derivatives aula)" auliJz, aZujayZ 
and aZulay az can then be calculated for z = 0 at the N selected values of y (say Yi). Equation (g) then 
gives the second-order vertical derivative at the N points (y, 0 ) . 

Interpolating by a polynomial in y of degree N - I gives the am"(O), since: 

N-I 

iJzu) = ~ am"(o) y jm • 

azz 
111.0 L m! 

m =0 

Let us increase z by k. The am(k) and am'(k) may be obtained by extrapolation. Equation (g) gives 
N values (a ZujazZ)III . k whence the am"(k), and so on. 

Extrapolation formulae of increasing accuracy are used at first; after the third line the following 
equations, which are valid to order 6 and 5 respectively, are kept: 

= am(z-gk) + 4kam'(z- gk) + 

+k2 [56 am"(z -gk) + 64 am"(z-2k) +~ am"(z-k) + 64 am"(z)] 
45 15 15 15 

am'(z + k) = am'(z-gk) + k [~am"(Z-2k) -± am"(z-k) -~ am"(Z)] 
g g g 

For an infinitely deep channel of width 2L, the exact analytical solution is 

u = iB(pg sin 0:)3(LLy4). 

, ) ('71 

In this case our procedure gives correct numerical results down to a depth more or less equal to the 
glacier width 2L. 

A 

3~\ 
70 
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Fig. 1 . Semicircular cylindrical channel, no sliding. Veloci~v versus transverse coordinate y at different depths drawn from the 
anaiJItical solution (dashes) and from numerical computation (solid line). 
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For a channel of semicircular cross-section with radius R , an exact analytical solution is: 

In this case our procedure gives the results plotted on Figure I. Solid lines represent the numerically 
computed velocity profiles at different depths uz(Y), and dashed lines the corresponding true profiles. 
R = 450 m was adopted. For z = 330 m the numerical solution becomes meaningless. For z = 360 m 
numerical instability becomes so important that the computed curve could not be contained in the 
figure. 

Lastly the computation was made using stake velocities measured on Glacier d' Argentiere, where 
the width 2L = goo m. Numerical instabilities appeared long before the maximal depth (350 m) 
had been reached. The calculated velocities seem to be correct only down to a depth of 150- 200 m 
(Fig. 2) . 

R = 450 m 

Fig. 2. Transverse section if Glacier d' Argentiere at about 2 650 m as.l. Suiface velocities have been measured at the plotted 
stakes. For numerical computation of velocities a horizontal straight line has been substituted for the actual surface. Lines 
within the glacier are lines of equal velociry as computed before illstabiliry happens. Velocities in metres per year. 
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CONCLUSION 

Our heuristic arguments and our numerical computations allow us to assert that the inverse problem 
can only be solved, in the two-dimensional case, for shallow glaciers. In order to determine sliding 
velocities in valley glaciers, inclinometric surveys of bore holes seem unavoidable, at least until a good 
friction law and a good model for water pressures at the interface have been established. 

MS. received 7 August 1979 and in revised/orm 6 December 1979 
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