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Abstract

In this paper we describe the moduli spaces of degree d branched superminimal immersions of a compact
Riemann surface of genus g into S4. We prove that when d > max{2g, g + 2}, such spaces have the
structure of projectivized fibre products and are path-connected quasi-projective varieties of dimension
2d — g + 4. This generalizes known results for spaces of harmonic 2-spheres in S4.

1991 Mathematics subject classification (Amer. Math. Soc): primary 58D27; secondary 58E20, 53A10,
53C15, 32L25.

In the Calabi construction (see [C]) the space of harmonic maps (or, equivalently, the
space of branched minimal immersions) of S2 into S2n decomposes into a union of
moduli spaces Hk labelled by the harmonic degree k > 0. (This means that if/ e Hk,
then Area(/ (S2)) = Energy(/) = Ank.) W h e n / is linearly full (that is, its image is
not contained in a totally geodesic subsphere), then either/ or —/ (that is, / followed
by the antipodal map on S2") has a holomorphic horizontal lift to the twistor space
of S2n such that its image is a curve of degree k. In the case when n = 2, if / is
totally geodesic, then both / and —/ have holomorphic horizontal lifts to the twistor
space CP3, and their images in CP3 are linear projective lines. The study of the space
of harmonic maps of S2 into S4 (modulo the antipodal map on S4) thus reduces to
the study of holomorphic horizontal curves (of genus 0) in CP3. In [L] the study of
holomorphic horizontal curves of degree k and genus 0 in CP3 was reduced to the
study of the moduli space Mk of pairs of meromorphic functions of degree k with the
same ramification divisor.

Recall from Wirtinger's inequality that a holomorphic curve in a Kahler manifold
is area minimizing in its homology class. Since the twistor projection CP3 —>• S4 is a
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[2] Moduli space of superminimal surfaces 33

Riemannian submersion, the projection of a holomorphic horizontal curve in CP3 is
automatically minimal in S4. By general twistor theory, such maps are also harmonic
(see [BR] and [ES] for example). For a fixed compact Riemann surface E of genus
g > 0, we shall consider the special class of harmonic maps from E to S4 which admit
holomorphic horizontal liftings to CP3. Such maps are called 'branched superminimal
immersions'. In 1982 Robert Bryant obtained the following result:

THEOREM ([Br]). Every compact Riemann surface admits a superminimal immer-
sion into S4.

In this paper, we shall study the moduli spaces of all such maps. We shall give a
direct construction for holomorphic horizontal curves of genus g. Since every such
curve in CP3 has a degree, we can classify the moduli spaces by the degree of the
curves. For a fixed compact Riemann surface E of genus g, and a fixed degree d, we
shall let 5^d.T. denote the moduli space of branched superminimal immersions of E
into S4 of degree d (equivalently, the moduli space of degree d holomorphic horizontal
maps of E to CP3). We shall abuse language by using the terms 'curve in CP3 ' and
'holomorphic map of E to CP3' interchangeably.

In the first section, we recall the basic construction given in [L]. The second section
is concerned with using fibre products to describe the moduli space. This is done by
first fixing a line bundle of degree d over a fixed Riemann surface E of genus g.
In Section 3, we let the line bundle vary over the Jacobian variety of degree d line
bundles over E and we obtain results on the dimension of the moduli space. Path-
connectedness of the moduli space is discussed in Section 4. We obtain the following
main result.

THEOREM 4.1. Ford > max{2g, g + 2}, 5fdx is a path-connected quasi-projective
variety of dimension 2d — g + 4.

In Section 5 we discuss compactifications of the moduli space. We provide some
simple examples of elements in the boundary of the moduli space.

1. Superminimal immersions and contact curves

Let us first recall the twistor fibration CP1 ->• CP3 -* S4. Observe that H2 has
the structure of a quaternion module with right scalar multiplication. By taking the
quotient of H2 \ {0} by the action of right scalar multiplication by nonzero quaternions
we obtain HP1. The natural identification of C4 with H2 via (z0, Z\, Zi, Zi) )-• (zo +
j Zi, Zi + j Z3) gives us the formula for the twistor fibration over S4 = HP1:

CP3 3 [Zo,Zi,Z2,Z3] H> [Zo+jZi,Z2+jZ3]

https://doi.org/10.1017/S1446788700036259 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700036259


34 Bonaventure Loo [3]

The Fubini-Study metric on CP3 splits the tangent space TCP3 into vertical and
horizontal components. The horizontal distribution 3^ has complex codimension 1
and is a holomorphic sub-bundle of TCP3. This distribution is a holomorphic contact
structure—it is the kernel of a contact 1-form 6 on CP3 with values in a holomorphic
line bundle S£, and it is encoded in the following exact sequence:

0 • Jt? • TCP3

This contact form has a lifting to C4 given by

(1-1) ^ = zo^Zi — Z\ dzo +

Since holomorphic horizontal curves are tangent to the distribution jtf, we shall use
the terms 'holomorphic horizontal curves' and 'contact curves' interchangeably.

We shall consider surfaces which arise as twistor projections of holomorphic curves
tangent to the horizontal distribution in CP3. Such maps are known to be harmonic,
and in fact branched minimal (see [Br], [La], [L], [ES] and [BR]).

DEFINITION 1.1. A harmonic map of a Riemann surface to S4 is said to be branched
superminimal if it is a projection of a horizontal holomorphic map into CP3.

In [L], such (generic) maps, modulo the 'contact involution' on CP3, were described
in terms of pairs of meromorphic functions which satisfy a ramification condition. We
summarize the construction of [L] below.

Consider the following two distinguished projective lines in CP3:

Lo:={[zo,Zi,O,O]}, Lx :={[O,O,z2,z3]}.

(These two distinguished lines project to the distinguished pair of antipodal points in
S4—the north and south poles.) We have a projection map

tyo = (no,nx) : CP3 \ ( L 0 U L , ) — • Lo x L, = CP1 x CP1,

where n0 and n\ are respectively given by x h-> span(jc, L\) C\ Lo and x \-+ span(;c,
Lo) n L | . It was proved in [L] that \j/0 has contact fibres. Letting CP3 denote the
blow-up of CP3 along Lo U L\, we obtain a well-defined map

(1.2) xfr : CP3 —> CP1 x CP1.

The map V has contact fibres if we equip CP3 with the pull-back of the contact
structure on CP3. We obtain the following diagram:

(1.3)

CP3 <—

1-
HP1

i

CP1

CP

! •

X

3

P

CP1 -

2:1
PT*(CP"

1
CP1 x

x CP1)

CP1
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[4] Moduli space of superminimal surfaces 35

where ij/ is a contact 2 : 1 branched covering [L].
Observe that a generic holomorphic curve y c C I P 3 will miss a pair of skew lines, in

particular, y fl (Lo U L,) = 0. (This implies that its image in S4 lies in the complement
of the two poles.) Let y be a generic holomorphic curve of degree d in C1P3. We
obtain 2 meromorphic functions associated to the curve y:

/ , :=7r, \y: y —> L,, i = 0, 1,

with

deg/o = #[(span(;c, L.) \ L,) Dy] = #(span(x, L{) n y) = deg(y) = d,

deg/i = #[(span(j, Lo) \ Lo) n y] = #(span(;y, Lo) n y) = deg(y) = rf,

where JC is any point in Lo and y is any point in L\. Thus, a generic holomorphic
curve of degree d in CP3 furnishes us with two meromorphic functions of degree d.

Let us examine a nongeneric case where y intersects one of the lines, say L {, in
it points (counting multiplicity). Let y denote the proper transform of y. We let 7r,
denote the i-th factor projection map of (1.2) and le t / , := JT, |p. Then,

deg/o = #[(span(*, L.) \ LO n y]

= #(span(x, L,) n y) - #(y n Li)

= deg(y) — k = d — k,

where x is any point in Lo.
If in addition y : E —*• CP3 is a contact curve, then its proper transform y is

a contact curve in CP3 and we hence obtain a map E —>• CP1 x CP1 (that is, two
meromorphic functions on E) which has a contact lift to PT*(CP' x CP1) by (1.3).
The contact condition on the curve implies that the two meromorphic functions have
the same ramification divisor.

Note that any nonconstant holomorphic map CT:E—>-CP'XCP' has a unique
contact lift toJPr*(CP' x CP1) given by the Gauss lift G{a) = [a A a']. A lift
of G(CT) to CP3 is a contact curve whose image in CP3 is nongeneric in the sense
that it intersects the two distinguished lines. However, if a = (g0, gi) is of bidegree
(d, d) where g0 and gi have the same ramification divisor, then G(a) lifts to a contact
curve of degree d in CP3 which avoids the two distinguished lines. This enables us
to describe the moduli space of generic branched superminimal surfaces in S4 of area
4nd in terms of pairs of meromorphic functions with the same ramification divisor.
Given such a pair of meromorphic functions, the construction given in [L] does not
give an explicit description of the contact curve in CP3—it only associates to such a
pair of meromorphic functions a pair of contact curves via the map T̂  in (1.3). In the
next section, we shall show how one may obtain an explicit description given such
holomorphic data.
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36 Bonaventure Loo [5]

2. Fibre products, Gaussian maps and Grassmannians

Henceforth, we shall let S be a fixed compact Riemann surface of genus g. Let y :
E -* CP3 be a holomorphic curve of degree d. Then there is a line bundle L —> S of
degree d such that y{z) = [so(z), Ji(z), s2(z), s3(z)], where s0, sus2, s3 € / /"(E, L).
Note that the linear system (s0, st, s2, s3) has no base points. If the pencils (s0, st)
and (s2, 53) are base-point-free, then the two meromorphic functions (thought of as
holomorphic maps to CP1) arising from y are given by

It follows from (1.1) that y is a contact curve if

(2.1) sos[ — Sis'o + s2s'2 — s3s'2 = 0 .

For the rest of this section let L -»• S be a fixed line bundle of degree d. Let
WL = H°CE, L) and let Wk

L denote the Jt-fold product of WL. We wish to find
four holomorphic sections of L: so> Si,S2,s3 e WL, such that (2.1) holds and where
(so,Si,s2,Si) has no base points. Consider the map

(2.2) Ram: W2
L—>H0(Y,,KL2) given by (s, r) 1 — > s d t - t d s ,

where K is the canonical line bundle over E.

REMARK. Observe that Ram(s, t) = — Ram(r, s). Thus, Ram is well defined on
simple bivectors: s A t H> 5 dt — t ds. This extends linearly to a map

A : /\2Wz. —»• H°(Y., KL1) defined by

^ a,j St A Sj

This map is well-known and it is called the Gaussian map ([Wl], [W2]). It is called
a Wahl map when L = K.

We can rewrite (2.1) as Ram(i0, *i) + Ram(i2, s3) = 0, that is,

Ram(s0, Si) = — RamO?2, ^3)-

In the case where the two pencils described above are base-point-free, this implies
that the corresponding two functions, / 0 and fx, have the same ramification divisor.
Note that the ramification divisor of the function f0 = [s0, S\] is just the divisor
(s0 dsi - si ds0) € P//°(E, KL2).
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[6] Moduli space of superminimal surfaces 37

Given a diagram

X xX

Y —^ Yx Y,

where A is the diagonal inclusion, recall that the fibre product X x Y X is just the
restriction to the diagonal of the product (p x f : X x X ^- Y x Y, that is, X x Y X =
A*(X x X). From the diagram:

W2
L x W2

L = WA
L

(2 .4) Ram x{-Ram]

H°(T,,KL2) —±-> H°(Y.,KL2)x H°CL,KL2),

where A is the diagonal inclusion, consider the projectivized fibre product

(2.5) JiLJ := P(W2
L X H O ( E , K , 2 ) W2

L) C £

REMARK. We adopt the following notation in this paper: given a vector space V,
we let P V denote the projective space of lines through the origin in V.

.d := {[s0, su s2, s}] e P(W£) | {̂ 0, su s2, s3) has base-points}. Observe that
each element of ^Lj corresponds to a parametrized curve in CP3 of degree strictly
less than d.

REMARK. ^t.rf is a rather complicated subset of P( W£). It would be interesting to
determine the structure of this space.

It follows from (2.1) that branched superminimal immersions of E into S4 of area
And and arising from the line bundle L are parametrized by the quasi-projective
variety

(2.6) y L , d := JtL,d N <eL.d.

REMARK. Given [s0, si, s2, s3] 6 S^L,d, we allow one of the pair of pencils (but not
both), (s0, ii> or {s2, s^), to have base-points. At such a base point, the corresponding
curve [s0, sus2, j 3 ] inCP3 intersects one of the lines Lo or L whence the corresponding
associated meromorphic function has degree less than d. Thus, in the genus zero case,
jT'ffid) contains elements which lie in the boundary of the moduli space described in
[L].

https://doi.org/10.1017/S1446788700036259 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700036259


38 Bonaventure Loo [7]

Let SSL := {(s, t) e W2
L | Ram(s, t) = 0}. Observe that (s, t) € S8L if and only if

s = kt for some constant A. 6 C, that is, s A t — 0. Thus we can write

(2.7) SSL = {{aa, bo) e W2
L \ a e WL, [a, b] € CP1}.

It follows from (2.4) and (2.7) that the fibre above 0 e //°(E, KL2) in the fibre
product W£ xwo(I;iJfL2) Ŵ  is just the set

(2.8) f t x J t = j ( f la ,*a ,a ,Jr ) | ( (7 , r )e lVL
2 , [a, b], [c, d] e CP1}.

Let us now consider the set ?(@L x ^ L ) . Fix ([a,b], [c,d]) € CP1 x
and let I denote the line in CP3 spanned by [a, b, 0, 0] G Lo and [0, 0, c, d] e L{.
Note that I is horizontal since the map ^ in (1.2) has contact fibres. Also, observe
that t projects to a totally geodesic 2-sphere St which passes through the north and
south poles of S4. Now fix {a, r ) € Wl such that {a, r) is base-point-free and set
4> = [(aa, bo, ex, dr)] e V(3BL x 3SL). Then <t> = [o(a, b, 0, 0) + r(0, 0, c, d)] and
hence 0 ( 2 ) C i, that is, 4> : E —>• £ is a branched covering map. Thus, the space
P(^z. x ,^x) \ ^ r f parametrizes a family of contact curves in CP3 which project
to totally geodesic 2-spheres in S4 which pass through the north and south poles of
S4. Fixing the line t in CP3 amounts to fixing a totally geodesic 2-sphere Se and the
composition n o <p is just a branched covering map £ —>• St.

Note that for d > 2g - 2, dim W*. = dim / / " (E , L) = J - g + 1 and thus from
(2.7) and (2.8) we have d i m ^ . = d - g + 2, and hence

(2.9) d i m ( P ( ^ x # J ) = Id - 2g + 3.

REMARK. In the genus zero case, since elements of W{38L x &L) are curves in
CP3 which intersect Lo U L\, they are elements in the boundary of the moduli space
described in [L].

Now consider the case when Ram(s, t) ^ 0, that is, s A t ^ 0. (Note that for a
function / = [s, t], we have s A t ^ 0.) Since [5, f] e P(Wf \ 3§L) implies that
s A r ^ 0, we may consider [s, t] as a projectivized ordered 2-frame in WL. Then, the
projectivized Stiefel manifold of ordered 2-frames in WL, PV(2, WL), is just the set

\ 38L). Now, consider the action

PGL(2, C) x P V(2, WL) —> PV(2, WL) defined by

d,As,t]) 1—• [as + bt, cs + dt].

Let [s A t] denote the 2-plane in WL spanned by 5 and t. Observe that the principal
PGL(2, C)-bundle over the Grassmannian G(2, WL) is given by

PV(2, WL) 4 - G(2, WL) where [s, / ] H [ J A / ] .
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[8] Moduli space of superminimal surfaces 39

Given a line bundle Jfc? —»• E and a holomorphic section a e / /°(E, j£?), we let
(a) denote the divisor of a. We have an induced map

(2.10) (Ram) : PV(2, WL) = P(W2 \ ^ ) — • P#°(E , ATL2)

defined by sending a point [5, t] to the divisor (sdr — tds). A simple computation
shows that the ramification map (2.10) factors through the Grassmannian, that is, the
following diagram commutes:

(2.11)

where the map [Ram] is given by [s A t] \-> {sdt — tds). (This is independent

of the choice of spanning vectors of the 2-plane.) Consider the Plucker embedding

G(2, WL) ^ P ( A 2 ^ L ) . Recall equation (2.3):

(2.12) A: f\WL • / /°(E, ATL2).

Projectivizing (2.12), we obtain a rational map:

(2.13) A : P / \ 2 W t —• P//°(E, ATL2),

which when restricted to the image of the Grassmannian under the Plucker embedding
(the projectivized simple bivectors) is just the map [Ram] in (2.11). Observe that since
A(v A w) = 0 implies that v A w = 0, the base locus of the map A does not intersect
the Plucker image of the Grassmannian. We next show that A restricted to the Plucker
image of the Grassmannian is a finite map onto its image. We let G(2, WL) denote
the Plucker image of the Grassmannian in P / \ WL.

LEMMA 2.1. Let L be a line bundle of degree d over a compact Riemann surface
E of genus g. Let Wi = / /°(E, L), and suppose that dim H^ > 2. Then the map A
restricted to G(2, Wi) is a finite map onto its image.

PROOF. Let /x : A -*• B be a linear map between two vector spaces and let Z denote
its kernel. Then A = Z © A/Z and hence, up to a choice of coordinates, fj, is just
the second factor projection in A. The corresponding rational map from PA to PB is
then nothing but the projection map in PA from the base locus PZ (up to a choice of
coordinates). Thus the rational map A in (2.13) can be considered a projection map
from the base locus. Since the Grassmannian does not intersect the base locus, we see
that the fibre of the projection map containing a point x in the complement of the base
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locus is just the span of x with the base locus. Thus, by definition of the projection
map, the base locus has codimension one in the fibre. Observe that the intersection
of this fibre with the Grassmannian cannot have positive dimension since otherwise it
will contain a projective line which will intersect the base locus. This implies that A
restricted to the Grassmannian is a finite map. •

The above lemma is in fact a special case of a more general result:

PROPOSITION 2.2. Let G denote the Grassmannian ofk-planes in Cm and let f :
G —> CP" be a nontrivial holomorphic map. Then f is a finite map onto its image.

PROOF. Consider the ample line bundle S£ on G which gives the Plucker embedding
of G into (P(/\*C). Observe that i f is a generator of Pic (G). Then/*(^(1) ) = S£N

for some integer N. Since / is non-constant, N ^ 0. Since <?(1) is ample, we can
pull back nontrivial sections to /*(£?(1)) and hence N is nonnegative. Therefore
N > 0 and ^£N is ample. Suppose / has a positive dimensional fibre, say F. Then
i f ^ IF is trivial, contradicting ampleness. Thus, / is finite. •

PROPOSITION 2.3. Let L be a line bundle of degree d over a compact Riemann
surface E of genus g. Let WL = / / ° (E , L), and suppose that dim WL > 3. Then the
map [Ram] : G(2, WL) -+ [Ram](G(2, WJ) C P / / o ( £ , KL2) is proper. Moreover,
the number of points in a general fibre is N for some positive integer N.

PROOF. We first show that [Ram] is nonconstant. Let s0, si and s2 be three linearly
independent sections in WL. Suppose that sodsi — sids0 = sods2 — s2ds0. This
implies that sodsi — s3 ds0 = 0 where s3 = s\ — s2, and hence [s0 A s3] £ G(2, WL),
that is, s0 A ST, — 0. In other words, s0, s} and s2 are not linearly independent, a
contradiction.

By Proposition 2.2, [Ram]*^(l) = S£N for some positive integer N. By [F,
Proposition 10.2] the general fibre has N points (counting multiplicity). •

REMARK 2.4. By upper semi-continuity, special fibres may contain more than N
points. However, if the image [Ram](G(2, WL)) is smooth, then [Ram] is flat and
hence every fibre has N points. Observe also that N depends on L.

REMARK. If E = S2, then dim WL = d + 1, dimPH°(KL2) = Id - 2 =
dimG(2, WL). Thus, [Ram] : G(2, WL) -> ¥H°(KL2) is a holomorphic map
between two complex manifolds of the same dimension and is hence a branched
covering map. It was shown in [L] that the degree of this map is precisely the degree
of G(2, WL) in P / \ WL under the Plucker embedding. Thus every fibre of [Ram] has
{2d — 2)\/[dl(d — 1)!] points, counting multiplicity.
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[10] Moduli space of superminimal surfaces 41

Recall that if deg L = d > 2g — 2, then dim WL = d — g + 1 and so the
requirement that dim WL > 3 implies that d > g + 2. Henceforth, we shall suppose
that d > max{2g — 1, g + 2}. Consider the diagram

G(2, WL) x G(2, WL)

[RamJx(Ram]

PH°CE,KL2) —^ P//°(E, KL2) x P//°(E, KL2),

where A is the diagonal inclusion. By the finiteness result of Proposition 2.3, we see
that the dimension of the fibre product is given by

dim(G(2, WL) X p N , ( U t ! ) G(2, WL)) = dim(G(2, WL)) = 2(d-g- 1).

Observe that the fibre product P V(2, WL) x VH^-L.KL^ P V(2, WL) is just the total space
of the (PGL(2, C) x PGL(2, C))-bundle over the fibre product G(2, WL) x P t f . ( j i K ! )

G(2, WL). Let

([s, t], [u, v]) e PV(2, WL) xPHo(^KL2) IP V(2, WL).

Since

[Ram]([5 A t]) = [Ram]([« A V]) € PH°C£, KL2),

there exists a unique A2 e C \ {0} such that

RamO, ?) = -A.2 Ram(«, w) = — Ram(±At/, ±kv),

thereby giving us a pair [s, t, ±AM, dtkv] € ^#L,<<- This gives us a 2:1 correspondence

^KLM \ n@L x « i . ) —•* P V(2, WL) XPH°(Z,KLI) PV(2, WL) given by

[5, /, ±A.M, ±kv] i—>• ([5, t], [u, v]).

This 2:1 correspondence is directly related to the 2:1 branched covering map \j/ in
(1.3), and the contact involution discussed in [L].

REMARK 2.5. Let G = (SL(2, C) x SL(2, C))/ ± 1, where 1 = (/, / ) .

1. G acts on jftLj and leaves the set P(<^. x SSL) invariant.
2. G acts freely on J(LJ \ P ( ^ L x ^ L ) . In fact

G(2,

given by

[SO, SUS2, S3] I > ([SO A S,], [i2 A 53])

is a principal G-bundle.

https://doi.org/10.1017/S1446788700036259 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700036259


42 Bonaventure Loo [11]

3. G —> PGL(2, C) x PGL(2, C) is a 2:1 covering map and thus so is

JtL,d \ n&L x #z.) —• PV(2, Wt) xPHo(r,^2) PV(2, WJ.

Thus,

(2.14) damyL,d = &mjeLM = 2(d - g - 1) + 6 = 2(d - g + 2)

since dim G = 6. Observe from (2.9) that P(@L x 3SL) is of codimension 1 in J(Lii.

3. The moduli space via bundles over the Jacobian variety

Let Jd denote the Jacobian variety of equivalence classes of degree d line bundles
over £ (also denoted Picd(£)). For each j e Jd, let Lj denote the line bundle
corresponding to j , and let W, = H°CE, Lj).

REMARK 3.1. When d > 2g - 2, dim W, = d - g + 1 for ally e Jd. Henceforth,
we shall assume that d > max{2g — I, g + 2).

Recall that there exists a line bundle, & —> ExJ^, called the Poincare line bundle,
with the property that ^ I E X ^ = Lj (see [ACGH] for example). Let7r : E x Jd -*• Jd

denote the second factor projection. Consider the direct image sheaf n,,^ —> Jd.
Observe that

Ji.&\j = H°(E x {j}, &\zx{J)) = H°(E, Lj) = Wj.

As a set, nt& = \JjeJd Wj. By Remark 3.1, since d > 2g — 2, each fibre is of
dimension d — g + 1. In fact, 7r* & has the structure of a complex vector bundle of
rank d — g +1 and it is called a Picard bundle. For simplicity, we let W = nt &. Given
a vector bundle £, we shall let &% denote the projective bundle of lines through the
origin of the fibres of £. We consider the following associated bundles and sub-bundles
over Jd :

1. Wk, the Whitney sum of it copies of W;
2. the proj ective bundle & Wk;
3. the rank d - g + 2 sub-bundle, ^ , of W2, with fibre isomorphic to 3§Li;
4. the projective bundle &(38 © 38), of rank 2d — 2g + 3 with fibre isomorphic to

5. the bundle A2 ^ (= \Jjej< A2 WJ a s a set);
6. the Grassmann bundle of 2-planes, ^ , with fibre isomorphic to G(2, Wj);
7. the projective Stiefel bundle, £?'?' (this is the principal PGL(2, C)-bundle over
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Now consider the Jacobian variety Jd+g-\- For7 e Jd+g-\, the corresponding line
bundle can be expressed as ^ = Ky2 ® Lj, where L; is a line bundle of degree
d, and K is the canonical line bundle over E. Let @>\ —> E x Jd+g-\ denote
the Poincare line bundle with the property that ^ihxu) = -&j = K1'2 ® Lj. Let
n : E x Jd+g-i -*• Jd+g-\ denote the second factor projection and consider the direct
image 7T»(^i ® £?\) —*• Jd+g-i- Observe that

Note that dim # ° ( E , /iT ® L p = (2rf + 2^ - 2) - g + 1 = Id + g - 1 for each
j e Jd. L e t / : Jd -> Jd+g-\ be defined by Lj i-̂ - AT1/2 (g) L ; . Let J ^ ->• 7rf denote
the complex vector bundle of rank 2J + g — 1 denned by / *(nif(^

>
i <g> ^ O ) . We have

a bundle map

(3.1)

where the top arrow is defined by {s, t) \-+ Ram(j, t). Note that the inverse image
under Ram of the zero section in J ^ is just the bundle SB -» Jd. Consider the diagonal
inclusion of J ^ into the Whitney sum J ^ © JT:

Next, from the bundle maps over Jd:

W2®W2 = W*

(3 .2) Ram e{-Ram)

where the maps on the base Jd are identity maps, consider the projectivized fibre
product

2 W2) c \

that is, the fibrewise projectivization of the fibre product W2 xx W2 C >^4 (over
Jd). Notice that the restriction of Md^ to the zero section in J ^ is just the bundle

x SB) -+ Jd. Recall that

^Lhd := {[^o. ^ I , 52, s3] e P(W/
4) I (s0, sus2, s3) has base-points}.
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REMARK 3.2. Branched superminimal immersions of E into 54 of area And are
parametrized by the quasi-projective variety

Observe that the projective Stiefel bundle over Jd is just the bundle with fi-
bre P(Wf \ SSLj). Projectivizing the bundle X fibrewise, we have an associated

(P2</+«-2)-bundle, &X X Jd. The maps (Ram) and [Ram] extend to bundle maps:

"1 1"' and *1 1"'
Jd • Jd Jd *• Jd •

Consider the diagonal inclusion of &X into the Whitney sum &X © &X:

3»X — ^

• 1
Jd *

Now, from the diagrams:

[Ram]©[Ram] and (Ram)®(Ram)

0»X —^ &X © &> X &>X —^ 0»X © & X ,

where the maps on the base Jd are identity maps, consider the fibre products <£ x &x

and &V x g,x PV. Since dim Jd = g we see that

= (2rf - 2g - 2) + g = Id - g - 2

and so dim &V y.^x &V = 2d-g-2 + 6 = 2d-g + 4. Thus,

(3.3) dimydx=dim^d.z=dim^>y x^jf 3»V = 2d-g + 4.

4. Path-connectedness

Let us first fix a line bundle L of degree d over E. We claim that yL,d is path-
connected.
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We first show that any point in yL d can be connected by a path to a point in the
path-connected space P(£SL x 3BL) \ *#£,</• Let [s0, su s2, s3] € yLj- Suppose that
(s0, s2) has a base-point, say p. Since {s0, *i, s2, s3) is base-point-free, then either
Sj (p) j£ 0 or si(p) 7̂  0- Without loss of generality, suppose that sx(p) ^L 0. Consider
a path C c ^ u defined by

C(0 := [so + ^i .s , ,^ ,^] .

Then p is not a base-point of (i0 + tsx, s2) for t ^ 0. Thus, we may assume that
(so, s2) is base-point-free. Consider a path y C c5 .̂,rf defined by

y(t) := [s0, (1 - t)s0 + tsit s2, (1 - 0*2 + '*>]

with y(l) = [50,5i,52,53] and y(0) = [50, s0, *2, ^1 e P ( ^ L x 38 L) \ ^ , i d .
We now show that P(38L x 3SL) \ ^ d is path-connected. Observe that any
point [aa0, ba0, ca2, da2] € P(38L x &L) \ ^L,d is path-connected to the point
[a0, a0, a2, a2] via a path in P(38L x ^ i . ) \ ^i.d- Let [i0, ^o. ̂ 2. *2] be another point
in P(@L x S8L) \ <€L4. For a given /? € E, let Wp = {s e WL | s(p) = 0}. Observe
that the map WL -> C given by 5 i->- s(p) is a linear map.

REMARK. If d > 2g, then the complete linear system PWL has no base-points and
thus Wp is a complex hyperplane in WL. Since it is a real codimension two subspace
of WL, it cannot disconnect WL. Henceforth, we shall assume that d > 2g.

Let A = {p e E | 52(p) = 0} and consider the finite union of complex hyperplanes
in WL: s>/ = Up6A Wp. Since £^ is of real codimension two, there is a path in
WL \ £/ which connects 50 and a0. Thus, there is a path in P(38L x ^ i . ) \ rfL d

which connects [s0, s0, s2, s2] to [aQ, a0, s2, s2]. Now let A' = {p e £ | croCp) = 0}
and let srf' = (J €A, Wp. By a similar argument, we can join 52 to a2 via a path in
WL \ ^ ' , and thus there is a path in P(&L x ^ t ) N ^ . , d which connects the points
[CT0, (Jo, s2, s2] and [CTO» <̂O> ^2, ^ J - This proves that the space P(38L x 3SL) \ ^, i r f is
path-connected.

THEOREM 4.1. Ford > max{2g, g + 2}, 5?dx is a path-connected quasi-projective
variety of dimension Id — g + 4.

PROOF. We have shown that ^ . j is path-connected for each line bundle L of
degree d > max{2g, g + 2}. Path-connectedness of 5fdX follows from the fact that Jd

is a connected Abelian variety. Quasi-projectiveness follows since projective bundles
over projective varieties are projective. The dimension comes from (3.3). •
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5. Compactifying

Recall that yiX := MiX \ % . s , where ^ . E := < ? ( ^ 2
 X j r ^ 2 ) c

Since ^ , E is compact, it is an obvious compactification of ydx- Unfortunately,
elements of ctfdX correspond to parametrized curves of degree strictly less than d.
Thus, from the geometric viewpoint, ^KdX is not a satisfactory compactification of
the moduli space, S^dx, of branched superminimal immersions of E into S4 with area
And. In this section, we shall consider the genus zero case, that is, when E = CP1.
(Hence, Jd has just one element—&(d).) We shall let yd = JT'dxi"-

Since we are considering spaces of maps, it is appropriate to study the corresponding
spaces of graphs. Recall that the graph of a map / : M -* N is the subset Fy =
{(* , / (*) ) | x e M] c M x N. In our case, M = CP1 and N = CP3. Let
7T, : CP1 x C P 3 - • CP1 and7T2 : CP1 x C P 3 - • CP3 denote the first and second factor
projection maps respectively. Let C be a curve in CP1 x C P 3 . Since //2(CP", 1) = 2,
we have a well-defined notion of homology degree for ^ ( C ) , i = 1, 2. We say that
C has bidegree (m, n) if deg(jri(C)) = m and deg(?r2(C)) = «• Thus, each element
5 € yd corresponds to a smooth curve Fs c CP1 x CP3 of bidegree (1, d). Let JVUd

denote the Hilbert scheme of rational curves of bidegree (1, d) in CP1 x CP3 and let
%,d C 3tf[,d denote the component of the Hilbert scheme containing the graphs of
degree d maps of CP1 to CP3. We have a map r : yd -+ &i,d defined by 5 M- T,.
The desired compactification is then given by the closure of T{S^d) in fyj. We shall
call the elements of the boundary 'limit graphs'. The question is: what do the limit
graphs look like? This is a rather difficult question. Nevertheless, we expect a limit
graph to be a curve, not necessarily irreducible, of bidegree (1, d).

Let zo- Z\ and xo,xl,x2,x3 denote the homogeneous variables for CP1 and CP3

respectively. Let 5" and 5" denote the space of homogeneous polynomials of de-
gree n in the variables zo,Z\, and the variables x0,xi,x2,X} respectively. Since
H°(CPl, 0{d)) = Sd

z, any parametrized rational curve of degree d in CP3 is of the
form s = [s0, S\, s2, s3] where s, e 5^ for i = 0, . . . , 3, and gcd(50, Ji, 52, s3) = 1.
(Elements in 5?d have the additional property that Ram(^0, *i) = — Ram(.y2, s3).) The
graph Fj c CP1 x CP3 is defined by 6 bihomogeneous equations:

(5.1) Fjj := s&j - SjXi = 0, where i <j, i = 0, 1, 2, j = 1, 2, 3.

Observe that the F, j's are elements of S^ 5], the tensor product of Sd and 5 '̂. From (5.1)
we see that in general Ts is not a complete intersection. This makes the study of the
boundary elements much more difficult. An obvious way of compactifying the space
of graphs is by dropping the gcd condition. (This corresponds to the inclusion of %
in our space.) One approach to understanding limit graphs is to consider 1-parameter
families. More precisely, consider a curve <p, in ^Zd such that (p0 = c e 1fd. Suppose
that cp, \ {c} C yd. Then cp, \ {c} parametrizes a flat family of curves in CP1 x CP3.
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Since flatness extends uniquely across a puncture, we obtain a unique limit graph
associated to the curve <p,. Let us first consider the following simple example.

EXAMPLE 5.1. Let <p, = Uo, Zo> Zo + tz\, Zo + tzi]. Note that <p, e yx for t ^ 0
and f)0 g f|. The equations for T^ are obtained by setting each of the following six
polynomials equal to zero:

Fo', := zo(*i - JC0), F0'2 : = zo(x2 -x0) -

(5.2) F 0 ' 3 : = zo(-^3 - x 0 ) - t z \ x 0 , F[2 : = zo(x2 - X i ) -

F 2 ' 3 : = (ZQ + t z x ) ( x 3 - x 2 ) .

Set S = C[x0,xi, x2, x3, zo, Zi]. For each constant t, let /, = (F;'.) C S denote the
ideal generated by the 6 bihomogeneous polynomials defined in (5.2). Then the graph
described by the system of equations obtained by setting the polynomials in (5.2)
equal to zero is just the variety V(I,) for / ^ 0. It is tempting to say that the limit as t
approaches 0 of VVi = V(/,) is the variety V(/o). However, if we simply set t = 0 in
the system of equations obtained from (5.2), we obtain

(5.3) V(/o) = C1P1 x {[1, 1, 1, 1]} U {[0, 1]} x CP3 C CP1 x CP3.

Observe that the {[0, 1]} x CP3 term above is of dimension three. Since this notion
of a limit of curves obtained via a limit of equations does not preserve dimension, it
is not satisfactory from the geometric viewpoint. We have to look for an alternative
approach for taking limits. We would like to complete the picture in (5.3) by 'filling
in' a curve in the second factor of the {[0, 1]} x CP3 term. To do this, we need to
enlarge the ideal /, via an algebraic process called saturation. We proceed as follows.
By setting each of the polynomials in (5.2) equal to zero we obtain the following
system of equations:

F0'A(Xi -x0) - Fo',.(*, - x 0 ) = tzixo(xi -x0), i = 2, 3;

F0'A(Xj -x{) - F , ' , ^ ! - x 0 ) = tz\Xi(xi -XQ), i = 2, 3;

F,',•(*,• - x0) - F0\;(Xi - x^ = tZiXi(xi - x0), i = 2, 3;

(5.4) F,'2(x3 - x0) - F0'3(x2 - xi) = tzi[xox2 - x{x3];

F,'I3(JC2 -xo) - F0 '2fo -Xi) = tzAxoX-i -Xix2]\

F2'3(x, -x0) - F0',(x3 -x2) - tZi(x3 -x2)(xi - x 0 ) ;

F2\3(xt - x^ - F,',0t3 - x2) = tz\Xj(x3 - x2), i = 2, 3.

Consider the polynomials on the right side of each equality of (5.4) with t = 1.
Let these polynomials: Z\XQ(X\ — x0), Zi*i(.xi — x0), Z\x2(xi — x0), Zix3(xi — x0),

-x2), Zix3(x3 -x2) and 2,(^3 -x2){xx -x0),
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together with the six generators of /, be the generators of an enlarged ideal, call it
J,. It follows from the system of equations (5.4) that J, = I, for t ^ 0, and thus we
have equality of the corresponding varieties V(J,) — V(I,) when t ^ 0. Note that
two bihomogeneous ideals define the same subscheme of CP1 x CP3 if and only if
they induce the same dehomogenizations. Let /,' = (F!,, Zi(xi — x0), Zi(x3 — x2)).
Observe that /,' and J, have the same dehomogenizations. From the z\ ^ 0 chart, we
see that the last two generators of /Q imply that x0 — xi and x2 = JC3, thus giving us a
line L, in CP3 spanned by [1, 1, 0, 0] and [0, 0, 1, 1]. We thus obtain the limit graph

V(Q = CP1 x {[1, 1, 1, 1]} U {[0, 1]} x L , C CP1 x CP3.

This is indeed a curve, albeit one with two irreducible components. The first compo-
nent is of bidegree (1,0), corresponding to a graph of a constant map z i-> [1 ,1 ,1 ,1] .
The second component is a curve of bidegree (0, 1), and is therefore not a graph of
any map to CP3; rather it is a 'bubble' when we interpret the limit as t approaches 0 of
the 1-parameter family of maps [s0, (1 — t)s0 + ts\, s2, (1 — 0^2 + ts3] as the second
factor projection map of the limit graph:

CP1 x {[1, 1, 1, 1]} U {[0, 1]} x L, 1—• CP3.

Observe that for each t the image of <p, : CP1 —> CP3 lies in the line Lj and thus it is
not at all surprising that the image of the limit map is L1.

Now let us consider what happens when we have a different curve emanating from
the same point <p0 e ^ .

EXAMPLE 5.2. Let \frt = [zo + tz\, zo, zo,Zo + tzi]. Then 1̂0 = <Po- Let ^2 denote
the line in CP3 spanned by [1,0, 0, 1] and [0, 1, 1, 0]. Observe that for each t the
image of \j/, : CP1 -*• CP3 lies in the line L2. The six bihomogeneous polynomials
corresponding to F ,̂, are:

G'0l := zo(*i -x0) + tzixu G'O2 := zo(x2 - x0)

(5.5) G'o3 := (zo + rZl)(jc3 - x 0 ) , G\2 := zo(x2 - * , ) ,

G'1,3 := Zo(x3 -x^ - tz\xu G'23 := zo(*3 - ^ 2 ) - tzi(x2 -Xi).

Proceeding as in Example 5.1, we obtain /,' = {G\,, Z\{x2 — X\), z\(x3 —x0)) and thus
the limit graph is

V(Q = CP1 x {[1, 1, 1, 1]} U {[0, 1]} x L2 c CP' x CP3.

Observe that this limit graph is distinct from that obtained in Example 5.1 thus
illustrating the fact that limits of graphs depend on the choice of a one-parameter
family.
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Examples 5.1 and 5.2 generalize as follows. Let 5 = [s0, S\, s2, s3] G Ma such that
gcdOo, su s2, s^ = D e S™, for some m > 0. Then st = Doh for some CT, G S^m,
i = 0, 1,2, 3. Setting

(5.6) Flj = OjXj — OjXi, w h e r e i,j e {0, 1, 2} and i < j ,

we have six bihomogeneous polynomials:

(5.7) Fu = D(OiXj - OjXi) = DF'U, w h e r e i,j G {0, 1, 2} a n d i < j .

The variety of the ideal generated by the polynomials in (5.6) is a graph of bidegree
(1, d — m) in CP1 x CP3 corresponding to the map given by o = [<r0, ox,o2, a3].
Suppose that px,..., pm are the roots of D. Then the variety of the ideal generated
by the polynomials in (5.7) is

m

To U \J([pi] x CP3) C CP1 x CP3.

In order to complete this picture, we consider a curve <p, in JKd such that <p0 = s etfj
and (p N {s} C 5^d- From the ideal /, = (FJ., F,'., F2'k, F^,), we perform some
algebra to obtain its saturation /,'. The limit graph, V(/Q), has at least 2 irreducible
components. The first component is FCT and the other components have total bidegree
(0, m). This process, however, is rather tedious—even in the simple case of a curve
of bidegree (1, 1) as seen in Examples 5.1 and 5.2.

REMARK. In [LV1], a simpler compactification problem was studied: the variety
parametrizing graphs of holomorphic maps from CP1 toCP1 x CP1. (The graph of
such a map is a complete intersection.) Here a global approach was taken: obtain
the compactification via an explicit sequence of blow-ups along smooth centres. The
bidegree (1,1) case is described in [LV1], and the bidegree (2,2) case in [LV2]. It is
hoped that an understanding of this simpler compactification problem will be of use
in the compactification problem for the moduli space of superminimal surfaces in S4.
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