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Causal features in turbulent channel flow
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The causal relevance of local flow conditions in open-channel turbulence is analysed
using ensembles of interventional experiments in which the effect of perturbing the flow
within a small cell is monitored at some future time. When this is done using the relative
amplification of the perturbation energy, causality depends on the flow conditions within
the cell before it is perturbed, and can be used as a probe of the flow dynamics. The key
scaling parameter is the ambient shear, which is also the dominant diagnostic variable for
wall-attached perturbations. Away from the wall, the relevant variables are the streamwise
and wall-normal velocities. Causally significant cells are associated with sweeps that carry
the perturbation towards the stronger shear near the wall, whereas irrelevant ones are
associated with ejections that carry it towards the weaker shear in the outer layers. Causally
significant and irrelevant cells are themselves organised into structures that share many
characteristics with classical sweeps and ejections, such as forming spanwise pairs whose
dimensions and geometry are similar to those of classical quadrants. At the wall, this is
consistent with causally significant configurations in which a high-speed streak overtakes
a low-speed one, and causally irrelevant ones in which the two streaks pull apart from each
other. It is argued that this is probably associated with streak meandering.

Key words: turbulent boundary layers, turbulence theory, computational methods

1. Introduction

Although turbulence is a high-dimensional chaotic system, it is often modelled as a
collection of compact and approximately autonomous coherent structures. These are
typically intermittent, emerging and vanishing with a lifetime and frequency that depend
on their nature and size, and are characterised both by evolving relatively independently
from their flow environment, and by having a measurable influence on the rest of the flow
(Jiménez 2018a). As such, it is important to clarify not only how they behave individually,
but how are they connected among themselves in space and in time.
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Such causal connections would help us to understand how turbulence works, both from
the fundamental point view and in practical applications connected with flow control and
prediction. For example, it is important to avoid introducing in the initial conditions of
numerical weather forecasting spurious perturbations that would later amplify significantly
(Rodwell & Wernli 2023), and identifying such highly influential events would help us to
improve prediction accuracy. Another example is flow control, which intrinsically tries to
modify the future of the flow by altering its present state. Understanding which structures
are causally important and which have no significant effect in the evolution of the flow
would clearly help in optimising this process.

Conversely, elucidating the connections between different flow regions, not necessarily
initially identified as coherent, may lead to the discovery of novel coherent structures that
describe turbulence better than the known ones, or to previously overlooked connections
between known structures that can be incorporated into better flow models (Jiménez
2020b; Jiménez 2023).

For example, quasi-streamwise rollers, streamwise-velocity streaks and wall-normal
velocity bursts are believed to be essential for maintaining wall-bounded turbulence. The
most common hypothesis is that there is a self-sustaining process (SSP) in which at least
two of these structures mutually induce each other (Jiménez & Moin 1991; Hamilton,
Kim & Waleffe 1995; Waleffe 1997), but the details are incomplete. For example, recent
evidence suggests that bursts are able to sustain a cycle by themselves (Jiménez 2018a),
while streaks are byproducts rather than actors in the SSP (Jiménez 2022). Even apparently
straightforward connections, such as the generation of the streaks by bursts (Kim, Kline
& Reynolds 1971), are only incompletely understood, because the two phenomena have
very different length scales (Jiménez 2018a). Establishing the causality relations between
these different structures would throw light on whether they are indeed connected, on the
sequence in which they are linked, and on whether some component is missing from the
model.

With the goal of minimising bias, our strategy is to exclusively characterise flow regions
in terms of their influence on the future of the flow, without necessarily relating them
to previously known coherent structures. Only once a particular flow template has been
identified as highly causal or as especially irrelevant will we try to classify it within
existing theories, or to recognise it as something new.

There are two general approaches to causality. The first is observational and
non-intrusive, and is often the only option when the system is hard to replicate (e.g.
astrophysics), difficult to experiment with (e.g. some social sciences), or simply too
large to simulate easily. Unfortunately, it is generally believed that observation is not
enough to unambiguously establish cause and effect, because correlation does not imply
causation (Granger 1969; Pearl 2009), but even in those cases, a careful consideration
of the temporal evolution of the system may lead to the identification of causal histories
when they cross neighbourhoods of particular interest, typically extreme events (Angrist,
Imbens & Rubin 1996). A related approach is the operator representation of turbulence
time series, examples of which are Froyland & Padberg (2009), Kaiser et al. (2014),
Schmid, García-Gutiérrez & Jiménez (2018), Brunton, Noack & Koumoutsakos (2020),
Fernex, Noack & Semaan (2021), Taira & Nair (2022), Jiménez (2023) and Souza
(2023), among others. Another example is the analysis of data series from wall-bounded
turbulence by Lozano-Durán, Bae & Encinar (2020) using tools of transfer entropy, or the
improved version in which their applicability to subgrid modelling and flow control was
demonstrated by Lozano-Durán & Arranz (2022).

The alternative is interventional causality, in which the system is modified directly and
the consequences observed. This offers more control over what is being analysed, and safer
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inferences (Pearl 2009), but presumes a sufficiently cheap way of modifying the system.
Essentially, in dynamical system notation, non-interventional methods provide information
about the behaviour of the system while it moves within its attractor, while interventional
ones give additional information about the system by observing what happens outside it.

Turbulence, which is expensive to simulate and hard to modify experimentally, was for a
long time considered to be in the group of phenomena that could be only observed, but the
increased speed of computers, as well as better experimental techniques, slowly eroded that
difficulty (Jiménez & Moin 1991; Jiménez & Pinelli 1999). More recently, fast graphics
processing units (GPUs) speeded up the numerical simulation of realistic turbulent flows
to the point of allowing the practical simulation of artificially modified flow ensembles
that can be considered interventional (Vela-Martín & Jiménez 2021). They have opened
the possibility of Monte Carlo studies in which the consequences of ‘randomly’ modified
flows are examined.

Examples of this approach are Jiménez (2018b, 2020b), who introduced localised
perturbations in two-dimensional turbulence in order to determine which parts of the flow
result in significant perturbation growth or decay after a certain time. This allowed the
identification of causally significant and irrelevant flow structures, including the relatively
unexpected relevance of vortex dipoles rather than individual vortices, and eventually led
to new models for the two-dimensional energy cascade (Jiménez 2021). Encinar & Jiménez
(2023) extended the technique to three-dimensional homogeneous isotropic turbulence,
and demonstrated that causal events are in that case characterised by either high kinetic
energy or high dissipation rate, depending on the spatial scale of the initial perturbation,
and that strong strain, rather than high vorticity, is the main prerequisite for perturbation
growth. In these two cases, it is interesting that some of the significant structures were
not the classically expected ones, underlining the ability of Monte Carlo interventional
experiments to mitigate the bias of conventional wisdom.

In this study, we adopt the interventional approach, following the basic methodology
in Jiménez (2018b). Spatially localised perturbations are imposed on a fully developed
turbulent channel flow, and their influence is measured by their ability to alter the future
evolution of the flow.

Numerical experiments that track the development of perturbation ensembles in wall
turbulence are not new, probably starting with the computation by Keefe, Moin & Kim
(1992) of the Lyapunov spectrum in a low-Reynolds-number channel. On a similar subject,
Nikitin (2008, 2018) investigated the Reynolds number scaling of the leading Lyapunov
exponent of a turbulent channel. Lyapunov analysis does not typically control the form
of the initial perturbation, leaving the system to choose the most unstable direction in
state space, and taking precautions to avoid nonlinearities, but Cherubini et al. (2010) and
Farano et al. (2017) turned the problem around by searching for weakly or fully nonlinear
perturbations that optimally grow in energy after a given target time. They worked on
an initially stationary flow with a turbulent profile, and when they constrain the initial
energy of the perturbation, they obtain optimals that are localised in physical space. More
recently, Ciola et al. (2023) extended the analysis to snapshots of real turbulence, finding
that for properly chosen target times, the optimal precursor is an early stage of an Orr burst.
However, due to the difficulty of convergence over long times, their results apply only to
short delays of the order of a few tens of viscous units. Moreover, the solution is optimal
only for the snapshot at which it is applied, making it difficult to generalise the result.

The choice of the size of the initial perturbations is important, and data assimilation
experiments have been conducted to estimate the minimum size below which perturbations
are enslaved to their environment. The first was probably by Yoshida, Yamaguchi &
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Kaneda (2005) in isotropic three-dimensional turbulence, who showed that randomised
scales smaller than 30 Kolmogorov viscous lengths (Kolmogorov 1941) are regenerated
if continuously assimilated to larger structures. Wang & Zaki (2022) conducted similar
experiments in channel turbulence. They replaced some layers with white noise, and
showed how they synchronised with the original flow when assimilated through their
boundaries. The maximum synchronisation thickness is approximately 30 viscous lengths
(approximately 12 Kolmogorov units) for layers attached to the wall, and twice the Taylor
microscale for layers away from it. However, since Encinar & Jiménez (2023) found
that freely evolving perturbations grow even below the assimilation limit, the result in
wall-bounded turbulence remains uncertain.

The present study targets the nonlinear evolution of localised perturbations applied
to instantaneous snapshots of turbulent channels at a moderate but non-trivial Reynolds
number, over times of the order of an eddy turnover. A Monte Carlo search is used to apply
the analysis across snapshots, and across as many combinations of perturbation location,
size and target time as is practicable. The basic assumption is that causality depends of the
local state of the neighbourhood at which the perturbation is applied, and the details of
this dependence are extracted from the database of numerical experiments using standard
methods of data analysis.

The organisation of the paper is as follows. The numerical set-up and the definition of
the initial perturbations are described in § 2. How their evolution can be used to determine
causality is discussed in §§ 3 and 4, and the relation between causal structures and the
surrounding flow field is discussed in § 5. Conclusions are offered in § 6.

2. Numerical set-up

To save computational resources, we analyse simulations of a pressure-driven turbulent
open channel flow in a doubly periodic domain, between a no-slip wall at y = 0 and an
impermeable free-slip wall at y = h. The streamwise, wall-normal and spanwise directions
are x, y and z, respectively, and the corresponding velocities are u, v and w, although
position and velocities are occasionally denoted by their components x = {xj, j = 1, 2, 3}.
The domain size is Lx × Ly × Lz = πh × h × πh, and the Reynolds number is Reτ =
uτ h/ν = 600.9. The ‘+’ superscript denotes wall units, normalised with the friction
velocity uτ and with the kinematic viscosity ν. Capital letters, as in U( y), denote
variables averaged over the simulation ensemble and over wall-parallel planes; lowercase
letters are fluctuations with respect to this average, and primes are root-mean-square
fluctuation intensities. Repeated indices, including squares, imply summations unless
noted otherwise. The simulation code is standard dealiased Fourier spectral along x
and z, as in Kim, Moin & Moser (1987), but uses seven-points-stencil compact finite
differences for the wall-normal derivatives, as in Hoyas & Jiménez (2006). Time marching
is semi-implicit third-order Runge–Kutta (Spalart, Moser & Rogers 1991), and the mass
flux is kept constant. The numerical y grid is stretched at the no-slip wall with a hyperbolic
tangent. See table 1 for other numerical parameters.

Figure 1(a) compares the resulting fluctuation profiles with existing data from
regular and open channels. It was shown by Lozano-Durán & Jiménez (2014a) that a
computational box with Lz/h = π reproduces well the statistics of regular channels, and
figure 1 shows that the same is true for open ones. In particular, figure 1(b) shows that
the spanwise kinetic energy spectrum fits well within the computational box. On the other
hand, the figure shows that open and full channels agree only below y/h ≈ 0.5, above
which the effect of ‘splatting’ at the top wall is particularly visible in the fluctuations of
the cross-flow velocities (Perot & Moin 1995). We will use only the range y+ � 300 for
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Causal features in turbulent channel flow

Ubh/ν Reτ Lx × Ly × Lz Nx × Ny × Nz �x+ �y+
min �y+

max �z+

11 180 600.9 πh × h × πh 128 × 192 × 256 14.7 0.46 6.51 7.4

Table 1. Computational parameters: Li is the domain size along the ith direction, h is the ‘half-channel’ height,
equivalent to the domain height in open channels, and Ub is the bulk velocity. The grid dimensions Ni and
effective resolutions �xi are expressed in terms of Fourier modes.
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(a) (b)

Figure 1. (a) Velocity fluctuation intensities. Symbols represent the open channel at Reτ = 601; dashed
lines represent the open channel at Reτ = 541 (Pirozzoli 2023); and solid lines represent the full channel at
Reτ = 547 (del Álamo & Jiménez 2003). Black indicates u′, red indicates v′, and blue indicates w′.
(b) Premultiplied spanwise spectrum of the turbulent kinetic energy, normalised with u2

τ . Contours are
logarithmically equispaced from kzEKK/u2

τ = 0.56–2.8. The heavier vertical line is the present computational
box. The thinner vertical line is λz = 2π/kz = h, and the horizontal line is y+ = 300. Filled contours are the
present simulation; lines are from del Álamo & Jiménez (2003).

the rest of the paper. It is also clear from the figure that the energy at long wavelengths
above y+ = 100 is higher than in del Álamo & Jiménez (2003). This is due to the short
computational box, which inhibits the instability of the streaks (Abe, Antonia & Toh 2018),
and results in two pairs of large streamwise streaks and rollers that dominate the flow.

The original code was ported to CUDA by Vela-Martín et al. (2021) for the efficient
simulation of high-Reynolds number channel turbulence on GPU clusters. It has been
adapted to a single GPU for the present experiments, but the original reference should be
consulted for full details.

2.1. The initial perturbations
As mentioned in the Introduction, the interventional identification of causality follows
(Jiménez 2018b, 2020b). The idea is to apply a spatially localised initial perturbation
to existing turbulence, after which the flow is allowed to develop freely (see figure 2).
The effect is measured after some time. Unlike the sensitivity analysis of the mean
velocity profile in Farano et al. (2017), each causality experiment is the response to a
particular perturbation on a particular location of a given flow snapshot, and the numerical
experiment has to be repeated many times for different snapshots and perturbations. The
goal is to create a database of responses from which to extract the characteristics that
make a particular flow location influential for the future behaviour of turbulence (i.e.
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t = 0 t = T

x

y

z

Mean flow

Figure 2. Schematic of the numerical experiment. Green represents the isosurface of the turbulent kinetic
energy for the reference flow at t = 0, |uref |+ = 4.5. Colour intensity encodes the distance from the wall.
Red represents the perturbation kinetic energy at some later time, |uref (T) − umod(T)|+ = 0.17, for a causally
significant perturbation. Blue represents the same for a causally irrelevant perturbation.

causally significant). To ensure independence, the 40 initial reference snapshots used for
our experiments are separated by at least 1.4 turnovers (defined as h/uτ ).

Perturbations modify the flow within a cubical cell of side lcell centred at xc. Although
there are countless choices for the form of the disturbance, and even if experience
shows that the manner in which the flow is disturbed influences the outcome of the
experiment (Jiménez 2020b; Encinar & Jiménez 2023), cost considerations limit us to
a single perturbation scheme. Specifically, the flow is modified by removing the velocity
fluctuations within the cell, overwriting the velocity field with its y-dependent cell average.
Defining the y-dependent cell average of a variable f as

f
c
( y) = l−2

cell

∫ xc+lcell/2

xc−lcell/2

∫ zc+lcell/2

zc−lcell/2
f (x, y, z) dx dz, (2.1)

the perturbed velocity umod is

umod =
{

uref
c when |xj − xcj| ≤ lcell/2,

uref otherwise,
(2.2)

where uref is the unperturbed flow, and an extra pressure step is applied after (2.2) to
restore continuity at the edges of the cell. The experiment is repeated as many times as
possible, applying it to different reference flow fields while changing the location and size
of the perturbation cell.

Table 2 summarises the parameters of the experimental cells. They are expressed in
terms of the distance from the wall to the bottom of the cell, ycell = yc − lcell/2, which was
found to collapse some results better than the cell centre, and are separated into two sets.
In the first set, involving the 40 reference snapshots, perturbations are applied to a 6 × 6
grid of cells evenly spaced in x and z, such that their centres are separated by πh/6 in each
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l+cell y+
cell (set 1) y+

cell (set 2) Symbol

25 0, 12.5, 37.6, 62.6, 87.6, 113, 138, 163, 188, 213, 238, 288 0, 138
50 0, 25.0, 50.0, 75.0, 100, 125, 150, 175, 200, 225, 275 NA
75 0, 12.6, 37.6, 62.6, 87.6, 113, 138, 163, 188, 213, 263 0, 38, 113, 188, 263
100 0, 25.0, 50.0, 75.0, 100, 125, 150, 175, 200, 250 NA
150 0, 25.0, 50.0, 75.0, 100, 125, 150, 175, 225 0, 75, 225

Table 2. Parameters of the perturbation cells. See text for details.

direction (approximately 315 wall units). In the y-direction, perturbations are applied at
the heights detailed in the second column of table 2, ranging from cells touching the wall
to those centred at the middle of the computational domain, y+

c ≈ 300. Each of them is
run for 0.65 turnovers, and consumes approximately 6 minutes in an Nvidia A100 GPU,
so that the approximately 76 000 experiments in this set took 318 GPU-days.

While these experiments test a wide range of sizes at sparsely spaced locations across
the flow, the ones in the last column of table 2 aim to build heat maps that explore possible
large-scale causality distributions not limited to a single cubical cell. Each reference
snapshot is divided into a 30 × 30 grid in the x–z plane, approximately spaced by 75 wall
units, and perturbations are centred at each point of that grid. For cells with l+cell ≥ 75,
this procedure uniformly samples the whole plane, but due to its cost, it was limited to 20
initial snapshots and five different heights, each of which ran for only 0.49 turnovers. The
resulting 180 000 tests took 565 GPU-days.

In both sets of experiments, the temporal evolution of the perturbation is measured by
the energy of the perturbation velocity integrated over the whole computational domain,

εu(t) = V−1
∫

|umod − uref |2 dV, (2.3)

which evolves from some initial εu(0) at the moment at which the perturbation is
applied, to εu(∞) = 2K ≡ 2V−1 ∫ |u|2 dV when the reference and perturbed flow fields
decorrelate after a sufficiently long time. For a chaotic system such as turbulence,
εu(∞) � εu(0), and even if the evolution of the perturbation is far from linear over times
of the order of a turnover, the perturbation energy typically grows almost exponentially
for a while before levelling at εu(∞). These considerations lead to two definitions of
causal significance: an absolute one that disregards the initial perturbation magnitude and
vanishes as t → ∞,

σu(t) = log10 εu(t)/εu(∞) = log10 εu(t)/2K, (2.4)

and a relative one,
σur(t) = log10 εu(t)/εu(0), (2.5)

which measures relative growth and vanishes at t = 0. Both definitions typically grow
with time, but we will be interested in cases in which the growth is particularly fast or
slow, as defined by the top and bottom φ percentile of the significance distribution. For
most of the paper, experiments within the top φ = 10 % of the significance distribution
will be defined as ‘causally significant’, and those in the bottom 10 %, as ‘causally
irrelevant’. This fraction is broadly compatible with the percolation analysis often used
to define thresholds. For example, the optimal percolation threshold in three-dimensional
wall-bounded turbulence fills volume fractions of the order of 5 %–10 % (Jiménez 2018a),
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Figure 3. Plane-averaged perturbation magnitude 〈εu〉( y, t), as defined in (3.1), unconditionally averaged over
all perturbations with l+cell = 75 introduced at a given height, normalized with its maximum at t = 0. The blue
line is the instantaneous position of the perturbation maximum. Contours are 〈εu〉( y, t)/ maxy〈εu〉( y, 0). Here,
(a) y+

c = 300, (b) ycell = 0.

while in two-dimensional vorticity fields, which are more directly comparable with the
present application to individual planes, the covered area is closer to 20 %–30 % (Jiménez
2020a). Tests using φ = 5 % or 15 % showed few differences in the present results.

3. Temporal evolution of the significance

To further study the growth of the perturbations, we use its y-dependent averaged intensity,

εu( y, t) = (LxLz)
−1

∫∫
|umod − uref |2 dx dz, (3.1)

equivalent to (2.3) but integrated over wall-parallel planes instead of over the whole
domain, together with corresponding definitions for the significances. To minimise
notational clutter, we use for them the same symbols as in (2.3)–(2.5), with the inclusion of
y as a parameter. Figure 3(a) shows the growth of εu( y), unconditionally averaged over all
the perturbations introduced at a particular size and distance from the wall and normalised
with its maximum at t = 0. The blue line is the position at which the perturbation is
maximum. It initially stays at the height at which the perturbation is introduced, but a
new peak grows near the wall and becomes dominant after tuτ /h ≈ 0.3. In figure 3(b),
where the perturbation is initially attached to the wall, the peak is always attached. During
the very early stage of evolution (tuτ /h � 0.05), a low-intensity perturbation spanning the
whole channel appears in both cases. This is most likely due to the pressure pulse that
enforces continuity at the edges of the perturbation cell, but it quickly dissipates and does
not seem to influence later development.

Figure 4 shows the attachment time tatt, defined for individual tests as the moment
when the perturbation maximum falls below y+ = 50, and later averaged over the
experimental ensemble. It is approximately proportional to ycell, at least for y+

cell � 50,
with a propagation velocity dycell/dt = 1.37uτ . This is faster than the observed vertical
advection velocity of coherent features in channels, dy/dt ≈ ±uτ (Lozano-Durán &
Jiménez 2014b), and suggests that the perturbation is not simply advected by the flow,
but actively amplified by it. In fact, the production term in the evolution equation for the
perturbation energy is proportional to the mean shear (see Appendix A), and the most
likely interpretation of figure 4 is that while all perturbations are advected to and from
the wall by the background turbulence, those approaching the wall, where the shear is
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Figure 4. Attachment time tatt as a function of ycell, for different lcell. The dashed line is a least-squares fit to
the curves with ycell > 0, with slope dy/dt = 1.37uτ . Times are computed for individual tests, and symbols
and bars are their averages and standard deviations. Symbols are as in table 2.
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Figure 5. Temporal development of the unconditionally averaged domain-integrated perturbation εu(t), as
defined in (2.3), for (a) l+cell = 50, (b) l+cell = 100. In both plots, the cell distance from the wall increases from
cold to warm colours, for the cases in table 2, and the diagonal dashed lines are the exponential Lyapunov
growth rates from Nikitin (2018).

most intense, grow faster than those moving away from it, resulting in a mean downwards
migration of the perturbation maximum. Notice, for example, the different slopes of
downwards and upwards contours in figure 3. It is also relevant that tatt scales better with
the distance from the wall to the bottom of the cell, ycell, than with its centre, yc (not
shown), because it is the bottom that predominantly feels the stronger shear near the wall.

Figures 5(a,b) show two examples of the temporal evolution of the domain-integrated
perturbation εu, using different cell sizes, and the line colour is the cell height. The figures
show that εu is higher for larger cells, which is to be expected since it is an integrated
quantity, and also for lower ycell, also expected for a perturbation that removes velocity
fluctuations, which are stronger near the wall. More interesting is that cells near the wall
grow faster than those away from it, which may be understood as supporting the model in
which their growth rate is controlled by the ambient shear.
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The dashed straight lines in figure 5 are the exponential growth rates from the Lyapunov
analysis by Nikitin (2018), who reports a Lyapunov time for εu (the inverse of the leading
exponent) of T+

L ≈ 19 (uτ TL/h = 0.032) in a turbulent channel at Reτ = 586. The leading
Lyapunov vector is concentrated in the buffer layer, and the exponent scales in wall units,
again consistent with a model in which the growth is controlled by the near-wall shear.

It is clear that our analysis shares many characteristics with the classical Lyapunov
analysis, albeit with important differences. The most obvious is that the classical Lyapunov
exponent assumes that the perturbation behaves linearly for an infinitely long time, while
figure 5 shows that our experiments saturate for times that, even if much longer than
TL, remain of interest for the flow evolution. A second important difference is that our
initial perturbations, which are intended to probe the local structure of the flow rather than
its mean properties, are compact with predetermined shapes, while those in Lyapunov
analysis are allowed to spread across the flow field to their optimal structure. It may be
relevant in this respect that there is an initial transient in which perturbations decay in
most of our tests, uτ t/h � 0.1, and that this period is shorter for cells near the wall. This is
reminiscent of the similar transient in Lyapunov calculations, during which perturbations
align themselves to the most unstable direction. Our limited range of initial conditions
is probably partly compensated by the substitution of the temporal averaging of classical
analysis by averaging over tests, and it is interesting that the short-time growth rates of the
smallest perturbations in figure 5(a), which mostly sample the buffer layer, approximately
agree with Nikitin (2018). Larger or higher perturbations, which sample weaker shears,
grow more slowly. We will provide in § 5.1 further support for the relevance of local shear
to perturbation growth.

Figure 6(a) shows a typical evolution of the absolute significance σu for perturbations
with a given lcell and ycell. Each of the grey lines is the result of a different experiment, and
the red and blue lines are the mean evolutions of samples that are respectively classified as
significant or irrelevant at t = 0. The bands are their standard deviations. The figure shows
that the perturbations approximately maintain the ordering of their initial intensity. Initially
stronger perturbations tend to remain strong for long times, although it follows from its
definition that σu vanishes on average as t → ∞. Figure 6(b) displays the persistence
of the causality classification based of σu, defined as the fraction of samples identified
as significant or irrelevant at t = 0 that remain significant or irrelevant when classified
at subsequent times. In the case illustrated in the figure, 34 % of the initially significant
samples, and 29 % of the initially irrelevant ones, remain at the end of our experiments in
the same class in which they were classified at t = 0. This fraction is at least 20 % in all
the experiments in this paper, which is substantially higher than the 10 % expected from a
random selection.

Figure 6(c) shows the evolution of the relative significance. Unlike the absolute
significance, σur vanishes at t = 0 but does not reach the same long-time limit in all cases.
In fact, σur(∞) = log10(2K) − log10 εu(0), and σur(∞) is essentially equivalent to the
initial perturbation magnitude.

These considerations show that both σu and σur characterise the evolution of the
perturbations at short and intermediate times. The former mostly reveals that the
perturbation intensity stays approximately proportional to its initial value for some time,
while the latter, which compensates for this effect, describes its intrinsic growth. When
εu → 2K at longer times, the system forgets its initial conditions, and neither measure of
significance is very useful.

Although figure 6(b) shows that the significance classification of a given experiment is
not a completely random variable, the fact that the persistence is not unity implies that the
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Figure 6. (a) Grey lines are the absolute significance σu (2.4) for individual experiments, as a function of
time; only 20 % of the total are included. The red and blue lines and their corresponding bands respectively
represent the mean evolution and standard deviation of the samples diagnosed as significant or irrelevant at
t = 0. (b) Fraction of experiments that continue to be classified as significant or irrelevant in terms of σu
at different times, after being so classified at t = 0. Red indicates significant; blue indicates irrelevant. The
black horizontal line is the probability threshold φ = 10 %. (c) As in (a), for the relative significance σur (2.5)
diagnosed at tuτ /h = 0.29. In all cases, l+cell = 50, y+

cell = 125.

time at which the classification is performed is important. Consider, for example, the mean
significance of the set {I} of tests classified at time tc as irrelevant, σI(tc) = N−1

{I}
∑

j∈{I} σj,
and define a similar σS(tc) average for significant perturbations. The difference σS − σI
typically increases initially and reaches a maximum before decaying at long times. The
time tsig at which this difference is maximum is also when the classification is less
ambiguous, and we will preferentially use it from now on to define our significance classes.

Figures 7(a,b) show how tsig changes as a function of lcell and ycell, using either σu

or σur as a causality measure. Disregarding the case l+cell = 25, which is well within the
dissipative range of scales and tends to behave differently from larger cells, tsig is explained
mainly by ycell, and it is clear that σur is a better indicator for this purpose than σu. We
will mostly use it from now on. It is interesting that tsig is very close to, and generally
slightly larger than, the attachment time tatt in figure 4, as shown by the difference of the
two values in figure 7(c), suggesting again that the arrival of the disturbances to the wall
is an important factor in determining causality.

We have seen above that the initial intensity of the perturbations has an effect on
their subsequent evolution. This is also true of our significance classification, and can
be quantified by the correlation of σur(tc) with εu(0) (not shown). This correlation tends
to −1 at long times, as explained above, but remains moderately positive for tc � tsig,
confirming that the initial relative growth rate for strong perturbations is faster than
for weak ones. In most cases, tsig approximately coincides with the moment at which
the correlation changes sign and is close to zero, making the classification relatively
independent of the initial perturbation intensity. At this moment, the energy of the
perturbation is still a small fraction of the total energy of the flow. Taking as an
example the topmost curve in figure 5(b) (l+cell = 100, ycell = 0), the average energy
of the initial perturbations is approximately 3 × 10−4 K, and grows to 0.6K at the end
of the experimental runs, but it is still 8 × 10−3 K at the optimal classification time
tsig ≈ 0.17h/uτ . This does not mean that the perturbation can be linearised up to that
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Figure 7. Optimal classification time tsig as a function of ycell. Symbols as in table 2. The dashed lines in (a,b)
are least-squares linear fits, whose slope is dy/dt = 2.12uτ in (a) and dy/dt = 1.28uτ in (b). (a) Using σu; (b)
using σur. (c) Offset between the σur classification time and the attachment time.

time. The intensity of the perturbation is always O(K), and the growth of its integrated
energy is mostly due to its geometric spreading (see figure 2).

4. Diagnostic properties for causal significance

Having described how the significance of an initial condition can be characterised,
we recover our original task of determining which properties of the perturbed cells
are responsible for their causality. The basic assumption is that the characterisation of
causality can be reduced to a single observable of the cell at the perturbation time,
t = 0, such as its average vorticity, rather than requiring several conditions to be satisfied
simultaneously, or even some property of the extended environment of the cell, or of its
history. As mentioned in the Introduction, the strategy is to perform many experiments
modifying individual cells, to label them according to their significance at some later time,
and to test which cell observables at t = 0 can be used to separate the classes thus labelled.
Hereafter, the one-point scalar 〈 f 〉c stands for the cell average of a property:

〈 f 〉c = l−3
cell

∫ ycell+lcell

ycell

∫ xc+lcell/2

xc−lcell/2

∫ zc+lcell/2

zc−lcell/2
f (x, y, z) dx dy dz. (4.1)

Following Jiménez (2020b) and Encinar & Jiménez (2023), the ranking of observables
uses a linear-kernel support vector machine (SVM) (Cristianini & Shawe-Taylor 2000),
implemented in the scikit-learn Python library (Pedregosa et al. 2011), which determines
an optimal separating hyperplane between two pre-labelled data classes. In our case, we
look for the optimal separation of significant or irrelevant experiments in terms of a single
quantity, and the SVM hyperplane reduces to a threshold. For each combination of lcell
and the ycell values in the second column of table 2, and for each classification time tc,
two-thirds of the initial conditions are collected into a training set, with the remaining
third reserved for testing. The 10 % most significant experiments of the training set are
labelled as significant, and the bottom 10 %, as irrelevant. The remaining 80 % are not
used for classification purposes. An optimum partition threshold is computed for each
of the observables detailed below, and an SVM classification score is assigned to each
observable using the test set. The score measures the fraction of data allocated to their
correct class by the SVM threshold, and ranges from unity for perfect separability to 0.5
for cases in which the two classes are fully mixed. The procedure is repeated three times
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〈ui〉c, 〈ωi〉c Mean velocities and vorticities
〈u2

i 〉c Kinetic energy
〈uv〉c, 〈(uv)2〉c Mean and mean-squared Reynolds product
〈u2

i 〉c, 〈ω2
i 〉c (no sum over i) Mean-squared components

〈Prod〉c = −〈uv ∂yU〉c Mean energy production
〈Tdif〉c = −〈∂yvu2

i 〉c/2 Mean energy transport
〈∂yu〉c Mean shear
〈∂yu〉fw Mean shear using only y+ > 5
〈∂iui〉c (no summation) Mass conservation

Table 3. Cell observables. All averages are taken over cells at t = 0.

εu, εω Mean-squared velocity and vorticity fluctuations
〈ω2

i 〉c, 〈sijsij〉c Enstrophy, strain
ui

′c, ωi
′c (no sum over i) In-cell standard deviations

〈Pεu〉c, 〈Cεu〉c, 〈Dεu〉c Production, transport and dissipation of εu (Appendix A)

Table 4. As in table 3, for observables describing perturbation and small-scale quantities.

after randomly separating the data into training and test sets, and the diagnostic score for
the observable is defined as the average of the three results.

The whole process can be automated and is reasonably fast. The experimental
description in § 2.1 shows that each SVM run is only requested to classify two sets of
96 points each, and to test the classification on two sets of 48 points. This allows us to
minimise pre-existing biases by testing many possible observables. The robustness of the
classification results was assessed by decreasing the number of samples by half.

The observables can be physically classified into average cell properties, such as kinetic
energy, and perturbation or small-scale properties, such as the kinetic energy of the
velocity fluctuations with respect to the cell mean. The former are summarised in table 3,
and the latter in table 4. In both cases, properties that are statistically symmetric with
respect to reflections on z are used as absolute values, and positive definite quantities, such
as mean squares, are used as logarithms. Otherwise, all observables are processed in the
same way.

The diagnostic score of an initial condition depends on the cell height, on its size, and
on the moment at which it is classified. Figure 8 shows a typical table of the three best
observables identified by the absolute significance σu, as functions of the classification
time. Cells are coloured by the classification score. In all cases, the best observable is the
initial perturbation amplitude εu, a related quantity such as εω, or the viscous dissipation
of the perturbation intensity 〈Dεu〉c. Although not included in the table, the next best
observable is usually also a small-scale quantity closely correlated with the intra-cell
velocity fluctuations, such as sijsij, ω2

i or the in-cell standard deviation v′c. The table in
figure 8 is thus equivalent to the fluctuation persistence in figures 6(a,b).

In the sense that this absolute persistence is due to the slow relaxation of the initial
amplitude, it can be considered physically uninteresting, but it can be largely compensated
by using the relative significance σur defined in (2.5). Figure 9 displays the two best
observables for different sizes at a fixed cell height, and figure 10 displays results for a
given size and different heights. In both cases, the best score starts being relatively high
at short classification times, decreases for intermediate ones, and increases again towards
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Figure 8. Classification score of the three best observables for a classification based on absolute significance
σu. Row indicates rank; column indicates evaluation time in turnovers. The highlighted column is tsig. Colour
indicates the classification score. Here, l+cell = 50, y+

cell = 125.
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Figure 9. Classification score of the two best observables for a classification based on relative significance σur:
(a) l+cell = 150, y+

cell = 150, (b) l+cell = 75, y+
cell = 138, (c) l+cell = 25, y+

cell = 138. Row indicates rank; column
indicates evaluation time in turnovers. The highlighted columns are tsig. Colour indicates classification score.
Here, y+

cell ≈ 150.

0.05

(a)

(b)

(c)

1

2

1

2

1

2

0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60
〈Pεu〉c 〈s2

ij〉c 〈s2
ij〉c 〈s2

ij〉c 〈s2
ij〉c εu 〈Dεu〉c 〈s2

ij〉c 〈v〉c 〈v〉c 〈v〉c 〈v〉c
εu 〈Dεu〉c εω εu εu 〈Dεu〉c 〈s2

ij〉c v ′c

ωy
′c

〈Pεu〉c 〈Pεu〉c 〈u〉c 〈u〉c

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60
〈Pεu〉c 〈Dεu〉c 〈s2

ij〉c v ′c 〈v〉c 〈u〉c 〈u〉c 〈u〉c 〈u〉c 〈u〉c 〈u〉c 〈u〉c
〈s2

ij〉c εu εω 〈v2〉c v ′c 〈v〉c 〈v〉c 〈v〉c 〈v〉c 〈v〉c 〈v〉c 〈v〉c

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60

εu 〈∂zw〉c 〈∂yu〉fw 〈∂yu〉fw 〈∂yu〉fw 〈∂yu〉fw 〈∂yu〉fw εu εu εu εu εu
〈Dεu〉c 〈∂yu〉fw 〈s2

ij〉c 〈∂zw〉c 〈∂xu〉c 〈∂xu〉c 〈∂yu〉c 〈Dεu〉c εω εω 〈Dεu〉c

0.5 0.6 0.7 0.8 0.9 1.0

Figure 10. Classification score of the two best observables for a classification based on relative significance
σur: (a) y+

cell = 275, (b) y+
cell = 125, (c) ycell = 0. Row indicates rank; column indicates evaluation time in h/uτ .

The highlighted columns are tsig. Colour indicates classification score. Here, l+cell = 50.

the end of the experimental run. The evolution of the optimum diagnostic variables with
the classification time can be divided into three phases.

During the initial phase, up to the time when the scores are lowest, the best observables
include sijsij, the magnitude of the initial disturbance, and the disturbance production and
dissipation, all of which are either highly correlated with the initial value of εu, or are
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terms in its evolution equation (A8). This part of the table is equivalent to the observation
in § 2.1 that initially stronger perturbations not only remain strong, but also grow faster
than weaker ones.

The second phase is the broad minimum of the score around tsig. While the scores in
this phase are not high, the best observables change from the small-scale perturbation
properties of the initial phase to properties of the cell that do not include fluctuations, such
as the cell average of some velocity component, or equivalently, the mean shear when the
cells are very close to the wall. It is interesting that the best measure of shear near the wall
is 〈∂yu〉fw, which excludes the viscous sublayer (see figure 10c). This is consistent with the
idea that the growth of the perturbation is due to the energy production by the local shear,
because the fluctuation production term in Appendix A is proportional to the shear, but
also to the Reynolds stresses ûiûj, which are inactive in the sublayer.

It is interesting that the longitudinal velocity derivatives 〈∂xu〉c and 〈∂zw〉c appear among
the most diagnostic cell properties for wall-attached perturbations in figure 10(c). These
derivatives are involved in mass conservation, and follow naturally from the meandering
of near-wall streaks, which has been associated with streak breakdown (Jiménez & Moin
1991; Hamilton et al. 1995; Waleffe 1997) and with the generation of Orr bursts (Orr 1907;
Jiménez 2013). Although not apparent from figure 10(c), it can be shown that significant
cells are associated with ∂xu < 0, ∂zw > 0, with the opposite association for irrelevant
ones.

Finally, at longer times of the order of t − tsig ≈ 0.25h/uτ , the score recovers, and the
most diagnostic observable reverts to the small-scale quantities that dominate short times.
Since we saw in § 2.1 that σur at long times is essentially equivalent to εu(0), this final
phase is a reflection of the behaviour at short times, and does not represent new physics.

Figure 11(a) shows the dependence on ycell of the time at which the accumulated score
of the top four observables reaches its minimum. After an initial transient that gets shorter
as the cell size increases, tmin grows with the distance from the wall, and approximately
tracks the optimum classification time tsig.

Figures 11(b–f ) summarise the evolution of the scores as functions of time. The blue
lines are averages of the scores of several fluctuation quantities, and the red lines are
averages of cell-scale properties. The figures are offset by their attachment time tatt,
which improves their collapse significantly, and reflect the decreasing influence of the
small-scale quantities as the perturbations approach the attachment time, as well as the
increasing importance of the cell-scale properties as the perturbations intensify. It should
be mentioned that offsetting t with the optimum classification time tsig, instead of with
tatt, also collapses most scores, as could be expected from the similarity of both times in
figure 7. It also collapses better the case ycell = 0, which is not included in figure 11, and
for which tatt, defined at the arbitrary distance y+ = 50, does a poor job. In spite of this,
tatt is used in figure 11 because it improves the case l+cell = 25, and underscores the already
mentioned connection between significance and the energy production from the near-wall
shear. It is also interesting that the score of the velocities has a secondary maximum at
t = 0, probably due to the known correlation of small-scale vorticity with the large-scale
streamwise-velocity streaks (Tanahashi et al. 2004).

From now on, we will mostly focus on results of the relative significance classified
at tsig, for which the optimum observables are collected in figure 12. As seen above,
they are mostly the average cell velocities, 〈u〉c or 〈v〉c. The exceptions are cells in the
buffer layer y+

cell � 50, in which shear can probably be taken as a proxy for the streamwise
velocity, and cells with l+cell = 25 very far from the wall. We have already mentioned that
these perturbations are probably too small to survive for the relatively long times required
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Figure 11. (a) The solid lines are the time tmin at which the sum of the scores of the four best observables is
lowest. The dashed lines are tsig from figure 7(b). Other symbols are as in table 2. (b–f ) Classification scores of
selected observables as functions of time, computed from σur. Crosses indicate small-scale quantities, defined
as the average of the scores of εu and 〈sijsij〉c. Triangles indicate cell-scale quantities, average of 〈u〉c and 〈v〉c.
Abscissae are offset by the attachment time tatt. Colour intensity increases with the distance from the wall,
from y+

cell = 12.5 to y+
cell = 275, with (b) l+cell = 25, (c) l+cell = 50, (d) l+cell = 75, (e) l+cell = 100, ( f ) l+cell = 150.

to reach the wall, in agreement with the assimilation results from Wang & Zaki (2022)
mentioned in the Introduction.

5. Conditional flow fields

While we have seen that the cell-averaged velocity fluctuations are diagnostic quantities for
causality, our analysis did not include their sign. Figures 13–15, which display averaged
velocity fields conditioned to the position of significant or irrelevant perturbation cells,
shows that the sign is important.

Figure 13 displays longitudinal (x–y) sections of the streamwise and wall-normal
velocities, conditioned to either significant (figures 13a,c,e) or irrelevant (figures 13b,d, f )
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Figure 13. Streamwise section at z = zc of the conditional velocity field of the reference flow at t = 0 around
the perturbation cell. The colour background is the conditional streamwise velocity. Arrows are velocity
fluctuation vectors parallel to the plane of the figure, and the light-coloured box is the perturbation cell. Here,
l+cell = 75, and (a,b) y+

cell = 113, (c,d) y+
cell = 62.6, (e, f ) ycell = 0. (a,c,e) Significants, (b,d, f ) irrelevants.

cells. It is evident that the former are biased towards fourth-quadrant regions (u > 0,
v < 0), while the latter are in second-quadrant regions (u < 0, v > 0) (Lu & Willmarth
1973).

The three rows in figure 13 corresponds to perturbations introduced at decreasing
distances from the wall. The frames are centred at the streamwise position of the
perturbation cell, and the figure shows a fluid wedge entering the frame from its
downstream right-hand edge, becoming more prominent as the cell approaches the wall.
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Figure 14. As in figure 13, for a wall-parallel section at y = yc.
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Figure 15. As in figures 13(a,b), for the (z–y) cross-flow section at x = xc. (a) Significants, (b) irrelevants, for
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cell = 113, l+cell = 75.
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At the same time, there is an upstream drift of the darker core of the velocity distribution.
This is clearest in the significant cases in figures 13(a,c,e), where the incoming wedge is
low-speed fluid, but it can also be traced in the irrelevant cases in figures 13(b,d, f ). The
result is that the position of the causally significant cells moves downstream towards an
interface at which high-speed fluid overtakes a low-speed one. Irrelevants are associated
to an interface in which low-speed fluid is left behind by higher speed ahead of it.

Figure 14 displays wall-parallel (x–z) sections of the same cases as figure 13, and
figure 15 shows cross-flow (z–y) sections of figures 13(a,b). There is no orientation
ambiguity in the longitudinal sections in figure 13, but figures 14 and 15 would be
statistically symmetric even if individual flow fields were not. To preserve possible
systematic asymmetries, the z coordinate of all the flow fields is reflected so that the
spanwise velocity averaged over a cube of side 3lcell, centred at the perturbation cell and
possibly truncated by the wall, is 〈w〉3c < 0. The orientation of the sections in figures 14
and 15 is therefore not physically meaningful, but the asymmetry of the different frames
is consistent and complements the information in figure 13.

Figure 14 shows that the velocity interfaces in figure 13 correspond to kinks in the
large-scale streaks that dominate the flow.

Although the frames in figures 13 and 14 represent unrelated experiments, it is tempting
to interpret them as a temporal evolution in which perturbations introduced farther from
the wall correspond to earlier times, and travel downstream and towards the wall until they
reach it at tatt (or tsig). The velocity maximum in figures 14(a,c,e) shifts by �x+ ≈ 200
from the top to the bottom row of frames. Assuming, from figure 4, that uτ tatt/h ≈ 0.2,
this corresponds to a velocity difference �u+ ≈ 1.5, which is a reasonable estimate for the
difference in the advection velocity of features in a high-velocity streak with respect to the
average flow velocity (Krogstad, Kaspersen & Rimestad 1998; Lozano-Durán & Jiménez
2014b).

Interestingly, the streamwise drift of the irrelevant velocity features in the right-hand
columns of figures 13 and 14 is less clear than in the significant ones in the left-hand
columns. The environment of the irrelevants can rather be described as an interface
that gets wider as the cell approaches the wall. The flow cross-sections in figure 15
support this description, and the combined evidence from the three sets of sections is
consistent with a model in which causally significant cells are associated with the front
of a high-speed sweep that steepens as it approaches the wall and overtakes a lower-speed
region. Conversely, irrelevant cells are located at the trailing end of a high-speed region
that leaves behind a lower-speed flow. We may recall at this point that the table in
figure 10(c) showed that the wall-parallel mass conservation derivatives are diagnostic
of causality near the wall, and that while ∂xu < 0 signals significance, ∂xu > 0 signals
irrelevance. This asymmetry suggests that the generation of structures strong enough to
have a global effect on the flow depends on mass conservation failures when streaks of
different velocity run into each other. This is most probably due to meandering, as in
figures 14(a,c,e), and the effect is strongest when this happens within the strong shear near
the wall. The trailing edges of the meander, as in figures 14(b,d, f ), or the tails at which
high-speed streaks pull away from low-speed ones, are passive.

The association of strong near-wall v structures with the downstream end of high-speed
streaks and with the upstream end of low-speed ones was already noted by Jiménez, del
Álamo & Flores (2004) and Jiménez & Kawahara (2013). Their interpretation was that v

creates the streaks, but the arguments above, together with the fact that causality can be
traced to flow locations far from the wall, suggest that the sequence of events is the other
way around, and that the formation of near-wall bursts depends on continuity failures of
non-uniform u streaks.
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Figure 16. Plane-averaged perturbation magnitude 〈εu〉( y, t), as defined in (3.1), conditionally averaged over
significant or irrelevant perturbations and normalised with the maximum of the conditioned initial value.
The bold cyan lines are the instantaneous position of the perturbation maximum. Filled contours and the
solid cyan line are significants; line contours and the dashed cyan line are irrelevants. Contour levels are
〈εu〉( y, t)/ maxy〈εu〉( y, 0). Classification is done at tsig using σur, and l+cell = 75, with (a) y+

cell = 113, (b)
y+

cell = 263.

5.1. The shear time
Figure 16 is similar to the evolution of the plane-averaged fluctuation magnitude in
figure 3, but is here separated into conditionally significant cases (filled contours) and
irrelevant ones (lines). In both cases, as well as in the unconditional evolution in figure 3,
the perturbation initially remains at the height at which it is introduced, before spreading
vertically. All perturbations eventually fill the channel, as expected for a chaotic system,
but the growth is faster in the significant cases. The bold cyan lines in figure 16 are
the wall-normal position of the perturbation maximum. It is clear that the solid lines
representing significants initially trend downwards and attach to the wall faster than the
dashed lines representing irrelevants, which initially trend away from the wall or drift
little. This supports the interpretation that significants are sweep-like, and the conjecture
in §§ 3 and 4 that causal significance depends on the amplification of perturbations by the
strong shear near the wall.

This is tested directly in figure 17. Figure 2 shows that perturbations spread with time
along the three directions, and that it is difficult to define an instantaneous location to
measure the shear that they encounter, but figures 3 and 16 suggest that it is possible to
define an effective shear by weighting the mean velocity profile, which depends only on y,
with the perturbation magnitude

Sε(t) =

∫
εu( y, t) ∂yU( y) dy∫

εu( y, t) dy
, (5.1)

and a dimensionless effective shear time

TS(t) =
∫

Sε dt. (5.2)

Figure 17(a) illustrates the development of the relative growth of causally significant
and irrelevant perturbations in terms of the global eddy turnover time. The significant
perturbations grow from the start, while the irrelevant ones initially decay and only later
grow to match the causal case. Most of the initial decay and of the slow growth of
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Figure 17. Relative perturbation growth σur(t) conditioned to significant (red) and irrelevant (blue) samples,
classified at tsig. Solid line indicates the mean; shading indicates the standard deviation; � indicates tsig. (a) In
eddy turnovers; (b) normalised by the local shear time, as in (5.2). The dashed part of the irrelevant line in (b)
corresponds to times for which not all experiments are available, because some of them end within the plot.
Here, l+cell = 75, y+

cell = 133.

irrelevants can be attributed to their failure to initially approach the wall. Figure 17(b)
plots the same data using the local shear time computed for individual experiments. The
two evolutions now approximately coincide, supporting the importance of the local shear,
and providing an explanation for the association of sweep-like flows with causality. The
effect of the negative wall-normal velocity is to bring perturbations close to the wall.
Ejection-like regions move perturbations away from the wall to layers where the shear is
low, and they become causally relevant only after they eventually diffuse into the near-wall
layer.

The collapse with the shear time applies only to significant and irrelevant perturbations
at the same distance from the wall. Perturbations introduced at different distances behave
differently, at least at the relatively low Reynolds number of our experiments for which
self-similar behaviours with respect to y are necessarily limited.

5.2. Geometry of causal events
While we have seen that significant and irrelevant cells are associated with sweep- and
ejection-like regions of the flow, it remains unclear whether the quadrants discussed in the
previous section are the same as the intense events traditionally associated with sweeps and
ejections in wall turbulence (Lu & Willmarth 1973). This is the purpose of the experiments
in the second column of table 2, which cover selected wall-parallel planes with a dense
grid of perturbation experiments.

Figure 18 displays the resulting quadrant plot, drawn for cell-average quantities. The line
contours are the unconditional joint probability density function of 〈u〉c and 〈v〉c, while the
coloured ones are conditioned to either significant cells in figure 18(a), or irrelevants in
figure 18(b). The hyperbolic lines in the figure are intensity limits for sweeps and ejections,
defined as

|〈u〉c(x) 〈v〉c(x)| ≥ H±〈u〉′c( y) 〈v〉′c( y). (5.3)

In the classical quadrant plot for point velocities, the threshold H depends only on y
(Lozano-Durán et al. 2012), and results in different volume fractions for sweeps and
for ejections (see the last row of table 5). To facilitate comparison with our choice of
a common area fraction for significant and irrelevant cells, figure 18 uses two different
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Figure 18. Joint probability density function of the cell-averaged velocities. Line contours are unconditional.
Filled ones are conditioned to (a) significant cells, (b) irrelevants. Both contain 60 % and 99 % of the data, and
y+

cell = 113, l+cell = 75. The solid hyperbolae are the H− threshold that isolates the 10 % most intense velocity
quadrants with 〈v〉c < 0, as in (5.3), and the dashed hyperbolae are H+ for 〈v〉c > 0.

y+
cell H− H+ S1 (%) S2 (%) S3 (%) S4 (%)

1 0.74 0.75 4.17 45.94 3.14 46.75
38 0.77 0.87 2.58 47.17 1.81 48.44
113 0.80 1.03 1.44 48.08 2.00 48.47
188 0.76 1.04 1.39 48.17 2.72 47.72
263 0.75 0.99 0.92 48.25 4.14 46.69
— 1.75 1.75 4.40 61.54 6.59 27.47

Table 5. Parameters of intense quadrant structures for cell-averaged velocities, compiled over wall-parallel
planes for l+cell = 75. The thresholds H− and H+ are as in figure 18, and the Sj are the fraction of the intense
area associated with each quadrant. The bottom row gives volume fractions for pointwise quadrant structures in
the Reτ = 935 channel of Lozano-Durán, Flores & Jiménez (2012), in which the combined intense quadrants
fill 9 % of the channel volume.

thresholds: H− for sweep-like structures with 〈v〉c < 0, and H+ for ejection-like ones with
〈v〉c > 0. They are adjusted so that the total areas for sweeps and for ejections are the
ones used for the significance analysis, φ = 10 %. They are given in table 2 for the five
experimental wall distances, and are lower than the H ≈ 1.75 used in Lozano-Durán et al.
(2012) and in other studies. Correspondingly, they select a larger area fraction, 20 % in
total, rather than the approximately 9 % volume fraction in Lozano-Durán et al. (2012).
However, table 5 shows that the distribution of quadrants in these intense regions is not
very different from the classical values, once the relative fractions of sweep- and ejection-
like structures are taken into account. As in the case of point velocities, most strong
structures are either pure sweeps, 〈u〉c > 0, 〈v〉c < 0, or pure ejections, 〈u〉c < 0, 〈v〉c > 0,
and there are comparatively few intense Q1 or Q3. The filled contours in figure 18(a) are
cell-averaged velocities of the significant cells, and those in figure 18(b) are irrelevant
ones. It is evident that significants tend to be in strong Q2 sweeps, while irrelevants are in
strong Q4 ejections.

This association is quantified in figure 19. The area fraction of the intersection between
two classes, A and B, is defined as Γ (A, B) = 2S(A ∩ B)/(S(A) + S(B)), where S denotes
the area covered by each class. Figure 19(a) shows the intersection of significant structures
with intense quadrants Qj. The dashed lines are area fractions of the intersection of random
Qj structures with the same area as the significance structures. Figure 19(b) repeats the
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Figure 19. Area fraction of the significance structures intersected by intense quadrants, for l+cell = 75. Red
indicates Q4; blue indicates Q2; black indicates Q1 ∪ Q3. Solid lines are conditioned to (a) significants, (b)
irrelevants. Dashed lines are unconditional.
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Figure 20. Heat maps of the relative significance σur at various evaluation times. Note that the grid shows
the position of the initial cells, whereas the colour indicates their relative significance evaluated at some future
time. Here, l+cell = 75, y+

cell = 113. Evaluation times (a) 0.01h/uτ , (b) 0.14h/uτ , (c) 0.28h/uτ ≈ tsig.

analysis for irrelevants. It is again clear that significants predominantly overlap Q4, and
irrelevants overlap Q2, with a maximum at y+ ≈ 100–150.

The question of whether significant cells are organised into structures similar to those
of intense quadrants is addressed in figure 20. Each heat map displays the same plane
away from the wall. Cells are shown at their position at t = 0, but labelled by their relative
significance evaluated some time after they are perturbed. The evaluation time increases
from left to right. The heat map in figure 20(a) is featureless, reflecting the difficulty
discussed in § 3 of predicting the future significance of a cell from its growth at short
times. The organisation increases in figure 20(b), and is best developed in figure 20(c),
where significance is evaluated at the optimum classification time tsig. The size and
organisation of the significance in figure 20(c) are very similar to those in the velocity
maps in figures 14(a,b), with structures of O(h) organised into longer streaky structures.

This suggests the possibility that irrelevants and significants are essentially the same as
sweeps and ejections. To test this hypothesis, both sets of cells are collected into individual
connected objects for which the product 〈u〉c〈v〉c, or σur, is above or below the threshold
required to isolate the φ% area fraction of their wall-parallel plane, as in Lozano-Durán
et al. (2012). It is known that the wall-attached sweeps and ejections of the pointwise
velocity form spanwise pairs (Lozano-Durán et al. 2012). A similar analysis is done here
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Figure 21. Joint probability density function of the relative position {δj} of structures in close pairs. Filled
contours are irrelevant–significant pairs, and lines are Q2–Q4. Contours contain 60 % and 99 % of the data, and
z-symmetry is enforced. Here, (a) y+

cell = 0, (b) y+
cell = 113, (c) y+

cell = 263. In all cases, l+cell = 75.

for the cell-averaged quadrants and for the significance structures. The centroid of all the
structures and their pairwise distance is computed first, and two structures, such as Ai and
Bj, are defined as a pair if Bj is the closest object to Ai, and Ai is the closest object to Bj.
It can be shown that the probability that significant and irrelevant structures are part of
a close pair is similar to that for Q2 and Q4, and much larger than for randomly located
objects.

Figure 21 presents joint probability density functions of the relative positions of the
nearest structures of similar kinds. Filled contours depict irrelevants around significants,
and lines indicate ejections around sweeps. Both use spanwise symmetry to enhance
statistical convergence, and it is clear that the pairs of the two types of structures have a
similar organisation. Figure 22 shows the average spanwise width of the pairs as a function
of wall distance and cell size. It is known from Lozano-Durán et al. (2012) that this width
scales with y for attached Q2–Q4 pairs far from the wall. Our Reynolds number is too
low for this self-similarity to hold, but figure 22 shows that, at least for the two smallest
cell sizes, the width of the significance pairs grows with the distance from the wall, and
approximately follows that of the quadrants. It is difficult to make an exact correspondence
between single planes and slabs of relatively large cells, and the green line in the figure is
probably a reflection of this difficulty. Its cell size, l+cell = 150, is of the same order as the
distance from the wall. Similarly, the apparently large discrepancy of the l+cell = 75 red line
with the quadrant pairs at ycell = 0 is put in perspective by figure 21(a), which represents
the same data.

Finally, figure 23 shows the relative positions of intense quadrants with respect to
significance structures. Figure 23(a) is centred on significants, and shows that the closest
sweep coincides with the significant structure, while the closest ejection avoids it.
Figure 23(b), which is centred on irrelevants, shows that the opposite is true for them.

In summary, the results in this section show that highly significant and irrelevant
structures respectively coincide with intense ejections and sweeps, at least statistically.
They are organised in a similar way, and they most probably refer to the same structures,
although it should be emphasised that this does not imply that all significance structures
are intense quadrants, or vice versa.

6. Discussion and conclusions

We have analysed the causal relevance of flow conditions in wall-bounded turbulence,
using ensembles of interventional experiments in which the effect of locally perturbing the
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Figure 22. Mean spanwise distance among nearest significance or quadrant structures. Lines with symbols
are significant–irrelevant pairs, with symbols denoting lcell, as in table 2. The dashed line is Q2–Q4.
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Figure 23. Joint probability density function of the relative position of closest structures of different types: (a)
quadrants around significants; (b) quadrants around irrelevants. Red indicates nearest Q4; blue indicates nearest
Q2. Contours contain 60 % of data. Here, y+

cell = 113, l+cell = 75.

flow in a small cell is monitored at some future time. We have shown that the evolution of
the kinetic energy of the perturbation velocity is mostly determined by its initial intensity,
but that when the effect is characterised by the relative amplification of the perturbation
energy, causality depends on the cell size, on the flow condition within the cell, and on
its distance from the wall. It is then possible to enquire which properties of the flow at
the time of the initial perturbation determine causality, and in this way, use the causality
experiments as probes of the flow dynamics, rather than simply as a reflection of the
dynamics of the perturbations (Jiménez 2020b; Encinar & Jiménez 2023).

We have shown that there is an optimum time at which causality can be measured most
effectively, because the influence of different cell conditions is most pronounced. This
time is proportional to the distance from the wall of the original intervention, and we have
related it to the mean shear that the perturbation experiences as it evolves. When time is
normalised with this shear, the evolution of perturbation applied to causally significant
and to causally irrelevant cells collapses reasonably well (figure 17).
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For perturbations away from the wall, the variables that predominantly determine
causality are the streamwise and wall-normal velocities within the cell, 〈u〉c and 〈v〉c, with
the latter becoming more influential farther from the wall. For wall-attached perturbations,
the dominant variable is the local cell-averaged wall shear. Positive 〈u〉c, negative 〈v〉c and
high wall shear are associated with high causality, and negative 〈u〉c, positive 〈v〉c and
low shear are associated with irrelevance. This, together with the shear scaling mentioned
above, suggests that wall-detached significant cells are predominantly associated with
sweeps that carry the perturbation towards the stronger shear near the wall, whereas
irrelevant ones are associated with ejections that carry it towards the weaker shear in the
outer layers. This is confirmed by the conditional flow fields in figures 13–15, and by the
quadrant analysis in figures 18 and 19.

We have also shown that causally significant and irrelevant cells are themselves
organised into structures that share many characteristics of classical sweeps and ejections.
For example, the latter are known to be organised in spanwise pairs, and we have shown
that the same is true of causally significant and irrelevant structures. The dimensions
of the two types of pairs are similar, and their relative positions are consistent with the
identification of sweeps with significants and of ejections with irrelevants (figure 23).

However, as already noted at the end of § 5.2, not all sweeps and ejections are causally
significant or irrelevant. Figures 13 and 14 show that as the perturbation experiments are
performed closer to the wall, significant cells move towards the downstream end of the
sweep, while irrelevant ones drift towards an interface between the ejection and a sweep
downstream and underneath it. At the wall, this is consistent with a causally significant
configuration in which a high-speed streak overtakes a low-speed one, and with a causally
irrelevant situation in which the two streaks pull apart. In fact, 〈∂zw〉c and 〈∂xu〉c are among
the leading indicators of causality for some wall-attached perturbations (figure 10).

This raises the question of how two structures that form a close pair can lead to different
outcomes. A similar question was raised by Lozano-Durán & Jiménez (2014b) when they
found that the vertical advection velocities of the sweep and ejection components of
attached pairs are −uτ and +uτ , respectively. During the lifetime of the pair, this leads to
relative vertical displacements of the order of the height of the pair, and to its dissolution.
The answer offered at the time was that this was the mechanism that limits the lifetime
of the pair, and a similar answer may apply here, since one of the results of this paper is
that causality can be traced only to the moment when significant perturbations reach the
wall. In fact, sweep–ejection pairs are known to be located at the interface between high-
and low-velocity streaks (Lozano-Durán et al. 2012), and it is easy to see that their effect
on the streamwise velocity would be to deform the streaks into meandering. Although the
statistical confirmation of this model is beyond the scope of the data used in the present
paper, figure 14 strongly suggests that the association of causality at the wall with the
streamwise variation of 〈u〉c refers to the leading and trailing edges of a streak meander.
The causal significance of the off-wall sweeps would then reduce to their role in modifying
the active downstream edge of the meander.

From an application perspective, the results of this study suggest new possibilities for
turbulence control. This is not the place to discuss in detail the implementation of control
strategies, but most current research centres on wall-attached sensors and actuators, while
some of the results above suggest that if the focus is on altering the overall state of the
flow, then it may be more efficient to act on motions detached from the wall and moving
towards it. This is not a completely new subject. It is known that numerically manipulating
the mean velocity profile in a channel appreciably modifies turbulence (Tuerke & Jiménez
2013), and it has been shown recently that a similar approach can fully relaminarise
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the metastable turbulence in a circular pipe (Kühnen et al. 2018). While the technical
challenges associated with manipulating the flow in the far field are clear, this approach is
intriguing because it is not currently receiving much attention, and one cannot avoid being
reminded of large-eddy breakup devices (LEBUs) (Alfredsson & Örlu 2018). These are
typically passive devices that perturb the flow in all circumstances, and often result in a
higher parasitic drag than what they save, but the above identification of locally causal and
irrelevant flow regions suggests that it might be possible to design ‘smart’ LEBUs that act
on the flow only ‘when useful’.

As for further work, several avenues should be explored, although most would require
substantially more data and processing than the ones used here. For example, statistical
confirmation of the continuity model outlined above should probably be done on
computational boxes larger than the present one, to avoid artefacts on the behaviour
of streaks. The same can be said about different Reynolds numbers. Similarly, the
characterisation of causality by the integrated perturbation energy over the whole domain
could probably be gainfully substituted by more specific measures, such as the energy of
a particular layer, near or far from the wall, or by more practical ones, such as the skin
friction. This would make the results more relevant to control, and probably illuminate
flow interactions that are relevant to its physical understanding (e.g. small near-wall scales
with large far-wall ones). Unfortunately, studies such as the present one involve large
amounts of data that cannot be fully stored for re-processing. Much of the analysis is done
‘on the fly’ while the experiments are being carried out, and applying a new processing
strategy involves a new set of simulations. On the other hand, prospective studies such as
the present one are crucial to the design of any such future extension.
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Appendix A. The perturbation evolution equation

Consider a generic quantity T with source S, advected by a velocity field ui,

∂tT = −uj ∂jT + S, (A1)

where repeated indices imply summation, and two independent experiments ‘a’ and ‘b’,
denoted by superscripts of the respective fields. Consider now the evolution equation for
the difference between the experiments. Define

ĝ = ga − gb, (A2)

ḡ = (ga + gb)/2, (A3)

for any g. Particularising (A1) for Ta and Tb, and subtracting one from the other, gives

∂tT̂ = −ua
j ∂jTa + ub

j ∂jTb + Ŝ, (A4)
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which, since

ûj ∂jT̄ + ūj ∂jT̂ = (ua
j − ub

j ) ∂j(Ta + Tb)/2(ua
j + ub

j ) ∂j(Ta − Tb)/2

= ua
j ∂jTa/2 − ub

j ∂jTb/2 + ua
j ∂jTb/2 − ub

j ∂jTa/2

+ ua
j ∂jTa/2 − ub

j ∂jTb/2 − ua
j ∂jTb/2 + ub

j ∂jTa/2

= ua
j ∂jTa − ub

j ∂jTb, (A5)

can be written as
∂tT̂ = −ûj ∂jT̄ − ūj ∂jT̂ + Ŝ. (A6)

Multiplying (A6) by T̂ , we obtain

∂tT̂2 = −2ûjT̂ ∂jT̄ − 2ūjT̂ ∂jT̂ + 2T̂Ŝ

= −2ûjT̂ ∂jT̄ − ūj ∂jT̂2 + 2T̂Ŝ. (A7)

The evolution of the velocity perturbation magnitude follows from substituting ui for
T in (A7). The source of the evolution equation for ui is Si = −∂ip + ν ∂2

j ui, so that

Ŝi = −∂ip̂ + ν ∂2
j ûi, and

∂tû2
i = −2ûiûj ∂jūi − ūj ∂jû2

i − 2ûi ∂ip̂ + 2νûi ∂
2
j ûi

= −2ûiûj ∂jūi − ūj ∂jû2
i − 2 ∂i(ûip̂) + 2ν ∂j(ûi ∂jûi) − 2ν(∂jûi)

2

= −2ûiûj ∂jūi − ∂j{ūjû2
i + 2ûip̂ δij − ν ∂jû2

i } − 2ν(∂jûi)
2

= Pεu + Cεu + Dεu, (A8)

where δij is Kronecker’s delta. The first and last terms in (A8) represent the production
and dissipation of the perturbation energy, respectively. Note that velocity gradient in the
production term is the average of two independent fields, and does not necessarily agree
with the usual ensemble-averaged gradient. The terms in curly brackets are fluxes that do
not contribute to εu when (A8) is integrated over the whole computational box. From left to
right, they represents convection, pressure-strain and viscous diffusion, respectively. It is
noteworthy that swapping a and b does not change (A8), in agreement with the symmetric
way in which they are defined. In fact, (A8) is similar to the evolution equation for the
structure function between the velocities at two neighbouring points, with the difference
that there are no interactions here between the fields a and b.
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