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Abstract

Using a p-adic analogue of the convolution method of Rankin–Selberg and Shimura,
we construct the two-variable p-adic L-function of a Hida family of Hilbert modular
eigenforms of parallel weight. It is shown that the conditions of Greenberg–Stevens
[R. Greenberg and G. Stevens, p-adic L-functions and p-adic periods of modular forms,
Invent. Math. 111 (1993), 407–447] are satisfied, from which we deduce special cases of
the Mazur–Tate–Teitelbaum conjecture in the Hilbert modular setting.

1. Introduction

1.1 This work grew out of an attempt to extend the result of Greenberg–Stevens on the
exceptional zero conjecture of Mazur–Tate–Teitelbaum to more general automorphic forms.
In the present paper, we establish special cases of the exceptional zero conjecture for Hilbert
modular forms. To state our result, we briefly recall the setting of Greenberg–Stevens.

Let E be a (modular) elliptic curve over Q, with p≥ 5 a prime. Assume that E has either
good ordinary or multiplicative reduction at p (in the following we refer to these two cases
as having ordinary reduction). In [MTT86], the p-adic Birch–Swinnerton-Dyer conjecture was
proposed, which relates the order of vanishing of the p-adic L-function of E, Lp(s, E), at s= 1,
to the Mordell–Weil rank of E. The p-adic L-function is constructed by p-adically interpolating
the twisted special L-value L(1, χ, E)/Ω(E), where χ is a finite-order character of Z×p and ΩE a
real period of E. One has the formula

Lp(1, E) =
(

1− 1
ap

)
L(1, E)
Ω(E)

with ap being the unit-root of the local L-factor at p. Now suppose that E is split-multiplicative
at p, so that one has Tate’s analytic parametrization:

E(Qp) = Q×p /q
Z
E , qE ∈Q×p .

Furthermore we have ap = 1, so we have Lp(1, E) = 0. Based on numerical data, Mazur–Tate–
Teitelbaum conjectured the relation
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d

ds
Lp(s, E)

∣∣∣∣
s=1

= Lp(E)
L(1, E)
Ω(E)

.

Here the L-invariant of E at p, Lp(E), is defined to be

Lp(E) =
logp qE
ordpqE

.

Here ordp is the valuation of Q∗p with ordpp= 1, while logp is Iwasawa’s p-adic logarithm,
normalized so that logp p= 0.

This conjecture was proved by Greenberg–Stevens [GS93, GS94]. In this proof, there are
two important ingredients. The first is Hida’s theory of ordinary deformations. The second
is the construction of the two-variable p-adic L-function associated to a Hida family. In the
construction of Greenberg–Stevens, they used the theory of Λ-adic modular symbols, generalizing
those described in [MTT86].

There is another construction, due to Hida [Hid93] and Panchishkin [Pan89, Pan91, Pan03],
which is based on the theory of Eisenstein series and the convolution method of Rankin–Shimura.
Here, one of the key ingredients is non-vanishing theorems on L-values. This is supplied by
Rohrlich [Roh89]. (However, we remark that we need a stronger non-vanishing result to show
that the p-adic L-function constructed is not identically zero.)

In this paper, we use the method of Rankin–Shimura to construct the two-variable p-adic
L-function, and prove a special case of the conjecture of Mazur–Tate–Teitelbaum in the Hilbert
modular setting, as follows.

Let F be a totally real field, with discriminant DF . Let p≥ 5 be a prime unramified in
F , i.e. not dividing 6DF . Let E/F be a elliptic curve over the totally real field F , such that
E has ordinary reduction (i.e. good ordinary or multiplicative) at all places p above p. Let
α(p, E) be, as before, the unit-root of the L-factor attached to E/F at the place p, and let
β(p, E) be the non-unit root. Thus, β(p, E) = α(p, E)−1Np if E has good reduction at p, and
zero otherwise.

Assume that E is modular, in the sense that there is a Hilbert newform fE of weight two
over F , with trivial character, such that the Galois representation attached to fE is isomorphic
to that on the p-adic Tate module of E/F . Let f be the p-stabilization of fE . Then we can define
the p-adic L-function of E/F , Lp(s, E/F ), to be the p-adic L-function attached to f . As in the
case where F = Q, there is a choice for the transcendental part of the L-value L(1, E/F ) in
defining Lp(s, E/F ). Call this factor Ω(E).

Assume that for some place p0 of F above p, E is split-multiplicative at the place p0. Denote
by fp0/p

the residue field degree of Fp0
over Qp, and by qE/Fp0

the Tate period associated to
E/Fp0

. Then our first main result is the following.

Theorem 1.1. We have

d

ds
Lp(s, E/F )

∣∣∣∣
s=1

= fp0/p

logp NFp0/Qp
qE/Fp0

ordpN Fp0/Qp
qE/Fp0

×
∏
p6=p0

(
1− 1

α(p, E)

)∏
p|p

(
1− β(p, E)

Np

)
L(1, E/F )

Ω(E)
.

More generally, let e be the number of places above p, over which E is split multiplicative.
One has the following conjecture of Greenberg and Hida [Gre94, Hid] on exceptional zeros of
higher order.
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Conjecture 1.2. We have

Lp(s, E/F ) = Lp(E/F )
∏
p|p

α(p,E)6=1

(
1− 1

α(p, E)

)

×
∏
p|p

(
1− β(p, E)

Np

)
L(1, E/F )

Ω(E)
(s− 1)e + higher-order terms,

where Lp(E/F ) is the L-invariant for E, defined as follows:

Lp(E/F ) =
∏
p|p

α(p,E)=1

Lp(E/F )

with

Lp(E/F ) = fp/p
logp N Fp/Qp

qE/Fp

ordpNFp/Qp
qE/Fp

for prime p where E becomes split multiplicative, with Tate period qE/Fp
∈ Fp.

We note that Theorem 1.1 is a consequence of this conjecture. Indeed, assume that
Conjecture 1.2 holds. Then for e≥ 2, both sides of Theorem 1.1 vanish (the right-hand side
vanishes since there is a prime p 6= p0 with α(p, E) = 1). For e= 1, it follows from the fact that
α(p, E) = 1 if and only if p is a prime of split-multiplicative reduction.

In the proof of Theorem 1.1, we follow the method of Greenberg–Stevens. Namely, by using
the functional equation for the two-variable p-adic L-function, we obtain a relation between the
first derivative with respect to the s variable at s= 1, and the first derivative with respect to
the weight variable at the weight two. The result of Wiles [Wil88] enables one to evaluate this
latter derivative, and hence obtain the right-hand side of Theorem 1.1.

However, the functional equation for the two-variable p-adic L-function does not seem to
yield enough relations between the higher derivatives with respect to the s variable and the
weight variable, so the method of Greenberg–Stevens is inadequate to establish Conjecture 1.2
in general. A suggestion by Mazur and Hida, is that one should utilize the full Hida family of
nearly ordinary deformations of dimension at least 1 + [F : Q] (cf. [Hid89]) to obtain enough
such relations. The author hopes to return to this question later.

In the second part of the paper, we investigate the case where F/Q is abelian, and E is
defined over Q. Since E/Q is modular, so is E/F by base change. We prove the factorization
formula relating the p-adic L-function of E/F to that of E/Q and its twists: let H = Gal(F/Q),
Ĥ its character group, then we have the following theorem.

Theorem 1.3. We have

Lp(s, E/F ) = 〈DF 〉s−1
Q

∏
φ∈Ĥ

Lp(s, E/Q⊗ φ),

here 〈·〉Q is the projection to the subgroup 1 + pZp of one-units in Z∗p.

From this formula, we deduce as a corollary that E/F satisfies the higher-order exceptional
zero conjecture.

The structure of this paper is as follows. In § 2, we recall the general theory of Hilbert modular
forms, setting the notation used throughout the paper. In § 3, we recall the construction of certain
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Hilbert modular Eisenstein series, which occurs in the theory of Rankin–Shimura. In § 4, we recall
Hida’s theory for Hilbert modular forms, following Hida [Hid93] and Wiles [Wil88]. In § 5 we
then give a construction of the so-called Eisenstein measure, following Panchishkin [Pan03] in
the case F = Q. Based on the Eisenstein measure, we give the construction of p-adic L-functions
in § 6. The one-variable case was constructed by Dabrowski [Dab94]. In § 7 it is shown, using the
method of Rankin–Shimura, that these p-adic L-functions do interpolate the classical L-values.
Furthermore, we show that they satisfy the properties listed by Greenberg–Stevens [GS93]. In
§ 8, we prove a special case of the Mazur–Tate–Teitelbaum conjecture in the Hilbert modular
setting, following [GS93]. We also investigate the case of higher-order exceptional zero for base-
changed forms in § 9. In the final section, we make further comments concerning the relationship
with recent developments.

General notation

As usual, Q, R and C denote the field of rational, real and complex numbers. For z ∈C, we
denote by <(z) and =(z) the real and imaginary parts of z. For a prime p, Qp is the field of
p-adic numbers, with the subring of p-adic integers Zp. We denote by | · |p the norm on Qp such
that |p|p = p−1. Fix an algebraic closure Qp of Qp, with | · |p extended uniquely to Qp .

We fix, once and for all, an embedding of Q into C, and an embedding Q into Qp .

For a commutative ring R with one, denote by R× the group of units. If R is an integral
domain, and P ⊂R a prime ideal, we denote by RP the localization of R at P . In the case where
P is the zero ideal, we denote it by QR, the field of fractions.

In this paper, F denotes a totally real field. We generally use German Gothic letters, e.g. c,
to denote fractional ideals of F . For p a prime number, we denote by c(p) the prime to p-part
of c, and by cp = (c(p))−1c the part divisible only by primes above p.

2. Generalities on Hilbert modular forms

2.1 We recall the rudiments of the theory of Hilbert modular forms, following Shimura [Shi78].
Let F be a totally real field and let r be its ring of integers, and d the different of F over Q. Let
d= [F : Q] be the degree of F over Q. For each prime ideal p of F , denote by Fp the completion
of F at p. We denote by AF the ring of adèles of F , with F diagonally embedded as the principal
adèles. Let AF,f be the ring of finite adèles, F∞ = F ⊗R be the archimedean component of AF ,
and let F+

∞ be the identity component of F×∞. An element ξ ∈ F is called totally positive, denoted
as ξ� 0, if the archimedean component of ξ lies in F+

∞. In general, if z ∈A×F , we denote by z∞
the archimedean component, and by zf the finite adèlic component. Here A×F is the group of
idèles. For s ∈A×F , we denote by sr the fractional ideal associated to s.

The adèlic norm is denoted as | · |AF
. Furthermore, for z∞ = (z∞,1, . . . , z∞,d) ∈ F∞, we use

the notation Tr(z∞) =
∑d

ν=1 z∞,ν , N (z∞) =
∏d
ν=1 z∞,ν .

To give the adèlic definition, let G be the algebraic group GL2 defined over Q. Denote by
G(AF ) the group of adèlic points. Under the usual diagonal embedding, we have the subgroup,
G(F ) of F -rational points of G. We also define G+(F ) as the condition

G+(F ) = {g ∈G(F ) | det(g)∞ ∈ F+
∞}.

Furthermore, by abuse of notation, if z ∈A×F , we again denote by z the element
(
z 0
0 z

)
∈G(F ).
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For a fractional ideal a of F , and p a prime ideal of F , let ap be the localization of a at p as
a submodule of Fp, and put â = a⊗Z Ẑ =

∏
p ap. Following Shimura, we define the congruence

subgroups Kn, K1,n of G(AF,f ), other than the standard subgroups, as

Kn =
{(

α β
γ δ

)
∈G(AF,f ), α, δ ∈ r̂, β ∈ ˆd−1, γ ∈ d̂n

}
, (2.1)

K1,n =
{(

α β
γ δ

)
∈Kn

∣∣∣∣ δ ≡ 1 mod n

}
. (2.2)

(Compare with [Shi78, (2.1b) and (2.1c)]. Our Kn is what was written as
∏

p W (n)p in Shimura’s
paper.)

Let D ∈A×F,f be a finite adèle such that Dr = d. Then from (2.1), it can be seen that(
D 0
0 1

)
Kn

(
D−1 0

0 1

)
is the standard Iwahori congruence subgroup of G(AF,f ) of level n.

The reason for conjugating the standard definition of the congruence subgroups by the
matrix

(
D 0
0 1

)
is not essential, but with this choice, the different would not appear explicitly

in the formula for Fourier expansions (compare (2.16) below and the Fourier expansion in Hida
[Hid93, pp. 276–277], who employed the standard Iwahori congruence subgroups in the definition
of adèlic modular forms).

Finally, at the archimedean place, we put K∞ =
∏d
i=1 SO(2).

Definition 2.1. Let k ∈ Z≥0 and let n be an integral ideal of r. By a Hilbert modular form of
parallel weight k, level n, we mean a function f :G(AF )→C, satisfying the following conditions:

(1) f satisfies the following transformation properties

f(sg) = f(g) for all g ∈G(AF ), s ∈ F+
∞G(F ), (2.3)

f(gr(θ)) = f(g)eik{θ}, (2.4)

where r(θ) = (r1(θ1), . . . , rd(θd)) ∈G(F∞), with

rν(θν) =
(

cos θν sin θν
−sinθν cos θν

)
; {θ}= θ1 + · · ·+ θd.

f(gk) = f(g) for all g ∈G(AF ), k ∈K1,n; (2.5)

(2) f restricted to G(F∞) is smooth, with Casimir eigenvalue (k − 2)2/2 + k − 2 for each
archimedean place of F , and is of moderate growth; the complex vector space of such
forms is denoted by Mk(n) (it is a fundamental result that this is finite dimensional).

It would also be convenient at times to have the classical ideal theoretic formulation. This
is slightly complicated by the non-triviality of the narrow ideal class group of F in the general
case:

ClF = F× \A×F /F
+
∞r̂×.

Let h be its cardinality, i.e. the strict ideal class number of F . Choose idèle representatives
t1, . . . , th. By weak approximation, we may choose the representatives such that (tλ)∞ = 1.

We obtain an h-tuple (f1, . . . , fh) of automorphic functions on the d-fold product of the
upper half plane Hd, as follows.
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For z = (z1, . . . , zd) ∈ Hd, let g∞ ∈G(F+
∞) be such that z = g∞(i), here i = (i, . . . , i). Then

according to [Shi78, (2.15c)],

fλ(z) =N (det(g∞))−k/2j(g∞, i)kf
((

t−1
λ 0
0 1

)
g∞

)
. (2.6)

Here j is the usual factor of automorphy: for g∞ = (g∞,1, . . . , g∞,d), with g∞,ν =
(
αν βν
γν δν

)
, and

z ∈ Hd,

j(g∞, z) =
∏

(γνzν + δν). (2.7)

Then fλ turns out to be holomorphic on Hd, and at the cusps, and satisfies the following
automorphic property: if we define

Γ0,λ(n) = G+(F ) ∩
(
t−1
λ 0
0 1

)
Kn

(
tλ 0
0 1

)
=
{
σ =

(
α β
γ δ

)
∈G+(F ) : α, δ, ∈ r, β ∈ (tλd)−1, γ ∈ tλdn, det σ ∈ r×

}
, (2.8)

Γ1,λ(n) = G+(F ) ∩
(
t−1
λ 0
0 1

)
K1,n

(
tλ 0
0 1

)
=
{
σ =

(
α β
γ δ

)
∈ Γ0,λ(n) : δ ≡ 1 mod n

}
, (2.9)

then for σ ∈ Γ1,λ(n) as above,

fλ|kσ = fλ (2.10)

with

(fλ|kσ)(z) :=N (det(σ))k/2j(σ, z)−kfλ(σ(z)). (2.11)

It is a standard result that the above two descriptions are equivalent.

2.2 Given a Hilbert modular form f , corresponding to a tuple (fλ)hλ=1, fλ is invariant under
translation by elements of (tλd)−1, by (2.10). Hence, there is a Fourier expansion: for z ∈ F∞,
let eF (z) = exp(2πiTr(z)), then

fλ = aλ(0) +
∑
µ∈tλ
µ�0

aλ(µ)eF (µz). (2.12)

If the constant terms are all zero in the expansion of each f |kα for each α ∈G+(F ), then f is
said to be a cusp form. In the adèlic settings, it can be formulated elegantly as∫

F\AF

f(ng) dn= 0 for all g ∈G(AF ). (2.13)

The subspace of Mk(n) consisting of cusp forms is denoted as Sk(n).
We define the normalized Fourier coefficients of f as follows: for a non-zero fractional ideal a

of OF , we can write in a unique way a = (µ)t−1
λ , where µ ∈ tλ is totally positive. Define

C(a, f) =

{
aλ(µ)N (tλ)−k/2 if a is integral,
0 otherwise.

(2.14)

C0(a, f) = aλ(0)N (tλ)−k/2. (2.15)

6
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Here C0(a, f) is the normalized constant term, which is zero for cusp forms. Note that it depends
only on the image of a in ClF. Then we have the adèlic Fourier expansion (at infinity): let
χF : AF /F →C× be the standard additive character for which χF (x∞) = eF (x∞), then

f
((

y x
0 1

))
= |y|k/2AF

∑
0�ξ∈F

C(ξyr, f)eF (ξiy∞)χF (ξx) + |y|k/2AF
C0(yr, f). (2.16)

Of course, (2.16) can also be used as the definition of the normalized Fourier coefficients.

2.3 We recall the definition of the diamond and Hecke operators. Following the convention of
Shimura, these operators will act on the right of modular forms.

For f ∈Mk(n), z ∈A×F , define

f |[z]k(g) = f(zg). (2.17)

Note that this action factors through the narrow ray class group of conductor n:

ClF(n) = F× \A×F /F
+
∞(r̂× ∩K1,n). (2.18)

If f is an eigenfunction for the diamond operators [·]k, then there exists a Hecke character of F
of finite order, whose conductor divides n, such that

f |[z]k(g) = ψ(z)f(g) (2.19)

in which case f is said to have character ψ. The space of Hilbert modular forms of weight k, level
n, character ψ, is denoted as Mk(n, ψ).

If q is a prime ideal of r, prime to n, then by choosing a local uniformizer πq at the place q,
we can define

f |[q]k = f |[πq]k (2.20)

(this does not depend on the choice of πq). We extend the definition to any integral ideal l, by
using multiplicativity if l is prime to n, and setting it equal to zero otherwise.

The action of the Hecke operators T (l) on forms of level n, can be defined on Fourier
coefficients, given by the formula

C(m, f |T (l)) =
∑

m+l⊂a

N (a)k−1C(a−2ml, f |[a]k). (2.21)

See also [Shi78, (2.10)] for their adèlic formulae (in terms of action of the double cosets of Kn).
These operators satisfy identities which can be written formally as∑

m

T (m)N (m)−s =
∏
p

[1− T (p)N (p)−s + [p]kN (p)k−1−2s]−1.

As usual, if p is a prime ideal, and p|n, then we write U(p) for T (p):

C(m, f |U(p)) = C(mp, f) (2.22)

with the following adèlic formula. Let πp be a uniformizer of Fp. Then

(f |U(p))(g) =N (p)k/2−1
∑

v∈rp/πprp

f
(
g

(
πp v
0 1

))
. (2.23)

In addition, we have operators V (l), satisfying

C(m, f |V (l)) = C(l−1m, f). (2.24)
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According to Shimura, this can be defined as follows: let s= diag[l, 1], with l ∈A×F,f , such that
lr = l. Then

f |V (l)(g) = |l|k/2AF
f(gs−1)

(cf. [Shi78, Proof of Proposition 2.3]).
Finally recall the adèlic Atkin–Lehner operator for Hilbert modular forms: let w be an element

with (w)∞ =
(

1 0
0 1

)
, while (w)f =

(
0 1
m 0

)
, for a finite idèle m such that mr = nd2.

Then for f ∈Mk(n), the form f |Jn ∈Mk(n) is defined by

f |Jn(g) = f(det(g)−1gw) (2.25)

here det(g) is regarded as an element in the centre of G(AF ) (cf. [Shi78, (2.46)], but note that
in [Shi78] the element w is denoted as τ). This does not depend on the choice of τ . If f has
character ψ, then

f |Jn(g) = ψ(det(g))−1f(gw), (2.26)

in which case f |Jn has central character ψ−1. In any case, we have

f |J2
n = (−1)dkf . (2.27)

This follows from a direct calculation: first, for any g ∈G(AF ),

f |J2
n (g) = f |Jn(det(g)−1gw).

Noting that det(det(g)−1gw) = (−1)fm det(g)−1, this becomes

f((−1)fm−1 det(g) det(g)−1gw2)
= f((−1)fg)
= f((−1)∞g)
= (−1)dkf(g)

with the last equality follows from (2.4).

2.4 The L-series of f is defined via the normalized Fourier coefficients. We consider the more
general context of twisted L-series as follows.

Let χ be a Hecke character of F of finite order, of conductor cχ. For a prime ideal p, we define

χ(p) =

{
χ(πp), πp ∈ F×p if p is prime to cχ,

0 otherwise.
(2.28)

By multiplicativity, this can be extended to all integral ideals of r. More generally, if c is an ideal
divisible by the set of prime divisors of cχ, we define χc by declaring that χc(p) = 0 if p is not
prime to c. We also denote by L(c)(s, χ) the L-series of χ, with the Euler factors at the places
dividing c removed:

L(c)(s, χ) =
∏

p+c=r

(1− χ(p)N (p)−s)−1. (2.29)

The L-function of f , twisted by χ, is

L(s, f , χ) =
∑
m

χ(m)C(m, f)N (m)−s.

This is the usual L-function of the form f ⊗ χ (see [Hid91]).
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Suppose that f ∈ Sk(n, ψ) is a cuspidal, normalized eigenform, i.e. f is an eigenvector for all
T (l), [l]k, and satisfies C(r, f) = 1. In this case, the eigenvalue for T (l) is C(l, f), and they are
algebraic integers. Then the L-series can be given by an Euler product:

L(s, f , χ) =
∏
p

[1− χ(p)C(p, f)N (p)−s + χ(p)2ψn(p)N (p)k−1−2s]−1.

It can be analytically continued to an entire function on the complex plane. We similarly define
L(c)(s, χ, f) by removing the Euler factors at the places that divide c.

We also recall that a normalized eigenform f ∈ Sk(n, ψ) is said to be a newform if there exists
no other eigenform g ∈ Sk(n1), with n1 strictly divides n, such that C(m, f) = C(m, g), for m

relatively prime to n. In this case n is called the conductor of f , cond(f).

2.5 Finally we need Shimura’s result on the rationality structure on the space of Hilbert
modular forms, which is a consequence of his theory of canonical models.

Shimura defined an action of Aut(C/Q) on the space of Hilbert modular forms. Given
f ∈Mk(n, ψ), there is a (unique) fσ ∈Mk(n, ψσ); the action can be described on the Fourier
coefficients:

C(m, fσ) = C(m, f)σ,
C0(m, fσ) = C0(m, f)σ.

(2.30)

The following result follows easily from the existence of this action.

Proposition 2.2 [Shi78]. Let f be a Hilbert modular form of weight k ≥ 1, and let Q(f) be the
field generated by the Fourier coefficients C(m, f), then C0(m, f) ∈Q(f).

Proof. For any σ ∈Aut(C/Q(f)), C(m, fσ − f) = C(m, f)σ − C(m, f) = 0. Thus, the non-
constant Fourier coefficients of the form fσ − f are all zero. Since it is of weight k ≥ 1, it is
in fact zero, i.e. C0(m, f)σ = C0(m, f), for any σ ∈Aut(C/Q(f)). 2

To state Shimura’s result on the rationality structure of Hilbert modular forms, define, for a
subring A of C, the A-module

Mk(n, ψ, A) = {f ∈Mk(n, ψ), C(m, f), C0(m, f) ∈A}. (2.31)

This is the A-submodule of Hilbert modular forms, with (normalized) Fourier coefficients rational
over A.

Then the rationality theorem of Shimura states

Mk(n, ψ) =Mk(n, ψ, A)⊗A C. (2.32)

Hence, we can define, for any ring A in general,

Mk(n, ψ, A) =Mk(n, ψ, Z)⊗Z A. (2.33)

What we have in mind would be the particular case where A is a subring of Cp.

3. Hilbert modular Eisenstein series

3.1 Definition
In this section, we define certain Hilbert modular forms, constructed from Eisenstein
series. These play an important role in what follows. We follow the normalizations of
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Shimura [Shi78, § 3] (see also Hida [Hid93, ch. 9] for adèlic Hilbert modular Eisenstein series,
but we note that Hida’s normalizations are different from ours).

Let P ⊂B ⊂G be the subgroups, defined as follows: for any Q-algebra R,

B(R) =
{(

α β
0 δ

)∣∣∣∣α, δ ∈R×, β ∈R}
P (R) =

{(
α β
0 1

)∣∣∣∣α ∈R×, β ∈R}.
Here B is the standard Borel subgroup, while P is called the mirabolic subgroup. We have the
Iwasawa decomposition:

G(AF,f ) =B(AF,f )Kr,

G(F∞) =B(F∞)K∞.

We define certain functions on G(AF ). First, given g ∈G(AF ), write g = bk, with b ∈B(AF ),
k ∈K∞Kr, define

η(g) = ∆(b), (3.1)

where

∆
((

α β
0 δ

))
= |α/δ|AF

,

the modular character of B(AF ). Note that

η(g) = η(g∞)η(gf ) = |N (=(g∞(i)))|η(gf ). (3.2)

From the definition, it is clear that η is left-invariant by A×FP (F ).
Next, let ϕ=

∏
ν ϕν be a Hecke character of F of finite order, written as a product of local

characters ϕν , with ν running over all places of F . Let cϕ be its conductor. For an integral ideal c

divisible only by the primes dividing cϕ, define the following functions on G(AF ):

ϕ#
c

((
α β
γ δ

))
=


∏
ν|c

ϕν(δν) if
(
α β

γ δ

)
∈ P (AF )KcG

+(F∞),

0 otherwise.

(3.3)

We omit the subscript c if we take c to be cϕ. By its definition, ϕ#
c is left-invariant under P (AF ).

Definition 3.1. With notation as above, suppose that k is a positive integer such that
ϕ|F∞(·) = sgn(N (·)k). Let s ∈C. Define the Eisenstein series K∗k(s, ϕ, c):

K∗k(s, ϕ, c)(g) = |det(g)|k/2AF

∑
γ∈P (F )r×\G(F )

(ϕ−1
c )#(γg)η(γg)sj(γg∞, i)−k. (3.4)

(The condition ϕ|F∞(·) = sgn(N (·)k) is needed to ensure that (ϕ−1
c )#(g)j(g∞, i)−k is left-

invariant under r×.)

More generally, let ζ1, ζ2 be finite-order Hecke characters of F , such that ζ1ζ2|F∞(·) =
sgn(N (·)k) for a positive integer k. Choose finite idèles cζ1 , cζ2 ,D such that cζ1r = cζ1 , cζ2r
= cζ2 ,Dr = d,. Set m= cζ1cζ2D2, and let wcζ1cζ2 to be the matrix such that (wcζ1cζ2 )∞ =

(
1 0
0 1

)
,

while (wcζ1cζ2 )f =
(

0 1
m 0

)
(exactly the same matrix used to define the Atkin–Lehner operator).
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Definition 3.2. With the same notation, for s ∈C, define the Eisenstein series E∗k(s, ζ1, ζ2) as

E∗k(s, ζ1, ζ2)(g) = |det(g)|k/2AF
ζ1(det g)ζ1(D−1)ζ−1

2 (cζ2)

×
∑

γ∈P (F )r×\G(F )

(ζ−1
1 )#(γgτcζ1cζ2D

−1)ζ#
2 (γgcζ2)η(γg)sj(γg∞, i)−k. (3.5)

It can be shown that this does not depend on the choices we have made.

The Eisenstein series in Definitions 3.1 and 3.2 are obtained from linear combinations of the
‘partial Eisenstein series’ of [Shi78] (see (3.5) there). Hence, from [Shi78, § 3], the Eisenstein series
K∗k(s, ϕ, c), E∗k(s, ζ1, ζ2) converge in the region <(2s+ k)> 2, and in this range, define ‘non-
holomorphic’ Hilbert modular forms of weight k, in the sense that they satisfy only condition (1)
of Definition 2.1. Furthermore, these series can be analytically continued, as a function of the
variable s, to entire functions. Here K∗k(s, ϕ, c) is of level c, while Ek(s, ζ1, ζ2) is of level cζ1cζ2 .

From (3.5), which defines E∗k(s, ζ1, ζ2), and the condition ζ1ζ2|F∞(·) = sgn(N (·)k), we see
that, for z ∈AF , the value

ζ−1
1 (z)ζ−1

2 (z)E∗k(s, ζ1, ζ2)(zg) (3.6)
depends only on the class of z in the usual ideal class group:

ClF = F× \A×F /F∞r̂×.

It follows that ∑
z∈ClF

ζ−1
1 (z)ζ−1

2 (z)E∗k(s, ζ1, ζ2)(zg) (3.7)

is a form with character ζ1ζ2.

Definition 3.3. Define Kk(s, ϕ, c), Ek(s, ζ1, ζ2), by

Kk(s, ϕ, c) = L(c)(k + 2s, ϕ−1)K∗k(s, ϕ, c). (3.8)

Ek(s, ζ1, ζ2)(g) = L(cζ1 cζ2 )(k + 2s, ζ−1
1 ζ2)

∑
z∈ClF

ζ−1
1 (z)ζ−1

2 (z)E∗k(zg, s, ζ1, ζ2). (3.9)

Recall that we have defined the Atkin–Lehner operator in (2.24). We put

Gk(s, ϕ, c) :=Kk(s, ϕ, c)|Jc. (3.10)

For Ek(s, ζ1, ζ2), it enjoys the following symmetry.

Proposition 3.4. With notation as in Definition 3.2:

Ek(s, ζ1, ζ2)|Jcζ1 cζ2
= ζ1((−1)∞)N (cζ2c

−1
ζ1

)k/2N (cζ1c
−1
ζ2

)sEk(s, ζ−1
2 , ζ−1

1 ). (3.11)

Proof. The key is another expression for E∗k(s, ζ1, ζ2):

E∗k(s, ζ1, ζ2)(g) = |det(g)|k/2AF
ζ1(det g)ζ1(D−1)ζ−1

2 (cζ2)

×
∑

γ∈P (F )r×\G(F )

[(ζ−1
1 )#(γgwcζ1cζ2D

−1)ζ#
2 (γgcζ2)

× |N (=(γg∞(i)))|s|det(γgcζ)f |sAF
j(γg∞, i)−k]. (3.12)

Indeed, inside the summation sign of (3.5), for ζ#
2 (γgcζ2) to be non-zero, we must have

γgcζ2 ∈ P (AF )Kcζ2
G+(F∞). In this case, we have, from (3.1)–(3.2),

η(γg) = η(γgcζ2) = |N (=(γg∞(i)))||det(γgcζ2)f |AF
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(note that ∆(p) = |det(p)|AF
for p ∈ P (AF,f )). Thus (3.12) follows. One also obtains a

corresponding expression for Ek(s, ζ−1
2 , ζ−1

1 ). Using this, and the definition of Atkin–Lehner
operator (2.26), the proposition follows from elementary calculation. 2

3.2 In this section, we are interested in the Eisenstein series obtained by putting s= 0. We
denote the resulting series as Kk(ϕ, c), Gk(ϕ, c), Ek(ζ1, ζ2).

Definition 3.5. Let ϕ be a Hecke character of F of finite order, with conductor cϕ. Define the
Gauss sum of ϕ, τ(ϕ), to be

τ(ϕ) =
∑

x∈c−1
ϕ d−1/d−1

sgn(ϕ(x∞))ϕ(xcϕd)eF (x). (3.13)

We state one of the main result concerning these Eisenstein series.

Proposition 3.6. We normalize the Eisenstein series as follows:

Gk(ϕ, c) =
N (c)k/2Dk−1/2

F Γ(k)d

(−2πi)kd
Gk(ϕ, c)

Ek(ζ1, ζ2) =
ζ2((−1)∞)Dk−1/2

F Γ(k)dτ(ζ2)
N (cζ)(−2πi)kd

Ek(ζ1, ζ2)

(here Γ is Euler’s Gamma function).

In the case F = Q, k = 2, assume c, respectively ζ2, is not trivial. With this understood, we
have, for k ≥ 2,

Gk(ϕ, c) ∈Mk(c, ϕ,Q)
Ek(ζ1, ζ2) ∈Mk(cζ1cζ2 , ζ1ζ2,Q)

(in particular, these forms are holomorphic. In the exceptional cases mentioned, these fail to be
holomorphic). Furthermore, we have the following formula for the Fourier coefficients:

C(ξyr,Gk(ϕ, c)) =
∑
ξ=ed

e∈y−1r,d∈r
d mod r×

N (eyr)k−1ϕ(dr) (ξ� 0, y ∈A×F )

C0(m,Gk(ϕ, c)) =

{
2−dL(c)(0, ϕ) if k = 1,
0 otherwise.

(3.14)

C(m,Ek(ζ1, ζ2)) =
∑
ab=m
a,b⊂r

ζ1(a)ζ2(b)N (b)k−1

C0(m,Ek(ζ1, ζ2)) =

{
2−dL(cζ2 )(1− k, ζ2) if ζ1 is trivial,

0 otherwise.

(3.15)

(Note that, by (3.14), we have Gk(ϕ, c) = Gk(ϕ, c′), if c and c′ are divisible by the same set of
primes.)
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Proof. This is [Shi78, Proposition 3.4]. In the proof of that result, Shimura explicitly constructed
the modular forms whose Fourier expansions are of the form (3.14), (3.15). Our formulae for
Gk(s, ϕ, c), Ek(s, ζ1, ζ2) (see (3.4), (3.5) and (3.10)) are simply obtained a posteriori from
Shimura’s formulae (written in adèlic form). 2

Remark 3.7. By inspection of (3.14) and (3.15), the Fourier coefficients for the non-constant
terms are algebraic numbers. By Proposition 2.2, so are the Fourier coefficients of the constant
terms, which are given by special values of Hecke L-functions. This algebraicity was first proven
by Klingen–Siegel, and later reproved by Shimura in the above manner.

From (3.14), we see that the L-series associated to Ek(ζ1, ζ2) is

L(s,Ek(ζ1, ζ2)) = L(cζ1 )(s, ζ1)L(cζ2 )(s+ 1− k, ζ2), (3.16)

in particular, it has an Euler product. Thus, Ek(ζ1, ζ2) is a normalized eigenform. In terms
Ek(ζ1, ζ2), equation (3.11) can be stated as

Ek(ζ1, ζ2)|Jcζ1 cζ2
=
ζ2((−1)∞)
N cζ2

N (cζ1cζ2)k/2N (cζ1)1−kτ(ζ−1
1 )−1τ(ζ2)Ek(ζ−1

2 , ζ−1
1 ). (3.17)

3.3 There remains to be added the fact that the space of Eisenstein series provides a complement
to the space of cusp forms.

Proposition 3.8. Let Eisk(n) be the C-subspace of Mk(n) spanned by the forms

Ek(ζ1, ζ2)|V (m), cζ1cζ2m|n, (3.18)

then Eisk(n) is stable under the action of Hecke operators, and we have the decomposition of
Hecke modules:

Mk(n) = Eisk(n)⊕ Sk(n). (3.19)

More generally, for any ring R that contains the coefficients of the series Ek(ζ1, ζ2), denote by
Eisk(n, R)⊂Mk(n, R) the R-span of the forms of (3.17). Then if R=K is a field, we also have

Mk(n, K) = Eisk(n, K)⊕ Sk(n, K). (3.20)

We denote by prEisk
, prSk the corresponding projection operators on corresponding Mk(n).

For a proof, see Shimura [Shi85, § 8].

4. Hida theory of Hilbert modular forms

4.1 In this section, we recall the basics of Hida theory of Hilbert modular forms. In fact, we
specialize his results to the parallel weight case. More details can be found in Hida’s original
papers and his books [Hid88, Hid89, Hid93, Hid06]. Some results hold without restriction on the
prime p (as is the case in [Hid88, Hid89]). However, for our applications, we need two results
(Theorems 4.2 and 4.4 below), which Hida proved under the assumption that p≥ 5, and is
unramified in F , i.e. p does not divide 6DF (see [Hid06, Corollaries 4.21 and 4.22]). We therefore
make this assumption on p in the rest of the paper.

In Hida’s theory, one fixes a tame level n, with n prime to p (thus, p is always assumed to be
prime to 6DFn), and consider Hecke algebras of forms of level npα, α≥ 1. Thus, from now on,
our notation from previous sections will be modified accordingly.
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First, we recall the structure of the relevant ray class groups.
As in § 2, we let

ClF(npα) = F× \A×F /F
+
∞(r̂× ∩K1,npα)

be the narrow ray class group of conductor npr (and infinity). Define

ZF (n) = lim
←−
α

ClF(npα). (4.1)

We choose a decomposition

ZF (n) =WF (n)× ZF (n)tors (4.2)

with WF (n) free over Zp, and ZF (n)tors finite. Although the choice of WF (n) may not be
canonical, it is ‘independent of’ n, in the sense that ZF (n)/ZF (n)tors is naturally isomorphic
to ZF (r)/ZF (r)tors, under the natural projection ZF (n)→ ZF (r). For each integer α≥ 1, let

ZF,α(n) = ker(ZF (n)→ ClF(npα)),
WF,α(n) =WF (n) ∩ ZF,α(n).

(4.3)

We can similarly define ZF (n), ZF,α(n) by considering the inverse limit of the ray class groups
ClF(npα), where

ClF(npα) = F× \A×F /F∞(r̂× ∩K1,npα)

(under our assumption that p≥ 5, we have in fact ZF,α(n) =WF,α(n) = ZF,α(n) =WF,α(n)).
Let O be a finite extension of Zp. We consider the completed group algebras:

AF = lim
←−
α

O[ZF (n)/ZF,α(n)]

ΛF = lim
←−
α

O[WF (n)/WF,α(n)].
(4.4)

Here ΛF is isomorphic to a power series ring in several variables over Zp (if Leopoldt’s conjecture
holds for F and p, then ΛF ∼= Zp[[X]], but we do not need this in the following). Note that
AF = ΛF [ZF (n)tors] under the decomposition ZF (n) = ZF (n)tors ×WF (n). If l is an ideal prime
to np, we denote by [l] the corresponding group ring element of AF , and by 〈[l]〉 the element
of ΛF under the above decomposition.

Note that ZQ(1) = Z×p , ZQ(1)tors ∼= F×p , and in this case we can naturally choose WQ(1)
= 1 + pZp. We use the notation

ωQ : ZQ(1)→ ZQ(1)tors

〈·〉Q : ZQ(1)→WQ(1) = 1 + pZp
(4.5)

for the two projection maps. Here ωQ is the Teichmüller character, while 〈·〉Q is the projection
to the one-units.

We have the norm map N : ZF (r)→ ZQ(1) = Z×p . Denote by ωF , 〈·〉F , the composition
of N with ωQ, 〈·〉Q, respectively. By abuse of notation, the composition of the projection
ZF (n)→ ZF (r) with these characters will be denoted by the same symbol.

We now introduce Hecke algebras. Thus, for each weight k ≥ 2, and α≥ 1, consider the Hecke
algebra hk(npα,O), which is the subalgebra of EndO(Sk(npα,O)), generated by the Hecke and
diamond operators T (q), [q]k. There is a perfect O-duality:

( , ) : hk(npα,O)× Sk(npα,O)→O,
(f , h) = C(r, f |kh).

(4.6)
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In particular, hk(npα,O) is a finite O-module. Under this duality, the algebra homomorphisms
HomO-alg(hk(npα,O),O) correspond to the normalized eigenform in Sk(npα,O).

For β ≥ α, we have, corresponding to the inclusion Sk(npα,O)⊂ Sk(npβ,O), a surjection

hk(npβ,O)→ hk(npα,O). (4.7)

Define

hk(np∞,O) = lim
←−
α

hk(npα,O). (4.8)

We define on hk(np∞,O) an A-algebra structure as follows. For α≥ 1, the group homomorphisms

[·]k : ZF (n)/ZF,α(n)∼= ClF(npα) → hk(npα,O)
class of l → [l]k

(4.9)

are compatible, hence extend to the inverse limit:

[·]k,∞ : ZF (n)→ hk(np∞,O). (4.10)

Since [·]k,∞ is a continuous character, it can be extended to the completed group algebra AF . In
particular, by restriction to ΛF , we obtained the structure of a ΛF -algebra on hk(np∞,O). For
the reasons described below (see Theorem 4.1), we introduce a twist, and define the canonical
ΛF -algebra structure on hk(np∞,O) by twisting this algebra structure with the character
Pk : ΛF →O, defined by the condition Pk(〈[l]〉) = 〈l〉k−2

F for l prime to np.
We have the following result.

Theorem 4.1 [Hid88, Theorem 3.2]. For weights k, k′ ≥ 2, we have a canonical isomorphism of
ΛF -algebras:

hk(np∞,O)∼= hk′(np∞,O) (4.11)

sending T (l) to T (l).

Hence, we denote by h(n,O) the universal p-adic Hecke algebra of tame level n.
Dual to this is the description in terms of p-adic modular forms. Let Sk(np∞,O) =⋃

α Sk(np
α,O). For | · |p the norm on Qp such that |p|p = p−1, define the norm

|f |p = sup(|C(a, f)|p) (4.12)

on Sk(np∞,O), and let Sk(np∞,O) be the completion with respect to | · |p. This is the space
of ‘p-adic modular (cusp) forms’. Here Sk(np∞,O) becomes a module over AF , and the pairing
( , ) at finite level extends to give a perfect (O-linear) duality:

( , ) : h(n,O)× Sk(np∞,O)→O. (4.13)

In particular, Sk(np∞,O) does not depend on k, and we denote this as S(n,O).
To go further, we need to recall Hida’s projection operator e to the p-ordinary part. Note

that as hk(npα,O) is a finite O-algebra, it is semi-local. Let hord
k (npα,O) be the maximal direct

summand over which U(pr) is invertible (equivalently, this is the same as requiring U(p) to be
invertible for each p above p). Let e be the corresponding projection. A formula for e can be given

e= lim
n→∞

U(p)n!. (4.14)

Dually, we put Sord
k (npα,O) = Sk(npα,O)|e, the space of p-ordinary cusp forms. It is true that,

if f ∈ Sk(npα,Q), then f |e ∈ Sk(npα,Q).
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At this point, it is useful to make some remark about p-stabilization. Suppose that f̃ is
of weight k, and is a newform of conductor cond(f̃) divisible by n, with character ψ. Assume
that |C(p, f̃)|p = 1 for p|p. Then f̃ , regarded as an element of Sk(npα,O), is not necessarily an
eigenvector for all of the U(p). However, it can be modified as follows: let α(p, f̃), β(p, f̃) be the
unit, respectively non-unit, roots of the equation

X2 − C(p, f̃)X + ψcond(f̃)(p)N (p)k−1 = 0.

Define the p-stabilization of f̃ as

f̃0 = f̃
∣∣∣∣∏
p|p

(1− β(p, f̃)V (p)). (4.15)

It is clearly a p-ordinary eigenform in Sord
k (npα,O), with U(p)-eigenvalue α(p, f̃). we call it the

p-ordinary newform attached to f̃ .
Now going back to the formula (4.14) for e, it is clear that these projections are compatible

under the surjection hk(npβ,O)→ hk(npα,O), hence e extends to h(n,O). We put

hord(n,O) = eh(n,O) = lim
←−
α

hord
k (npα,O) (4.16)

the universal ordinary p-adic Hecke algebra of tame level n.
The fundamental result is as follows.

Theorem 4.2 [Hid06, Part (1) of Corollary 4.21]. The algebra hord(n,O) is a finite free algebra
over ΛF .

To state Theorem 4.3 below (usually called the control theorem), we need to prepare some
notation. Let ε be a finite-order character of WF (n), factoring through WF,α(n). Assume that O
contains the values of ε (this can be achieved by extension of scalars from O to O[ε]). Let

Sk(npα, ε,O) = {f ∈ Sk(npα,O), f |[v]k = ε(v)f for all v ∈WF (n)}.

(In the case where F = Q, these correspond to forms on the congruence subgroup Γ1(Np) ∩
Γ0(pα) with character ε.) These are called forms with wild character ε. Furthermore, if φ is a
character of ZF (n)tors, and f ∈ Sk(npα, ε,O) satisfies f |[z]k = φ(z)f for all z ∈ ZF (n)tors, then we
call φ the tame character of f . In particular, f has character εφ in the sense of (2.19). We denote
this space as Sk(npα, ε, φ,O).

Put Sord
k (npα, ε,O) = Sk(npα, ε,O)|e, and let hk(npα, ε,O) be the corresponding Hecke

algebra, and put hord
k (npα, ε,O) = hk(npα, ε,O).

For integer k ≥ 2, and epsilon as above, denote by Pk,ε ∈HomO-alg(ΛF ,Qp) =
Spec/O(ΛF )(Qp) the algebra homomorphism, defined by the condition Pk,ε(〈[l]〉) = 〈l〉k−2

F ε(l),
for l prime to np. If ε is trivial, then this becomes the Pk introduced before. The Pk,ε are the
‘classical’ or ‘algebraic’ points. When it is not likely to cause confusion, we abuse notation and
still denote the prime ideal defined by ker Pk,ε by Pk,ε.

Theorem 4.3 [Hid06, Part (2) of Corollary 4.21]. For k ≥ 2, ε as above, we have an
isomorphism of ΛF -algebras

hord(n,O)/Pk,εhord(n,O)∼= hord
k (npα, ε,O)

(we regard O as a ΛF -algebra via Pk,ε). In particular, hord
k (npα, ε,O) is independent of the index

α of Wα through which ε factors.
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4.2 The basic results on ordinary deformations of eigenforms follow readily from Theorems 4.2
and 4.3. Fix an algebraic closure QΛF of QΛF , the fraction field of ΛF . Consider a ΛF -algebra
homomorphism:

λ : hord(n,O)→QΛF .

By Theorem 4.2, the fraction field of the image of λ, is a finite extension of QΛF . Take I to be
the integral closure of ΛF in this extension, and QI to be the fraction field of I. By Theorem 4.2
again, λ actually takes values in I.

Define X(I) = HomO-alg(I,Qp), X(I)alg = {P ∈ X(I), P |ΛF = Pk,ε}. For each P ∈ X(I), we
can form the composition λP = P ◦ λ ∈HomO-alg(hord(n,O),Qp), thus defining, by duality, a
whole family of ‘p-adic cuspidal eigenforms’.

Suppose that P |ΛF = Pk,ε. Write kP as k, and αP as the minimum level α through
which ε factors. Again assume that ε takes values in O. By the control theorem, λP factors
through hord

k (npα, ε,O), thus defining a classical cuspidal eigenform. We have the following
converse theorem.

Theorem 4.4. Let f ∈ Sord
k (npα, ε,O) be a p-ordinary cuspidal eigenform. Then there exists

a λ : hord(n,O)→I, and P ∈ X(I)alg, with P |ΛF = Pk,ε, such that λP corresponds to f .
Furthermore, if, the conductor of f is divisible by n (i.e. f is a p-ordinary newform), then the
localization IP is étale over ΛF,Pk,ε .

Proof. This follows easily from [Hid06, Corollary 4.21], so we just make some brief comments. The
eigenform f correspond to a minimal prime of hord

k (npα, ε,O), which by the control Theorem 4.3,
corresponds to a height-one prime P ′ of hord(n,O) lying over the prime Pk,ε of ΛF . By the flatness
of hord(n,O) over ΛF (Theorem 4.2) and the going down theorem, we can find a minimal prime
Q of hord(n,O) contained in P ′, with Q ∩ ΛF = (0). The quotient hord(n,O)/Q is finite over
ΛF . Let I be the integral closure of ΛF in the fraction field of hord(n,O)/Q. Then I is finite
over ΛF . Pick any prime P of I lying over the prime P ′ of hord(n,O)/Q (in particular, P lies
over the prime Pk,ε of ΛF ). The natural map

λ : hord(n,O)→ hord(n,O)/Q→I

satisfies the requirement that λP = P ◦ λ corresponds to the eigenform f .
Finally, from [Hid06, part (3) of Corollary 4.21], the localization hord(n,O)Pk,ε is étale

over ΛF,Pk,ε . In particular, with the above notation, the localization hord(n,O)P ′ is étale over
ΛF,Pk,ε , hence is a regular local ring. It follows that we have the identification hord(n,O)P ′ =
(hord(n,O)/Q)P ′ = IP . Hence, IP is also étale over ΛF,Pk,ε . 2

Remark . Corollary 4.21 of [Hid06] was proved by Hida under the assumption that p does not
divide 6DF (in particular p≥ 5). It is for this reason that our results depend on this condition.

Hida theory can also be stated more formally in terms of Λ-adic forms. As in [Hid93], we do
this in the more general context. For QI a finite extension of QΛF , I the integral closure of ΛF
in QI as before, we make the following definition.

Definition 4.5. An I-adic modular form F , of tame level n, is a set of elements of I given by
the data

C(a, F) for a⊂ r

C0(a, F)
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with C0(a, F) (the ‘constant term’) depends only on the image of a in ClF, such that for a subset
of P ∈ X(I)alg Zariski dense in X(I), there is an element fP ∈Mk(npα, ε,O[ε]) satisfying

C(a, fP ) = P (C(a, F)),
C0(a, fP ) = P (C0(a, F)).

These form an I-module denoted by M(n, I). We let S(n, I)⊂M(n, I) to be the submodule
consisting of those F such that P (F) is a cusp form for a subset of P ∈ X(I)alg Zariski
dense in X(I).

Let ψ be a character of ZF (n)tors. We say that an I-adic form F has character ψ, if
for Pk,ε ∈ X(I)alg, the specialization at Pk,ε has character given by εψω2−k

F , whenever the
specialization is defined. We denote by M(n, ψ, I), S(n, ψ, I) the module of I-adic forms
(respectively, cusp forms) with character ψ.

Again one can define Hecke operators and the ordinary projection operator e on the
I-module M(n, I) stable on S(n, I), and compatible with specialization. Put Mord(n, I) =
M(n, I)|e, Sord(n, I) = S(n, I)|e. Again, U(pr) is invertible on the ordinary part. We also have
the following duality:

Sord(n, I)∼= HomΛF -mod(hord(n,O), I) (4.17)

and the ordinary I-adic normalized eigenforms correspond to ΛF -algebra homomorphism.

Remark 4.6. By the control theorem, if F ∈ Sord(n, I), then in fact P (I) is a classical cusp form
for all P ∈ X(I)alg.

4.3 Thus, we fix a λ : hord(n,O)→I ↪→QΛF . Assume that Qp ∩ I =O (a condition which
can be achieved by extending O). Denote by ψ : ZF (n)tors→Qp the composition ZF (n)tors→
hord(n,O) λ→QΛF . We call ψ the tame character of λ. This is consistent with Definition 4.5:
for P ∈ X(I)alg, the eigenform corresponding to λP has tame character given by ψω2−kP

F (the
character is given εψω2−kP

F ).

Analogous with the theory of newforms, we say that λ is primitive if there does not exist a
λ′ : hord(n′,O)→QΛF , with n′ strictly divides n, such that λ(T (q)) = λ′(T (q)) for all primes q

not dividing np. If λ arises from a newform f of conductor divisible by n, as in Theorem 4.4, then
clearly λ must be primitive. Conversely, the primitivity of λ implies that [Hid88] the eigenforms
corresponding to λP , for classical P , has conductor divisible by n.

We recall the definition of congruence and differential modules.

To motivate, let f ∈ Sord
k (np∞, ε,O) be a p-ordinary newform of tame level n. As a consequence

of Atkin–Lehner’s theory of newforms, it gives a decomposition:

hord
k (np∞, ε, QO[ε]) =QO[ε]⊕B, (4.18)

where projection toQO[ε0] corresponds to the eigenform f . We have an analogue for Hida families.

Theorem 4.7 [Hid88, Corollary 3.7]. Assume that λ is primitive. Then we have a decomposition

hord(n,O)⊗ΛF QI =QI ⊕ B (4.19)

as an algebra direct sum, such that the projection onto the first factor coincides with λ.
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Let prB be the projector to B in the above decomposition and denote by λ̂ : hord(n,O)⊗
I → I the composition of the map λ⊗ 1 : hord(n,O)⊗ I → I ⊗ I and the multiplication map
I ⊗ I → I. Define

δ : hord(n,O)⊗ I → I ⊕ prB(hord(n,O)⊗ I)

to be the diagonal map (which is injective by Theorem 4.7). We are interested in how far δ
fails to be surjective.

Definition 4.8 [Hid88]. The congruence module is defined by

C0(λ) = Coker(δ).

The differential module is defined by

C1(λ) = Ω1
h/I ⊗h I;

here we abbreviate hord(n,O) as h, and we regard I as an h-module via λ̂; Ω1 the module of
Kähler differentials.

As the name suggests, C0(λ) measures congruences between the components of hord(n,O)
given by λ and the others. In fact, P ∈ X(I) is the support of the module if and only if there
exists two different λ1, λ2, with λ1,P = λ2,P . On the other hand, the differential module measures
how much the component of hord(n,O) containing λ : hord(n,O)→I fails to be étale over ΛF .
Thus, these two modules are closely related.

Proposition 4.9 [Hid88, Corollary 3.8]. The congruence module C0(λ) and differential module
C1(λ) are torsion I-modules, and we have the equality of their support:

SuppI(C0(λ)) = SuppI(C1(λ)).

For P ∈ X(I)alg, we have (Ω1
h/I ⊗h I)P = 0 by the second part of Theorem 4.4. Thus, we

draw the following corollary.

Corollary 4.10. Let P ∈ X(I)alg. Then under the decomposition hord(n,O)⊗QI =QI ⊕ B,
the idempotent IdI ⊕ 0 lies in hord(n,O)⊗ IP .

5. ΛF -adic Eisenstein measure

5.1 The Eisenstein series Ek(ζ1, ζ2) introduced in § 3 can be interpolated to give ΛF -adic forms.

Recall from § 3, that Ek(ζ1, ζ2) is a normalized eigenform. For p|p, it has U(p)-eigenvalue
given by C(p,Ek(ζ1, ζ2)) = ζ1(p) + ζ2(p)N (p)k−1.

Analogous to the procedure of p-stabilization (cf. (4.15)), we put

Ek(ζ1, ζ2)0 =
∏
p|p

Ek(ζ1, ζ2)|(1− ζ2(p)N (p)k−1V (p)), (5.1)

Ek(ζ1, ζ2)00 =
∏
p|p

Ek(ζ1, ζ2)0|(1− ζ1(p)V (p)). (5.2)

19

https://doi.org/10.1112/S0010437X08003813 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X08003813


C. P. Mok

From (3.15) we have

C(m,Ek(ζ1, ζ2)0) =
∑
ab=m

a,b⊂r,b+pr=r

ζ1(a)ζ2(b)N (b)k−1

C0(m,Ek(ζ1, ζ2)0) =

{
2−dL(cζ2p)(1− k, ζ2) if ζ1 is trivial
0 otherwise.

(5.3)

C(m,Ek(ζ1, ζ2)00) =
∑
ab=m

a,b⊂r,ab+pr=r

ζ1(a)ζ2(b)N (b)k−1

C0(m,Ek(ζ1, ζ2)00) = 0.

(5.4)

Both Ek(ζ1, ζ2)0 and Ek(ζ1, ζ2)0 are eigenforms. For Ek(ζ1, ζ2)0, it has U(p)-eigenvalue given by
ζ1(p), which is either a p-adic unit or zero, depending on whether p is prime to cζ1 . It follows
that

Ek(ζ1, ζ2)0|e=

{
Ek(ζ1, ζ2)0 if cζ1 is prime to p
0 otherwise.

(5.5)

Remark . From (5.4), we see that the U(p) eigenvalues of Ek(ζ1, ζ2)00 are all zero. In particular,
Ek(ζ1, ζ2)00 is not ordinary.

Define Eisord
k (npα,O) = Eisk(npα,O)|e, with Eisk as in Proposition 3.8; we assume that O

is a large enough to contain all of the Fourier coefficients of the Eisenstein series that appears.
Then Eisord

k (npα) is spanned by the forms

Ek(ζ1, ζ2)0|V (m), (5.6)

with ζ1, ζ2 characters F of conductor dividing npα, m integral ideal, subject to the condition
cζ1c

(p)
ζ2

m|n (here c
(p)
ζ2

denotes the prime to p part of the ideal cζ2).

Proposition 5.1. Let ζ1, ζ2 be characters of ZF (n)tors, such that c
(p)
ζ1

c
(p)
ζ2
|n, and that

ζ1ζ2|F∞ = Id. Then there exists an element E(ζ1, ζ2)0 ∈M(n, ΛF )⊗QΛF , such that for any
Pk,ε ∈ X(ΛF )alg, we have

Pk,ε(E(ζ1, ζ2)0) = Ek(ζ1, εζ2ω
2−k
F )0.

Proof. A special case of this was stated in [Wil88, Proposition 1.3.1]. The general case is similar.
We define, for an integral ideal m,

C(m, E(ζ1, ζ2)0) =
∑
ab=m

a,b⊂r,b+pr=r

ζ1(a)ζ2(b)N (b)〈[b]〉 ∈ ΛF . (5.7)

(Recall that the elements 〈[b]〉 ∈ ΛF were defined in the paragraph following (4.4).)
One checks immediately that

Pk,ε(C(m, E(ζ1, ζ2)0)) = C(m,Ek(ζ1, εζ2ω
2−k
F )0).

One the other hand, by the main theorem of Deligne–Ribet [DR80] on p-adic L-functions of
Hecke characters over totally real fields, there exists an element Fζ2 ∈QΛF such that

Pk,ε(Fζ2) = L(cp)(1− k, εζ2ω
2−k
F ), c = conductor of εζ2ω

2−k
F .
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Thus, it suffices to define

C0(m, E(ζ1, ζ2)0) =

{
2−dFζ2 if ζ1 is trivial,
0 otherwise.

(5.8)

2

In general the constant term of E(ζ1, ζ2)0, i.e. the p-adic L-function of Deligne–Ribet, may
not lie in ΛF . Thus, E(ζ1, ζ2)0 is only an element of M(n, ΛF )⊗QΛF .

Put E(ζ1, ζ2)00 =
∏

p|p E(ζ1, ζ2)0|(1− ζ1(p)V (p)). Then we have

C(m, E(ζ1, ζ2)00) =
∑

ab =m
a,b⊂r,ab+pr =r

ζ1(a)ζ2(b)N (b)〈[b]〉

C0(m, E(ζ1, ζ2)00) = 0.

(5.9)

Thus, E(ζ1, ζ2)00 ∈M(n, ΛF ). Again E(ζ1, ζ2)00 is not ordinary.
We have the following ΛF -adic analogue of Proposition 3.8.

Proposition 5.2. Fix a character ψ of ZF (n)tors. Then Mord(n, ψ, ΛF ) is a finitely generated
ΛF -modules. Define Eisord(n, ψ, ΛF ) to be the ΛF -submodule of Mord(n, ψ, ΛF )⊗QΛF

generated by the forms

E(ζ1, ζ2)0|V (m), ψ = ζ1ζ2, cζ1c
(p)
ζ2

m|n.

Then Eisord(n, ψ) is stable under the Hecke operators.

Assume that O is a large enough finite extension of Zp, for example, containing the roots of
unity of order equal to the cardinality of ZF (n)tors. Then we have the following decomposition
of Hecke modules

Mord(n, ψ, ΛF )⊗QΛF = Eisord(n, ψ, ΛF )⊗QΛF ⊕ S
ord(n, ψ, ΛF )⊗QΛF . (5.10)

Furthermore, if P ∈ X(ΛF )alg, then such decomposition is valid with QΛF replaced by ΛF,P ,
the localization of ΛF at P . We denote by prEis, prS the corresponding projection operators on
Mord(n, ψ).

Proof. The decomposition (5.10) follows from the decomposition (3.20). See for example the
discussion in [Wil88, § 1.4, pp. 545–546]. 2

Similar to Definition 4.8, we make the following definition.

Definition 5.3. The congruence module C(Eis) as follows

C(Eis) =
prEis(Mord(n, ψ, ΛF ))⊕ prS(Mord(n, ψ, ΛF ))

Mord(n, ψ, ΛF )
(5.11)

which by Proposition 5.2 is a finitely generated torsion ΛF -module.

From Proposition 5.2, we draw the following corollary.

Corollary 5.4. For P ∈ X(ΛF ), denote by ΛF,P the localization of ΛF at P , then the
decomposition

Mord(n, ψ, ΛF )⊗ ΛF,P = Eisord(n, ψ, ΛF )⊗ ΛF,P ⊕ Sord(n, ψ, ΛF )⊗ ΛF,P

holds if and only if P does not lie in the support of C(Eis). This holds, in particular, if
P ∈ X(ΛF )alg.
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5.2 In this section we define the Eisenstein measure on ZF (r).
We introduce a norm ‖ · ‖ on ΛF -adic forms as follows: ΛF is complete under the norm [Hid89]

‖w‖= sup
P∈X(ΛF )alg

|P (w)|p for w ∈ ΛF . (5.12)

We extend this norm to the finite ΛF -module Mord(n, ψ, ΛF ):

‖F‖= sup(‖Cλ(0, F)‖, ‖C(a, F)‖), (5.13)

then Mord(n, ψ, ΛF ) is complete under ‖ · ‖. Furthermore, the operators U(p), e are bounded
operators.

Fix a character ψ of ZF (n)tors. We now state the main results of this section.

Proposition 5.5. Let θ, φ be Hecke characters of F of finite order, unramified at infinity,
and assume that O contains the values of θ, φ. Let r ≥ 0 be an integer. Then for any
character χ of ZF (r) of finite order, there exists ΛF -adic forms H(χ, φ, θ, r)0,H(χ, φ, θ, r)00 ∈
Mord(lcm(n, c(p)

φ c
(p)
θ ), ψ, ΛF ) ⊗̂O O[χ], such that for any Pk,ε with k ≥ r + 2, we have

P (H(χ, φ, θ, r)0) = Ek−r−1(χφω−rF , εθω1−k
F )0Gr+1(ψ(χφθ)−1ωr+1

F , ncφcθp)|e
P (H(χ, φ, θ, r)00) = Ek−r−1(χφω−rF , εθω1−k

F )00Gr+1(ψ(χφθ)−1ωr+1
F , ncφcθp)|e.

(5.14)

Proposition 5.6. Notations as in Proposition 5.5. There exist distributions µφ,θ,r on Z(r), with

values in the ΛF -module Mord(lcm(n, c(p)
φ c

(p)
θ ), ψ, ΛF ), such that, for χ a finite order character

of ZF (r), ∫
ZF (r)

χ dµφ,θ,r =H(χ, φ, θ, r)00. (5.15)

This distribution is bounded with respect to the norm (5.13), i.e., a measure.

Furthermore, we have the integration identity:∫
ZF (r)

χ〈.〉rF dµφ,θ,0 = (−1)rd
∫
ZF (r)

χ dµφ,θ,r. (5.16)

When r = 0, we write µφ,θ,0 simply as µφ,θ.

The proof of these two propositions is based on computation with Fourier expansion of
Eisenstein series. We defer it to Appendix Appendix A.

As an immediate consequence, we obtain the following corollary, already proved in [Dab94],

Corollary 5.7. Let P = Pk,ε ∈ X(ΛF )alg, with k ≥ r + 2. Then the linear form mP,φ,θ,r :=
P ◦ µφ,θ,r defines a measure on Z(r), taking values in the O-module Mord

k (lcm(n, c(p)
φ c

(p)
θ )p∞,

εψω2−k
F ,O[ε]).
For χ a finite-order character of ZF (r):∫

ZF (r)
χ dmP,φ,θ,r = Ek−r−1(χφω−rF , εθω1−k

F )00Gr+1(ψ(χφθ)−1ωr+1
F , ncφcθp)|e (5.17)

and we have the identity∫
ZF (r)

χ〈·〉rF dmP,φ,θ,0 = (−1)rd
∫
ZF (r)

χ dmP,φ,θ,r. (5.18)

When r = 0, we write mP,φ,θ,0 as mP,φ,θ.
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Remark 5.8. The expression (5.14) may seem unnatural. However, it occurs in the p-adic
analogue of the Rankin–Selberg–Shimura method.

6. p-adic-L-functions

6.1 In this section, we use the Eisenstein measure constructed in § 5 to define the p-adic
L-functions attached to Hilbert newforms.

In the definition of the Eisenstein measures, there is a choice for the auxiliary characters θ, φ.
To simplify subsequent calculations, we make the following assumption from now on.

Assumption 6.1. We assume that n divides the conductor of θ, and cφ is prime to cθp.

Let f ∈ Sord
k0

(npα, ε0ψω2−k0
F ,O[ε0]) be a p-ordinary cuspidal newform. In using the convolution

method of Rankin–Selberg–Shimura to construct p-adic L-functions, it is important to choose θ
to be adapted to f in the following sense.

Definition 6.2. We say that θ is adapted to f , if the following conditions are satisfied.

(1) The conductor of ε0θω1−k0
F is divisible by m0 =

∏
p|p p.

(2) We have L(k0 − 1, (ε0θω1−k0
F )−1, f) 6= 0.

Condition (2) of Definition 6.2 is about non-vanishing of twisted L-values, which in general
is a difficult problem. For our purpose, we need two results in this direction. The first is a
non-vanishing result due to Shimura.

Theorem 6.3 [Shi78]. For <(s)≥ (k0 + 1)/2, we have L(s, η, f) 6= 0 for any Hecke character η
of finite order.

In particular, for k0 ≥ 3, L(k0 − 1, (ε0θω1−k0
F )−1, f) 6= 0 for any θ of finite order, and we can

easily choose θ to be adapted to f .
For k0 = 2, we are at the centre of the functional equation, and we cannot expect to have

such a strong non-vanishing result. In this case, we appeal to a theorem of Rohrlich.

Theorem 6.4 [Roh89]. Let S be a finite set of places of F . For any s0 ∈C, there exist infinitely
many Hecke characters η of finite order, unramified at the places in S, such that L(s0, η, f) 6= 0.

In our setting, apply Rohrlich’s theorem to the form f ⊗ (ε0θ′ω1−k0
F )−1, for some finite-order

character θ′, unramified at ∞, that satisfies n|cθ′ , m0|cε0θ′ω1−k0
F

. Take s0 = 1, S to be the set
of places above n, p and ∞. The theorem gives a η, unramified at n, p and ∞, such that
L(1, η, f ⊗ (ε0θ′ω1−k0

F )−1) = L(1, (ε0θ′η−1ω1−k0
F )−1, f) 6= 0. The character θ′η−1 is then adapted

to f .

6.2 By Theorem 4.4, we can lift f to a Hida family, i.e. a primitive algebra homomorphism
λ : hord(n,O)→I, such that the specialization λP0 for some P0 lying above Pk0,ε0 gives back f .
Write F = Fλ for the corresponding I-adic form. To define the p-adic L-functions, we need to
introduce certain projectors associated to f , F .

We first define Hida’s ordinary cuspidal projectors, lf , lF , associated to f , F , respectively.
As in (4.18), the p-ordinary newform f gives a decomposition

hord
k0 (np∞, ε0, QO[ε0]) =QO[ε0]⊕B, (6.1)
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where projection to QO[ε0] corresponds to the eigenform f . Let tf be the element of hord
k0

(np∞,
ε0, QO[ε0]) that corresponds to the element (IdO, 0) in the decomposition. Then the form lf is
defined via the perfect pairing (·, ·) between hord

k0
(np∞, ε0,O[ε0]) and Sord

k0
(np∞, ε0,O[ε0]):

lf (g) = (tf , g) ∈QO[ε0] for g ∈ Sord
k0 (np∞, ε0, QO[ε0]), (6.2)

see [Hid91, (9.3 b)]. Furthermore, Shimura’s theory [Shi78] implies that

lf (g) ∈Q if g ∈ Sord
k0 (np∞,Q).

In a similar way, by (4.19), we have the decomposition

hord(n,O)⊗ΛF QI =QI ⊕ B. (6.3)

Let tF be the element of hord(n,O)⊗QI that corresponds to the element (1I , 0) in the
decomposition. Then the form lF is again defined via the perfect pairing ( , ) between hord(n,O)
and Sord(n, I) (cf. (4.17)):

lF (G) = (tF , G) ∈QI for G ∈ Sord(n, I)⊗QI . (6.4)

By Corollary 4.10, we have lF (G) ∈ IP0 if G ∈ S(n, I)⊗ IP0 , and we have the consistency:
lf (P0(G)) = P0(lF (G)).

6.3 We may extend the definition of Hida’s projectors to forms not necessarily cuspidal, and not
necessarily of tame level n. This can be done by applying the cuspidal projectors of Proposition 3.8
and 5.2, followed by the trace operator.

In general, for any integral ideals n, a, we have the trace operator

Trnan : Sk(na, ζ)→ Sk(n, ζ)

defined by

f |Trnan (g) =
∑

w∈K1,n/K1,na

f(gw). (6.5)

In our setting, assume that a is prime to p, and consider the trace operator Trnap
α

npα , which we
abbreviate as Trnan . As in Hida [Hid91, § 7], this operator preserves O-integrality, and extends to
the space of p-adic forms S(n,O). The operator Tr preserves p-ordinarity, because Tr commutes
with all of the operators U(p). The proof of this commutativity follows from the following facts:
first, we see from (6.5) that, in the definition of Tr, we can take the w to have non-trivial
components only at places dividing a; on the other hand, from (2.23), we see that the adèlic
definition of U(p) involves elements with non-trivial component only at the place p. Since a is
prime to p by assumption, the commutativity of the operators follows from the commutativity
of these two types of elements.

Proposition 6.5. The trace operator Trnap
α

npα can be lifted to

Trnan : S(na, ΛF )→S(n, ΛF )

compatible with specializations. It sends Sord(na, ΛF ) to Sord(n, ΛF ).
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Proof. Combining the two dualities (4.13) and (4.17), we obtain

S(n, ΛF )∼= HomΛF (HomO(S(n,O),O), ΛF )

and similarly for S(na, ΛF ). Thus, to lift Trnap
α

npα , it suffices to show that its action on S(na,O)
commute with the action of ΛF , i.e. the diamond operators. However, this is clear. 2

Definition 6.6. Take O to be a sufficiently large finite extension of Zp. The general projectors
lgen
f ,na, l

gen
F ,na, defined on p-ordinary forms of tame level na, are given by

lgen
f ,na(g) = lf (g|prSk0 Trnan )

lgen
F ,na(G) = lF (G|prS Trnan ).

(6.6)

6.4 We now apply these projectors to the Eisenstein measure to construct the p-adic
L-functions. In the next section, we use the method of Rankin–Shimura to relate the special values
of these p-adic L-functions in terms of the special values of classical L-functions (see formula (6.9)
below). The Rankin–Shimura computations show that, in order to have a formula of the shape
of (6.9), we need to modify the Eisenstein measure slightly as follows. The computations in
§ 7 will explain a posteriori why we made such a modification (compare, in particular, (6.7)
and (7.36) below).

Take O to be a sufficiently large finite extension of Zp. Let sφ,θ be the distribution on ZF (r)
defined by ∫

ZF (r)
η dsφ,θ = ηφ(n−1c

(p)
θ )θω−1

F (cφ)〈[cφ]〉 ∈ ΛF ⊗̂OO[η] (6.7)

for η a character of ZF (r). This is easily seen to be a measure. Define µ̂φ,θ,r to be the convolution
of sφ,θ with µφ,θ,r, i.e.∫

ZF (r)
η dµ̂φ,θ,r =

(∫
ZF (r)

η dsφ,θ

)(∫
ZF (r)

η dµφ,θ,r

)
.

We similarly define m̂P,φ,θ,r to be the convolution of sP,φ,θ := P (sφ,θ) with mP,φ,θ,r. Again, we
write µ̂φ,θ, m̂P,φ,θ when we take r = 0.

Definition 6.7. Given a choice of the character θ, φ, define the p-adic L-function attached to
f ∈ Sk0(npα, ε0, ψω2−k0

F ) as follows: for s ∈ Zp, χ a finite-order character of ZF (r),

Lp(s, f , χ, φ) = Lp(s, f , χ, φ, θ)

= lgen

f ,cφc
(p)
θ

(∫
ZF (r)

〈.〉s−1
F χ dm̂P,φ,θ

)
(P = Pk0,ε0).

Similarly, we define the p-adic L-function attached to F by

Lp(s, F , χ, φ) = Lp(s, F , χ, φ, θ)

= lgen

F ,cφc
(p)
θ

(∫
ZF (r)

〈.〉s−1
F χ dµ̂φ,θ

)
.

(We omit φ from the notation when we take φ to be the trivial character.)

By Corollaries 4.10 and 5.4, the only possible poles belong to the support of the congruence
modules C0(λ) and C(Eis). In particular, we have Lp(s, F , χ, φ, θ) ∈

⋂
P∈X(I)alg

IP ⊂QI .
Furthermore, for P ∈ X(I)alg, we have the consistency Lp(s, fP , χ, φ, θ) = P (Lp(s, F , χ, φ, θ)).
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The fundamental result about these p-adic L-functions is as follows: in the following, we
denote by α(p, f), α(p, F) the U(p) eigenvalues of f , F for p|p. We have α(p, f) = P0(α(p, F)).
For an ideal m divisible only by primes above p, we extend the definition of α to such m by
multiplicativity.

Theorem 6.8. For an integer r ≥ 0, χ a finite-order character of ZF (r), we have a factorization

Lp(r + 1, F , χ, φ, θ) =
(∏

p|p

(
1−

χφω−rF (p)N (p)r

α(p, F)

))
L∗p(r + 1, F , χ, φ, θ),

where L∗p(r + 1, F , χ) ∈
⋂
P∈X(I)alg

IP . Furthermore, if an algebraic point P has the property

that θ is adapted to fP , then there is a complex number Ω(fP , θ), independent of χ, φ and r,
such that, if r ≤ kP − 2, then P (L∗p(r + 1, F , χ, φ, θ)) ∈Q, given by the value

P (L∗p(r + 1, F , χ, φ, θ)) =
1

α(cχω−rF , fP )
Dr
FΓ(r + 1)dN (cχω−rF cφ)r+1

×
L(r + 1, fP , (χφω−rF )−1)

(−2πi)drτ((χφω−rF )−1)Ω(fP , θ)
; (6.8)

here Γ is Euler’s Gamma function and τ(·) is the Gauss sum (see (3.13)).

Specializing Theorem 6.8 at P0, we obtain the following.

Corollary 6.9 [Dab94]. Suppose that θ is adapted to f . Then with the same Ω(f , θ) as above,
for r ≤ k0 − 2 and χ, we have Lp(r + 1, f , χ, φ, θ) ∈Q, given by the value

Lp(r + 1, f , χ, φ, θ) =
(∏

p|p

(
1−

χφω−rF (p)N (p)r

α(p, f)

))
× 1
α(cχω−rF , f)

Dr
FΓ(r + 1)dN (cχω−rF cφ)r+1

×
L(r + 1, f , (χφω−rF )−1)

(−2πi)drτ((χφω−rF )−1)Ω(f , θ)
. (6.9)

The proof of Theorem 6.8 is the subject of the next section. For the moment, we give the
following remarks: the projector lf can be calculated analytically by means of Peterson inner
products. The method of Rankin–Selberg–Shimura expresses this in terms of the L-value of the
convolution of f with a suitable Eisenstein series, which factorizes into a product of two twisted
L-values of f . By our choice of θ, one of the twisted L-value of f is non-zero, and it is involved
in the expression for Ω(f , θ).

6.5 Here we make some general comments about the p-adic L-function Lp(s, f , χ, φ, θ) of f .
If θ is chosen to be adapted to f , then by (6.8), Ω(f , θ) gives a transcendental part of the special
values L(r + 1, f , (χφω−rF )−1), in the sense that

L(r + 1, f , (χφω−rF )−1)
(−2πi)drΩ(f , θ)

∈Q.

The use of Rankin’s method to prove algebraicity results on special values of L-functions was
initiated by Shimura [Shi78]. Note that as far as the algebraicity result is concerned, the factor
Ω(f , θ) can be modified by multiples of Q×. In the classical case where F = Q, and f is of weight
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two, such modification can be made so that the transcendental factor is given by the periods
of f . In the general case, such a result is not yet known, and one must be content with arbitrary
choices. Thus, if u ∈Q×, then the p-adic L-function uLp(s, f , χ, φ, θ) satisfies same interpolation
property (6.9), with Ω(f , θ) replaced by u−1Ω(f , θ). In the following, we refer to uLp(s, f , χ, φ, θ)
as the p-adic L-function defined by the transcendental factor (or ‘period’) u−1Ω(f , θ).

The choice for the character φ is included only to allow more flexibility in some arguments (see,
for example, the proof of Theorem 8.2 in Appendix Appendix B). In the context of Iwasawa theory
of f , one takes φ to be trivial, and considers the p-adic L-function Lp(s, f , χ, Id, θ). Suppose that
k0 ≥ 3. Then for θ adapted to f , Lp(s, f , χ, Id, θ) is not identically zero, by Corollary 6.9, and the
non-vanishing result of Shimura (Theorem 6.3). For k0 = 2, however, we do not have a definite
answer. There is a general conjecture.

Conjecture 6.10. For a cuspidal Hilbert eigenform f of parallel weight two, then for all but
finitely many ray class characters χ, ramified only at primes above p, we have L(1, f , χ) 6= 0.

We have the following result of Rohrlich.

Theorem 6.11 [Roh84, Roh88]. Conjecture 6.10 holds in the case F = Q.

In general, Conjecture 6.10 implies that the p-adic L-function Lp(s, f , χ, Id, θ) is not
identically zero. In any case, by Theorem 6.4, there exists a twist by φ, so that Lp(s, f , χ, φ, θ)
is not identically zero.

In the sections to follow, we abbreviate Lp(s, f , χ, φ, θ) and Lp(s, F , χ, φ, θ) as Lp(s, f , χ, φ),
Lp(s, F , χ, φ), respectively, if a choice of θ is fixed. Furthermore, we abbreviate

Lp(s, f , χ) = Lp(s, f , χ, Id),
Lp(s, f) = Lp(s, f , Id, Id).

(6.10)

Similarly,

Lp(s, F , χ) = Lp(s, F , χ, Id),
Lp(s, F) = Lp(s, F , Id, Id).

(6.11)

7. Proof of Theorem 6.8

7.1 In this section we prove Theorem 6.8, based on the method of Rankin–Shimura. The method
was already employed by various authors, for example Dabrowski [Dab94], Hida [Hid91] and
Panchishkin [Pan89, Pan91, Pan03]. The proof is computational, and the reader is advised to
skip it on a first reading.

Definition 7.1. Let dg be the Haar measure on G(AF ), normalized so that its push-forward
to G(F ) \G(AF )/F+

∞K∞
∼= Hd coincides with the standard measure

∏d
ν=1(dxν dyν)/y2

ν . Given
forms F1, F2, of weight k, level ñ, with at least one of them being a cusp form, denote by
〈F1, F2〉ñ the Petersson inner product of level ñ

〈F1, F2〉ñ =
∫
G(F )\G(AF )/F+

∞K∞K1,ñ

F1(g)F2(g) dg

(here z is the complex conjugate of z ∈C).
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Using the definition of the Atkin–Lehner operator (see (2.25)), the following identity can be
easily checked:

〈F1|Jñ, F2|Jñ〉ñ = 〈F1, F2〉ñ (7.1)

or, equivalently, by (2.27),

〈F1|Jñ, F2〉ñ = (−1)dk〈F1, F2|Jñ〉ñ. (7.2)

Similarly, using the definition of the trace operator (6.5), we have the following: if F1 is of
level ñ, F2 of level ñm, then

〈F1, F2〉ñm = 〈F1, F2|Trñmñ 〉ñ. (7.3)

Definition 7.2. The twisted Petersson pairing 〈, 〉′ñ for forms of level ñ, is defined by

〈F1, F2〉′ñ = 〈Fρ
1|Jñ, F2〉ñ

here ρ ∈Aut(C/Q) is complex cojugation, and Fρ
1 is the action of ρ on F1 as defined in (2.30).

Note that this pairing is C-bilinear.

From (7.3), we clearly have

〈F1, F2〉′ñm = 〈F1, F2|Trñmñ 〉
′
ñ. (7.4)

The reason for introducing the twist is as follows.

Proposition 7.3 [Hid91, p. 381]. The pairing 〈, 〉′ñ is self-adjoint with respect to the action of
all of the Hecke operators.

From the self-adjointness with respect to the Hecke operators, it follows that cusp forms are
orthogonal to the Eisenstein series, with respect to the twisted Petersson pairing. Similarly one
also obtains the following: given

F1 ∈ Sord
k (ñpα,Q)

F2 ∈Mk(ñpα,Q)

(α≥ 1), we have

〈F1, F2〉′ñ = 〈F1, F2|e〉′ñ. (7.5)

Using Proposition 7.3, one can deduce the following result.

Proposition 7.4 [Hid91, Lemma 9.3]. Let f ∈ Sord
k (npα,Q) be a p-ordinary newform. Then for

F ∈ Sord
k (npα,Q), we have the formula

lf (F) =
〈f , F〉′npα
〈f , f〉′npα

(7.6)

(note that by the remark after (6.2), lf (F) ∈Q).

Corollary 7.5. With f as in Proposition 7.4, we have, for F ∈Mord
k (napα,Q) (here a is an

integral ideal prime to p),

lgen
f ,na(F) =

〈f , F〉′napα
〈f , f〉′npα

. (7.7)

Proof. This follows by combining (7.4) and (7.6), together with the fact that, under the Petersson
pairing, cusp forms are orthogonal to Eisenstein series. 2
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Now we establish several preliminary results. Anticipating later calculations, consider the
following situation:

f ∈ Sord
k (npα, εψω2−k

F ) (α≥ 1),
g ∈Ml(cmpα, ζ).

Here we assume that f is a p-ordinary newform of tame level n, with U(p)-eigenvalue α(p, f),
while k > l; the ideals c and m are assumed to satisfy the condition that c is prime to p, while m

is divisible only by primes above p. We also assume that n divides c. Finally, ζ can be any Hecke
character of finite order, of conductor dividing cmpα.

With this setup, we have, as in Proposition 3.6, the Eisenstein series

Gk−l(εψζ−1ω2−k
F , cmpα) ∈Mk−l(cmpα, εψζ−1ω2−k

F ).

Note that, by Proposition 3.6, we have Gk−l(εψζ−1ω2−k
F , cmpα) = Gk−l(εψζ−1ω2−k

F , cmp). We
abbreviate it as Gk−l.

Consider the product

gGk−l ∈Mk(cmpα, εψω2−k
F ).

If we apply the ordinary projector e to gGk−l, then we obtain a p-ordinary form of level cmpα.
Recall that m is divisible only by primes above p. Now the character of this form is the same
as f , in particular, its conductor divides npα, and hence divides cpα (because we assumed that n

divides c). By the control Theorem 4.3, the p-part of the level of a p-ordinary form can be taken
to be the p-part of the level of its character (as long as pr divides the level). Thus, in our case,
we have

(gGk−l)|e ∈Mord
k (cpα, εψω2−k

F ).

In fact, we have a more precise statement.

Proposition 7.6 [Pan89, (4.11)]. Let F ∈Mk(cmpα), where α≥ 1, and m is divisible only by
primes above p. Then

F|U(m) = (−1)dkN (m)k/2−1F|(Jcmpα)(Trcmp
α

cpα )(Jcpα). (7.8)

In particular, F|U(m) ∈Mk(cpα).

(We note that in [Pan89, (4.11)] the sign (−1)dk is missing.)

By Corollary 7.5, we obtain

lgen
f ,c ((gGk−l)|e) =

〈f , (gGk−l)|e〉′cpα
〈f , f〉′npα

. (7.9)

We now unravel the term 〈f , (gGk−l)|e〉′cpα :

〈f , (gGk−l)|e〉′cpα =
1

α(m, f)
〈f |U(m), (gGk−l)|e〉′cpα

=
1

α(m, f)
〈f , (gGk−l)|eU(m)〉′cpα
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=
1

α(m, f)
〈f , (gGk−l)|U(m)e〉′cpα (since e and U(m) commute)

=
1

α(m, f)
〈f , (gGk−l)|U(m)〉′cpα (by (7.5))

=
1

α(m, f)
〈fρ|Jnpα , (gGk−l)|U(m)〉cpα . (7.10)

Now applying Proposition 7.6, we have

(gGk−l)|U(m) = (−1)dkN (m)k/2−1(gGk−l)|JcmpαTrcmp
α

cpα Jcpα . (7.11)

On the other hand, the following identity is easily verified:

fρ|Jnpα =N (n−1c)k/2fρ|V (n−1c)Jcpα . (7.12)

Combining (7.10)–(7.12), with the identities (7.1), (7.4), we obtain

〈f , (gGk−l)|e〉′cpα =
(−1)dk

α(m, f)
N (m)k/2−1N (n−1c)k/2〈fρ|V (n−1c), (gGk−l)|JcmpαTrcmp

α

cpα 〉cpα

=
(−1)dk

α(m, f)
N (m)k/2−1N (n−1c)k/2〈fρ|V (n−1c), (gGk−l)|Jcmpα〉cmpα . (7.13)

Now

(gGk−l)|Jcmpα = g|JcmpαGk−l|Jcmpα ,

and by (3.10) and the definition of Gk−l as in Proposition 3.6, we have

Gk−l|Jcmpα =
D
k−l−1/2
F N (cmpα)(k−l)/2Γ(k − l)d

(2πi)(k−l)d Kk−l(εψζ−1ω2−k
F , cmpα). (7.14)

Thus, we obtain (abbreviate Kk−l(εψζ−1ω2−k
F , cmpα) as Kk−l) the following result.

Lemma 7.7. We have

lgen
f ,c ((gGk−l)|e) = (−1)dk

D
k−l−1/2
F N (m)k/2−1N (n−1c)k/2N (cmpα)(k−l)/2Γ(k − l)d

α(m, f)(2πi)(k−l)d

× 〈f
ρ|V (n−1c), g|JcmpαKk−l〉cmpα

〈f , f〉′npα
. (7.15)

The term 〈fρ|V (n−1c), g|JcmpαKk−l〉cmpα is related to a special value of an L-function, by the
formula of Rankin–Selberg. We recall the formalism.

Definition 7.8. Given forms F1 ∈Mk(ñ, ψ1), F2 ∈Ml(ñ, ψ2), define the Rankin–Selberg
L-function of F1 and F2:

L(s, F1, F2) =
∑
m

C(m, F1)C(m, F2).N (m)−s. (7.16)

The completed Rankin–Selberg L-function is obtained by multiplying suitable factors
([Pan89, (0.2)]):

Ψ(ñ)(s, F1, F2) = (2π)−2dsΓ(s)dΓ(s+ 1− l)dL(ñ)(2s+ 2− k − l, ψ1ψ2)L(s, F1, F2). (7.17)
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From the definition, it is immediate that

Ψ(ñ)(s, F1|V (a), F2|V (b)) =N (ab)−sΨ(ñ)(s, F1|U(b), F2|U(a)) (7.18)

for any integral ideal a, b which are relatively prime.
We need the formula of Rankin–Selberg, which expresses this L-function in terms of a

Petersson inner product.

Theorem 7.9 [Pan89, (4.7)]. Assume that F1 ∈ Sk(ñ, ψ1), F2 ∈Ml(ñ, ψ2), with k > l. Then
Ψ(ñ)(s, F1, F2) extends to a entire function on the complex plane, and we have

Ψ(ñ)(s, F1, F2) =D
1/2
F π−dsΓ(s+ 1− l)d〈Fρ

1, F2Kk−l(s+ 1− k)〉ñ (7.19)

here Kk−l(s) =Kk−l(s, ψ1ψ2, ñ) is the Eisenstein series as in (3.8).

Applying Theorem 7.9 to the situation, we have

F1 = f |V (n−1c)
F2 = g|Jcmpα

ñ = cmpα

s = k − 1.

We then obtain from Lemma 7.7 the following result.

Lemma 7.10. We have

lgen
f ,c ((gGk−l)|e) = (−1)dk

Dk−l−1
F π(k−1)dN (m)k/2−1N (n−1c)k/2N (cmpα)(k−l)/2

α(m, f)(2πi)(k−l)d

× Ψ(cp)(k − 1, f |V (n−1c), g|Jcmpα)
〈f , f〉′npα

. (7.20)

Now we specialize Lemma 7.10. Suppose that g ∈Ml(cm, ζ) is an eigenform, with U(p)-
eigenvalue α(p, g). Put m0 =

∏
p|p p. Define, similar to (5.2),

g00 = g
∣∣∣∣∏

p|p

(1− α(p, g)V (p))

= g
∣∣∣∣(∑

h|m0

µ(h)α(h, g)V (h)
)

∈ Ml(cmm0, ζ); (7.21)

here µ is the Möbius function: it is the multiplicative function on the set of integral ideals, such
that for q a prime ideal,

µ(qn) =

{
−1 if n= 1,
0 if n > 1.

We would like to compare

lgen
f ,c ((g00Gk−l)|e)

and

lgen
f ,c ((gGk−l)|e).

By formula (7.10), it suffices to relate g00|Jcmm0pα to g|Jcmpα .
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The following identity can be easily checked:

g|V (h)Jcmm0pα =N (m0)l/2N (h)−lg|JcmpαV (m0h
−1). (7.22)

This gives

g00|Jcmm0pα =N (m0)l/2g|Jcmpα |
(∑

h|m0

µ(h)α(h, g)N (h)−lV (m0h
−1)
)
. (7.23)

Hence, we obtain

Ψ(cp)(k − 1, f |V (n−1c), g00|Jcmm0pα)

=N (m0)l/2
(∑

h|m0

µ(h)α(h, g)N (h)−lΨ(cp)(k − 1, f |V (n−1c), g|JcmpαV (m0h
−1))

)

=N (m0)l/2
(∑

h|m0

µ(h)α(h, g)N (h)−lN (m0h
−1)−(k−1)

×Ψ(cp)(k − 1, f |V (n−1c)U(m0h
−1), g|Jcmpα)

)
. (7.24)

Now the operators V (n−1c) and U(m0h
−1) commute, since the ideals n−1c and m0h

−1 are
relatively prime. Thus, (7.24) becomes

N (m0)l/2
(∑

h|m0

µ(h)α(h, g)N (h)−lN (m0h
−1)−(k−1)

×Ψ(cp)(k − 1, f |U(m0h
−1)V (n−1c), g|Jcmpα)

)
=N (m0)l/2−(k−1)

(∑
h|m0

µ(h)α(h, g)α(m0h
−1, f)N (h)k−l−1

)
×Ψ(cp)(k − 1, f |V (n−1c), g|Jcmpα)

=N (m0)l/2−(k−1)α(m0, f)
∏
p|p

(
1− N (p)k−l−1α(p, g)

α(p, f)

)
×Ψ(cp)(k − 1, F|V (n−1c), g|Jcmpα). (7.25)

Applying Lemma 7.10 to g00 and g, using the results (7.24)–(7.25), we obtain the following.

Lemma 7.11. We have

lgen
f ,c ((g00Gk−l)|e) =

∏
p|p

(
1− N (p)k−l−1α(p, g)

α(p, f)

)
lgen
f ,c ((gGk−l)|e). (7.26)

At last we are ready to give the proof of Theorem 6.8.

Proof of Theorem 6.8. In this proof, the notation are as in § 6. Let F ∈ S(n, ψ, I) be an I-adic
form, with specializations fP ∈ SkP (npαP , εPψω

2−kP
F ) for P ∈ Xalg(I).

Let r ≥ 0 be an integer. Assume that P satisfies

kP − r − 1≥ 1, and condition (1) of Definition 6.2 holds. (7.27)
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We now take

g = EkP−r−1(χφω−rF , εP θω
1−kP
F )

= EkP−r−1(χφω−rF , εP θω
1−kP
F )0 (as P satisfies (7.27)) (7.28)

which we abbreviate as EkP−r−1. Recall that α(p,EkP−r−1) = χφω−rF (p). We have

EkP−r−1 ∈MkP−r−1(cφcθcχpαP , εPχφθω
1−kP−r
F ).

In the notation of this section,
l = kP − r − 1
ζ = εPχφθω

1−kP−r
F

c = cφc
(p)
θ

m = cχ

(7.29)

and we have
GkP−l = Gr+1(ψ(χφθ)−1ωr+1

F , cφcθp). (7.30)

From Definition 6.7 of p-adic L-functions, we calculate

Lp(r + 1, fP , χ, φ, θ) = lgen

fP ,cφc
(p)
θ

(∫
ZF (r)

〈·〉rFχ dm̂P,φ,θ

)
=
(∫

ZF (r)
〈·〉rFχ dsP,φ,θ

)
lgen

fP ,cφc
(p)
θ

(∫
ZF (r)

〈·〉rFχ dmP,φ,θ

)
= (−1)rd

(∫
ZF (r)

〈·〉rFχ dsP,φ,θ
)
lgen

fP ,cφc
(p)
θ

(∫
ZF (r)

χ dmP,φ,θ,r

)
(by (5.18))

= (−1)rd
(∫

ZF (r)
〈·〉rFχ dsP,φ,θ

)
lgen

fP ,cφc
(p)
θ

(
(E00

kP−r−1Gr+1)|e
)
. (7.31)

By Lemma 7.11, we obtain

Lp(r + 1, fP , χ, φ, θ) =
∏
p|p

(
1−

χφω−rF (p)N (p)r

α(p, f)

)
lgen

fP ,cφc
(p)
θ

((E0
kP−r−1Gr+1)|e). (7.32)

It follows that if we define

L∗p(r + 1, F , χ, φ) = (−1)rd
(∫

ZF (r)
〈·〉rFχ dsP,φ,θ

)
lF ((H(χ, φ, θ, r)0). (7.33)

Then,

L∗p(r + 1, F , χ, φ) ∈
⋂

P∈X(I)alg

IP

and the equation

Lp(r + 1, F , χ, φ) =
(∏

p|p

(
1−

χφω−rF (p)N (p)r

α(p, F)

))
L∗p(r + 1, F , χ, φ)

is valid upon specialization at those P which satisfy (7.27). Since these P are Zariski dense in
Xalg(I), they must coincide. Thus, we obtain the first part of the theorem.

Now assume, in addition, that θ is adapted to fP . To complete the proof of the theorem, it
remains, by Lemma 7.10, to evaluate the following:

Ψ(cφcθp)(kP − 1, fP |V (n−1c
(p)
θ cφ),Ekp−r−1(χφω−rF , εP θω

1−kP
F )|Jcθcχω−r

F
cφp

αP ).
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We calculate, using an identity similar to (7.12), and (7.18),

Ψ(cφcθp)(kP − 1, fP |V (n−1c
(p)
θ cφ),Ekp−r−1(χφω−rF , εP θω

1−kP
F )|Jcθcχω−r

F
cφp

αP )

=N (c−1

εPθω
1−kP
F

cθp
αP )(kP−r−1)/2 ×Ψ(cφcθp)(kP − 1, fP |V (n−1c

(p)
θ cφ),

Ekp−r−1(χφω−rF , εP θω
1−kP
F )|Jc

εP θω
1−kP
F

c
χω−r
F

cφV (c−1

εPθω
1−kP
F

cθp
αP ))

=N (c−1

εPθω
1−kP
F

cθp
αP )(1−kP−r)/2N (n−1c

(p)
θ cφ)−(kP−1)

×Ψ(cφcθp)(kP − 1, fP |U(c−1

εPθω
1−kP
F

cθp
αP ),

Ekp−r−1(χφω−rF , εP θω
1−kP
F )|Jcθcχω−r

F
cφp

αP U(n−1c
(p)
θ cφ))

=N (c−1

εPθω
1−kP
F

cθp
αP )(1−kP−r)/2N (n−1c

(p)
θ cφ)−(kP−1)α(c−1

εPθω
1−kP
F

cθp
αP , fP )

×Ψ(cφcθp)(kP − 1, fP ,Ekp−r−1(χφω−rF , εP θω
1−kP
F )|Jcθcχω−r

F
cφU(n−1c

(p)
θ cφ)) (7.34)

(note that c−1

εPθω
1−kP
F

cθp
αP = (c

εPθω
1−kP
F

)−1
p cθ,pp

αP , thus is divisible only by primes above p).

By (3.17),

EkP−r−1(χφω−rF , εP θω
1−kP
F )|Jc

εP θω
1−kP
F

c
χω−r
F

cφ

=
(−1)d(1−kP )

N c
εP θω

1−kP
F

N (cχω−rF cφcεP θω
1−kP
F

)(kP−r−1)/2N (cχω−rF cφ)1−(kP−r−1)

× τ((χφω−rF )−1)−1τ(εP θω
1−kP
F )EkP−r−1((εP θω

1−kP
F )−1, (χφω−rF )−1). (7.35)

Now EkP−r−1((εP θω
1−kP
F )−1, (χφω−1

F )−r) is an eigenvector for U(n−1c
(p)
θ cφ), with eigenvalue

given by the normalized Fourier coefficient at the ideal n−1c
(p)
θ cφ:

C(n−1c
(p)
θ cφ,EkP−r−1((εP θω

1−kP
F )−1, (χφω−1

F )−r))

=
∑

ab=n−1c
(p)
θ cφ

(εP θω
1−kP
F )−1(a)× (χφω−1

F )−r(b)N (b)kP−r−2

= (εP θω
1−kP
F )−1(cφ)× (χφω−rF )−1(n−1c

(p)
θ )N (n−1c

(p)
θ )kP−r−2. (7.36)

Thus, it remains to evaluate Ψ(cφcθp)(kp − 1, fP ,EkP−r−1((εP θω
1−kP
F )−1, (χφω−rF )−1). This is

achieved by employing the following general identity, which is similar to (3.16).

Proposition 7.12 [Shi78]. We have

Ψ(cζ1 cζ2p)(fP ,El(ζ1, ζ2)) = (2π)−2dsΓ(s)dΓ(s+ 1− l)dL(s+ 1− l, fP , ζ1)L(s, fP , ζ2). (7.37)

Combining (7.20), (7.34)–(7.37), we obtain

P (L∗p(r + 1, F , χ, φ, θ)) =
1

α(cχω−rF , fP )
Dr
FΓ(r + 1)dN (cχω−rF cφ)r+1

×
L(r + 1, fP , (χφω−rF )−1)
(−2πi)drτ((χφω−rF )−1)

TP (θ)
〈fP , fP 〉′npαP

,
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where TP (θ) ∈C is independent of χ, r, and depends only on P, fP , and θ. Although the
expression is complicated, all we really need is the fact that it is non-zero, by the assumption
that θ is adapted to fP :

TP (θ) = πd(kP−1)(2π)−2d(kP−1)(−2πi)−dτ(εP θω1−k
F )Γ(kP − 1)d

× α((c
εP θω

1−kP
F

)−1
,p p

αP , fP )N (n−1c
(p)
θ )kP /2−1N (c

εPθω
1−kP
F

)kP−2

×N (cθpαP )1−kP /2N (cθ,p)kP /2−1L(kP − 1, fP , (εP θω
1−kP
F )−1).

Thus, we obtain the form required for the value P (L∗p(r + 1, F , χ, φ, θ)), by setting

Ω(fP , θ) =
〈fP , fP 〉′npαP

TP (θ)
. 2

8. Application to exceptional zero conjecture

8.1 In this section, we prove a special case of the exceptional zero conjecture for weight-
two Hilbert modular forms, following the argument of Greenberg–Stevens [GS93, GS94]. In
the following, for the existence of p-adic Galois representation associated to p-ordinary Hilbert
eigenforms we refer to [Wil88, § 2] (the general case was treated by Taylor [Tay89] and Blasius–
Rogawski [BR93]).

We first illustrate with the case of modular elliptic curves over totally real fields. Let E/F
be an elliptic curve over the totally real field F , such that E has ordinary reduction (i.e. good
ordinary or multiplicative) at all places p above p.

Let ρE : Gal(F/F )→GL2(Qp) be the representation on the p-adic Tate module of E. Assume
that E is modular, in the sense that there is a Hilbert newform fE of weight two, tame level n, with
trivial character, such that ρE ∼= ρfE , where ρfE is the p-adic Galois representation associated to
fE (fE is necessarily p-ordinary). One has the equality of the L-function of E/F , and that of fE :

L(s, E/F ) = L(s, fE). (8.1)

Write α(p, E) = α(p, fE), β(p, E) = β(p, fE) (thus, β(p, E) = α(p, E)−1Np if E has good
reduction at p, and zero otherwise).

Let f be the p-stabilization of fE , cf. (4.15):

f = fE

∣∣∣∣∏
p|p

(1− β(p, E)V (p)).

Then f is a p-ordinary newform of tame level n, with U(p)-eigenvalue given by α(p, E) for all p

above p (thus C(p, f) = α(p, E)). Note that

L(s, f) =
∏
p|p

(
1− β(p, E)

(Np)s

)
L(s, fE). (8.2)

We can then apply our constructions from previous sections to f . In particular, we fix a
choice of θ adapted to f , we have the p-adic L-function Lp(s, f), which we define to be the p-adic
L-function of E/F , also noted as Lp(s, E/F ). Similarly, we denote the transcendental factor
Ω(f , θ) as Ω(E).

Theorem 8.1. Assume that for some place p0 of F above p, E is split-multiplicative at the
place p0; equivalently, some place p0 where the U(p0) eigenvalue of f , α(p0, f), is equal to one.
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Denote by fp0/p
the residue field degree of Fp0

over Qp, and by qE/Fp0
the Tate period associated

to E/Fp0
. Then Lp(1, E/F ) = 0, and we have the formula

d

ds
Lp(s, E/F )

∣∣∣∣
s=1

= fp0/p

logp NFp0/Qp
qE/Fp0

ordpN Fp0/Qp
qE/Fp0

×
∏
p6=p0

(
1− 1

α(p, E)

)∏
p|p

(
1− β(p, E)

Np

)
L(1, E/F )

Ω(E)
. (8.3)

Here logp is normalized so that logp(p) = 0.

The quantity

fp0/p

logp N Fp0/Qp
qE/Fp0

ordpNFp0/Qp
qE/Fp0

will be denoted as Lp0
(E/F ), the L-invariant at the place p0.

Theorem 8.1 is a special case of Theorem 8.2 below, in the following more general context.
Let f ∈ Sord

2 (np, ψ) be a p-ordinary newform. For each p above p, f is called multiplicative at p,
if p exactly divides the conductor of f , but does not divide the conductor of its character ψ. In
this case, we have α(p, f)2 = 1, and f is called split-multiplicative at p if, furthermore, we have
α(p, f) = 1.

Attached to f is the Hilbert modular p-adic Galois representation of GF = Gal(F̄ /F ):

ρf : Gal(F̄ /F )→GL2(Qp)

that is unramified outside np, characterized by the condition

trρf (Frobq) = C(q, f)

for primes q not dividing np (here Frobq is a Frobenius element at the prime q). One also has
det ρf = ψχcycl, where χcycl :GQ→ Z×p is the p-adic cyclotomic character.

For p above p, let GFp = Gal(F̄p/Fp) be the decomposition group at p, which by our chosen
embedding of Q→Qp , can be regarded as a subgroup of GF . Then if f is split multiplicative
at p, we have an exact sequence of Gal(F̄p/Fp) representations:

0→Qp(χcycl)→ ρf |GFp
→Qp → 0. (8.4)

This extension defines an element in H1(GFp ,Qp(χcycl)), which by Kummer theory is isomorphic
to

(lim
←−
n

F×p /(F
×
p )p

n
)⊗Zp Qp .

It is known that this extension element admits a Tate period, in the sense that there exists a
(necessarily unique) qf ,p ∈ F×p , not a p-adic unit, such that the extension element is given by the
image of qf ,p ⊗ 1.

The author is grateful to Hida for providing the following proof of the claim that the extension
has a Tate period. If [F : Q] is odd, take a quaternion algebra B/F ramified exactly at all but
one of the infinite places of F . On the other hand, if [F : Q] is even, we take a quaternion algebra
B/F ramified exactly at the place p and all but one of the infinite places. In both cases, the
Jacquet–Langlands correspondence allows us to find a Hecke eigenform fB on a Shimura curve
SB associated to B, with the same Hecke eigenvalues as our original Hilbert modular form f ,
cf. [Car86b] (if [F : Q] is even, we need to use the assumption that f is multiplicative at p).
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The p-adic Galois representation ρf is realized on the p-adic Tate module of the factor A of the
Jacobian of SB, corresponding to fB. More precisely, let E = End(A)⊗Z Q be the endomorphism
algebra of A. Then ρf is isomorphic to TpA⊗E⊗Qp Qp, where the map from E ⊗Qp to Qp is
given by our fixed embedding of Q into Qp .

By Blasius [Bla06], the p-adic Galois representation ρf fits into a strictly compatible system,
which by uniqueness must coincide with the strictly compatible system {Vλ = TlA⊗E⊗Ql

Ql}λ,
here λ ranges over the places of E, while l is the place of Q lying under λ, so λ corresponds to
an embedding of E into Ql.

Thus by Blasius’ results [Bla06], the assumption that f is split-multiplicative at p, implies that
for λ not dividing p, Vλ|GFp

is unipotent. By the semi-stable reduction theorem of Grothendieck
[SGA7, Exposé IX, Proposition 3.5], A has to be split-multiplicative, and we have its Tate period.

If [F : Q] is odd, we can also appeal to the result of Carayol [Car86a], that the level group
at p is of Γ0(p)-type, so SB and hence A have to be split-multiplicative reduction at p, and we
have its Tate period.

Theorem 8.2. Assume that for some place p0 of F above p, f is split-multiplicative at the place
p0. Let qf ,p0

be its Tate period at the place p0. Then Lp(1, f) = 0, and we have the formula

d

ds
Lp(s, f)

∣∣∣∣
s=1

= Lp0
(f)

∏
p6=p0

(
1− 1

α(p, E)

)
L(1, f)
Ω(f)

, (8.5)

where

Lp0
(f) = fp0/p

logp N Fp0/Qp
qf ,p0

ordpNFp0/Qp
qf ,p0

is the L-invariant of f at the place p0.

The fact that Theorem 8.2 implies Theorem 8.1, follows by combining (8.1), (8.2), (8.5), and
the well-known result that the Tate period of an elliptic curve, split multiplicative at the prime
above p (which is defined using p-adic uniformization), coincides with the Tate period at that
prime, defined by using the Galois representation on the p-adic Tate module.

Following Greenberg–Stevens, Theorem 8.2 follows from the properties of the two-variable
p-adic L-function attached to the Hida family that lifts f .

In the situation of Theorem 4.4, we take F ∈ S(n, I) to be a Hida family lifting f , and
P ∈ Xalg(I), with P |ΛF = P2, such that f = P ◦ F . We also have IP being étale over ΛF,P2 (recall
that in this notation, P2 = P2,ε, with ε= 1). We have the two-variable p-adic L-function Lp(s, F),
which lies in IP (see Definition 6.7 and (6.11)).

For this argument, we only need the deformation along the ‘cyclotomic direction’, i.e. we
only need the use the weights Pk ∈ Xalg(ΛF ) with k ≥ 2. Analytically, this can be interpreted
as follows.

Let R be the subring of Qp [[κ− 2]] consisting of formal power series in κ− 2, with positive
radius of convergence. We have an algebra homomorphism:

P̃2 : ΛF →R

by sending an element of the form 〈[l]〉 (with l prime to np) to the power series in R representing
the analytic function κ 7→ 〈l〉κ−2

F (recall that, in the notation of the paragraph following (4.5),
〈l〉F = 〈N (l)〉Q is the composition of the norm map with the projection to the one-units).
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Now the ring R of convergent power series is Henselian ([Nag62, Theorem 45.5]). Hence,
from the property that IP is étale over ΛF,P2 , the map P̃2 extends uniquely to IP (which we still
denote as P̃2):

P̃2 : IP →R.
By applying this map to the Fourier coefficients of the Hida family F , we obtain a formal Fourier
expansion with coefficients in the ring R, which we can specialize at integer weight k ≥ 2, with
k in a suitable p-adic neighbourhood of two, to obtain the Fourier expansion of a classical
eigenform fk (note that since the universal p-ordinary Hecke algebra hord(n,O) is finite over ΛF ,
the Fourier coefficients of the eigenform F is generated over ΛF by finitely many of them, hence
there is a single radius of convergence which works for all of the coefficients).

Notation 8.3. We denote by α(p, κ) the image of the elements α(p, F) inR. Similarly, for s ∈ Zp,
denote by Lp(s, κ) the image of Lp(s, F) in R. Thus, Lp(s, κ) is a p-adic analytic function of the
two variables s, κ, for s ∈ Zp, and κ in some p-adic disc around two. Note that α(p, 2) = α(p, E),
Lp(s, 2) = Lp(s, f).

The theorem then follows from the following series of lemmas. For the first, we need a
functional equation.

Proposition 8.4. We have

Lp(s, κ) = εp〈n〉κ/2−sF Lp(κ− s, κ) (8.6)

where εp = (−1)eε∞, with ε∞ being the sign of the archimedean functional equation associated
to the newform whose p-stabilization is f , and e is the number of places above p where f is split
multiplicative (i.e. those places p with α(p, f) = 1).

Proof. This follows from the archimedean functional equation. For details, see Appendix Ap-
pendix B. 2

In particular, specializing to κ= 2, we have

Lp(s, f) = εp〈n〉1−sF Lp(2− s, f). (8.7)

We begin to prove Theorem 8.2. It is clear, from (6.9), that Lp(1, f) = 0. By considering
partial derivatives of (8.6) at (s, κ) = (1, 2), we obtain the following result.

Lemma 8.5. We have

∂

∂s
Lp(s, κ)

∣∣∣∣
(1,2)

= 0 if εp = 1,

∂

∂s
Lp(s, κ)

∣∣∣∣
(1,2)

=−2
∂

∂κ
Lp(s, κ)

∣∣∣∣
(1,2)

if εp =−1.
(8.8)

Now, in the notation of Proposition 8.4, we have εp = (−1)eε∞, with e≥ 1. First suppose
that εp = 1. If e= 1, then ε∞ =−1, so L(1, f) = 0. If e≥ 2, then

∏
p6=p0

(1− (1/α(p, f))) = 0. So,
by (8.8), we see that Theorem 8.2 is trivially true if εp = 1. Thus, we may assume that εp =−1.

Lemma 8.6. We have

∂

∂κ
Lp(s, κ)

∣∣∣∣
(1,2)

=
d

dκ
α(p0, κ)

∣∣∣∣
κ=2

∏
p 6=p0

(
1− 1

α(p, f)

)
L(1, f)
Ω(f)

. (8.9)
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Proof. As a consequence of Theorem 6.8, we have

Lp(1, κ) =
∏
p|p

(
1− 1

α(p, κ)

)
L∗p(κ), (8.10)

where L∗p(κ) ∈R satisfies

L∗p(2) =
L(1, f)
Ω(f)

. (8.11)

Thus, the result follows upon differentiation by using α(p0, 2) = α(p0, f) = 1. 2

The following proposition is the final ingredient for the proof of Theorem 8.2.

Proposition 8.7. We have

d

dκ
α(p0, κ)

∣∣∣∣
κ=2

=−1
2
fp0/p

logp N Fp0/Qp
qf ,p0

ordpNFp0/Qp
qf ,p0

. (8.12)

This was proved by Greenberg–Stevens in the case where F = Q. We follow their strategy.
First we introduce some terminology. Let G be a topological group. Fix a (continuous)

representation:
ρ :G→AutQp

(V )

with V a finite-dimensional vector space over Qp .

Let Q̃p be the ring of dual numbers over Qp , i.e.

Q̃p = Qp [t]/(t2).

An infinitesimal deformation of ρ is a representation ρ̃ on a free Q̃p-module Ṽ :

ρ̃ :G→Aut
Q̃p

(Ṽ )

such that the G-representations V and Ṽ /tṼ are isomorphic.
We are going to apply Hida’s deformation theory to construct deformations of Hilbert modular

Galois representations.
As in our setting of Theorem 8.2, take a p-ordinary weight two Hilbert eigenform

f ∈ Sord
2 (npα, ψ), and a Hida family F ∈ Sord(n, I) lifting f . For each P ∈ Xalg(I), let fP be the

specialization of F at P . Let ρfP be the p-adic Hilbert modular Galois representation associated
to fP :

ρfP : Gal(F̄ /F )→GL2(Qp)
characterized by the condition that it is unramified outside np, and satisfies

trρfk(Frobq) = C(q, fk)

for primes q not dividing np. These Galois representations can be interpolated and form a
deformation of ρf . This is the content of the following theorem.

Theorem 8.8 [Wil88, Theorem 2.2.1]. With notation as above, there is a Galois representation

ρF : Gal(F̄ /F )→GL2(QI)

unramified outside np, satisfying

trρF (Frobq) = C(q, F)

for primes q not dividing np.
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Furthermore, for P ∈ Xalg(I), the representation ρF can be conjugated to take values in
GL2(IP ), and whose specialization at P , obtained by composing with the reduction map
IP →IP /PIP , is isomorphic to ρfP (up to extension of coefficient field to Qp).

For the proof of Proposition 8.7, we need to know the structure of ρF |GFp0
. This is given by

Theorem 8.9 below (which is the analogue of (8.4)). To state this, we first have some notation.

Let 〈[·]〉 : ZF (n)→ Λ×F be the (tautological) character sending l to 〈[l]〉 for ideals l prime to np.
By global class field theory, ZF (n) is a quotient of GF = Gal(F̄ /F ). Hence, 〈[·]〉 can be regarded
as a character of GF . From the property of the global Artin map, we see that, as a character of
GF , Pk ◦ 〈[·]〉= 〈χcycl〉k−2

Q .

On the local side, let σFp0
: F×p0

→GabFp0
be the local Artin map, normalized so that for π a

uniformizer of Fp0
, σFp0

(π) gives the inverse of Frobenius on unramified extensions of Fp0
. With

this normalization, we have, for any q ∈ F×p0
,

χcycl(σFp0
(q)) = χcycl(σQp(N Fp0/Qp

(q)))

= (NFp0/Qp
(q))p−ordp(NFp0/Qp

(q))
. (8.13)

Now going back to the situation of Theorem 8.8. Fix a P ∈ Xalg(I). Let M be a IP -lattice
of ρF , i.e. M is a free IP -module of rank two, with an action of GF , such that ρF ∼=M ⊗QI
as QI [GF ]-modules. The next theorem gives the structure of M as a IP [GFp0

]-module. In the
following, if φ :GFp0

→IP is a character, then we denote by IP (φ) the free IP -module of rank
one, with GFp0

-action given by φ.

Theorem 8.9 [Wil88, Theorem 2.2.2]. We have an exact sequence of IP [GFp0
]-modules:

0→IP (χcycl〈[·]〉α−1)→M →IP (α)→ 0 (8.14)

with α :GFp0
→I is the unramified character sending the Frobenius to α(p0, F).

Proof of Proposition 8.7. We apply Theorem 8.9, taking P ∈ Xalg(I), P |ΛF = P2, with P ◦ F = f .
By tensoring the exact sequence (8.14) with the map P̃2 : IP →R, we obtain the exact sequence
of R[GFp0

]-modules:

0→R(χcycl〈[·]〉κα−1
κ )→M ⊗IP R→R(ακ)→ 0; (8.15)

here 〈[·]〉κ and ακ denote the characters obtained by composing 〈[·]〉, respectively α, with the
map P̃2. With t= κ− 2, we have R/(t) = Qp , and R/(t2) = Qp [[t]]/(t2) = Q̃p. Hence,

ρ̃f :=M ⊗IP
R

(t2)

is an infinitesimal deformation of

ρf ∼=M ⊗IP
R
(t)
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and we obtain the following commutative diagram of Q̃p[GFp0
]-modules (the vertical arrows

being reduction modulo t).

0 // Q̃p(χcycl〈[·]〉κα−1
κ ) //

��

ρ̃f //

��

Q̃p(ακ) //

��

0

0 // Qp(χcycl) // ρf // Qp
// 0

(8.16)

Now twist the upper row by 〈[·]〉−1
κ ακ. Since this character is congruent to one modulo t, we still

have the following commutative diagram.

0 // Q̃p(χcycl) //

��

ρ̃f //

��

Q̃p(〈[·]〉−1
κ α2

κ) //

��

0

0 // Qp(χcycl) // ρf // Qp
// 0

(8.17)

Recall that qf ,p0
is the Tate period associated to the extension of the bottom row of (8.17). Now

we invoke the lemma of Greenberg–Stevens ([GS94, Theorem 2.3.4], or [Hid, Theorem 4.7]): an
argument involving local Tate duality [Hid, Theorem 4.7] shows that (8.17) implies

d

dκ
(〈[·]〉−1

κ α2
κ)(σFp0

(qf ,p0
))
∣∣∣∣
κ=2

= 0. (8.18)

Denote by n= ordp0
qf ,p0

= f−1
p0/p

ordpN Fp0/Qp
qf ,p0

. Then using (8.13), we compute

(〈[·]〉−1
κ α2

κ)(σFp0
(qf ,p0

)) = 〈χcycl(σFp0
(qf ,p0

)〉2−κQ α(κ, p0)−2n

= 〈NFp0/Qp
(qf ,p0

)〉2−κQ α(κ, p0)−2n. (8.19)

Using the formula
d

dκ
〈NFp0/Qp

(qf ,p0
)〉2−κQ

∣∣∣∣
κ=2

=−logp N Fp0/Qp
qf ,p0

we see that (8.18) gives (upon differentiating (8.19))

−logp NFp0/Qp
qf ,p0

− 2n
d

dκ
α(p0, κ)

∣∣∣∣
κ=2

= 0.

This finishes the proof of Proposition 8.7, and hence Theorem 8.2. 2

Remark 8.10. In the definition of p-adic L-function for f , there is an inherent choice for the
transcendental factor Ω(f). It is clear that if Ω(f)′ is a complex number such that Ω(f)′/Ω(f) ∈
Q×, then it can also be used to define the p-adic L-function of f , by an appropriate scaling.
Theorem 8.1 is unaffected by this choice.

9. Exceptional zeros of higher order

The method of Greenberg–Stevens works only for exceptional zeros of order one. More generally,
we have the following conjecture of Greenberg [Gre94] and Hida [Hid].

Let E/F be a modular elliptic curve over F . Assume that E is ordinary at all places above p,
and let e be the number of places above p over which E is split-multiplicative. Equivalently, e is
the number of places p|p such that α(p, E) = 1.
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Let Ω(E) be the period which we used to define the p-adic L-function of E/F .

Conjecture 9.1. We have

Lp(s, E/F ) = Lp(E/F )
∏
p|p

α(p,E)6=1

(
1− 1

α(p, E)

)

×
∏
p|p

(
1− β(p, E)

Np

)
L(1, E/F )

Ω(E)
(s− 1)e + higher-order terms,

where Lp(E/F ) is the L-invariant of E, defined as follows:

Lp(E/F ) =
∏
p|p

α(p,E)=1

Lp(E/F )

with

Lp(E/F ) = fp/p
logp NFp/Qp

qE/Fp

ordpNFp/Qp
qE/Fp

for prime p, where E becomes split-multiplicative, with Tate period qE/Fp
∈ Fp.

Using the same technique as in § 8, one sees that the conjecture is equivalent to the following
assertion: if Lp(s, κ) is the associated two-variable p-adic L-function, then

∂i

∂si
Lp(s, κ)

∣∣∣∣
(1,2)

= 0 for i < e,

∂e

∂se
Lp(s, κ)

∣∣∣∣
(1,2)

= (−2)e
∂e

∂κe
Lp(s, κ)

∣∣∣∣
(1,2)

.

In the rest this section we examine the situation for forms base changed from Q to an abelian
extension F .

Proposition 9.2. Let E/Q be a (modular) elliptic curve over Q, split-multiplicative at p. Let F
be a totally real finite abelian extension of Q, with p unramified in F . Then the conjecture is
true for E/F .

In fact, this proposition will follow as a corollary of the factorization formula of p-adic
L-functions.

Proposition 9.3. Let F be a totally real finite abelian extension of Q, with p unramified
in F . Let H = Gal(F/Q), Ĥ its character group, identified as the group of Dirichlet characters
associated to F/Q. Given f a weight-two newform over Q, let f be the base change of f to F .
Suppose that Ω(f ⊗ φ) is the period used to define the p-adic L-function off ⊗ φ. Then we can
define the p-adic L-function of f by taking the period Ω(f) as

∏
φ∈Ĥ Ω(f ⊗ φ). With this choice,

we have the factorization

Lp(s, f) = 〈DF 〉s−1
Q

∏
φ∈Ĥ

Lp(s, f ⊗ φ).

Proof that Proposition 9.3 implies Proposition 9.2. Thus, let E be a elliptic curve over Q, split-
multiplicative at p, with Tate period qE ∈Qp. Let f be the weight-two newform associated to
E, which is a p-ordinary newform. Let f its base change to F . Here f is again p-ordinary. In fact,
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we have the following relation

α(p, f) = α(Np, f) for p|p. (9.1)

By the original theorem of Greenberg–Stevens [GS93] (or Theorem 8.2 in the case F = Q),
the exceptional zero conjecture is true for those forms f ⊗ φ which are split-multiplicative at p.
Thus, for φ ∈ Ĥ with φ(p) = 1, then

Lp(s, f ⊗ φ) = Lp(f ⊗ φ)
L(1, f ⊗ φ)
Ω(f ⊗ φ)

(s− 1) + higher-order terms (9.2)

with

Lp(f ⊗ φ) = Lp(f) = Lp(E/Q) =
logp(qE)
ordp(qE)

.

On the other hand, if φ(p) 6= 1, then

Lp(s, f ⊗ φ) =
(

1− 1
φ(p)

)
L(1, f ⊗ φ)
Ω(f ⊗ φ)

+ higher-order terms. (9.3)

In our case e is exactly the number of places of F above p, and an elementary argument
(for example, [Was97, Theorem 3.7]) shows that it is equal to the number of φ ∈ Ĥ such that
φ(p) = 1. Furthermore, the residue field extension degree fp/p = d/e is the same for all of the
primes p above p, and similar considerations give∏

φ∈Ĥ,φ(p)6=1

(
1− 1

φ(p)

)
= fep/p. (9.4)

Now, from Proposition 9.3,

Lp(s, E/F ) = Lp(s, f) =
∏

φ∈Ĥ,φ(p)6=1

(
1− 1

φ(p)

) ∏
φ∈Ĥ,φ(p)=1

Lp(E/Q)
∏
φ∈Ĥ

L(1, f ⊗ φ)
Ω(f ⊗ φ)

(s− 1)e

+ higher-order terms. (9.5)

We have∏
φ∈Ĥ,φ(p)6=1

(
1− 1

φ(p)

) ∏
φ∈Ĥ,φ(p)=1

Lp(E/Q) = (fp/pLp(E/Q))e =
∏
p|p

fp/p
logp qE
ordpqE

=
∏
p|p

fp/p
logp NFp/Qp

qE/Fp

ordpNFp/Qp
qE/Fp

=
∏
p|p

Lp(E/F )

= Lp(E/F ). (9.6)

By the classical factorization,

L(1, E/F ) = L(1, f) =
∏
φ∈Ĥ

L(1, f ⊗ φ) (9.7)

the proposition follows, if we choose
∏
φ∈Ĥ Ω(f ⊗ φ) as a period to define the p-adic L-function

for E/F . 2

For the proof of Proposition 9.3, we need a Gauss sum identity, analogous to that of Hasse–
Davenport. In the following, for a Dirichlet character χQ, we denote by cχQ its conductor
(as opposed to a German Gothic letter for Hecke characters over F ).

43

https://doi.org/10.1112/S0010437X08003813 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X08003813


C. P. Mok

Lemma 9.4. Let χQ be a Dirichlet character, i.e. a finite-order Hecke character over Q, whose
conductor cχQ is prime to DF . Let χF be the Hecke character of F obtained by composing with
the norm map N . Then we have the relation between Gauss sums:

τ(χF ) =
(∏
φ∈Ĥ

φ(cχQ)
)
χ(DF )(τ(χQ))d. (9.8)

Proof. This can be proved in the same way that Hasse deduced the conductor-discriminant
relation from the functional equations for L-functions of Dedekind and that of Dirichlet
(see e.g. [Was97, ch. 4]). By working with Hecke L-functions, we obtain the proof. For the
detailed computations, the reader is referred to [Mok07]. 2

Proof of Proposition 9.3. We follow the arguments of Gross [Gro80]. Let Ω(f) be a period used
to define the p-adic L-function of f (say, given by Corollary 6.9). Let ν be the measure on ZF (r)
corresponding to this p-adic L-function. Similarly, the p-adic L-functions of the forms f ⊗ φ
define measures νφ on the group ZQ(1). Finally, let ν0 be the measure on ZQ(1) such that

ν0(χQ) = χQ(DF )

for χQ a character of ZQ(1).
The norm map extends to give N : ZF (r)→ ZQ(1). By taking the push forward, we obtain

a measure N ∗(ν) on ZQ(1). We would like to compare the following measures:

N ∗(ν), (9.9)

ν0

∏
φ∈Ĥ

νφ, (9.10)

here the product is the convolution product of measures on ZQ(1).
For this purpose, we evaluate (9.9) and (9.10) on all finite-order characters of ZQ(1). Let χQ

be such a character. Then by (6.9)

N ∗(ν)(χQ) = ν(χF ) = Lp(1, f , χF )

=
(∏

p|p

(
1− χF (p)

α(p, f)

))
1

α(cχF , f)
N (cχF )

L(1, f , (χF )−1)
τ((χF )−1)Ω(f)

. (9.11)

Similarly, noting that α(p, f ⊗ φ) = φ(p)α(p, f), we have

Lp(1, f ⊗ φ, χQ) =
(

1−
χQ(p)

φ(p)α(p, f)

)
1

φ(cχQ)α(cχQ , f)
cχQ

L(1, f ⊗ φ, (χQ)−1)
τ((χQ)−1)Ω(f ⊗ φ)

. (9.12)

We now compare the terms in the formulae. As before fp/p is the residue field extension degree
of the primes p above p. We have∏

p|p

(
1− χF (p)

α(p, f)

)
=
∏
p|p

(
1−

χQ(N (p))
α(N (p), f)

)
(by (9.1))

=
∏
p|p

(
1−

χQ(p)fp/p

α(p, f)fp/p

)

=
∏
φ∈Ĥ

(
1−

χQ(p)
φ(p)α(p, f)

)
(9.13)

where the last equality again follows from [Was97, Theorem 3.7].
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Since the conductor of χQ is relatively prime to DF , we have cχF = cχQr, and hence

N (cχF ) = (cχQ)d.

Hence
α(cχF , f) = α(N (cχF ), f) = α(cχQ , f)d. (9.14)

On the other hand, Lemma 9.4 gives

τ((χF )−1) =
(∏
φ∈Ĥ

φ(cχQ)
)
χ−1

Q (DF )τ((χQ)−1)d. (9.15)

If we combine with the factorization

L(1, f , χ−1
F ) =

∏
φ∈Ĥ

L(1, f ⊗ φ, χ−1
Q ) (9.16)

we see immediately that (9.10), when evaluated on χQ, gives

χQ(DF )
∏
φ∈Ĥ

Lp(1, f ⊗ φ, χQ)

= χQ(DF )
∏
φ∈Ĥ

[(
1−

χQ(p)
φ(p)α(p, f)

)
1

φ(cχQ)α(cχQ , f)
cχQ

L(1, f ⊗ φ, (χQ)−1)
τ((χQ)−1)Ω(f ⊗ φ)

]

=
(∏

p|p

(
1− χF (p)

α(p, f)

))
1

α(cχF , f)
N (cχF )

L(1, f , (χF )−1)
τ((χF )−1)

∏
φ∈Ĥ Ω(f ⊗ φ)

=
Ω(f)∏

φ∈Ĥ Ω(f ⊗ φ)
Lp(1, f , χF ).

By Theorem 6.11, we can choose χQ, such that Lp(1, f ⊗ φ, χQ) 6= 0 for all φ ∈ Ĥ. In particular
we draw the following conclusion:

Ω(f)∏
φ∈Ĥ Ω(f ⊗ φ)

∈Q×.

Thus, we can use
∏
φ∈Ĥ Ω(f ⊗ φ) as the period Ω(f) to define the p-adic L-function for f . With

this choice, (9.9) and (9.10) are equal when evaluated on any χQ. Hence, we conclude that

N ∗(ν) = ν0

∏
φ∈Ĥ

νφ. (9.17)

The proposition is proved by evaluating (9.17) at the character 〈·〉s−1
Q .

Remark 9.5. Proposition 9.2 has an obvious generalization to Hilbert modular forms, which are
obtained as base change from elliptic modular forms of weight two, split multiplicative at p. We
leave this to the reader.

10. Concluding remarks

1. Exceptional zero conjecture for higher weight forms. Forms of weight greater than two that
have exceptional zeros are no longer ordinary at p, and one needs to have a deformation theory
for non-ordinary forms, and the construction of two-variable p-adic L-function associated to
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such families. In the case where F = Q, this was constructed by Panchishkin [Pan03], using
Rankin’s method. Stevens also obtained a construction using the theory of over-convergent
modular symbols. Recently, Emerton obtained a construction using the theory of locally analytic
representation of GL2(Qp). If one assumes, for example, that the prime p splits in the totally
real field F , then his arguments may apply in the more general situation.

2. Exceptional zero for the symmetric square of an elliptic curve. Dabrowski–
Delbourgo [DD97] constructed a p-adic L-function attached to the symmetric square of an
elliptic modular form, using Rankin’s method (by convoluting with a half-integral weight theta
series). Their method should generalize to give a two-variable p-adic L-function of the symmetric
square, Hilbert modular forms. This would have applications to the exceptional zero conjecture
for symmetric square (the elliptic case is proved in an unpublished work of Greenberg–Tilouine).

3. The exceptional zero conjecture is consistent with the ‘main conjecture’. In [Gre94],
Greenberg studied the arithmetic p-adic L-function, constructed from Selmer group attached
to the Galois representation. The main conjecture predicts that it agrees with the analytic p-
adic L-function, up to an invertible function. He showed that the exceptional zero conjecture
holds, with an arithmetic definition of L-invariant conjecturally given by the formula as in (9.1).

4. For a connection between exceptional zeros, and extensions of p-adic automorphic
representations, see Hida [Hid06].

5. The method of using Rankin integral representation to study algebraicity of zeta values has
been generalized by Shimura [Shi00], to automorphic forms on unitary groups. One particular
case, called UT (the associated symmetric space being a tube domain), has the appeal that the
method is close to the Hilbert modular case. Recently, Hida [Hid] was able to extend his theory
to these groups. Thus, one might be able to establish exceptional zero conjecture for these forms.
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Appendix A. Proofs of Propositions 5.5 and 5.6

In this appendix, we give the proofs of Propositions 5.5 and 5.6. The calculations can already be
found in [Pan03] in the elliptic modular case, so it is included only for convenience of the reader.

Proof of Proposition 5.5. We analyse the Fourier coefficients of the form that appears in (5.14):

Ek−r−1(χφω−rF , εθω1−k
F )00Gr+1(ψ(χφθ)−1ωr+1

F , ncφcθp)|e. (A1)

Following [Pan03], we use the trick that U(p) is invertible on the image of e. So for fixed α≥ 1,
(A1) is equal to

Ek−r−1(χφω−rF , εθω1−k
F )00Gr+1(ψ(χφθ)−1ωr+1

F , ncφcθp)|eU(pα)U(pα)−1

= Ek−r−1(χφω−rF , εθω1−k
F )00Gr+1(ψ(χφθ)−1ωr+1

F , ncφcθp)|U(pα)eU(pα)−1. (A2)
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Thus, it suffices to interpolate

Ek−r−1(χφω−rF , εθω1−k
F )00Gr+1(ψ(χφθ)−1ωr+1

F , ncφcθp)|U(pα). (A3)

We now calculate the Fourier coefficients of (A3). Thus, let ξ ∈ F , ξ� 0, y ∈A×F , such that
ξyr⊂ r, and without loss of generality we may assume that yr is prime to p. From (2.16), and
the definition of U(p) in (2.23), we see that the Fourier coefficients of (A3) at the ideal ξyr, is
related to that of Ek−r−1(χφω−rF , εθω1−k

F )00, and Gr+1(ψ(χφθ)−1ωr+1
F , ncφcθp), as follows:

C(ξyr,Ek−r−1(χφω−rF , εθω1−k
F )00Gr+1(ψ(χφθ)−1ωr+1

F , ncφcθp)|U(pα))

= C(pαξyr,Ek−r−1(χφω−rF , εθω1−k
F )00Gr+1(ψ(χφθ)−1ωr+1

F , ncφcθp))

=
∑

ξ1+ξ2=pαξ
ξ1,ξ2�0

C(ξ1yr,Ek−r−1(χφω−rF , εθω1−k
F )00)C(ξ2yr,Gr+1(ψ(χφθ)−1ωr+1

F , ncφcθp));

C0(m,Ek−r−1(χφω−rF , εθω1−k
F )00Gr+1(ψ(χφθ)−1ωr+1

F , ncφcθp)|U(p)) = 0. (A4)

In this calculation, we are implicitly using the fact, clear from (5.4), that

C0(m,Ek−r−1(χφω−rF , εθω1−k
F )00) = 0

C(ξ1yr,Ek−r−1(χφω−rF , εθω1−k
F )00) = 0

if ξ1 is not relatively prime to p. Thus, the constant term of Gr+1(ψ(χφθ)−1ωr+1
F , ncφcθp)

(see (3.14)) does not enter (A4).

Substituting (3.14) and (5.4) into (A4), we obtain

C(ξyr,Ek−r−1(χφω−rF , εθω1−k
F )00Gr+1(ψ(χφθ)−1ωr+1

F , ncφcθp)|U(p))

=
∑

ξ1+ξ2=pαξ
ξ1,ξ2�0


∑

ab=ξ1yr
a,b⊂r,ab+pr=r

χφω−rF (a)εθω1−k
F (b)N (b)k−r−2

×
∑
ξ2=ed

e∈y−1r,d∈r
dr+pr=r,d mod r×

N (eyr)rψ(χφθ)−1ωr+1
F (dr)

 . (A5)

Thus, if we define

Kα(χ, φ, θ, r)00 ∈M(nc
(p)
φ c

(p)
θ , ψ, ΛF )⊗̂O O[χ]
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by

C(ξyr,Kα(χ, φ, θ, r)00) =
∑

ξ1+ξ2=pαξ
ξ1,ξ2�0


∑

ab=ξ1yr
a,b⊂r,ab+pr=r

χφω−rF (a)θω−1
F (b)N (b)−r〈[b]〉

×
∑
ξ2=ed

e∈y−1r,d∈r
dr+pr=r,d mod r×

N (eyr)rψ(χφθ)−1ωr+1
F (dr)


C0(m,Kα(χ, φ, θ, r)00) = 0 (A6)

then Kα(χ, φ, θ, r)00 specializes to (A3), at Pk,ε, k ≥ r + 2. It thus suffices to set

H(χ, φ, θ, r)00 :=Kα(χ, φ, θ, r)00|eU(pα)−1 (A7)

(which is clearly independent of the choice of α).

The assertions about H(χ, φ, θ, r)0 is proved similarly. 2

Proof of Proposition 5.6. Define the distributions µφ,θ,r as in (5.15). We need to check that it
is a measure, i.e. bounded with respect to the norm (5.13). Thus, we consider a coset of the
form x+ ZF,α(r). We need to calculate µφ,θ,r(x+ ZF,α(r)), the value of µφ,θ,r on x+ ZF,α(r):
denoting by hα the cardinality of ZF (r)/ZF,α(r)∼= ClF(pαr), we have

µφ,θ,r(x+ ZF,α(r)) =
∑

χ mod ZF,α(r)

χ−1(x)
hα

H(χ, φ, θ, r)00

=
∑

χ mod ZF,α(r)

χ−1(x)
hα

Kα(χ, φ, θ, r)00|eU(p)−1 (A8)

(the notation χ mod ZF,α(r) means that χ runs over the characters of ZF (r) factoring through
ZF,α(r), i.e. characters of ClF(pαr)). Thus, it suffices to show that∑

χ mod ZF,α(r)

χ−1(x)
hα

Kα(χ, φ, θ, r)00 (A9)

is uniformly bounded.

Using (A6) and the notation there, we have

C

(
ξyr,

∑
χ mod ZF,α(r)

χ−1(x)
hα

Kα(χ, φ, θ, r)00

)

=
∑

χ mod ZF,α(r)

χ−1(x)
hα

C(ξyr,Kα(χ, φ, θ, r)00)

48

https://doi.org/10.1112/S0010437X08003813 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X08003813


The exceptional zero conjecture for Hilbert modular forms

=
∑

χ mod ZF,α(r)

χ−1(x)
hα

∑
ξ1+ξ2=pαξ
ξ1,ξ2�0


∑

ab=ξ1yr
a,b⊂r,ab+pr=r

χφω−rF (a)θω−1
F (b)N (b)−r〈[b]〉

×
∑
ξ2=ed

e∈y−1r,d∈r
dr+pr=r,d mod r×

N (eyr)rψ(χφθ)−1ωr+1
F (dr)

 . (A10)

Now interchange the order of summation: take the sum over χ mod ZF,α(r) first. The finite
sum ∑

χ mod ZF,α(r)

χ(ad−1x−1)

is zero, unless a = dxr mod ZF,α(r), in which case the sum is equal to hα. Hence, the
expression (A10) is equal to

∑
ξ1+ξ2=pαξ
ξ1,ξ2�0


∑

ab=ξ1yr
a,b⊂r,ab+pr=r

φω−rF (a)θω−1
F (b)N (b)−r〈[b]〉

×
∑
ξ2=ed

e∈y−1r,d∈r
dr+pr=r,d mod r×

a=dxr mod ZF,α(r)

N (eyr)rψ(φθ)−1ωr+1
F (dr)


(A11)

which is clearly uniformly bounded (independent of the coset x+ ZF,α(r)).
Next we show the integration formula (5.16): let η be a finite-order character of ZF (r), then

we would like to prove ∫
ZF (r)

η〈·〉rF dµφ,θ,0 = (−1)rd
∫
ZF (r)

η dµφ,θ,r. (A12)

This is equivalent to showing that for α large enough so that η factors through Zα(r),∑
x∈Z/ZF,α

η(x)〈x〉rF µφ,θ,0(x+ ZF,α(r)) = (−1)rd
∫
Z(r)

η dµφ,θ,r + o(1). (A13)

Here, by o(1), we mean elements of M(lcm(n, c(p)
φ c

(p)
θ ), ψ, ΛF ), whose norm goes to zero as

α→∞.
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With the notation of (A8), we show∑
x∈ZF (r)/ZF,α(r)

η(x)〈x〉rF
∑

χ mod ZF,α(r)

χ−1(x)
hα

Kα(χ, φ, θ, 0)00

= (−1)rdKα(χ, φ, θ, r)00 + o(1) (A14)

which clearly implies (A13).

By (A10), the Fourier coefficient of the left-hand side of (A14), at the ideal ξyr, is given by

∑
x∈ZF (r)/ZF,α(r)

η(x)〈x〉rF
∑

ξ1+ξ2=pαξ
ξ1,ξ2�0


∑

ab=ξ1yr
a,b⊂r,ab+pr=r

φ(a)θω−1
F (b)〈[b]〉

×
∑
ξ2=ed

e∈y−1r,d∈r
dr+pr=r,d mod r×

a=dxr mod ZF,α(r)

ψ(φθ)−1ωF (dr)



=
∑

ξ1+ξ2=pαξ
ξ1,ξ2�0


∑

ab=ξ1yr
a,b⊂r,ab+pr=r

∑
ξ2=ed

e∈y−1r,d∈r
dr+pr=r,d mod r×

η(d−1a)φ(a)〈d−1a〉rF θω−1
F (b)〈[b]〉

× ψ(φθ)−1ωF (dr)



=
∑

ξ1+ξ2=pαξ
ξ1,ξ2�0


∑

ab=ξ1yr
a,b⊂r,ab+pr=r

∑
ξ2=ed

e∈y−1r,d∈r
dr+pr=r,d mod r×

ηφω−rF (a)θω−1
F (b)N (a)rN (dr)−r〈[b]〉

× ψ(ηφθ)−1ωr+1
F (dr)


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=
∑

ξ1+ξ2=pαξ
ξ1,ξ2�0


∑

ab=ξ1yr
a,b⊂r,ab+pr=r

∑
ξ2=ed

e∈y−1r,d∈r
dr+pr=r,d mod r×

ηφω−rF (a)θω−1
F (b)N (b)−rN (d−1ξ1yr)r〈[b]〉

× ψ(ηφθ)−1ωr+1
F (dr)

 . (A15)

Now ξ1 + ξ2 = pαξ, and ξ1, ξ2� 0, so that

N (ξ1r) = (−1)dN (ξ2r) + o(1)

and, hence, in the notation of (A15),

N (d−1ξ1yr)r = (−1)drN (d−1ξ2yr)r + o(1)
= (−1)drN (eyr)r + o(1).

It follows that up to terms of order o(1), the expression (A15) is equal to

(−1)dr
∑

ξ1+ξ2=pαξ
ξ1,ξ2�0


∑

ab=ξ1yr
a,b⊂r,ab+pr=r

ηφω−rF (a)θω−1
F (b)N (b)−r〈[b]〉

×
∑
ξ2=ed

e∈y−1r,d∈r
dr+pr=r,d mod r×

ψ(ηφθ)−1ωr+1
F (dr)N (eyr)r


which is the Fourier coefficient of (−1)rdKα(η, φ, θ, r)00 at the ideal ξyr. 2

Appendix B. Proof of Theorem 8.2

Here we give the proof of Theorem 8.2. Thus, let f be a p-ordinary newform of tame level n,
weight two, trivial character. Let F the Hida family lifting f . Following the formalism of § 8, we
only need to consider specializations of F along the cyclotomic direction. Thus, denote by fk the
specialization of F at weight k (thus, f2 = f).

We first consider the case where k ≡ 2 mod p− 1, in particular k is even. For these values
of k, the form fk also has trivial character.

Let gk be the newform (in the usual sense) whose p-stabilization is fk. We use the archimedean
functional equation for gk to deduce the functional equation for the p-adic L-function for fk. As
in § 8, we fix a character θ adapted to f2. Then θ is also adapted to fk for k ≡ 2 mod p− 1.
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We denote by p1, . . . , pg the set of primes above p. Without loss of generality assume that the
conductor of gk is given by np1 · · · pt. Then gk is Steinberg at p1, . . . , pt, and by Atkin–Lehner
theory, we have

α(pi, gk)
2 = (Npi)

k−2. (B1)

One may thus write

α(pi, gk) =−c(k, pi)(Npi)
(k−2)/2, c(k, pi) =±1. (B2)

(As a matter of fact, (B1) and (B2) imply, under the p-ordinary assumption, that gk is Steinberg
at some p above p, only when k = 2.)

On the other hand, gk is good ordinary at pt+1, . . . , pg, and we have (in the notation of § 8):

α(p, gk)β(p, gk) = (Np)k−1 for p = pt+1, . . . , pg. (B3)

We have the functional equation for the archimedean L-function L(s, gk) (see [Shi78]):

Ds
F

(2π)ds
Γ(s)dL(s, gk) = (−1)dk/2w(k)N (np1 · · · pt)k/2−s

Dk−s
F

(2π)d(k−s) Γ(k − s)dL(k − s, gk) (B4)

with w(k) =±1 being the eigenvalue for the Atkin–Lehner operator acting on gk, i.e. gk|Jnp1···pt =
w(k)gk. We write

ε∞(k) = (−1)dk/2w(k) (B5)

the sign of the archimedean L-function.

To prove the functional equation for the p-adic L-function attached to fk, we need to consider
the twisted form of (B4). Let 0≤ r ≤ k − 2 be an integer, χ a finite-order character of ZF (r).
Renaming p1, . . . , pt if necessary, we suppose that p1, . . . , ps divide cχω−rF

, the conductor χω−rF ,
while ps+1, . . . , pt do not. We also allow an auxiliary character φ, with conductor prime to ncθp
as in § 6. We have the following functional equation:

1
τ((χφω−rF )−1)

Ds
F

(2π)ds
Γ(s)dL(s, gk, (χφω−rF )−1)

= (−1)drε∞(k)
( s∏
i=1

c(k, pi)
)
N (nps+1 · · · pt)k/2−sN (cχω−rF cφ)k−2s(χφω−rF )−1(nps+1 · · · pt)

× 1
τ(χφω−rF )

Dk−s
F

(2π)d(k−s) Γ(k − s)dL(k − s, gk, χφω−rF ). (B6)

Now by Corollary 6.9,

Lp(r + 1, fk, χ, φ)

=
∏
p|p

(
1−

χφω−rF (p)N (p)r

α(p, fk)

)

× 1
α(cχω−rF , fk)

Dr
FΓ(r + 1)dN (cχω−rF cφ)r+1 L(r + 1, fk, (χφω−rF )−1)

(−2πi)drτ((χφω−rF )−1)Ω(fk, θ)
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=
∏

p=p1,...,pt

(
1−

χφω−rF (p)N (p)r

α(p, gk)

)

×
∏

p=pt+1,...,pg

(
1−

χφω−rF (p)N (p)r

α(p, gk)

)(
1−

(χφω−rF )−1(p)β(p, gk)
(Np)r+1

)

× 1
α(cχω−rF , fk)

Dr
FΓ(r + 1)dN (cχω−rF cφ)r+1 L(r + 1, gk, (χφω−rF )−1)

(−2πi)drτ((χφω−rF )−1)Ω(fk, θ)
. (B7)

Now we make the substitutions r→ k − r − 2, χ→ χ−1 and φ→ φ−1. Using (B2), (B3), and
the fact that χ−1ω

−(k−r−2)
F = (χω−rF )−1 for k ≡ 2 mod p− 1, we obtain

Lp(k − r − 1, fk, χ−1, φ−1)

=
∏

p=p1,...,pt

(
1−

(χφω−rF )−1(p)N (p)k−r−2

α(p, gk)

)

×
∏

p=pt+1,...,pg

(
1−

(χφω−rF )−1(p)N (p)k−r−2

α(p, gk)

)(
1−

χφω−rF (p)β(p, gk)
(Np)k−r−1

)

× 1
α(cχω−rF , fk)

Dk−r−2
F Γ(k − r − 1)dN (cχω−rF cφ)k−r−1 L(k − r − 1, gk, χφω−rF )

(−2πi)d(k−r−2)τ(χφω−rF )Ω(fk, θ)

=
∏

p=ps+1,...,pt

(
c(k, p)(Np)k/2−r−1

χφω−rF (p)

) ∏
p=p1,...,pt

(
1−

χφω−rF (p)N (p)r

α(p, gk)

)

×
∏

p=pt+1,...,pg

(
1−

χφω−rF (p)N (p)r

α(p, gk)

)(
1−

(χφω−rF )−1(p)β(p, gk)
(Np)r+1

)
× 1
α(cχω−rF , fk)

Dk−r−2
F Γ(k − r − 1)dN (cχω−rF cφ)k−r−1

×
L(k − r − 1, gk, χφω−rF )

(−2πi)d(k−r−2)τ(χφω−rF )Ω(fk, θ)
. (B8)

Hence, by combining (B7) and (B8) with the archimedean functional equation (B6) evaluated
at s= r + 1, we obtain

Lp(r + 1, fk, χ, φ) = ε∞(k)
( t∏
i=1

c(k, pi)
)

(−1)d(k/2−1)(χφω−rF )−1(n)N (n)k/2−(r+1)

× Lp(k − r − 1, fk, χ−1, φ−1)

= ε∞(k)
( t∏
i=1

c(k, pi)
)

(−1)d(k/2−1)ωF (n)k/2−1(χφ)−1(n)〈n〉k/2−(r+1)
F

× Lp(k − r − 1, fk, χ−1, φ−1). (B9)

Let us use the notation

εp(k) = ε∞(k)
( t∏
i=1

c(k, pi)
)

(−1)d(k/2−1)ωF (n)k/2−1; (B10)
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note that ωF (n)k/2−1 =±1, thus εp(k) =±1. Also note εp(2) = ε∞(2)(−1)e, where we recall that e
is the number of {p|p}, with α(p, f) = 1. We then have

Lp(r + 1, fk, χ, φ) = εp(k)(χφ)−1(n)〈n〉k/2−(r+1)
F Lp(k − r − 1, fk, χ−1, φ−1).

So, by the Zariski density argument, we obtain the functional equation for the one-variable p-adic
L-function:

Lp(s, fk, χ, φ) = εp(k)(χφ)−1(n)〈n〉k/2−sF Lp(k − s, fk, χ−1, φ−1)

= εp(k)(χφ)−1(n)〈n〉k/2−sF Lp(k − s, fk, χ−1, φ−1) (B11)

valid for k ≡ 2 mod p− 1, and k being sufficiently close to two p-adically. We claim that

εp(k) = εp(2) (B12)

for these weights k. Indeed, by a theorem of Rohrlich (Theorem 6.4), we can choose χ, φ, so
that Lp(1, f2, χ

−1, φ−1) 6= 0. By continuity, Lp(k − 1, fk, χ−1, φ−1) 6= 0 for k ≥ 2,sufficiently close
to two (p-adically). Take s= 1 in (B10). We see that there is a p-adic analytic function F (k) in
a p-adic disc around two, such that

εp(2) = F (2),
εp(k) = F (k), k ≡ 2 mod p− 1, k close to 2.

Since εp(k) =±1, it follows that εp(k) = εp(2) for these values of k.
Now by the Zariski density of these weights, it follows finally that

Lp(s, κ, χ, φ) = εp(2)(χφ)−1(n)〈n〉κ/2−sF Lp(κ− s, κ, χ−1, φ−1). (B13)

Specializing (B12) to the case where χ, φ are trivial, we obtain Theorem 8.2. 2
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