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Abstract This paper deals with a reaction–diffusion model with inner absorptions and coupled nonlinear
boundary conditions of exponential type. The critical exponents are described via a pair of parameters
that satisfy a certain matrix equation containing all the six nonlinear exponents of the system. Whether
the solutions blow up or not is determined by the signs of the two parameters. A more precise analysis,
depending on the geometry of Ω and the absorption coefficients, is proposed for the critical sign of the
parameters.
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1. Introduction

In this paper we consider the following reaction–diffusion model with nonlinear absorp-
tions and coupled nonlinear boundary flux:

ut = ∆u − a1eα1u, vt = ∆v − a2eβ1v, (x, t) ∈ Ω × (0, T ),
∂u

∂η
= eα2u+pv,

∂v

∂η
= equ+β2v, (x, t) ∈ ∂Ω × (0, T ),

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ Ω̄,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(1.1)

where Ω ⊂ R
N is a bounded domain with smooth boundary ∂Ω; p, q, ai > 0, αi, βi � 0,

i = 1, 2, are constants; and u0 and v0 are non-negative functions satisfying compatibility
conditions. Parabolic equations like (1.1) can be used to describe, for example, heat
propagations in mixed solid nonlinear media with nonlinear absorptions and nonlinear
boundary flux [1–4,6,9,11]. The nonlinear Neumann boundary values in (1.1), coupling
the two heat equations, represent some cross-boundary flux.

The problem of heat equations

ut = ∆u, vt = ∆v in Ω × (0, T ), (1.2)

241

https://doi.org/10.1017/S0013091504000811 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091504000811


242 S. N. Zheng and F. J. Li

coupled via somewhat special nonlinear Neumann boundary conditions

∂u

∂n
= vp,

∂u

∂n
= uq on ∂Ω × (0, T ), (1.3)

was studied by Deng [5] and Lin and Xie [9], who showed that the solutions globally
exist if pq � 1 and may blow up in a finite time if pq > 1 with the blow-up rates
O((T − t)−(p+1)/2(pq−1)) and O((T − t)−(q+1)/2(pq−1)). Similarly, the blow-up rate for
the corresponding scalar case of (1.2) and (1.3) was shown to be O((T − t)−1/2(p−1))
in [7].

The system (coupled via a variational boundary flux of exponential type)

ut = ∆u, vt = ∆v in Ω × (0, T ),
∂u

∂η
= epv,

∂v

∂η
= equ on ∂Ω × (0, T ),

u(x, 0) = u0(x), v(x, 0) = v0(x) on Ω̄

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(1.4)

was studied by Deng [5], and has blow-up rates

− 1
2q

log c(T − t) � max
Ω̄

u(·, t) � − 1
2q

log C(T − t),

− 1
2p

log c(T − t) � max
Ω̄

v(·, t) � − 1
2p

log C(T − t)

⎫⎪⎪⎬
⎪⎪⎭ (1.5)

for t ∈ (0, T ). This is the special case with αi = βi = ai = 0, i = 1, 2, in our system (1.1).
Zhao and Zheng [12] studied the following nonlinear parabolic system:

ut = ∆u, vt = ∆v in Ω × (0, T ),
∂u

∂η
= eα2u+pv,

∂v

∂η
= equ+β2v on ∂Ω × (0, T ),

u(x, 0) = u0(x), v(x, 0) = v0(x) on Ω̄.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(1.6)

The blow-up rates for (1.6) were shown to be

max
Ω̄

u(·, t) = O(log(T − t)−α/2), max
Ω̄

v(·, t) = O(log(T − t)−β/2) (1.7)

as t → T , where (α, β)T is the only positive solution of(
α2 p

q β2

) (
α

β

)
=

(
1
1

)
,

namely,

α =
p − β2

pq − α2β2
, β =

q − α2

pq − α2β2
.

Clearly, the blow-up rate estimate (1.5) is just the special case of (1.7) with α2 = β2 = 0.
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To describe the critical exponents for (1.1), inspired by [12–14], we introduce param-
eters τ1 and τ2 satisfying the following matrix equation(

α2 − 1
2α1 p

q β2 − 1
2β1

) (
τ1

τ2

)
=

(
1

1

)
, (1.8)

namely,

τ1 =
p + 1

2β1 − β2

pq − ( 1
2α1 − α2)( 1

2β1 − β2)
, τ2 =

q + 1
2α1 − α2

pq − ( 1
2α1 − α2)( 1

2β1 − β2)
. (1.9)

Observe that all six exponents p, q, αi, βi (i = 1, 2) of (1.1) are included in (1.8). Since
for the case of q = α2 − 1

2α1 with p �= β2 − 1
2β1, we have

1
τ1

=
pq − ( 1

2α1 − α2)( 1
2β1 − β2)

p + 1
2β1 − β2

= q.

It is reasonable to define 1/τ1 = 2q, 1/τ2 = 2p with both q = α2 − 1
2α1 and p = β2 − 1

2β1.
Let ϕ0 be the first eigenfunction of

∆ϕ + λϕ = 0 in Ω, ϕ = 0 on ∂Ω, (1.10)

with the first eigenvalue λ0, normalized by ‖ϕ0‖∞ = maxΩ̄ ϕ0(·) = 1. Then ϕ0 > 0 in Ω

and

c1 �
∣∣∣∣∂ϕ0

∂η

∣∣∣∣
∂Ω

=
(

−∂ϕ0

∂η

)∣∣∣∣
∂Ω

� c2 (1.11)

for some constants c1, c2 > 0. Moreover, there exist positive constants ε0 and c3 such
that

|∇ϕ0| � 1
2c1 for x ∈ Ω1 = {x ∈ Ω : dist(x, ∂Ω) � ε0}, (1.12)

ϕ0 � c3 for x ∈ Ω2 = {x ∈ Ω : dist(x, ∂Ω) � ε0}. (1.13)

Let
max

Ω̄
|∇ϕ0| = c4 � c2. (1.14)

It is well known that λ0, ε0 and ci (i = 1, 2, 3, 4) depend on the size and shape of Ω.
Since the system (1.1) is uniformly parabolic, the existence and uniqueness of local

classical solutions to (1.1) are standard [8]. We say that a solution (u, v) of (1.1) blows
up at finite time T if

lim
t→T −

max
Ω̄

(|u(·, t)| + |v(·, t)|) = +∞.

The aim of this paper is to establish the critical exponents for (1.1), a simple and
precise description for which will be given via parameters 1/τ1 and 1/τ2 defined by (1.8).
Whether the solutions blow up or not is determined by the signs of 1/τ1 and 1/τ2. As for
the critical sign of the parameters (1/τ1, 1/τ2) = (0, 0), a further analysis to the geometry
of Ω and the absorption coefficients will be proposed for more precise blow-up criteria.

The main results are the following theorems.
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Theorem 1.1. If 1/τ1 > 0 or 1/τ2 > 0, then the solutions of system (1.1) blow up in
finite time with large initial data.

Theorem 1.2. If 1/τi < 0, i = 1, 2, then the solutions of (1.1) are globally bounded.

Theorem 1.3. Assume that 1/τ1 = 1/τ2 = 0.

(i) If α2 > 1
2α1 and β2 > 1

2β1, then the solutions of system (1.1) blow up in finite time
with large initial data.

(ii) If

a1 � 2α1

(
λ0

c1
+

3c2
4

c2
1

)
, a2 � 2β1

(
λ0

c1
+

3c2
4

c2
1

)
(1.15)

with α2 < 1
2α1, β2 < 1

2β1, then the solutions of (1.1) are globally bounded.

(iii) If

a1 � min
{

c2
1M

2

4α1
,
λ0c

2
3M

2

α1

}
, a2 � min

{
c2
1M

2

4β1
,
λ0c

2
3M

2

β1

}
(1.16)

with α2 < 1
2α1, β2 < 1

2β1, M = min{α1/(2c2), β1/(2c2)}, then the solutions of (1.1)
blow up in finite time for large initial data.

The main technique employed in this paper relies on finding suitable sub- or super-
solutions, which blow up in finite time or remain bounded for all time. We refer to, for
example, [10] for the idea and techniques of constructing such sub- and supersolutions.
For example, observing that u(x, t) and v(x, t) considered here attain their maximum on
the boundary, we can seek blowing-up subsolutions of the form log(Mϕ0 + (1 − ct)K)−η,
where ϕ0 is the normalized first eigenfunction of (1.10), and M , K, η are suitable positive
constants to be determined.

This paper is arranged as follows. Theorems 1.1 and 1.2 will be proved in the next
two sections for blow-up and global boundedness of solutions, respectively. Section 4
deals with the more interesting critical case of (1/τ1, 1/τ2) = (0, 0) in Theorem 1.3. A
discussion of the critical exponents is given in the last section.

2. Blow-up of solutions

This section deals with blow-up for the solutions of (1.1) in Theorem 1.1.

Proof of Theorem 1.1. Let

u
¯

= log
A

[ϕAα1/2 + (1 − ct)K ]2/α1
, v

¯
= log

B

[ϕBβ1/2 + (1 − ct)L]2/β1
, (2.1)

where ϕ = Mϕ0, ϕ0 is the normalized first eigenfunction of (1.10) with the first eigenvalue
λ0, and A, B, c, K, L, M are positive constants to be determined.
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For (x, t) ∈ ∂Ω × (0, 1/c), we have

∂u
¯

∂η
=

2Aα1/2(−∂ϕ/∂η)
α1[ϕAα1/2 + (1 − ct)K ]

� 2Aα1/2Mc2

α1(1 − ct)K
,

∂v
¯

∂η
� 2Bβ1/2Mc2

β1(1 − ct)L
, (2.2)

eα2u
¯
+pv

¯ =
Aα2Bp

(1 − ct)(2pL/β1)+(2α2K/α1)
, equ

¯
+β2v

¯ =
AqBβ2

(1 − ct)(2β2L/β1)+(2qK/α1)
. (2.3)

In Ω × (0, 1/c), a simple computation shows

u
¯t =

2K(1 − ct)K−1c

α1[Mϕ0Aα1/2 + (1 − ct)K ]
, v

¯t =
2L(1 − ct)L−1c

β1[Mϕ0Bβ1/2 + (1 − ct)L]
,

∆u
¯

=
2Aα1/2Mλ0ϕ0

α1[Mϕ0Aα1/2 + (1 − ct)K ]
+

2Aα1M2|∇ϕ0|2
α1[Mϕ0Aα1/2 + (1 − ct)K ]2

,

∆v
¯

=
2Bβ1/2Mλ0ϕ0

β1[Mϕ0Bβ1/2 + (1 − ct)L]
+

2Bβ1M2|∇ϕ0|2
β1[Mϕ0Bβ1/2 + (1 − ct)L]2

,

a1eα1u
¯ =

a1A
α1

[Mϕ0Aα1/2 + (1 − ct)K ]2
, a2eβ1v

¯ =
a2B

β1

[Mϕ0Bβ1/2 + (1 − ct)L]2
.

Next, we will treat 1/τi > 0, i = 1 or (and) 2, in the following four cases, respectively:

1. α2 � 1
2α1, β2 � 1

2β1.

2. α2 > 1
2α1, β2 > 1

2β1.

3. α2 > 1
2α1, β2 � 1

2β1.

4. α2 � 1
2α1, β2 > 1

2β1.

Case 1 (α2 � 1
2α1, β2 � 1

2β1). Observe that 1/τ1 or 1/τ2 > 0 and α2 � 1
2α1,

β2 � 1
2β1 imply pq > ( 1

2α1−α2)( 1
2β1−β2). If, for example, β2 < 1

2β1, then (1
2α1−α2)/p <

q/( 1
2β1 −β2). Thus, for any fixed M > 0, there exist large constants A, B, K and L such

that

(2Mc2/α1)1/pA(α1/2−α2)/p � B � [β1/(2Mc2)]1/((β1/2)−β2)Aq/((β1/2)−β2), (2.4)

β1

2p

(
α1 − 2α2

α1

)
K < L <

2q

α1

(
β1

β1 − 2β2

)
K. (2.5)

It follows from (2.2)–(2.5) that

∂u
¯

∂η
� eα2u

¯
+pv

¯,
∂v
¯

∂η
� equ

¯
+β2v

¯ on ∂Ω × (0, 1/c). (2.6)

If 1
2α1 − α2 = 1

2β1 − β2 = 0, then (2.6) is obviously true because of (2.2), (2.3) for any
fixed M provided A and B are large enough.

For (x, t) ∈ Ω1 × (0, 1/c), we have with (1.12) that

∆u
¯

� 2Aα1M2|∇ϕ0|2
α1[Mϕ0Aα1/2 + (1 − ct)K ]2

� Aα1M2c2
1

2α1[Mϕ0Aα1/2 + (1 − ct)K ]2
,
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and hence

∆u
¯

− a1eα1u
¯ − u

¯t � a1A
α1

[Mϕ0Aα1/2 + (1 − ct)K ]2

(
M2c2

1

4α1a1
− 1

)

+
1

α1[Mϕ0Aα1/2 + (1 − ct)K ]

[
Aα1M2c2

1

4(MAα1/2 + 1)
− 2Kc

]
� 0, (2.7)

provided M2 � 4α1a1/c2
1 and c � M2c2

1/[8K(MAα1/2 + 1)].
Similarly, if we take M2 � 4β1a2/c2

1 and c � M2c2
1/[8L(MBβ1/2 + 1)], then

∆v
¯

− a2eβ1v
¯ − v

¯t � 0 in Ω1 × (0, 1/c).

For (x, t) ∈ Ω2 × (0, 1/c), due to (1.13), we have

∆u
¯

� 2Aα1/2Mλ0ϕ0

α1[Mϕ0Aα1/2 + (1 − ct)K ]
� 2Aα1/2Mλ0c3

α1[Mϕ0Aα1/2 + (1 − ct)K ]
,

and hence

∆u
¯

− a1eα1u
¯ − u

¯t � a1A
α1

[Mϕ0Aα1/2 + (1 − ct)K ]2

(
λ0M

2c2
3

α1a1
− 1

)

+
2Kc

α1[Mϕ0Aα1/2 + (1 − ct)K ]

(
λ0Mc3

2Kc
− 1

)
� 0, (2.8)

whenever M2 � a1α1/(λ0c
2
3), K � 1, and c � λ0Mc3/(2K).

Similarly, if we take M2 � β1a2/(λ0c
2
3), L � 1, and c � λ0Mc3/(2L), then

∆v
¯

− a2eβ1v
¯ − v

¯t � 0 in Ω2 × (0, 1/c).

In summary, if

M2 = max
{

4α1a1

c2
1

,
4β1a2

c2
1

,
α1a1

λ0c2
3
,
β1a2

λ0c2
3

}
,

A, B, L and K are taken as (2.4), (2.5), and

c = min
{

M2c2
1

8K(MAα1/2 + 1)
,

M2c2
1

8L(MBβ1/2 + 1)
,
λ0Mc3

2K
,
λ0Mc3

2L

}
,

then u
¯

and v
¯

satisfy (2.6) on ∂Ω × (0, 1/c) and

u
¯t � ∆u

¯
− a1eα1u

¯ , v
¯t � ∆v

¯
− a2eβ1v

¯ in Ω × (0, 1/c). (2.9)

If, moreover, the initial data are sufficiently large that u0(x) � u
¯
(x, 0), v0(x) � v

¯
(x, 0)

on Ω̄, then (u
¯
, v
¯
) is a blowing-up subsolution of (1.1).
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Case 2 (α2 > 1
2α1, β2 > 1

2β1). This is a somewhat trivial case. Since α2 > 1
2α1,

β2 > 1
2β1, we clearly have

L <
2β2L

β1
+

2qK

α1
, (2.10)

K <
2α2K

α1
+

2pL

β1
, (2.11)

for any positive constants K, L. By using (2.10), (2.11) in (2.2), (2.3), we can get (2.6) on
∂Ω × (0, 1/c) immediately provided A and B are large enough. Moreover, we can obtain
(2.9) in Ω × (0, 1/c) by the same argument as that for Case 1.

Case 3 (α2 > 1
2α1, β2 � 1

2β1). Under this assumption, (2.11) is obviously true for
any positive constants K, L. Take K, L, A, B > 1 such that(

1 − 2β2

β1

)
L � 2qK

α1
, (2.12)

(
2Mc2

α1

)(β1/2−β2)/p

� Bβ1/2−β2 � β1A
q

2Mc2
. (2.13)

Due to (2.11)–(2.13), we can get the boundary inequalities of (2.6) from (2.2), (2.3).
The proof of (2.9) is similar to those in the first two cases.

Case 4 (α2 � 1
2α1, β2 > 1

2β1). This is the case parallel to Case 3.

Theorem 1.1 is proved. �

3. Global boundedness of solutions

We will study the global boundedness of solutions with 1/τ1, 1/τ2 < 0 to prove Theo-
rem 1.2 in this section.

Proof of Theorem 1.2. The proof will again be based on the comparison principle.
We define the time-independent functions

ū = log
A

2 − (1 − ϕ)Aα1/2 , v̄ = log
B

2 − (1 − ϕ)Bβ1/2 ,

where ϕ = Mϕ0, ϕ0 is the normalized first eigenfunction of (1.10) with the first eigenvalue
λ0, and

M = min
{

1,
a1

2α1(λ0 + 2c2
4)

,
a2

2β1(λ0 + 2c2
4)

}
, (3.1)

and A, B are positive constants to be determined.
On ∂Ω × (0, T ), a simple computation shows

∂ū

∂η
=

Aα1/2(1 − ϕ)Aα1/2−1(−∂ϕ/∂η)
2 − (1 − ϕ)Aα1/2 � Aα1/2Mc1,

∂v̄

∂η
� Bβ1/2Mc1, (3.2)

eα2ū+pv̄ = Aα2Bp, eqū+β2v̄ = AqBβ2 . (3.3)

https://doi.org/10.1017/S0013091504000811 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091504000811


248 S. N. Zheng and F. J. Li

We first show that 1/τ1 < 0 and 1/τ2 < 0 imply that 1
2α1 > α2 and 1

2β1 > β2. Note
that there should be (p + 1

2β1 − β2)(q + 1
2α1 − α2) > 0. If p < β2 − 1

2β1, q < α2 − 1
2α1,

then pq − (β2 − 1
2β1)(α2 − 1

2α1) < 0, a contradiction. If p > β2 − 1
2β1, q > α2 − 1

2α1,
then pq − (β2 − 1

2β1)(α2 − 1
2α1) > 0 provided 1

2α1 � α2 or (and) 1
2β1 � β2, also a

contradiction. Thus we know from 1/τ1, 1/τ2 < 0 that p+ 1
2β1 −β2 > 0, q+ 1

2α1 −α2 > 0,
and pq − ( 1

2β1 − β2)( 1
2α1 − α2) < 0. Therefore, q/( 1

2β1 − β2) < ( 1
2α1 − α2)/p. We can

choose A, B sufficiently large that

(Mc1)−1/((β1/2)−β2)Aq/((β1/2)−β2) < B < (Mc1)1/pA((α1/2)−α2)/p. (3.4)

By using (3.2), (3.3) and (3.4), we get

∂ū

∂η
� eα2ū+pv̄,

∂v̄

∂η
� eqū+β2v̄ on ∂Ω × (0, T ). (3.5)

In Ω × (0, T ), by (1.14) we have

∆ū � Aα1/2λ0ϕ(1 − ϕ)Aα1/2−1

2 − (1 − ϕ)Aα1/2 +
Aα1M2c2

4(1 − ϕ)2(A
α1/2−1)

[2 − (1 − ϕ)Aα1/2 ]2

+
Aα1/2M2c2

4(A
α1/2 − 1)(1 − ϕ)Aα1/2−2

2 − (1 − ϕ)Aα1/2

� Aα1/2λ0M + 2Aα1M2c2
4.

On the other hand, ūt = v̄t = 0 and

a1eα1ū =
a1A

α1

[2 − (1 − ϕ)Aα1/2 ]α1
� a1A

α1

2α1
.

By using (3.1), we have in Ω × (0, T ) that

∆ū − a1eα1ū − ūt � Aα1/2λ0M + 2Aα1M2c2
4 − a1A

α1

2α1

� a1A
α1

2α1

[
2α1M(λ0 + 2c2

4)
a1

− 1
]

� 0.

Similarly, we can get in Ω × (0, T ) that

∆v̄ − a2eβ1v̄ − v̄t � 0.

Clearly, ū(x, 0) � u0(x) and v̄(x, 0) � v0(x) on Ω̄ with A, B sufficiently large. We have
shown that (ū, v̄) is a time-independent supersolution of (1.1), and hence Theorem 1.2 is
proved. �
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4. Critical case

Now let us consider the more interesting critical case of (1/τ1, 1/τ2) = (0, 0).

Proof of Theorem 1.3. It is easy to see that if α2 > 1
2α1, β2 > 1

2β1, then the argu-
ment for Case 2 in the proof of Theorem 1.1 is also valid for (1/τ1, 1/τ2) = (0, 0).
We omit the proof for (i). We observe that (1/τ1, 1/τ2) = (0, 0) is equivalent to
pq = ( 1

2α1 − α2)( 1
2β1 − β2).

For (ii), we define the time-independent functions

ū = log
A

2 − (ϕ + 1)−Aα1/2 , v̄ = log
B

2 − (ϕ + 1)−Bβ1/2 ,

where ϕ = Mϕ0, and A, B, M are positive constants to be determined.
We have for (x, t) ∈ ∂Ω × (0, T ) with (1.11) that

∂ū

∂η
=

Aα1/2(−∂ϕ/∂η)
[2 − (ϕ + 1)−Aα1/2 ](ϕ + 1)Aα1/2+1

� Aα1/2Mc1,
∂v̄

∂η
� Bβ1/2Mc1,

eα2ū+pv̄ = Aα2Bp, eqū+β2v̄ = AqBβ2 .

Since pq = ( 1
2α1 − α2)( 1

2β1 − β2), we can choose A, B > 1 satisfying Aq/((β1/2)−β2) =
B = A((α1/2)−α2)/p. Let M = 1/c1. It is easy to see that (3.5) holds.

For (x, t) ∈ Ω × (0, T ), we have by (1.14) that

∆ū � Aα1/2λ0ϕ(ϕ + 1)−(Aα1/2+1)

2 − (ϕ + 1)−Aα1/2 +
Aα1(ϕ + 1)−(2Aα1/2+2)M2c2

4

[2 − (ϕ + 1)−Aα1/2 ]2

+
Aα1/2(Aα1/2 + 1)(ϕ + 1)−(Aα1/2+2)M2c2

4

2 − (ϕ + 1)−Aα1/2

� Aα1/2λ0M + Aα1M2c2
4 + Aα1/2(Aα1/2 + 1)M2c2

4

and
a1eα1ū =

a1A
α1

[2 − (ϕ + 1)−Aα1/2 ]α1
� a1A

α1

2α1
.

Because of (1.15) with M = 1/c1 and A > 1, we obtain

∆ū − a1eα1ū − ūt � Aα1

2α1

[
2α1

(
λ0

c1
+

3c2
4

c2
1

)
− a1

]
� 0,

and, similarly,
∆v̄ − a2eβ1v̄ − v̄t � 0 in Ω × (0, T ).

In addition, we can choose A and B sufficiently large that ū(x, 0) � u0(x), v̄(x, 0) �
v0(x) on Ω̄. Thus, (ū, v̄) is a time-independent supersolution of (1.1), which implies the
global boundedness of solutions to (1.1).
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For (iii), we define a pair of functions as in (2.1):

u
¯

= log
A

[ϕAα1/2 + (1 − ct)K ]2/α1
, v

¯
= log

B

[ϕBβ1/2 + (1 − ct)L]2/β1
.

Letting M = min{α1/(2c2), β1/(2c2)} with (1
2α1−α2)/p = q/( 1

2β1−β2), we can choose
constants A, B, K, L > 1 satisfying (2.4) and

β1

2p

(
α1 − 2α2

α1

)
K = L =

2q

α1

(
β1

β1 − 2β2

)
K. (4.1)

By using (4.1) with (2.4) in (2.2), (2.3), we obtain the boundary inequalities in (2.6).
It is easy to see that for M chosen above, the inequality (2.7) holds in Ω1 × (0, 1/c)

provided a1 is small enough that a1 � c2
1M

2/(4α1). Similarly, (2.8) is true in Ω2×(0, 1/c)
with a1 � λ0c

2
3M

2/α1. The corresponding discussion is valid for v with small a2 in (1.16).
So, the inequalities in (2.9) hold in Ω × (0, 1/c) under the assumption (1.16). If we have,
in addition, the initial data sufficiently large that u0(x) � u

¯
(x, 0), v0(x) � v

¯
(x, 0) on Ω̄,

then (u
¯
, v
¯
) is a blowing-up subsolution of system (1.1). The proof of Theorem 1.3 is

complete. �

5. Discussion

Finally, we discuss the main results of this paper. We have studied the interactions
among multi-nonlinearities in the reaction–diffusion system (1.1). One can find from
Theorems 1.1 and 1.2 that either small exponents α1, β1 in the absorption terms, large
exponents α2, β2 in the boundary flux, or large coupling exponents p, q benefit the
occurrence of blow-up. In addition, Theorem 1.3 says that small coefficients of absorption
and small domain (i.e. large λ0) benefit blowing up as well in the balance case between
absorption and boundary flux.

The procedures to prove the main results of this paper are constructive. Due to the
fact that the introduced supersolutions are time independent, we get not only global
existence, but also global boundedness for the system. The blow-up results come from
constructed blowing-up subsolutions. It is easy to see from the forms of the subsolutions
that the blow-up could be simultaneous for each blow-up case provided both components
of the initial data are large enough.

The two parameters τ1, τ2 from the introduced algebraic system (1.8) seem quite
convenient to describe the critical exponents of (1.1). As shown through Theorems 1.1–
1.3, the critical exponents are just (1/τ1, 1/τ2) = (0, 0), namely, the solutions of (1.1)
are globally bounded if both 1/τ1 and 1/τ2 are negative, and will blow up in finite
time if at least one of 1/τ1 and 1/τ2 is positive with large initial data. For the critical
sign (1/τ1, 1/τ2) = (0, 0), further consideration for the absorption coefficients and the
geometry of Ω should be added to determine whether or not the solutions blow-up. So, it
is reasonable to call the matrix equation (1.8) the characteristic algebraic system of (1.1).

We point out that the classification for all six of the nonlinear exponents p, q, αi, βi

(i = 1, 2) is complete. We summarize this classification in Table 1.
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Table 1. Critical exponents

α2 − 1
2α1 β2 − 1

2β1 p + 1
2β1 − β2 q + 1

2α1 − α2 pq − ( 1
2α1 − α2)( 1

2β1 − β2) 1/τ1 1/τ2

+ + + +
0 + + +∞

+ + + −
− 0 0 0

− − +
+ + +∞ +

+ + 0 0 0 + +
− − −∞ +

+ − +
+ 0 0 0

− − + −
0 − + −∞
− − + +
+ + + +

+ − or 0 + 0 + + +∞
− + + −

+ + + +
− or 0 + 0 + + +∞ +

− + − +
+ + +

− or 0 − or 0 + + 0 0 0
− − −

Observe the columns of 1/τ1, 1/τ2 in the table. We can find that the last row with
negative 1/τ1, 1/τ2 corresponds to the global-boundedness situation and that finite blow-
up may occur whenever there is any positive sign of 1/τ1 or 1/τ2 in the table. It is more
interesting to consider the critical sign (1/τ1, 1/τ2) = (0, 0). There are two subcases for
it: α2 − 1

2α1, β2 − 1
2β1 > 0 and α2 − 1

2α1, β2 − 1
2β1 � 0. The first one is somewhat

trivial for blowing up because the boundary flux dominates the absorption even without
help from the other component. As for the second subcase, we have to take into account
the influence of the absorption coefficients and the geometry of Ω on the behaviour of
solutions. That is considered in Theorem 1.3.
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