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We investigate the effects of bacterial activity on the mixing and transport properties of
a passive scalar in time-periodic flows in experiments and in a simple model. We focus
on the interactions between swimming Escherichia coli and the Lagrangian coherent
structures (LCSs) of the flow, which are computed from experimentally measured velocity
fields. Experiments show that such interactions are non-trivial and can lead to transport
barriers through which the scalar flux is significantly reduced. Using the Poincaré map,
we show that these transport barriers coincide with the outermost members of elliptic
LCSs known as Lagrangian vortex boundaries. Numerical simulations further show that
elliptic LCSs can repel elongated swimmers and lead to swimmer depletion within
Lagrangian coherent vortices. A simple mechanism shows that such depletion is due to
the preferential alignment of elongated swimmers with the tangents of elliptic LCSs. Our
results provide insights into understanding the transport of micro-organisms in complex
flows with dynamical topological features from a Lagrangian viewpoint.
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1. Introduction

Many micro-organisms live in environments characterized by currents (e.g. oceans,
rivers, human intestines), and flow mediates many important microbial processes such as
infection (Costerton, Stewart & Greenberg 1999; Yawata et al. 2016), uptake of nutrients
(Musielak et al. 2009; Taylor & Stocker 2012) and reproduction (Riffell & Zimmer 2007;
Zimmer & Riffell 2011). Flow exerts forces and torques on micro-organisms that affect
their motility dynamics and spatial distribution (Guasto, Rusconi & Stocker 2012; Wheeler
et al. 2019). It also controls the transport of essential molecules including nutrients, oxygen
and signals of mates and predators (Kim et al. 2016). Micro-organisms, in turn, can adapt
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their swimming behaviour to these physical and chemical gradients (Stocker et al. 2008).
Such interactions can lead to non-trivial phenomena such as rheotaxis (Hill et al. 2007;
Marcos et al. 2012; Mathijssen et al. 2019), gyrotaxis (De Lillo et al. 2014; Borgnino et al.
2018) and chemotaxis (Locsei & Pedley 2009; Stocker & Seymour 2012), to name a few
examples.

Even simple shear flows, when coupled to cell motility and morphology, can give
rise to complex transport and cell motility behaviour (Durham, Kessler & Stocker 2009;
Rusconi, Guasto & Stocker 2014; Ezhilan & Saintillan 2015; Gustavsson et al. 2016). For
instance, fluid shear can cause a torque that can rotate an elongated cell body and can
result in accumulation of motile bacteria and phytoplankton in high-shear-rate regions
of the flow (Rusconi et al. 2014; Barry et al. 2015; Ezhilan & Saintillan 2015). Near
surfaces, shear flows can orient flagellated cells against the flow, causing bacteria and
spermatozoa to swim upstream (Tung et al. 2015; Zaferani, Cheong & Abbaspourrad
2018; Mathijssen et al. 2019). Away from surfaces, shear gradients can trap bottom-heavy
gyrotactic swimmers at certain depth of water column, causing the formation of intense
cell assemblages called ‘thin layers’ (Durham et al. 2009, 2013; Gustavsson et al. 2016). In
unsteady and/or complex flows, transport of micro-organisms shows intriguing phenomena
such as aggregation, dispersion and pattern formation (Torney & Neufeld 2007; Khurana,
Blawzdziewicz & Ouellette 2011; Khurana & Ouellette 2012; Zhan et al. 2014; Qin &
Arratia 2022), but are less understood. In time-periodic flows, simulations show that
elongated swimmers can be trapped or repelled by elliptic islands depending on their
shape and swimming speed (Torney & Neufeld 2007); such trapping effects can lead to a
reduction in long-term swimmer transport (Khurana et al. 2011). Recent experiments and
simulations show that microswimmers can be trapped, repelled or dispersed by vortices
depending on the dimensionless path length and swimming speed (Qin & Arratia 2022). In
isotropic turbulence, simulations show that elongated swimmers, while remaining rather
uniformly distributed, exhibit preferential alignment with instantaneous Eulerian fields
such as local velocity (Borgnino et al. 2019), vorticity (Zhan et al. 2014) and velocity
gradient (Pujara, Koehl & Variano 2018).

Recently, it has been shown that Lagrangian coherent structure (LCS) can be a
useful concept to understand the transport properties of swimming micro-organisms in
complex flows in both numerical simulations and experiments (Khurana & Ouellette
2012; Dehkharghani et al. 2019; Ran et al. 2021; Si & Fang 2021, 2022; Yoest et al.
2022). Simulations in chaotic flows show that elongated swimmers align with repelling
LCSs of hyperbolic fixed points (Khurana & Ouellette 2012), while later numerical
studies show that elongated active particles have a much stronger alignment with
attracting LCSs (Si & Fang 2021, 2022), similar to passive elongated particles (Parsa
et al. 2011). Experimental investigations that examine the interactions of swimming
organisms and flow LCSs are few but show some intriguing phenomena. Experiments
in model porous media show that bacteria align and accumulate near attracting LCSs
and induce filamentous density patterns (Dehkharghani et al. 2019). In time-periodic
flows, experiments show that the accumulation of bacteria near the attracting LCSs can
attenuate stretching and hinder large-scale transport, although small-scale mixing is locally
enhanced (Ran et al. 2021). Most, if not all, previous studies focus on attracting and
repelling LCSs associated with the flow hyperbolic fixed points. That is not surprising
since one expects large levels of strain near or around those fixed points. Less understood
are swimmer interactions with elliptic LCSs, i.e. vortex-like flow dynamical features
(Haller 2015; Farazmand & Haller 2016; Haller et al. 2016). That is the focus of this
manuscript.
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Here, we experimentally investigate the effects of bacterial activity on the mixing
and transport properties of a passive scalar in a time-periodic flow in experiments and
simulations. We focus on the interaction of swimming bacteria (Escherichia coli) with
the elliptic LCSs of the flow. Results show that such interaction leads to transport
barriers through which the fluxes of the passive tracer are significantly reduced. By
constructing the Poincaré map from velocimetry data, we show that these transport barriers
coincide with the outermost member of elliptic LCSs, or namely, Lagrangian vortex
boundaries (LVBs). We further test these results in numerical simulations and find that
elliptic LCSs repel elongated swimmers and lead to swimmer accumulation outside (or
swimmer depletion inside) the Lagrangian vortices. A simple mechanism shows that
the repulsion of swimmers is due to the preferential alignment of elongated swimmers
with the tangents of elliptic LCSs. Overall, these results can be useful in understanding
the transport of micro-organisms in chaotic flows with elliptic dynamical features or
non-trivial vortex structures.

2. Methods

Experiments are performed in the flow cell set-up where a 2-mm-thin conductive fluid
layer is placed above an array of permanent magnets arranged in a disordered pattern
(Voth, Haller & Gollub 2002; Ran et al. 2021, 2022). As a sinusoidal forcing (electrical
current, 0.2 Hz frequency) is imposed on the fluid layer, the magnetic field induces a
Lorentz force and creates spatially disordered vortex patterns (see flow field in figure 1c).
The resulting flow is characterized by two parameters: the Reynolds number and the
path length. The Reynolds number is defined as Re = UL/ν, where U = 1.2 mm s−1 is
the average flow speed, L = 6.0 mm is the characteristic length scale determined by the
average spacing of the permanent magnets and ν = 1.0 mm2 s−1 is the fluid kinematic
viscosity (water-like). The path length is the normalized mean displacement of a typical
fluid parcel in one forcing period, defined as p = UT/L, where T = 5 s is the forcing
period. Here, the Reynolds number and the path length are Re ≈ 7.2, p ≈ 1.0; these
conditions are known to lead to chaotic advection in this system (Voth et al. 2003; Ran
et al. 2021).

Two main types of experiments are performed: dye mixing and particle tracking
velocimetry (PTV). Dye mixing experiments are performed by labelling half of the
fluid layer with a passive dye tracer (6.25 × 10−5 M sodium fluorescein). Initially,
the labelled and unlabelled portions are separated by a physical barrier. As the
flow begins, the barrier is lifted, and the labelled fluid progressively penetrates the
unlabelled portion with time. The dye concentration field is recorded by a complementary
metal-oxide-semiconductor (CMOS) camera (Flare 4M180) at 5 frames s−1 with a
resolution of 2000 × 2000 pixels. Particle tracking experiments are performed by seeding
the fluid with 100 μm large fluorescent polystyrene particles; the Stokes number of these
fluorescent particles is O(10−4), indicating good tracer fidelity. Particle positions are
recorded by the CMOS camera at 30 frames s−1 with a resolution of 1200 × 1200 pixels.
Particle trajectories are obtained using an in-house tracking algorithm (Crocker & Grier
1996); these trajectories are then used to obtain the velocity fields from sixth-order
polynomial fitting. Because the flow is time-periodic, we can combine particle positions
at a given phase (relative to the forcing) to obtain up to 80 000 precise particle positions
at each phase, which yields high spatial resolution (0.002 of the field of view), excellent
temporal resolution (0.007 of a flow period) and velocities accurate to a few per cent.
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(b)(a)

(d )(c)

φb = 0 φb = 0.5 %

–2.5 Vorticity (s–1) (rad period–1)2.5 0 TRA0

20
π/2

Figure 1. Photographs of the dye concentration field for chaotic mixing in (a) buffer solution (φb = 0) and
(b) active suspension (φb = 0.5 %). Images are taken at N = 300 periods after the start of the experiments.
The imaged region is 60 mm × 60 mm; the scale bar represents 6 mm. The Reynolds number and path length
of the flow are Re = 7.2 and p = 1.0, respectively. (c) Vorticity (colour code) and velocity (arrows) fields of
the flow, corresponding the first peak of a time period. (d) Poincaré map of the flow in the same imaged region
as the dye field. The map is coloured by the trajectory rotation average (TRA) calculated over 20 time periods.

Two different velocity maps are obtained from separate experiments, one in the presence
and the other in the absence of bacteria.

Active suspensions are prepared by adding a strain (wild-type K12 MG1655) of E. coli to
an aqueous buffer solution of 2 % KCl and 1 % NaCl by weight; the swimming motility of
E. coli does not seem to be affected by the salts (Ran et al. 2021). The strain of E. coli
has a swimming speed of 10–20 μm s−1 and a rod-shaped body of on average 2 μm
length and 0.5 μm diameter. We note that the Péclet numbers of the bacteria and the dye
are both considerably large, with Peb = UL/Db ∼ O(106), and Ped = UL/Dd ∼ O(104),
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Transport barrier with micro-organisms in chaotic flows

where Db and Dd are the effective diffusivities of the swimming E. coli and the
dye, respectively. Bacteria are cultured in Luria–Bertani (Lennox, Sigma-Aldrich) liquid
media at 37 ◦C overnight for 12 to 14 hours to attain a stationary phase of a number
density of approximately 109 cells ml−1. The stationary-phase culture is centrifuged at
5000 rev min−1 for 3.5 min and resuspended into the buffer solution to attain a number
density of 1.25 × 1010 cells ml−1 or a bacterial volume fraction of φb = 0.5 %. This
bacterial volume fraction (φb = 0.5 %) is considered dilute (Kasyap, Koch & Wu 2014;
Ran et al. 2021), and large-scale collective behaviour/motion is not expected.

3. Results and discussion

3.1. Experimental results
Figures 1(a) and 1(b) show sample snapshots of dye mixing in the buffer solution (φb =
0 %) and active suspension (φb = 0.5 %), respectively. Both snapshots are taken after N =
300 periods of forcing, with dye initially confined on the right-hand half of the images at
N = 0. The concentration field reveals complex patterns and underlying vortex structures,
which are similar in the buffer and the active suspension. However, a main difference is
the existence of regions devoid of dye near the centre of the vortex structures in the active
suspension (figure 1b), while similar regions are dyed in the buffer case (figure 1a). The
regions devoid of dye near the centre of the vortex appear primarily in the left-hand half of
the image that is initially not covered with dye. This suggests that the interplay of microbial
activity and vortex structures leads to (enhanced) transport barriers through which the dye
fails to penetrate or penetrates much more slowly. A movie of the dye-mixing processes
in the buffer and the active suspension are shown in supplementary movie 1 available at
https://doi.org/10.1017/jfm.2024.452.

To further understand the interaction between activity and vortex structures, we plot
in figure 1(d) the flow Poincaré map obtained from PTV experiments. Lines in the
map are stroboscopic particle trajectories that connect a particle’s initial position to
its next position after a period (T = 5 s). These trajectories are obtained by numerical
integration of fluid particles in the experimentally measured velocity fields. The Poincaré
map reveals several nested families of closed trajectories, whose behaviours mimic
Kolmogorov–Arnold–Moser tori in Hamiltonian dynamical systems (Ottino 1989). These
nested torus families define Lagrangian coherent vortices known as elliptic LCSs, with
each torus acting as a barrier that blocks tracer (dye) transport within the vortex (Haller
et al. 2020; Katsanoulis et al. 2020; Aksamit & Haller 2022). Unlike hyperbolic LCSs,
elliptic LCSs are rotation-dominated regions that do not experience substantial (fluid)
stretching. We note that Lagrangian coherent vortices are fundamentally different from
the vortices defined by Eulerian fields such as vorticity. While we find a striking
correspondence between the dye-mixing patterns (figure 1a,b) and the Lagrangian
coherent vortices on the Poincaré map (figure 1d), such similarity is absent for the Eulerian
vorticity field in figure 1(c).

To quantitatively locate the elliptic LCSs, we calculate the TRA on the Poincaré map,
as shown by the colour code in figure 1(d). The TRA characterizes the average angular
velocity of a particle trajectory and is defined as

TRA
N
0 (x0) = 1

NT

N−1∑
i=0

cos−1 〈ẋi, ẋi+1〉
|ẋi||ẋi+1| . (3.1)
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Figure 2. Enlarged photographs of the dye concentration field for (a) buffer and (b) active suspension, in the
dashed square regions shown in figure 1. Green contours are LVBs identified from the TRA field and red dots
are elliptic fixed points. (c) Dye flow rate, J , as a function of time N, for the vortex with the label ‘4’. Inset:
time-averaged dye flow rate, J̄ , as a function of the vortex Reynolds number ReΓ , for the buffer (blue) and the
active suspension (red). Different markers represent different vortices in the flow field. Error bars are standard
deviations.

Here, ẋi is a stroboscopic velocity related to the rate of change of the position of a particle
on the Poincaré map and N is the number of periods over which the quantity is calculated.
Although the TRA was originally defined for actual particle trajectories (Haller, Aksamit
& Encinas-Bartos 2021), we used it here for the stroboscopic trajectories in the extended
phase space of the Poincaré map. We interpolate the values of the TRA onto a uniform
spatial grid to obtain the TRA field (see supplementary movie 2). In two-dimensional
flows, elliptic LCSs can be located from the closed convex contours of the TRA field
(Haller et al. 2021; Aksamit & Haller 2022). Since elliptic LCSs are nested families, we
identify the outermost convex TRA contours as the boundaries of Lagrangian coherent
vortices, and the centroid of the innermost convex TRA contours as elliptic fixed points.
For concision, we refer to the outermost members of elliptic LCSs as LVBs.

Figures 2(a) and 2(b) show the LVBs (green contours) and elliptic fixed point (red dots)
identified from the TRA field, superimposed on dye-mixing patterns in the buffer and the
active suspension, respectively. Although LVBs in chaotic flows are known to be transport
barriers for convection (Haller et al. 2020; Katsanoulis et al. 2020; Aksamit & Haller
2022), the LVBs in the buffer case (figure 2a) contain dye inside due to diffusion. On
the other hand, the LVBs in the active case (figure 2b) enclose regions devoid of dye
near the elliptic fixed points. This suggests that bacterial activity enhances the strength of
LVBs as transport barriers in chaotic flows. We also notice some differences in the size
and shape of the LVBs for the buffer and active cases. Since the LVBs are calculated from
experimentally measured velocity fields, this indicates that microbial activity also modifies
the underlying velocity field.

To quantify the strength of the transport barriers, or the reduction in dye transport, we
calculate the dye flow rate into the Lagrangian vortices using the following mass balance
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equation:

d
dt

∫
S(t)

C dA =
∮

B(t)
D(∇C · n) dl −

∮
B(t)

C(v − vB) · n dl. (3.2)

Here, S(t) and B(t) denote the enclosed area and the contour of the LVBs, C is
the dimensionless dye concentration field (normalized by the maximum fluorescence
intensity), D is the dye diffusivity, n is the normal vector of LVBs, v is fluid velocity and
vB is the velocity induced by the motion and deformation of LVBs. The first and second
terms on the right-hand side of (3.2) are the surface integrals of the dye fluxes through
the LVBs due to diffusion and convection, respectively. The left-hand side of (3.2) gives a
simple way to calculate dye flow rate as the rate of change of the total dye enclosed by the
LVBs. Figure 2(c) shows the dye flow rate, J , as a function of time, for vortex with label
‘4’ in the buffer and the active suspension. We find a significant reduction of dye flow rate
into the LVBs with bacterial activity, especially at earlier times (N < 150). At later times
(N > 200), the dye flow rate in the active case is larger than that in the buffer, as a result
of a larger diffusive flux due to large dye concentration gradients.

We now explore the generality of the reduction of dye flow rate in active suspensions.
We start by calculating the circulation of a Lagrangian vortex, defined as

Γ (t) =
∮

B(t)
v · dl =

∫
S(t)

ωz dA, (3.3)

where ωz denotes the vorticity component in the out-of-plane direction. We then define
the the vortex Reynolds number as ReΓ = |Γ̄ |/ν, where Γ̄ denotes the time-averaged
circulation over a period, and the absolute value is included since Γ̄ can be positive or
negative depending on the sign of the vorticity. We calculate ReΓ for each Lagrangian
vortex in figure 2(a,b); the labels correspond to the magnitude of their ReΓ . The inset of
figure 2(c) shows the time-averaged dye flow rate, J̄ , as a function of the vortex Reynolds
number ReΓ , for the buffer and active cases. We find that in both cases the average dye
flow rates scale linearly with ReΓ . This is because both J̄ and ReΓ are linearly proportional
to the area of the Lagrangian vortex. More importantly, however, we find that the slope of
the scaling is larger in the buffer case compared with the active case. This result shows that
the presence of bacteria enhances the barriers for scalar transport into the flow Lagrangian
vortices.

3.2. Numerical simulations
To understand how swimming micro-organisms interact with an imposed time-periodic
flow, we perform numerical simulations of swimming particles using the experimentally
measured velocity field. Micro-organisms are modelled as axisymmetric ellipsoids with a
constant swimming speed vs, in the direction q along their symmetry axis. The swimmer’s
position x is modelled as

ẋ = vf (x, t) + vsq, (3.4)

where vf is experimentally measured fluid velocity in the active suspension, and vs =
20 μm s−1 is the swimming speed of E. coli. As a control, simulations of elongated passive
particles are also performed with vs = 0 in the velocity field measured in the buffer.
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The swimmer’s orientation is described by Jeffery’s equation (Jeffery & Filon 1922)

q̇ = [W (x, t) + ΛD(x, t)]q − Λ[q · D(x, t)q]q, (3.5)

where D and W are the symmetric and skew-symmetric parts of the velocity gradient
tensor, ∇vf . Here, Λ = (1 − α2)/(1 + α2) is a shape factor, with α being the swimmer’s
aspect ratio. We assume α = 0.25 for rod-shaped E. coli, which leads to Λ ≈ 0.88.

Initially, both passive and active particles are uniformly distributed in the flow field with
random orientations. As simulations begin, passive and active particles begin to develop
complex patterns following the morphology of Lagrangian vortices (supplementary
movie 3). Figures 3(a) and 3(b) show the spatial distribution of passive and active
particles at N = 150, respectively. The colour code in the plots represents the local
particle number density, ρN , normalized by the initial number density, ρ0. We find
that active particles deplete within and aggregate outside the LVBs. This suggests that
Lagrangian vortices repel elongated swimmers. By contrast, no depletion is observed for
passive particles. Accumulation is not expected for passive particles in a two-dimensional
incompressible flow, and aggregation of non-motile bacteria has not been observed in
previous experiments (Ran et al. 2021). The accumulation of passive particles seen here is
likely due to a small departure from an (ideal) divergence-free experimental velocity field
(see supplementary materials). The passive particle simulation serves as a control to show
that the repulsion of active particles by the Lagrangian vortices is not an intrinsic feature
of the experimental velocity field itself. Rather, it is the result of the interaction between
Lagrangian vortices and elongated swimmers.

The repulsion of rod-shaped swimmers by the LVBs is quantified by the radial
distribution function: g(r) = 〈ρN(r)〉/ρ0, where the angle bracket denotes a radial average
in all directions calculated from the elliptic fixed points. The function g(r) represents the
probability of finding a particle at a radial distance r from the elliptic fixed point of a
Lagrangian vortex. Figure 3(c) shows g(r) for both passive and active particles in the
Lagrangian vortex with the label ‘4’ in figure 2. The dashed line in figure 3(c) is a nominal
radius of Lagrangian vortex, defined as rn = √

AS/π, where AS is the area enclosed by the
LVBs. We find that the likelihood of finding an active particle within the nominal radius of
a Lagrangian vortex is smaller than that of a passive particle and vice versa for outside the
nominal radius. This result further corroborates the repulsion of elongated active particles
by Lagrangian vortices.

To quantify the time evolution of the repulsion of elongated swimmers, we calculate
the average number density within the LVBs, 〈ρN〉S, normalized by the initial number
density ρ0. Figure 3(d) shows 〈ρN〉S/ρ0 as a function of time N. Results show that 〈ρN〉S
decreases non-monotonically with time for active particles, and drops to only 20 % of the
initial number density ρ0 at N = 200. This suggests that most active particles escape and
accumulate outside the Lagrangian vortex as mixing progresses. In the control case, 〈ρN〉S
for passive particles increases with time, which again suggests the repulsion of elongated
particles by LVBs is not an intrinsic feature of the velocity field itself. Although symmetric
and circular Eulerian vortices have been observed to repel elongated swimmers (Torney
& Neufeld 2007; Ran et al. 2021; Qin & Arratia 2022), here we extend these results to a
more general case of asymmetric and non-circular vortices from Lagrangian criteria.

To gain further insights into how swimming particles are repelled by Lagrangian
vortices, we plot the stroboscopic trajectories and orientations of passive and active
particles as a function of time, as shown in figure 4(a). The Lagrangian vortices are
illustrated by the TRA field (colour map); passive and active particles are shown as blue
and red bars, respectively. The trajectories of the passive particles are blue, while the
trajectories of the active particles are coloured by their normalized time or number of
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Figure 3. Spatial distributions of (a) passive particles, and (b) active particles, at time N = 150. Particles
are coloured by their normalized local number density, ρN/ρ0. Active particles are depleted from the vortex
and accumulate outside the LVBs (green contours), while this depletion is not present for passive particles.
(c) Radial distribution function g(r) calculated from the elliptic fixed points of the Lagrangian vortex with the
label ‘4’; the dashed line is the nominal radius of the vortex. (d) Spatially averaged normalized number density
within the LVBs, 〈ρN〉S/ρ0, as a function of time N for the same vortex as in (c).

periods, N/Ntot, where Ntot is the total time duration of the trajectories. Despite sharing
the same initial conditions for position and orientation, passive particles remain trapped
in the Lagrangian vortices while active particles spiral outward with time and escape the
vortices. We note that the swimming number of the active particles, Φ = vs/U, is of the
order of 10−2 in the simulations, suggesting that the swimming speed is fairly negligible
compared with the flow speed. However, even such a (relatively) low swimming speed
can drive active particles out of equilibrium and escape the Lagrangian vortices. That
is, even small levels of swimming activity is enough to initiate the expulsion process.
In addition, we find that the orientations of both passive and active particles tend to align
with the level curves of the TRA field. Because the convex TRA contours locate the nested
families of elliptic LCSs, this result indicates elongated particles – whether self-propelled
or not – preferentially align with the members of elliptic LCSs. The difference is that the
self-propulsion of active particles causes them to move outward and leave the vortices in
a spiral manner.
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Figure 4. (a) Stroboscopic trajectories of passive (blue) and active (red) particles that are initially inside the
Lagrangian vortices illustrated by the TRA field. While sharing the same initial condition, passive particles
remain trapped in the vortices and active particles spiral outward and escape. The trajectories of active particles
are coloured by their normalized time (or numbers of periods), N/Ntot, where Ntot is the total time duration of
the trajectories. (b) The probability density functions (p.d.f.s) of the inner product of the particle orientation
vector, q, and the tangent vector of the elliptic LCSs in the direction of the vortex circulation, t, as defined in
the inset. The initial condition (N = 0) is approximately a uniform distribution for particles with random initial
orientations. The p.d.f.s at a later time (N = 50) show that both passive and active particles preferentially align
with members of elliptic LCSs at q · t = ±1. The p.d.f. of active particles is slightly biased towards the positive
peak of q · t = +1. (c) Schematic of a ‘bacterial porous medium’ formed by cells aligning and accumulating
outside a LVB. Dye transport is hindered as it diffuses through the porous media.

Next, we test the alignment of the elongated particles by calculating the inner product
of the particle orientation vector, q, and the tangent vector of the elliptic LCSs in the
direction of vortex circulation, t. The inset of figure 4(b) shows a schematic of the two
vectors. Since elliptic LCSs are nested families, we partition the elliptic LCSs into 10
members using the convex TRA contours. The inner product is calculated between the
orientation vector of an elongated particle and the tangent of the nearest member of
elliptic LCSs. Figure 4(b) shows p.d.f.s of q · t for both passive and active particles at
two different times. At N = 0, the initial condition of the p.d.f.s shared by both passive
and active particles is approximately a uniform distribution due to the random initial
orientations. At a later time of N = 50, the p.d.f.s of both passive and active particles
become bimodal at q · t = ±1, suggesting a parallel or antiparallel alignment between q
and t. We find that the p.d.f. of active particles shows a slight bias towards the positive
peak at q · t = +1, while the bias is not present for the p.d.f. of passive particles. This
suggests that active particles prefer to swim parallel to the elliptic LCSs in the direction
of vortex circulation rather than swimming against the circulation. The bias in parallel
and antiparallel alignments is also found for active particles of different swimming speeds
(see supplementary materials). The self-propulsion of active particles can cause them to
travel towards the outer members of the elliptic LCSs in both parallel and antiparallel
alignment configurations (see supplementary movie 4), resulting in the spiral escaping
trajectories of the active particles shown in figure 4(a). Consequently, the interplay
between self-propulsion and the alignment of elongated particles with elliptic LCSs leads
to the depletion of active particles inside the elliptic LCSs, that is, the accumulation of
active particles outside the LVBs. This accumulation of microswimmers outside the LVBs
can further obstruct dye transport into the Lagrangian vortices, which is responsible for
the observed transport barriers.
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Transport barrier with micro-organisms in chaotic flows

3.3. Physical mechanism
We now propose a potential mechanism to explain the observed reduction in dye transport
into Lagrangian vortices. We posit that the alignment and accumulation of bacteria outside
the LVBs form an effective ‘bacterial porous medium’ that can impede the diffusion of
dye molecules, as schematically shown in figure 4(c). In the absence of bacteria, dye
should enter LVBs primarily by diffusion and marginally by inertial effect due to (low but)
non-zero Reynolds number (Re ∼ 101). Here, we will focus on diffusive transport around
the outside boundary of the LVBs where bacteria accumulate (figure 4c). The effective
diffusivity of a molecular dye through a porous medium, Deff , can be estimated as follows
(Grathwohl 1998)

Deff = D0εδ

τ
, (3.6)

where D0 is the intrinsic diffusivity of the dye molecules, ε, δ and τ are the porosity,
constrictivity and tortuosity of the porous media, respectively. The porosity, ε, is the
volume fraction of the void spaces (that is, pores) in the medium relative to its total
volume; ε ranges from 0 to 1. For our bacterial medium, the quantity ε sums up to
unity with the bacterial volume fraction φb such that ε = 1 − φb. Bacterial accumulation
around LVB leads to a local increase in φb of approximately tenfold (as shown by our
simulations) such that φLVB ≈ 10φb = 0.05. Thus, the porosity of the bacterial medium is
ε = 1 − φLVB ≈ 0.95. This leads to only a 5 % decrease in Deff , which cannot account for
the observed reduction in dye transport. Similarly, the constrictivity δ is a dimensionless
parameter ranging from 0 to 1, which captures the hindrance to which a diffusing substance
is subjected to when travelling through narrow pores. It becomes important only if the size
of the diffusing molecules is comparable to that of the pores (Stenzel et al. 2016; Bini et al.
2019). Here, the pore size, O(1 μm), is much greater than the molecular size, O(1 nm), and
therefore δ ≈ 1. Since the values of δ and ε are close to unity, we do not expect them to
play a significant role in the reduction of dye transport.

Next, we examine the role of tortuosity (τ ), which compares the (tortuous) pathway of
molecular diffusion in a porous medium with its pathway in an unrestricted medium (Bini
et al. 2019; da Silva et al. 2022). The quantity τ can be defined as (Grathwohl 1998; Holzer
et al. 2013; da Silva et al. 2022)

τ = 〈Ls〉
L0

, (3.7)

where L0 is the length of the straightest path and 〈Ls〉 is the ensemble average of all
possible tortuous path of diffusion. Note that τ ≥ 1 since 〈Ls〉 ≥ L0. We consider the
transverse diffusion of dye molecules across a bacterial porous medium, as sketched in
figure 4(c), where x1 denotes the direction of the transverse diffusion and x2 denotes
the direction of cell body alignment with the tangent of the elliptic LCSs. During the
diffusion process, each time the (dye) molecule encounters an obstacle (i.e. a bacterium),
its path will be deflected by on average half the body length of a bacterium, lE/2. Also,
dye diffusing a distance L0 (in the bacterial porous medium) will encounter bacterial cells
on average L0σN times, where σN is the cell number density. We can then estimate the
average transverse and longitudinal path lengths, 〈Ls〉11 and 〈Ls〉22, for the dye to diffuse
across a distance L0 in the x1 and x2 directions as

〈Ls〉11 = L0 + L0σNlE/2, 〈Ls〉22 = L0 + L0σNαlE/2, (3.8a,b)

where α = dE/lE is the aspect ratio between the average cell diameter dE and cell length
lE. For rod-shaped bacteria such as E. coli, we notice that α < 1 and thus 〈Ls〉22 < 〈Ls〉11.
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This suggests that diffusion is anisotropic in the bacterial porous medium. We can now
express the tortuosity for the transverse and longitudinal diffusion as

τ11 = 〈Ls〉11

L0
= 1 + σNlE/2, τ22 = 〈Ls〉22

L0
= 1 + ασNlE/2. (3.9a,b)

In our experiments, the local bacterial volume fraction (around LVBs) is φLVB ≈
0.05, which corresponds to a local cell number density of ρN ≈ 1.25 × 1011 cells ml−1,
and a local cell number density of σN ≈ 5000 cells cm−1. If we consider lE to be the
bacterium body length (≈2 μm), then τ11 = 1 + σNlE/2 = 1.5. If instead we consider the
‘total’ bacterium length (cell body plus flagella), Ltotal ≈ 7 μm (Patteson et al. 2015),
then τ11 = 1 + σNLtotal/2 = 2.75. Using the above estimates, we expect 1.5 ≤ τ11 ≤
2.75. The transverse effective diffusivity can be estimated using (3.6), and this yields
0.346 ≤ D11/D0 ≤ 0.633. Therefore, a dye diffusing through this bacterial porous media
would experience a 33 %–66 % decrease in the transverse effective diffusivity, which
qualitatively corresponds to the decrease in dye transport into the LVBs. Note that (3.9a,b)
estimates an anisotropic diffusivity, D11 < D22, for rod-shaped bacteria (α < 1). Bacterial
flagellar motion, in addition, can displace dye molecules farther in the x2 direction, which
would lead to an increase in D22. This would lead to a more complex behaviour than the
one described here. Nevertheless, the concept of anisotropic diffusion in a bacterial porous
media seems to capture, at least qualitatively, the observed decrease in scalar transport into
the Lagrangian vortices.

4. Conclusion

In this manuscript, we investigate the interaction between swimming micro-organisms
and Lagrangian coherent vortices known as the elliptic LCSs in time-periodic flows in
experiments and in simulations. Our results show that even small amounts of swimming
activity can affect (i) the dynamics of active particles in the flow (figure 4) and
consequently (ii) the mixing and transport of passive scalars (figure 1) in chaotic flows.
Experiments show that the interaction between organisms and elliptic LCSs leads to
transport barriers through which the tracer flux is significantly reduced. Using the
Poincaré map and the TRA field, we show that these transport barriers coincide with
outermost member of elliptic LCSs, or LVBs. To further understand the formation of
the transport barriers, we perform numerical simulations of elongated microswimmers
in experimentally measured velocity fields. Results show that elliptic LCSs can repel
elongated swimmers and lead to swimmer accumulation outside LVBs. This accumulation
of microswimmers effectively reduces the transport into elliptic LCSs. We further show
that the interplay between self-propulsion and the preferential alignment of elongated
particles with the tangents of elliptic LCSs leads swimmers to escape the Lagrangian
vortices. Overall, our results allow quantitative prediction of the Lagrangian transport of
micro-organisms and passive tracer quantities (e.g. temperature, oxygen and nutrients)
in chaotic flows with non-trivial vortex structures. Although there have been previous
studies on the interaction between micro-organisms and LCSs (Khurana & Ouellette 2012;
Dehkharghani et al. 2019; Ran et al. 2021; Si & Fang 2021, 2022; Qin & Arratia 2022;
Yoest et al. 2022), our work extends the study of micro-organism LCSs interaction to
elliptic LCSs (i.e. vortex-like dynamical structures). From a practical perspective, our
results may be useful in understanding the organic matter flux in the oceans, algal blooms
in lakes and harmful bacterial infections.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2024.452.
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