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Abstract. The trilinear form of the discrete Tzitzeica equation by Schief is found
to be a discrete Toda molecule equation with a special boundary condition. Based
on this fact, a higher order discrete Tzitzeica equation and an ultradiscrete Tzitzeica
equation are obtained.
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1. Introduction. Tzitzeica [1, 2] obtained the equation

(log h)xy = h − h−2 (1)

as the compatibility condition of the Gauss equation

rxx = (hxrx + λry)/h,

rxy = hr,

ryy = (hyry + λ−1rx)/h,

in connection with an affine sphere.
Kaptsov and Shan’ko [3] transformed the Tzitzeica equation, using the dependent

variable transformation

v = 1 − 2(log τ )xy,

into

(1 − 2(log τ )xy)2{(log(τ 2 − 2ττxy + 2τxτy))xy − 1} + 1 = 0, (2)

whose numerator is a trilinear equation. They have obtained N-soliton solutions to
the trilinear equation.

On the other hand, Schief [4, 5] has obtained an integrable discrete version of the
Tzitzeica equation as the compatibility condition of the discrete Gauss equation,

r11 − r1 = α(r1 − r) + β(r12 − r1),

r12 + r = H(r1 + r2),

r22 − r2 = γ (r2 − r) + δ(r12 − r2).
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Schief has transformed the discrete Tzitzeica equation into the trilinear form
∣∣∣∣∣∣

τ (m, n) τ (m, n + 1) τ (m, n + 2)
τ (m + 1, n) τ (m + 1, n + 1) τ (m + 1, n + 2)
τ (m + 2, n) τ (m + 2, n + 1) τ (m + 2, n + 2)

∣∣∣∣∣∣
= ab τ (m + 1, n + 1)3, a, b being parameters (3)

which is reduced to the following trilinear equation in the continuous limit
∣∣∣∣∣∣

τ τx τxx

τy τxy τxxy

τyy τxyy τxxyy

∣∣∣∣∣∣ = c τ 3, c being a parameter. (4)

We shall transform the Tzitzeica equation (1) into the bilinear form and find a
relation between the trilinear equations (4) and (2). Let h = G/F , then we have

∂2

∂x∂y
log h = GxyG − GxGy

G2
− FxyF − FxFy

F2
.

Here we introduce the bilinear operators Dx and Dy operating on an ordered pair of F
and G

Dn
xF · G =

(
∂

∂x
− ∂

∂x′

)n

F(x)G(x′)
∣∣∣∣
x′=x

Dn
xDm

y F · G =
(

∂

∂x
− ∂

∂x′

)n (
∂

∂y
− ∂

∂y′

)m

F(x, y)G(x′, y′)
∣∣∣∣
x′=x,y′=y

which gives

DxDyF · F = 2(FxyF − FxFy)

DxDyG · G = 2(GxyG − GxGy).

Accordingly the Tzitzeica equation (1) is transformed into

DxDyG · G − 2αG2 + 2F2

2G2
− DxDyF · F − 2αF2 + 2GF

2F2
= 0,

where α is an arbitrary parameter. Accordingly the Tzitzeica equation (1) is decoupled
into the bilinear equations

DxDyG · G = 2(αG2 − F2), (5)

DxDyF · F = 2(αF2 − GF). (6)

Let us introduce a new dependent variable τ1 and express F and G as follows

F = τ 2
1 , (7)

G = ατ 2
1 − DxDyτ1 · τ1. (8)

Equation (6) is satisfied by this choice of F and G, because of the identity

DxDyτ
2
1 · τ 2

1 = 2τ 2
1 DxDyτ1 · τ1.
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Let G = τ2, then equations (8) and (5) are written as

DxDyτ1 · τ1 = ατ 2
1 − τ2, (9)

DxDyτ2 · τ2 = 2
(
ατ 2

2 − τ 4
1

)
. (10)

Equations (9) and (10) are reduced to the trilinear equations (2) and (4) for α = 1 and
α = 0, respectively, by eliminating τ2.

2. Toda molecule equation. Equations (9) and (10) for α = 0 remind us of the
Toda molecule equation expressed with the bilinear form

DxDyτn · τn = 2τn+1τn−1, (11)

for n = 1, 2, . . . , N. For N = 2 we have

DxDyτ1 · τ1 = 2τ2τ0, (12)

DxDyτ2 · τ2 = 2τ3τ1, (13)

which become equations (9) and (10) for α = 0 by choosing the boundary condition

τ0 = −1/2, τ3 = −τ 3
1 . (14)

The bilinear equation (11) is transformed into the ordinary form [6]

∂2

∂x∂y
log Vn = Vn+1 − 2Vn + Vn−1, (15)

for n = 1, 2, . . . , N, through the dependent variable transformation

Vn = ∂2

∂x∂y
log τn = τn+1τn−1

τ 2
n

. (16)

Accordingly equations (12) and (13) with the boundary condition (14) are transformed
into

∂2

∂x∂y
log V1 = V2 − 2V1, (17)

∂2

∂x∂y
log V2 = 4V1 − 2V2. (18)

Adding twice equation (17) to equation (18) we obtain

∂2

∂x∂y
log

(
V2

1 V2
) = 0, (19)

which is consistent with

V2 = −1
4

V−2
1 , (20)

given by equations (14) and (16).
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Substituting equation (20) into equation (17) we obtain

∂2

∂x∂y
log V1 = −1

4
V−2

1 − 2V1. (21)

Let

V1 = −h
2
, (22)

then equation (21) becomes the Tzitzeica equation

∂2

∂x∂y
log h = h − h−2. (23)

Hence we have shown that the Tzitzeica equation is equivalent to the Toda molecule
equation with the special boundary condition. The Toda molecule equation is
discretized in [7]. Hence the discrete Tzitzeica equation could be obtained by using
the discrete Toda molecule equation with a special boundary condition.

The discrete Toda molecule equation [7] is expressed with the bilinear form as
follows

τs(m + 1, n + 1)τs(m, n) − τs(m + 1, n)τs(m, n + 1)

= qτs+1(m, n)τs−1(m + 1, n + 1), (24)

for s = 1, 2, 3, . . . , N, q being a constant, with the boundary conditions

τ0(m, n) = 1, (25)

τN+1(m, n) = f (m)g(n). (26)

We replace the boundary condition (26) by

τN+1(m, n) = F(τ ), (27)

in order to obtain the discrete Tzitzeica equation, where F(τ ) is a function of τj for
j = 1, 2, . . . , N.

For N = 2, equation (24) gives

τ1(m + 1, n + 1)τ1(m, n) − τ1(m + 1, n)τ1(m, n + 1) = qτ2(m, n), (28)

τ2(m + 1, n + 1)τ2(m, n) − τ2(m + 1, n)τ2(m, n + 1)

= qτ3(m, n)τ1(m + 1, n + 1). (29)

Eliminating τ2(m, n) from these equations we obtain τ3(m, n) expressed in terms
of τ1(m, n)

τ3(m, n) = q−3

∣∣∣∣∣∣
τ1(m, n) τ1(m, n + 1) τ1(m, n + 2)

τ1(m + 1, n) τ1(m + 1, n + 1) τ1(m + 1, n + 2)
τ1(m + 2, n) τ1(m + 2, n + 1) τ1(m + 2, n + 2)

∣∣∣∣∣∣ . (30)

Hence equation (30) with the boundary condition

τ3(m, n) = abτ (m + 1, n + 1)3/q3 (31)

is the discrete Tzitzeica equation (4) obtained by Schief.
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3. A Higher order discrete Tzitzeica equation. The discrete Toda molecule
equation (24) suggests that we may extend the discrete Tzitzeica equation (4) to a
higher order one. We have for N = 3 and for τ0 = 1

τ1(m + 1, n + 1)τ1(m, n) − τ1(m + 1, n)τ1(m, n + 1) = qτ2(m, n),

τ2(m + 1, n + 1)τ2(m, n) − τ2(m + 1, n)τ2(m, n + 1) = qτ3(m, n)τ1(m + 1, n + 1),

τ3(m + 1, n + 1)τ3(m, n) − τ3(m + 1, n)τ3(m, n + 1) = qτ4(m, n)τ2(m + 1, n + 1).

Eliminating τ2 and τ3 from these equations we obtain

τ4(m, n) = q−6

∣∣∣∣∣∣∣∣

τ1(m, n) τ1(m, n + 1) . . . τ1(m, n + 3)
τ1(m + 1, n) τ1(m + 1, n + 1) . . . τ1(m + 1, n + 3)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

τ1(m + 3, n) τ1(m + 3, n + 1) . . . τ1(m + 3, n + 3)

∣∣∣∣∣∣∣∣
. (32)

The r.h.s. is a homogeneous polynomial function of τ1 of degree 4 and is invariant
under the following gauge transformation:

τ1(m, n) → τ1(m, n) exp(a0m + b0n), a0, b0 being constant.

Taking the gauge invariance into account, we propose the following equation

∣∣∣∣∣∣∣∣

τ (m, n) τ (m, n + 1) τ (m, n + 2) τ (m, n + 3)
τ (m + 1, n) τ (m + 1, n + 1) τ (m + 1, n + 2) τ (m + 1, n + 3)
τ (m + 2, n) τ (m + 2, n + 1) τ (m + 2, n + 2) τ (m + 2, n + 3)
τ (m + 3, n) τ (m + 3, n + 1) τ (m + 3, n + 2) τ (m + 3, n + 3)

∣∣∣∣∣∣∣∣
= ab

∣∣∣∣τ (m + 1, n + 1) τ (m + 1, n + 2)
τ (m + 2, n + 1) τ (m + 2, n + 2)

∣∣∣∣
2

,

as an integrable higher order Tzitzeica equation. The integrability of the equation
has not been proved yet. However we have a test of identifying integrable discrete
systems proposed by Hietarinta and Viallet [8, 9] which analyses the complexity
(algebraic entropy) of the map using the growth of the degree of its solution. Numerical
calculations of the algebraic entropy of the equation indicate the system’s integrability.

4. Ultradiscretization of the discrete Tzitzeica equation. In 1990 one of authors
(D.T) and Satsuma reported on a simple cellular automaton which shows soliton-like
behavior [10]. It is called “soliton cellular automaton”. Tokihiro and coworkers have
found that the cellular automaton models are obtained as a special limit, known as
the ultradiscrete limit, of the integrable equations [11]. Typically, the limiting procedure
simply replaces the summation by the Max operator,

lim
ε→+0

ε log(exp(A/ε) + exp(B/ε)) = max(A, B),

and the product by the summation,

lim
ε→+0

ε log(exp(A/ε) × exp(B/ε)) = A + B.
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Let

Vs(m, n) = τs+1(m, n)τs−1(m + 1, n + 1)
τs(m + 1, n)τs(m, n + 1)

, (33)

then the bilinear form

τs(m + 1, n + 1)τs(m, n) − τs(m + 1, n)τs(m, n + 1)

= qτs+1(m, n)τs−1(m + 1, n + 1), for s = 1, 2, . . . , N,

is rewritten as

1 + qVs(m, n) = τs(m + 1, n + 1)τs(m, n)
τs(m + 1, n)τs(m, n + 1)

, for s = 1, 2, . . . , N. (34)

Equations (33) and (34) give

Vs(m + 1, n + 1)Vs(m, n)
Vs(m + 1, n)Vs(m, n + 1)

= [1 + qVs+1(m, n)][1 + qVs−1(m + 1, n + 1)]
[1 + qVs(m + 1, n)][1 + qVs(m, n + 1)]

,

for s = 1, 2, . . . , N. (35)

The boundary condition τ3(m, n) = abτ 3
1 (m + 1, n + 1) is transformed, using the

expression

1 + qVs(m, n) = τs(m + 1, n + 1)τs(m, n)
τs(m + 1, n)τs(m, n + 1)

,

into

1 + qV3(m, n) = τ3(m + 1, n + 1)τ3(m, n)
τ3(m + 1, n)τ3(m, n + 1)

= [1 + qV1(m + 1, n + 1)]3.

Accordingly we have the discrete Tzitzeica equation in the ordinary form,

V1(m + 1, n + 1)V1(m, n)
V1(m + 1, n)V1(m, n + 1)

= [1 + qV2(m, n)]
[1 + qV1(m + 1, n)][1 + qV1(m, n + 1)]

,

V2(m + 1, n + 1)V2(m, n)
V2(m + 1, n)V2(m, n + 1)

= [1 + qV1(m + 1, n + 1)]4

[1 + qV2(m + 1, n)][1 + qV2(m, n + 1)]
.

Following the limiting procedure we put

Vs(j, k) = exp(xs(j, k)/ε), q = exp(−c/ε), for s = 1, 2, 3.

The discrete Tzitzeica is transformed into the following max-plus equations in the
small limit of ε,

x1(m + 1, n + 1) = x1(m + 1, n) + x1(m, n + 1) − x1(m, n)

+ max(0, x2(m, n) − c) − max(0, x1(m + 1, n) − c)

− max(0, x1(m, n + 1) − c),

x2(m + 1, n + 1) = x2(m + 1, n) + x2(m, n + 1) − x2(m, n)

+4 max(0, x1(m + 1, n + 1) − c) − max(0, x2(m + 1, n) − c)

− max(0, x2(m, n + 1) − c).
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We remark that the discrete sine-Gordon equation is obtained in connection with a
discrete geometry [12] as well as the discrete Tzitzeica equation. However it is very
difficult to ultradiscretize the former equation in contrast to the latter.

5. Periodic Boundary Conditions. We transform the coordinates m, n into new
coordinates j, k:

m = 1
2

(j + k), n = 1
2

(j − k),

in order to obtain equations with the periodic boundary condition. We express
functions of m, n in the new coordinates

Vs(m, n) = Vs(j, k), Vs(m + 1, n) = Vs(j + 1, k + 1),

Vs(m, n + 1) = Vs(j + 1, k − 1), Vs(m + 1, n + 1) = Vs(j + 2, k).

Then, the discrete Tzitzeica equation is transformed into

V1(j + 2, k)V1(j, k)
V1(j + 1, k + 1)V1(j + 1, k − 1)

= [1 + qV2(j, k)]
[1 + qV1(j + 1, k + 1)][1 + qV1(j + 1, k − 1)]

, (36)

V2(j + 2, k)V2(j, k)
V2(j + 1, k + 1)V2(j + 1, k − 1)

= [1 + qV1(j + 2, k)]4

[1 + qV2(j + 1, k + 1)][1 + qV2(j + 1, k − 1)]
. (37)

It is generally accepted that the system’s integrability is not destroyed by imposing
a periodic boundary condition on the system. We use the periodic boundary condition
Vs(j, k) = Vs(j, k + N) in order to transform the partial difference equations (36) and
(37) into a coupled form of ordinary difference equations. The algebraic entropy of
the higher order discrete Tzitzeica equation (33) is calculated by imposing the periodic
boundary condition Vs(j, k) = Vs(j, k + N) with periods N = 1, 3, 5, . . . .

The discrete Tzitzeica equation is reduced, for N = 1 (uniform in k-direction), to

V1(j + 2)V1(j)
V2

1 (j + 1)
= [1 + qV2(j)]

[1 + qV1(j + 1)]2
, (38)

V2(j + 2)V2(j)
V2

2 (j + 1)
= [1 + qV1(j + 2)]4

[1 + qV2(j + 1)]2
. (39)

Equations (38) and (39) give a relation

[
V1(j + 3)V1(j + 1)

V2
1 (j + 2)

]2 V2(j + 2)V2(j)
V2

2 (j + 1)
= 1,

hence

V2(j) = c0cj
1V−2

1 (j + 1), (40)
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where c0 and c1 are integration constants. Substituting the relation into equation (38)
we obtain

V1(j + 2)V1(j)
V2

1 (j + 1)
= [1 + qc0cj

1V−2
1 (j + 1)]

[1 + qV1(j + 1)]2
. (41)

Equation (41) is a non-autonomous equation if c1 �= 1, while the Tzitzeica equation
is an autonomous equation. Hence we choose c1 = 1. Putting V1(j + 1) = xn and
c0 = q = c we obtain a one-dimensional discrete Tzitzeica equation in the following
form,

xn+1xn−1 = c2

(
1 + x2

n

/
c2

)
(1 + cxn)2

. (42)

Let xn = eXn/ε, c = eC/ε , then the one-dimesional discrete Tzitzeica equation (42) is
transformed into the following max-plus equations in the small limit of ε,

Xn+1 = 2C + 2 max(0, Xn − C) − 2 max(0, Xn + C) − Xn−1. (43)

6. Periods of the ultradiscrete Tzitzeica equation. Equation (43) has the following
conserved quantity,

H = max(Xn−1 − Xn − 2C, −Xn−1 + Xn − 2C,−Xn−1 − Xn, Xn−1 + Xn), (44)

where H is constant for n. This quantity H means that equation (43) is integrable.
Moreover, a solution from any initial data has the following remarkable features;

(a) If |(H − 2C)/4C| is rational, the solution is periodic with a finite period.
Otherwise, the period becomes infinite.

(b) The finite period of a solution is determined only by C and H.
(c) Therefore, if C is fixed, finite periods of all solutions with the same H are the

same.
If we consider equation (43) as a mapping from (Xn−1, Xn) to (Xn, Xn+1), we can

show the above features by a geometrical analysis of solution orbits in a phase plane.
We omit the details of the analysis since it needs a long space and only show how a
period is determined by C and H. Consider the following relation,

q
p

=
∣∣∣∣H − 2C

4C

∣∣∣∣ , (45)

where p and q are positive integers and relatively prime. Then the period is expressed
by p and q as follows,

C > 0 H = 0 2
0 < H < 2C 3p − 4q

H = 2C 3
2C < H 3p + 4q

C = 0 0 ≤ H 4
C < 0 H = 2|C| 1

2|C| < H −3p + 4q .
Note that 0 ≤ H if 0 ≤ C and 2|C| ≤ H if C < 0, which can be shown from equ-
ation (44).
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For example, if C = 3, X0 = 1 and X1 = 3, then H = 4 and |(H − 2C)/4C| = 1/6.
Consequently we have q = 1 and p = 6, and the period becomes 3p − 4q = 14. Indeed,
the solution becomes

Xn : 1, 3, −7, 3, 1, −5, 5, −1, −3, 7, −3, −1, 5, −5, 1, 3, . . . .

If we take the same C and X0 = X1 = 2, the same H, p and q are obtained. The solution
is

Xn : 2, 2, −6, 4, 0, −4, 6, −2, −2, 6, −4, 0, 4, −6, 2, 2, . . . ,

and the period is also 14.

7. Concluding remarks. We have ultradiscretized the discrete Tzitzeica equation
by Schief. The discrete Tzitzeica equation is connected to the discrete affine geometry.
So it would be of strong interest to find a geometry connected to the ultradiscrete
Tzitzeica equation.
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