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1. Introduction. According to the well-known Nash's theorem, every Riemannian
n-manifold admits an isometric immersion into the Euclidean space p(n+1><3'1+11V2 \n

general, there exist enormously many isometric immersions from a Riemannian manifold
into Euclidean spaces if no restriction on the codimension is made. For a submanifold of a
Riemannian manifold there are associated several extrinsic invariants beside its intrinsic
invariants. Among the extrinsic invariants, the mean curvature function and shape
operator are the most fundamental ones.

One of the very basic problems in submanifold theory is the following.

PROBLEM 1. Find a simple relationship between the main extrinsic invariants and the
main intrinsic invariants of a submanifold.

Many famous results in differential geometry, such as isoperimetric inequality,
Chern-Lashofs inequality, and Gauss-Bonnet's theorem among others, can be regarded
as results in this respect.

In this paper we consider isometric immersions of Riemannian manifolds into
real-space-forms with arbitrary codimensions unless mentioned otherwise. In §3 we
establish a general sharp inequality between the main extrinsic invariant; being the
squared mean curvature function, and the main intrinsic invariant; being the scalar
curvature. By using this general and sharp inequality we obtain simple geometric
characterizations for hyperspheres, spherical hypercylinders, among some others, in
Euclidean space. We also utilize the inequality to obtain a simple geometric characteriza-
tion of the isoparametric hypersurface N2'n~2: = H2{-\) x 5""2(1) imbedded in the
hyperbolic space //" + 1( —1) in a standard way. In the last part of this article we establish a
sharp relationship between sectional curvature and the shape operator for submanifolds in
real-space-forms.

2. Preliminaries. Let M" be an n-dimensional submanifold of a real-space-form
Rm(c) of constant sectional curvature c. Denote by V and V the Levi-Civita connections
of M" and Rm(c), respectively. Then the Gauss and Weingarten formulas of M" in R"'(c)
are given respectively by

) , (2.1)

t, (2.2)

for vector fields X, Y tangent to AT and £ normal to AT, where h denotes the second
fundamental form, D the normal connection, and A the shape operator of the
submanifold in Rm(c). The second fundamental form and the shape operator are related
by

f Y),& (2-3)
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Moreover, the mean curvature vector H of the submanifold M" is defined by H =

- trace h. A submanifold M" is said to be totally geodesic at a point p e M" if its second

fundamental form vanishes at p. And it is said to be totally umbilical at p if there is a real
number A such that h{X, Y) = K{X, Y) H for any A\ Y e TpM".

Denote by R the Riemann curvature tensor of M". Then the equation of Gauss is
given by

R(X, Y- Z, W) = «*, W)(Y, Z) - (X, Z){Y, W))c

+ (h(X, W),h(Y, Z)> - (h(X, Z),h{Y, W)), (2.4)

for vectors X, Y, Z, W tangent to AT.
For the second fundamental form h, we define the covariant derivative Vh of h with

respect to the connection in TM" © TLMn by

(Vxh)(Y, Z) = Dx(h(Y, Z)) - h{VxY, Z) - h(Y, VXZ). (2.5)

The equation of Codazzi is given by

(V^)(Y,Z) = (Vy/z)(A\Z). (2.6)

For a Riemannian n-manifold M", denote by K(K) the sectional curvature of the
plane section n<=• TPM", p e M". For an orthonormal basis eu.. . ,en of the tangent space
TpM", the scalar curvature r and the normalized scalar curvature p are defined
respectively by

AeJ), P = - ^ T 7 . (2.7)
n\n i)

For each point p s M", let

(miK)(p) = mf{K(n):plane sections ncz TpM"}.

Then inf K is a well-defined function on M". We define SM to be the Riemannian invariant
given by

SM(P)=T(P)- inf K(p). (2.8)

We recall the following general result for later use.

THEOREM A ([2]). Let M" be an n-dimensional (n ^3) submanifold of a real-space-
form Rm(c) of constant sectional curvature c. Then

n-2
•\H\2 (2.9)m 2 In - 1

Equality holds if and only if, with respect to suitable orthonormal frame fields eu... ,en,
en+i,... , em, the shape operator takes the following forms:

'a 0 0 . . . (T

0 ii-a 0 . . . 0

0 0

l o o o

0 (2.10)
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" 1 1

h\2

0

h\2

0

0 . . .
0 . . .

0 . . .

0
0

0

I 0 0 0 . . . O j

(2.11)

Furthermore, when the equality sign of (2.9) holds at a point p e M", we also have
K{e\ A e2) = inf K at point p.

For further results on the Riemannian manifold 5, see [3,4] and the references cited in
[3,4].

3. Sharp estimate of squared mean curvature for product manifolds in real-space-
forms and its applications. It is well-known that |//|2 = 1 for the standard isometric
imbedding of the unit n-sphere S"(l) in En+1. Therefore, it is natural to consider the
following geometric question.

PROBLEM 2. Let x:S"{\)—»Em be an arbitrary isometric immersion from a unit
n-sphere into E"\ Is it true in general that | / / | 2 s i ?

In this section we will establish a very general result which in particular provides an
affirmative answer to this Problem. In order to do so, we need the following lemma.

LEMMA 1. Let x: M" —* Rm(c) be an isometric immersion of a Riemannian n-manifold
M" with normalized scalar curvature p into an m-dimensional real-space-form Rm(c) of
constant sectional curvature c. Then we have

\H\2>p-c,

equality holding at a point p s M" if and only if p is a totally umbilical point.

(3.1)

Proof. Choose an orthonormal basis e\,... ,en,en+u... ,em at p such that en+] is
parallel to the mean curvature vector and e, , . . . ,en diagonalize the shape operator An+h

Then we have

A -

/fl, 0

° °2

\0 0

(3.2)

• = n + 2 , . . . , m.

For any /(I < / < « ) , the equation of Gauss yields

r—n-vl i = \

(3.3)
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From (3.3) we find

m n

n2H2 = 2r + ̂  a2 + £ 2, (htf - n(n - l)c. (3.4)
/ r=n+2 ij = \

On the other hand, since

2 (fl/ - «,)2 = (n ~ I ) 2 a2 - 2 ^ «,«,, (3.5)

we get S «2 s « |W|2- Combining this with (3.4), we obtain

n(n-l)\H\2>2r-n(n-l)c+ 2 S W (3-6)

which implies inequality (3.1). If the equality sign of (3.1) holds at a point p s M", then
from (3.5) and (3.6) we get Ar = 0, r = n + 2,. .. , m and a, = .. . = an. Therefore, p is a
totally umbilical point. The converse is trivial. D

By applying Lemma I we may establish the following sharp estimate of the squared
mean curvature function for isometric immersions of Riemannian product manifolds in a
real-space-form Rm(c).

THEOREM I. Let M" = N"1 X . .. X N"1 be the Riemannian product of I Riemannian
manifolds. Then, for any m> n and any isometric immersion f: M" —» R'"(c), we have

>*~c, (3.7)

where p , , . . . , p , are the normalized scalar curvature of N"\ . . . , N"', respectively.

Proof. Let e ° , . . . , e°a denote an orthonormal basis for Nn
a°. Then

can be regarded as an orthonormal basis of M" in a natural way. Let h be the second
fundamental form of M" in Rm(c). For each a e { 1 , . . . , / } , we put

trace/jo = 2>(e ,V,°) . (3-8)

Then we have

nH= 2 trace A". (3.9)

Choose a point (pu. • • ,Pi) in N"] x . . . x N?'. For each a e { 1 , . . . , / } , let iQ denote
the inclusion map from Nl° into N"' x . . . x N"1 defined by La(x) = (pu... ,pa-u x,
p a + u- • • ,Pi), x e N"a

a. Let fQ = / 0 ^ Q be the isometric immersion from Nl° into Rm(c)
given by the composition of / and ia. Since the inclusion map tQ is a totally geodesic
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isometric imbedding, the mean curvature vector Ha of fo:N"a
a—*Rm(c) is given by

Ho = (trace h°)/na. Thus we obtain

(k, (3.10)

For distinct a and /3, the equation of Gauss yields

(h(e°, ef), h(ef, ef)) = (h(ef, ef),h(ef, ef)) - c, (3.11)

for unit vectors ef, ef tangent to Nn
a° and N"£, respectively. Thus, we find

nan0(Ha, Hp) = J § \h{ef, ef)\2 - nanpc. (3.12)
1=1y=i

From (3.7)-(3.12) we obtain

n2 \H\2 = S n\ \Ha\
2 + S S 2 !*(«*, ef)|2 - £ /!„«,,£ (3.13)

Q=1 Q^/3i=l;=l o^3

On the other hand, Lemma 1 implies

\Ha\
2>Pa-c, (3.14)

where the equality case holds if and only if the immersion fa is a totally umbilical
immersion.

From (3.13) and (3.14) we obtain inequality (3.7). •

Theorem 1 can be utilized to obtain some simple geometrical characterization
theorems. For instance, for product Riemannian manifolds in a Euclidean w-space, we
have the following.

THEOREM 2. Let M" = N"1 X . . . X N"' be the Riemannian product of I Riemannian
manifolds. Then, for any m> n and any isometric immersion f:M" —* Em, we have

a = i
(3.15)

The equality case of (3.15) holds identically if and only if (1) pu...,pi are
non-negative constants, (2) each component Nl° is isometric to an open portion of an
na-sphere S"°(pa) or isometric to an open portion of an na-plane E"°, and (3) / is the
product of I isometric immersions fa: N"a° —* Em°, a = 1 , . . . , / , where each fa is given either
by a totally umbilical isometric immersion of an na-sphere or by a totally geodesic isometric
immersion of an na-plane.

Proof. Inequality (3.15) is a special case of inequality (3.7) with c = 0.
If the equality case of (3.15) holds, then, from (3.13) and (3.14), we know that the

squared mean curvature function of each fa:N"a°^>E" satisfies \Ha\
2 = pa. Thus, from the

proof of Theorem 1, we know that the equality case of (3.15) implies that each
/a :Na°->£m is a totally umbilical isometric immersion. Thus, each N"° is either isometric
to an open portion of an «Q-sphere of positive sectional curvature, say ca, or isometric to
an open portion of an «Q-plane (cf. [1, page 50]). Thus, the normalized scalar curvature
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pa of Na° is equal to cQ for the first case or zero for the second case. If the second case
occurs, fa is a totally geodesic immersion. Furthermore, from (3.13), we also know that
the equality case of (3.15) implies h(X, Y) = 0, whenever X and Y are tangent to different
components of the Riemannian product M" = N"] x . . . x N"'. Hence, by applying a
Lemma of Moore, we conclude that the immersion / is indeed a product immersion of
some totally umbilical and totally geodesic immersions.

The converse is easy to verify. •

The following simple geometrical characterization results follow immediately from
Theorem 2.

COROLLARY 1. Let M" be an Einstein n-manifold with Ricci tensor S = (n - l)cg.
Then for any isometric immersion of M" into Em, we have

|//|2>c. (3.16)

The equality case holds identically if and only if either M" is flat and it is immersed as an
open portion of an affine n-subspace E" of E" or M" is isometric to an open portion of an

n-sphere of radius -7= and it is immersed as an open portion of an ordinary hypersphere in
Vc

an affine (n + \)-subspace En+1 ofF".

COROLLARY 2. Let Nk(c) be a k-dimensional real-space-form with constant sectional
curvature c >0. Then, for any isometric immersion f:M" = Nk(c) X E"~*—»Em of the
Riemannian product M" into Em, we have

^ j . (3.17)

The equality case holds identically if and only if M" is immersed as an open portion of an
ordinary spherical hypercylinder: Sk(c) X W~k in an affine (n + l)-subspace En+1 o/Em.

REMARK 3.1. The exact same proof of Theorem 2 shows that inequality (3.7) also
holds for totally real submanifolds in a complex-space-form Mm(4c) with constant holo-
morphic sectional curvature Ac and in quaternion-space-form with constant quaternionic
sectional curvature Ac.

4. Mean curvature of isometric immersions in hyperbolic space. For vectors X and
Y in the Cartesian (« +2)-space R"+2, we put

n+2

g(x, y) = -*1y1 + £ X'Y1

1 = 2

and

Hn+\-l) = {xe En+2:g(x,x) = - 1 and JC, > 0}.

Then Un+2 with the pseudo-Riemannian metric g is the (n + 2)-dimensional Minkowski
space-time, denoted by U"+2 and Hn+\-l) with the induced metric is a complete,
simply-connected real-space-form with constant sectional curvature — 1.

Let N2-""2 = H\-\)xS"-\\) be the Riemannian product of the hyperbolic plane
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H2(-%) with constant curvature —\ and a unit (n - 2)-sphere. N2'"~2 admits a canonical
isometric imbedding in / / n + 1 ( - l ) <= U"+2 defined by

N2-"-2 = { x : x 2 - x l - x \ = 2 , x 2 + x2
5 + . . . + x2

n+2 = 1} (4.1)

which is called the standard imbedding of N2-"~2. By a direct computation we know that
N2-""2 is an isoparametric hypersurface of H"+\-l) whose shape operator is given by

(4.2)

where lk is the identity map.
The main purpose of this section is to prove the following.

THEOREM 3. Let M" be an open portion of N2""'2. Then, for any isometric immersion
of M" into the hyperbolic m-space Hm{-\), we have

(4.3)

equality holding if and only if, up to rigid motions of Hm(—1), M" is immersed as an open
portion of the standard imbedded N2'""2 in a totally geodesic hyperbolic (n + l)-space
H"+\-\)ofHm{-\).

Proof Let M" be an open portion of yv2>""2 and x:M"->Hm(-l) be an isometric

immersion. Since the scalar curvature of M" is given by r = and inf/C = —\,

we have bM = . Therefore, by applying Theorem A, we obtain inequality

(4.3). (Inequality (4.3) also follows from Theorem 1.)
Now, assume that the equality sign of (4.3) holds identically, then, with respect to a

suitable orthonormal local frame field eu... ,en,en+x,. .. ,em, the shape operator of M"
in Hm(-l) takes the form: (2.10) and (2.11) according to Theorem A. Moreover, by
Theorem A, we also have infK = K(et AC2).

Since the only plane section n in each tangent space of M" with K(n) = inf K = -\ is
the plane section spanned by eu e2, the vectors e,, e2 are tangent to the first component of
M" cN2-"~2 = H2(-\)XS"~2(l) and hence e3, ...,en are tangent to the second com-
ponent of Mn. Since K(e^ AC3) = K(e2 A e3) = 0, (2.10), (2.11) and the equation of Gauss
imply

from which we obtain fi = la.

https://doi.org/10.1017/S001708950003130X Published online by Cambridge University Press

https://doi.org/10.1017/S001708950003130X


94 BANG-YEN CHEN

On the other hand, because K(e^ Ae3) = 0, the equation of Gauss yields a2 = \.

Without loss of generality, we may assume a = —j=. Hence we obtain

V2

0

0

0

1

V5
0

0 ..

0 ..

V2 ..

. 0

. 0

. 0
(4.4)

0 0 0 . . . V2J

Now, by using (2.11), (4.4) and the equation of Gauss, we have

1 1 m

- - = K(e^e2) = - - 1 - 2 ((hr
u)

2 + (h\2)
2). (4.5)

r=n+2

Therefore, Ar = 0, r = n+2,...,m. Hence, the first normal space of M" in Hm(-\) is
1-dimensional at each point. Since the rank of An+\ is n, the equation of Codazzi together
with the special form of the second fundamental form imply that the first normal spaces
form a 1-dimensional parallel subbundle of the normal bundle. Therefore, by a result of
Erbacher [5], M" is contained in a totally geodesic hyperbolic (« + l)-space H"+\-\) of
Hm(-1). Now, by following a standard technique in hypersurface theory, we conclude
that M" is imbedded in Hn+\-l) in the standard way. The converse is trivial. D

REMARK 4.1. Theorem 3 has been announced in [3].

5. Sectional curvature and shape operator. The main purpose of this section is to
obtain another solution to Problem 1 which establishes a sharp relationship between
sectional curvature function K and the shape operator for submanifolds in real-space-
forms.

THEOREM 4. Let x:M"—>Rm(c) be an isometric immersion of a Riemannian n-
manifold M" into an m-dimensional real-space-form Rm(c) of constant sectional curvature
c. If there exist a point p e M" such that c = inf K ^ c at p, then the shape operator at the
mean curvature vector H satisfies

n — 1

AH> {c-c)In, at p,
n

(5.1)

where /„ is the identity map.

Proof. We assume that M" is a submanifold in Rm(c). If the sectional curvatures
satisfy inf K = c >c at p, Lemma 1 implies that the mean curvature vector H is nonzero at
p. Choose an orthornormal basis eu... , en, en+u..., em at p such that en+1 is parallel to
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the mean curvature vector and eu. .. ,en diagonalize the shape operator An + V Then we
have

[a, 0 0 . . . 0\
0 a2 0 . . . 0

••4/1 + 1 ~ 0 0 0

VO 0 0 ... aj

(5.2)

We put iijj = Ujj = djOj. From Gauss' equation we get
m m

Uij>c-c+ 2 Wif- 2 Wo, l=s/#/<

We need the following lemmas.

LEMMA 2. The following statements hold.
(1) For any fixed i e {1,... ,n}, we have 2 , * , utj > (« - l ) (c - c).
(2) Ulj*0fori*j.
(3) For distinct i, j , k, we have a} = UijUikUjk

].

Proof. From (5.2) and (5.3), we get

r=n+2

(5.3)

which yields statement (1).
For statement (2), let us assume u0 = ataj = 0. If a, = 0, then «,-, = 0 for any t ̂  i.

Hence S,^,«,, = 0 which contradicts statement (1).
Statement (3) follows from UjjUik = ajafak = ctfujk. D

For each subset B of {1 , . . . , «} , denote by B the complement of B in { 1 , . . . , n). Let
S* be the class of subsets of {1 , . . . ,«} with k elements.

LEMMA 3. For a fixed k, 1 < A: < - , and each B e Sk, we have

jeB IB

2uj,>(n-k)k(c-c).
B

Proof Without loss of generality, we may assume B = { 1 , . . . , k}. From (5.3) we find

i 5
jeB leB

= (« - k)k(c - c) +

which implies the lemma. •

> > > \(h \
j=\ l=k + l r=n+2

k n k

y f (hr?+y
j=\ t=k+\ 7=1
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LEMMA 4. For any 1 s i ^j < n, we have u,y > 0.

Proof. Assume Mln<0. Then, by statement (3) of Lemma 2, we get «i,w,,,<0, for
1< i < n. Without loss of generality, we may assume

U]2, • • • , Uu, U(/ + ] ) n , . . . , M(n_i)n > 0,

H l ( / + 1 ) , . . • ,Uln,U2n,.. . , M / n < 0 , ( 5 . 4 )

for some < / < n - 1.

If / = / 7 - l , then «,„ + M2« + • • • + «(n-i)n<0 which contradicts statement (1) of
Lemma 2. Thus, / < n - 1. From statement (3) of Lemma 2 we get

2 >0, (5.5)

where 2 s / < / and / + 1 ^ f s AI - 1. By (5.4) and (5.5), we obtain «,, < 0 which implies

/ n I n-\ I n

E I «« = E E "/I + 2 "'» + S «li <0.
f = l l = / + l i = 2i = / + l (=1 / = /-!-1

This contradicts Lemma 3. •

Now, we return to the proof of Theorem 4. From Lemma 4, it follows that au... ,an

are of the same sign. Therefore, the shape operator AH is positive-definite. Now, from
statement (1) of Lemma 2, we get

na, \H\ -a] = a& «, *{n- \){c - c), (5.6)

which implies (5.1). If c < c at p , (5.1) can be proved in a similar way. D

REMARK 5.1. Our estimate of the shape operator AH in Theorem 4 is sharp. This can
be seen from the following example.

Consider a hyper-ellipsoid in E"+1 defined by

ax? + jc| + . . .+ j rS + , = l, (5.7)

where 0<a < 1. The principal curvatures au... ,an of the hyper-ellipsoid are given by
(cf. [6])

Therefore, the sectional curvature function K satisfies

a

a-\)x])2
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and the eigenvalues KI, . . . , *„ of the shape operator AH are given by

1 •• ' " " - ' n(l + a(a - l)x2)2

K _a(a + (n-l)(\+a(a-l)x2))
n(l + a(a - l)x2)3

From (5.9) and (5.10) it follows that AH > ( - )cL and
V n I

n-\ a2

->0
as a —»0.

For an n-dimensional submanifold M" in Em, let E"+1 be the linear subspace of
dimension n + 1 spanned by the tangent space at a point p e M and the mean curvature
vector / / (p ) at p. Geometrically, the shape operator An+X of M" in £"' at p is the shape
operator of the orthogonal projection of M" into En + 1. Moreover, it is known that if the
shape operator of a hypersurface in E"+1 is definite at a point p, then it is strictly convex
at p. For this reason a submanifold M" in E'" is said to be H-strictly convex if the shape
operator AH is positive-definite at each point in M".

Theorem 4 implies immediately the following.

COROLLARY 3. Let M" be a submanifold of a Euclidean m-space E"'. / / M" has
positive sectional curvatures, then M" is H-strictly convex.

REMARK 5.2. If the condition c = inf K ¥^ c at p in Theorem 4 is replaced by inf K = c
at p, then (5.1) will be replaced by AH s 0 at p.
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