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MULTIFUNCTIONS AND INVERSE CLUSTER SETS 

BY 

J A M E S E. J O S E P H 

ABSTRACT. In this paper the notion of inverse cluster set, which 
was recently introduced and studied for functions by T. R. Hamlett 
and P. E. Long (Proc. Amer. Math. Soc, 53 (1975), 470-476), is 
extended to and investigated for multifunctions. We generalize the 
notion of inverse cluster set, extend to multifunctions and generalize 
some known results for inverse cluster sets of functions and offer 
some new results. In the latter sections, compactness generalizations 
are characterized in terms of inverse cluster sets and some results on 
connected and conectivity functions are extended to multifunctions. 

1. Introduction. In [3], Professors Hamlett and Long introduced and studied 
the notion of inverse cluster sets for functions. In their paper they obtained 
interesting results relating properties of inverse cluster sets for a function to the 
continuity properties of the function and to the properties of the graph of the 
function. 

A multifunction from a set X to a set Y is a function from X to 9>(Y)—{0}9 

where 0>(Y) is the power set of Y. In this article we extend the notion of 
inverse cluster set to multifunctions, generalize the concept of inverse cluster 
set, extend to multifunctions and otherwise generalize some results from [3], 
generalize some results from [11] and present some results which are new for 
functions. General properties of inverse cluster sets for multifunctions are 
proved including necessary and sufficient conditions for multifunctions to 
satisfy certain continuity and graph conditions. In the later sections we employ 
inverse cluster sets to characterize regular, m -compact, Lindelôf and H-closed 
spaces and also extend to multifunctions a known theorem giving a condition 
under which a connected function is a connectivity function. 

2. Some preliminaries. We will denote the closure of a subset A of a 
topological space by cl(A), the collection of open neighborhoods of A by 2(A) 
and the collection of closed neighborhoods of A by T(A). A subset A of a 
space is a regular-open (regular-closed) subset of the space if A is equal to the 
interior of its closure (closure of its interior). We will denote the family of 
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regular-closed subsets which contain a subset A of a space by V(A). The 
adherence of a filterbase ft on a space will be denoted by ad ft. We will say that 
a point x in a space is in the 6-closure of a subset A of the space (x G cle(A)) if 
each VeT(x) satisfies A PI V^ 0 , that A is 0-closed if cl0(A) = A and that x 
is in the 6-adherence of a filterbase ft on the space (x e ad0Q) if x e cl0(F) for 
each F e f t [14]. A is u-closed if A =0ov ad»Y(A) = A. 

We will represent the class of all multifunctions from a set X to a set Y by 
M(X, Y). Let X and Y be spaces and let aeM(X, Y). We say that a is 
upper-semicontinuous (u.s.c.) at X G X if for each We£(a(x) ) in Y there is a 
V G £ ( X ) in X with a ( V ) c W (If A c X , then a ( A ) = U A « W . ) ; « is upper-
semicontinuous on X (u.s.c.) if a is u.s.c. at each X G X . Smithson [10] has 
defined a to be weakly upper-semicontinuous (w.u.s.c.) at xeX if for each 
WeT(a(x)) there is a V G X ( X ) with a(V)c:W and has called a weakly 
upper-semicontinuous on X (w.u.s.c.) when a is w.u.s.c. at each xeX. We note 
that if a is a function then a is w.u.s.c. at x (w.u.s.c.) if and only if a is 
weakly-continuous at x (weakly-continuous) in the sense of Levine [6]. We say 
that aeM(X, Y) is almost upper-semicontinuous (a.u.s.c.) [6-upper-
semicontinuous (6-u.s.c.)] at xeX if for each regular-open W with a(x)<= 
W[WeT(a(x))] there is a V€2(x ) [Ver (x ) ] with a(V)a W and that a is 
almost upper-semicontinuous (a.u.s.c.) [O-upper-semicontinuous (6-u.s.c.)] on X 
if a is a.u.s.c. [0-u.s.c] at each X G X ; a has closed (6-closed) [compact] point 
images if a(x) is closed (0-closed) [compact] in Y for each X G X . We will 
represent the graph of a-i.e. {(x, y) : x G X and y G a(x)}-by ^(a). As usual, we 
will say that a has a closed graph if ^(a) is a closed subset of X x Y Paralleling 
the notion of function with a strongly-closed graph from [4] we say that a has a 
strongly-closed graph if for each (x, y)G(Xx Y) — Cê(a) there are sets V G 2 ( X ) , 

W e r ( y ) , in X and Y, respectively, with (Vx W)ncS(a)= 0. We say that a 
has a d-closed graph if ^ ( a ) is a 0-closed subset of X x Y In a product space 
X x Y the (2) 6-closure of a subset K((2)cld(K)) of X x Y is {(x, y)e X x Y: all 
V G S ( X ) and WGT(y) satisfy (VxW)DK£0}; K is (2) 6-closed if 
(2)cle(iC) = K It is not difficult to see that aeM(X, Y) has a strongly-closed 
graph if and only if ^(a) is a (2)0-closed subset of X x Y Finally, if X is a 
space, x0 G X and ft is a filterbase on X then X with the topology {A c= 
X : x Q i A or F e A for some Feu} will be denoted by X(x0, ft). If B c Y, we 
denote { X G X :a(x)DB^ 0 } by a _ 1 (B) . 

3. Multifunctions, inverse cluster sets, graph and continuity properties. Let 
X and Y be spaces and let aeM(X, Y). Employing equivalence (2) of 
Theorem 2.3 in [3] as a model we define the inverse cluster set of a at y eY by 
( ë - 1 (a ; y)= ns(y)cK«_1(V)). Generalizing this notion we define the strong 
inverse cluster set of a at y G Y t o b e ^ _ i ( « ; y) = Plrcy) CK<* ~1(V')), and the inverse 
0-cluster set of a at y eY to be Sr~x(a\ y) = rir(y)Cle(«~1(Vr)). In Lemma 3.1 we 

https://doi.org/10.4153/CMB-1980-022-3 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1980-022-3


1980] MULTIFUNCTIONS 163 

relate ^ _ 1 ( a ; y), 5^_1(a; y) and ^ _ 1 ( a ; y) to S(a) . We prove only statement 
(a) as the proofs of the other statements are similar; the projection from X x Y 
to X is denoted by rrx. 

3.1. LEMMA. Let X, Y be spaces and let a eM(X, Y). Then 
(a) « " H a ; y) = 7Tx((Xx{y})n^(«(a))) for eachyeY. 
(b) <r-\a\ y) = irx((Xx{y})n(2)^e(«(a))) for each y e Y 
(c) 3"\a-, y) = i r x ( (Xx{y})n^ e («(a))) /or each y G Y. 

Proof of (a). Let y e Y, x G « _ 1 ( a ; y ) and let V G 2 ( X ) . Then for any We 
S(y) we have V^a~\W)^0. Thus (Vx W ) f l « ( a ) ^ 0 . This shows that 
(x, y)ecl((S(a)) and, consequently, that xG7rx((Xx{y})ricl(«(a))). The steps 
in the above argument may be reversed to establish the reverse inclusion. The 
proof of (a) is complete. 

In the first three theorems we characterize multifunctions with closed graphs, 
strongly-closed graphs and 0-closed graphs, respectively, in terms of inverse 
cluster sets. The proofs of Theorems 3.3 and 3.4 are similar to that of Theorem 
3.2 and are omitted. 

3.2. THEOREM. The following statements are equivalent for spaces X, Y and 
aeM(X,Y): 
(a) The multifunction a has a closed graph: 
(b) a-1(y) = 7Tx((Xx{y})n^(«(a))) for eachyeY. 
(c) c€-\a;y) = a-1(y) for each y G Y 

Proof that (a) implies (b). Obvious. 
Proof that (b) implies (c). This follows from Lemma 3.1(a). 

Proof that (c) implies (a). Let (x, y ) e ( X x Y)-»(<*). Then x^a _ 1 (y ) , so 
xt^'Ka^y). Thus there are sets V G S ( X ) in X and WG2(y) in Y with 
V r i a " 1 ( W ) = 0 . This gives (Vx W)f l»(a) = 0 . 

This proof is complete. 

3.3. THEOREM. The following statements are equivalent for spaces X, Y and 
aeM(X,Y): 
(a) The multifunction a has a strongly-closed graph; 

(b) a-1(y) = 7rx((Xx{y})n(2Ke(«(a))) for eachyeY. 
(c) Sf'\a ; y) = a - 1 (y) for each y G Y 

3.4. THEOREM. The following statements are equivalent for spaces X, Y and 
aeM(X,Y): 
(a) The multifunction a has a 6-closed graph; 
(b) a-1(y) = 7Tx((Xx{y})n^0(^(a))) for each y G Y 
(c) ^~\a ; y) = a'l(y) for eachyeY. 

We will next establish several results which relate inverse cluster sets and 

https://doi.org/10.4153/CMB-1980-022-3 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1980-022-3


164 J. E. JOSEPH [June 

continuity properties. These results will include necessary and sufficient condi
tions for certain continuity properties in terms of inverse cluster sets. Let X 
and Y be spaces and let o e i ( X , Y ) . If ftc^(X) we write a(0,) = 
{a(A):Aeil}. We define the cluster set (strong cluster set) [0-cluster set] 
of a at xeX to be ^ ( a ; x)= ada(Z(x)) (Sf(a; x) = adea(î,(x))) 
[9~(a\ x) = ad0a(X(x))]. The following relationships exist between cluster sets 
and inverse cluster sets. Again we prove statement (a) only. 

3.5. THEOREM. Let X and Y be spaces and let a eM(X, Y): 
(a) <G(a;x) = {yeY:xe<e-1(a;y)} for each xeX. 
(b) Sf(a;x) = {yeY:xey-1(a;y)} for each xeX. 
(c) y ( a ; x ) = { y £ Y : x e r 1 ( a ; y ) } for each xeX. 

Proof of (a). Let y e Y and let xeX with y G«(a;x)[xG ( ë~ 1 (a ; y)]. If 
V e 2 ( x ) in X and WeS(y) in Y then a(V)H W^ 0 [ V n c T 1 ( W ) ^ 0 ] ; so we 
have Vna-1(W)£0[a(V)nW£ 0 ] . The proof of (a) is complete. 

The following theorem appears in [5]. 

3.6. THEOREM. If X and Y are spaces and a eM(X, Y) is u.s.c. at x0eX then 
y?(a;x0) = c€e(a(x0)). 

One of the main results of [3] (Theorem 2.9) shows that if X and Y are 
spaces with Y compact Hausdorff then a function a : X —> Y is continuous at 
x0eX if and only if x 0 e ( £~ 1 (a ;y) for exactly one y e Y . Theorem 3.7 
generalizes this result and extends it to multifunctions. 

3.7. THEOREM. Let X and Y be spaces with Y compact and let aeM(X, y) 
have 6-closed point images. Then a is u.s.c. at x0eX if and only if ^ ( a ; x0) = 
a(x0). 

Proof. Necessity. We see easily that a(x0)c:<ë(a; x0) and the reverse inclu
sion follows from Theorem 3.6 since <£(«; JC0)C: 5^(a; xo) = cl0(a(xo)) = a(xo). 

Sufficiency. Assume that W0 e 2(a (x0)) and that fl = {a ( V) - W0 : V G 
S(a(x0))} is a filterbase on Y. Since Y is compact we have 0j=ad(l:= 
ada (2(x0)) ~ W0 = <£(a ; x0) - W0 = a (x0) - W0. Thus a (x0) ~ W0 £ 0 , a contra
diction, and a is u.s.c. at x0. 

The proof of the theorem is complete. 
In connection with our next three theorems, which are similar in nature to 

Theorem 3.7, we recall that a subset K of a space X is quasi H-closed relative 
to X if for each cover A of K by open subsets of X there is a finite A* cz A with 
K C C 1 ( U A * V). If X is quasi H-closed relative to X we say simply that X is 
quasi H-closed [8]. A Hausdorff quasi H-closed space is called H-closed. 
Herrington [2] has shown that K is quasi H-closed relative to a space X if and 
only if each filterbase ù on K satisfies KC\adefi^ 0 . 
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3.8. THEOREM. Let X and Y be spaces with Y quasi H-closed and let 
a eM(X, Y) have 0-closed point images. Then a is a.u.s.c. at x0eX if and only 
if&(a;x0) = a(x0). 

Proof. Necessity. Clearly, a(x0)<^Sf(a;x0). On the other hand, if y^a(x0) 
there is a We£(y ) with a(x0)c: Y-cl(W). Since Y-cl (W) is regular-open and 
a is a.u.s.c. there is a Ve2(x 0 ) with a(V)<= Y-cl(W). So y^5^(a; x0). Hence 
Sf(a;x0) = a(x0). 

Sufficiency. Assume that W0 is a regular-open subset about a(x0) and that 
fî = {a ( V) - W0 : V e 2(x)} is a filterbase on Y. Then O is a fUterbase on Y - W0 

which is regular-closed and, consequently, quasi H-closed relative to X Thus 
0^adea~Woc:9>(a;xo)~Wo = a(xo)-Wo. Thus a ( x o ) - W o ^ 0 , a con
tradiction, and a is a.u.s.c. at x0. 

The proof of the theorem is complete. 
If X and Y are spaces, an a.u.s.c. function aeM(X, Y) is called almost 

continuous in [13]. 

3.9. COROLLARY. Let X and Y be spaces with Y H-closed. Then a function 
a eM(X, Y) is almost continuous at x0eX if and only if 5^(a; x0) = a(x0). 

3.10. THEOREM. Let X and Y be spaces with Y H-closed and let a eM(X, Y) 
have u-closed point images. Then a is w.u.s.c. at x0eX if and only if Sf(a ; x0) = 
a(x0). 

Proof. Necessity. Since a(x0) is u-closed, if zeY-a(x0) there are sets 
VeS(z ) , We£(a(x 0 ) ) in Y with d (V)nc l (W)= 0 . There is a Qe2(x 0 ) in X 
with a(Q)<=cl(W) since a is w.u.s.c. at x0. So c\(V)C\a(Q)= 0 and, conse
quently, z<É£f(a;x0). Hence 6^(a; Xo)^ «(x0) and 5^(a; x0) = a(x0). 

Sufficiency. If W0e£(a(x0)) in Y such that n = {a(V)n(Y-c l (W 0 ) ) : V e 
S(x0)} is a filterbase on Y then, since Y is H-closed, we have 0 j^adeQ,n 
cl(Y-cl(W0))<=Sf(a;xo)- W0. Thus a ( x 0 ) - W0j= 0 , a contradiction, and a is 
w.u.s.c. at x0. 

The proof of the theorem is complete. 

3.11. COROLLARY. Let X and Y be spaces with Y H-closed. Then a function 
aeJ/t(X, Y) with u-closed values is weakly-continuous at X 0 G X if and only 
if3?(a;xQ) = a(x()). 

The proof of Theorem 3.12 is omitted as it is similar to the proofs of the 
above theorems. 

3.12. THEOREM. Let X and Y be spaces with Y H-closed and let a eM(X, Y) 
have u-closed point images. Then a is 0-u.s.c. at x0e X // and only if £T(a ; x0) = 
a(x0). 

Another of the main results of [3] (Theorem 3.3) states that c€~1(a;y) = 
cl(a -1(y)) for each y G Y when X and Y are spaces with X regular and 
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a eM(X, Y) is a closed function. We employ the following definition from [11] 
to extend this result to multifunctions and to generalize this result as well as a 
result from [11], 

3.13. DEFINITION. If X and Y are spaces, aeM(X, Y) is locally closed if for 
each x e X and for each neighborhood V of x there is a neighborhood W of x 
such that W c V and a(W) is closed in Y. 

We see easily that a closed multifunction defined on a regular space is locally 
closed. It is known that a closed multifunction need not be locally closed and 
that a locally closed multifunction need not be closed. 

3.14. THEOREM. If X and Y are spaces and a eM(X, Y) is locally closed then 
« _ 1 ( a ; y) = *€(a-\y)) for each y e Y . 

Proof. We need show only that c€~1(a;y)<=-cl(a~1(y)). Let xe 
cê~1(a;y)-cl(a-\y)), where yeY. There is a Ve2(x ) with V n a _ 1 ( y ) = 0 . 
There is a We2(x ) with cl(a(W))c: a(V) since a is locally closed. So 
ygcl(a(W)) and there is a Q e £ ( y ) in Y with Q H a ( W ) = 0 . Hence 
WDa~l(Q)= 0 ; this is a contradiction and the proof is complete. 

3.15. COROLLARY [11]. If X and Y are spaces and a e J ( X , Y) is locally 
closed with « (y) closed for each yeY then a has a closed graph. 

The final result in this section improves upon Corollary 3.5 of [11] since 
6-closure and closure coincide in regular spaces. 

3.16. THEOREM. Let X and Y be spaces and let a eM(X, Y) be closed with 
d-closed point inverses. Then a has a closed graph. 

Proof. We show that <g_1(a; y ) c a_ 1(y) for each y e Y (see Theorem 3.2). 
Assume that xeX, yeY and x£a~l(y). Since a'1(y) is 0-closed there 
is a VeX(x) with c l (V)na _ 1 (y) = 0 . So we have a(V)cz a(cl(V))c 
a ( X - a - 1 ( y ) ) c : Y-{y}. Since a(cl(V)) is closed we see that y^cl(a(V)) and, 
consequently, that x^c€~1(a; y). The proof is complete. 

4. Multifunctions, inverse cluster sets, regularity and compactness 
generalizations. In this section we will characterize regularity, compactness, 
Lindelôfness, ^-compactness and H-closedhess in terms of multifunctions and 
inverse cluster sets. The first theorem characterizes regularity (not assuming 
T,). 

4.1. THEOREM. A space X is regular if and only if for each space Y, each 
closed a eM(X, Y) satisfies ^ _ 1 ( a ; y) = ^^(û:_1(y)) for each yeY. 

Proof. Necessity. A closed a eM(X, Y) is locally closed when X is regular. 
So the result of Theorem 3.14 holds. 
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Sufficiency. Suppose X satisfies the condition of the theorem and let F c X 
be closed and nonempty. Choose x0eF and define a GM(X, X(X0, 2(F))) by 
a(x) = x if x<£F and a (x) = {x, x0} otherwise. Let H <= X be closed. If 
H f l F ^ 0 , then x0ea(H) so a(H) is closed; since H is closed in X, if 
HHF=0 there is a VeS(F) in X with VHH=0; a(V)eX(x0) in 
X0co,£(F)) and a(V)C\a(H)= VDH= 0. Thus a(H) is closed in 
X(x0 ,2(F)). Thus by hypothesis we have c€~1(a;x0) = c\(a~1(x0)) = F; so if 
y£F there is a Ve2(y) in X and a WeSUo) in X(x0 ,£(F)) with 
V f l a - 1 ( W ) = 0 . Since a~\W)=W and WeX(F) in X the sufficiency is 
proved. 

The proof of the theorem is complete. 

Before presenting the other theorems in this section we present some 
preliminary definitions and known results. A subset K of a space X is 
m-compact for an infinite cardinal m if each closed filterbase ft on K with 
cardinality at most m satisfies KC]adfi^0. The following theorems (4.2-4.5) 
appear in [5]. 

4.2. THEOREM. A subset K of a space is m-compact if and only if each 
filterbase ft on the space such that ft has at most M elements and such that 
FD Vj= 0 is satisfied for each Fefi and VeX(K) satisfies KDadfl^Ç). 

4.3. THEOREM, A subset K of a space is Lindelôf if and only if each filterbase 
ft on the space such that ID V=£ 0 is satisfied by each VeS(K) and countable 
intersection, I, of elements of ft satisfies K Had ft ^ 0 . 

4.4 THEOREM. A subset K of a space X is quasi H-closed relative to X if and 
only if each filterbase il on X such that F C\ Cj= 0 is satisfied for each Fed and 
C G V(K) satisfies K fl ad0ft + 0 . 

4.5. THEOREM. If X is quasi H-closed and K<=X then c£e(K) is quasi 
H-closed relative to X. 

We recall that a space is a SP-space in the sense of Gillman and Jerison [1] if 
each Gs is open. If m is an infinite cardinal we say that a space X has character 
m if at each point there is a local open base of cardinality at most m. We will 
have use for the following notation. 

4.6 NOTATION. If X and Y are spaces, K^Y and a eM(X, Y), we use the 
notation (a) r 1 ( a ; K ) = U K « " 1 ( « ; y ) 5 (b) Sf-1(a;K)= \JKy-\a\y) and (c) 
Sr-\a;K)={JK2r-\a;y). 

4.7. THEOREM. Let X be a space with character m and let Y be any space. If 
aeM(X, Y) andK^Y is m-compact then ^ _ 1 ( a , K)= rU(K)^(a _ 1 (V)) . 
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Proof. For each yeK we have S(K)cX(y) , so c g 1 ( « ; y ) = 
Ose,) cKa-HV))^ riscx) cKa-^V)) and, consequently, «-*(«; K)<= 
ri2(K)Cl(a~1(V)). Now, let ZG f lsaocKor^V)) and let A be a local base at z 
of cardinality at most m. Then for each WeA and V G S ( K ) in Y we have 
a(W)D V^Q). So a (A) is a filterbase on Y which along with the /^-compact 
subset K satisfies the hypothesis of Theorem 4.2. Hence KDada(A)^ 0 . For 
each yeKHada(A) we have VDa(W)^ 0 and, consequently, WH 
a " 1 ( V ) ^ 0 for each Ve2 (y ) in Y and WeA. Thus z e ^ a j y ) and the 
proof is complete. 

Corollary 4.8 is a consequence of Theorem 4.7 and Theorem 3.2. 

4.8. COROLLARY. Let X be a space with character m and let Y be any space. 
If aeM(X,Y) has a closed graph then a~l(K) is closed in X for each 
m - compact K^ Y. 

Proof. <e-\a;K)= {JK^~1(ot;y)= {jKa~l(y) = a-\K). The proof is com
plete. 

4.9. THEOREM. The following statements are equivalent for a 7\ space Y: 
(a) Y is m-compact. 
(b) ( ë~ 1 (a ;K)= ns (K)^(« _ 1 (V) ) for each space X with character m, a G 
M{Xy Y) and closed subset K^Y. 
(c) <ë_1(a; K) is closed in X for each space X with character m, a eM(X, Y) 
and closed subset K^Y. 

Proof that (a) implies (b). This follows from Theorem 4.7 and the fact that a 
closed subset of an /^-compact space is m -compact. 

Proof that (b) implies (c). Obvious. 
Proof that (c) implies (a). Let ft be a filterbase on Y with cardinality at most 

m and let y 0 e Y with ad f tn (Y-{y 0 } )= 0 . Let a eM(Y(y0 , ft), Y) be the 
identity function. We readily observe that Y(y0, ft) has character m. Now let 
Ve2(y 0 ) in Y. Then « ^ ( a ; Y - V ) = Y - V and is closed in Y(y0,ft) by 
hypothesis. If y e Y - V then y 4 ad£l and y ^ y0; so, since Y is T l5 there is an 
F e f t and a W e 2 ( y ) - 2 ( y 0 ) in Y satisfying W f l F = 0 . Thus y o ^ « _ 1 ( a ; y ) . 
Consequently, y 0 ^c l (Y-V) in Y(y0, ft) and there is an Fe ft satisfying F c V . 
The proof of (c) implies (a) is complete. 

The proof of the theorem is complete. 

4.10. THEOREM. Let X be a 3P-space and let Y be any space. If aeM(X, Y) 
andKczY is Lindelbf then cê-\a;K)= r\w*(<*~\V)). 

Proof. We know that « _ 1 ( a ; K ) c n s ( K ) c l ( a _ 1 ( V ) ) for any spaces X, Y, 
subset K e y , and a e i ( X , Y) (see proof of Theorem 4.7). Now, let ze 
flx(K) cl(a_1( V)). Then aÇ£(z)) is a filterbase on Y which along with the Lindelôf 
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subset K satisfies the hypothesis of Theorem 4.3. The proof is completed as in 
the proof of Theorem 4.7. 

Corollary 4.11 is a consequence of Theorem 4.10 and Theorem 3.2. 

4.11. COROLLARY. Let X be a SP-space and let Y be any space. If ae 

M(X, Y) has a closed graph then a_ 1(K) is closed in Xfor each Lindelôf K c Y. 

4.12. THEOREM. The following statements are equivalent for a 7\ space Y: 
(a) Y is Lindelôf. 
(b) «"Ha ; K) = nx(K)^(a - 1 (V)) /or each 9-space X, aeM(X, Y) and closed 
subset K e y . 
(c) ^ _ 1 ( a ; K) is closed in Xfor each 0*-space X, a eM(X, Y) and closed subset 
K e y . 

Proof. We prove only that (c) implies {a) . Let ft be a filterbase on Y with 
the countable intersection property and assume, without loss, that ft is closed 
under countable intersection. This proof is completed as in the proof of (c) 
implies (a) of Theorem 4.9 if we observe that Y(y0, ft) is a 9-space. 

The final result in this section is a characterization of H-closed spaces in 
terms of inverse cluster sets. 

4.13. THEOREM. A Hausdorff space Y is H-closed if and only if 
D v(^,(K)) «^e(«_1(C))c J"_1(a ; r^fl(X)) for each space X, aeM(X,Y) and 
K e y . 

Proof. Necessity. If Y is H -closed, X is any space, KczY and a GM(X, Y), 
then for each x e flvccieCK» cle(« -1(C)), a(T(x)) is a filterbase on y which along 
with cle(K) (quasi H-closed relative to X by Theorem 4.5) satisfies the 
hypothesis of Theorem 4.4. So cle(K)Dadea(T(x))^ 0 . For each ye 
c\e(K)nadea(T(x)) we have x e J " - 1 ( a ; y ) . The proof of the necessity is 
complete. 

Sufficiency. Let ft be a filterbase on y and let y0eY with ad0ùn(Y-
{yo}) = 0 - Let a eM(Y(y0, ft), Y) be the identity function and let V e 2(y0) in 
y If K = y - cl( V) and y e cl0 (K) then y ^ y0 and y i ade ft ; since y is T2 there 
is an F e f t and a W e £ ( y ) - £ ( y 0 ) in Y satisfying c l ( W ) f l F = 0 . So 
y0£«r-\a\y). This means that yQi nv(cu(K»cle(a"1(C)). So y 0 £cl(y-c l (V)) 
in y(y0 ,ft) and there is an F e f t satisfying Fcc l (V) . 

The proof of the theorem is complete. 

5. Inverse cluster sets, connected and connectivity multifonctions. In this 
section we extend some results from [3] and [7] for connected and connectivity 
functions. If X and Y are sets and aeM(X, Y) we let À a € i ( X , X x Y) be the 
multifunction defined by \a(x) = {x}Xa(x). We will call a a connected 
multifunction if a preserves connected sets, and a connectivity multifunction if 
Aa is connected. Theorem 5.1 extends Theorem 4.1 of [3] to multifunctions. 
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5.1. THEOREM. Let X and Y be spaces with X compact and let aeM(X, Y) 
be connected with compact point images. Then a is a connectivity multifunction if 
for each connected M c X and xeM, ^ ^ ( a ; a(x))Hc€(M) = {x}. 

Proof. Let a be connected and assume the given condition. Suppose there is 
a connected M<= X with Aa(M) = H U K where H and K are separated and let 
A=\~1(H)C\M and B = \~1(K)DM. If xe A then ka(x) is connected as the 
product of connected sets; A a ( x ) f l H ^ 0 and À a ( x ) c H U X so ka(x)^H. 
Since a(x) is compact and Aa(x)flcl(K)= 0 there are sets V G S ( X ) in X and 
WeS(a(x)) in Y with (VxW)DK = 0. If, moreover, aeVDB we have 
\a(a) connected, À a (a)cÀ a (M) and A a ( a ) f l K ^ 0 ; so Aa(a)<=lC and this 
establishes that a(VC\B)r\W=0. Furthermore, a(M) = a ( A ) U a ( B ) , 
a(A)=£0 and a(B)^0. Suppose y ecl(a(B))Da(x) where x e A . Then H = 
{ a - 1 ( Q ) n B : Q e£(y)} is a filterbase on cl(M), which is compact. Thus adilH 
c l ( M ) ^ 0 . If veadÙC\cl(M) then u e ^ f a ; y ) c « ^ ( a ; a(x)). Also, for the 
sets WGS(y) and V G S ( X ) above we have a ( V f l B ) n W ^ 0 ; so Vfl 
(B fl a_ 1(W)) = 0 and, consequently, u ^ x. However, {u, x}c= ^ _ 1 ( a ; a(x)) H 
cl(M). This is a contradiction, so a(A)f lc l (a(B))= 0 . Similarly, a(B)C\ 
cl(a(A))= 0 . This means that a(M) is oot connected. With this contradiction 
the proof is complete. 

Our next and final theorem extends Theorems 3.1 and 3.2 of [7]. 

5.2. THEOREM. Let X and Y be spaces and let a eM(X, Y) be connected and 
have closed point images. Then c£(F) <= a - 1(^^(a(F))) for each connected Fez X. 

Proof. Let X E C I ( F ) . Then FU{x} is connected in X, so a(FU{x}) = 
a(F)Ua(x) and, consequently, cl(a(F))Ua(x) is connected in Y. Since 
cl(a(F)) and a(x) are both closed in Y we must have cl(a(F)) fl a(x) £ 0. The 
proof is complete. 

5.3 REMARK. Since the preparation of this paper Theorem 5.1 has been 
published as the main result in [12]. The proof given above is different and 
shorter than that given in [12]. 
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