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NONOSCILLATION OF SECOND ORDER 
SUPERLINEAR DIFFERENTIAL EQUATIONS 

L. H. ERBE, H. X. XIA AND J. H. WU 

ABSTRACT. Some sufficient conditions are given for all solutions of the nonlinear 
differential equation y"(x) +p(x)f(y) = 0 to be nonoscillatory, where p is positive and 

n . • r f(y) ^ /OO . 
0 < inf —— < sup —— < oo 

y¥o y1
 y^o y1 

for a quotient 7 of odd positive integers, 7 > 1. 

1. Introduction. The main purpose of this paper is to present some criteria for all 
solutions of the following second order nonlinear differential equation 

(i.i) / W + P W W = O 

to be nonoscillatory, where p:R+ —-+ R+, R+ = [0, oo), is positive and continuous, 
/ : R —» R is continuous and 

(1.2) 0 < inf ^ < sup ^ < o o 
y£R\{0} y1

 y£R\{0} y1 

for a quotient 7 of odd positive integers, 7 > 1. 
Equation (1.1) includes the so-called (generalized) Emden-Fowler equation 

• , ~x d \ / du 

(L3) *H* 
+ qiOu1 = 0, t > 0 

under the standard Liouville transformation 

f* dr , N .r c°° dt 
s = / and y(s) = u(t) if / 

Jop(r) yK) Jo p(t) 
or the alternative transformation 

roo dT ] - l foo dt ^ 

/ , ym = sw(n if / < oo 
Jt P(T)\

 JKJ Jo p(t) 
where p: R+ ^ R+ \ {0} and q: R+ —> R+ are continuous icf. [20]). This equation arises 
in various applications such as gas dynamics, fluid dynamics, relativistic mechanics, 
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NONOSCILLATION 179 

nuclear physics and chemically reacting systems, and its positive solutions give rise to 
ground states for certain semilinear elliptic problems {cf. [14], [15]). 

A great deal of research has been devoted to the study of oscillation and nonoscillation 
of solutions and various criteria have been established to guarantee the oscillation of 
all solutions or the existence of nonoscillatory solutions. For details, we refer to [10], 
[15], [20] and the references therein. However, as Fowler [13] indicated, the Emden-
Fowler equation may at the same time possess oscillatory and nonoscillatory solutions. 
Therefore it is an interesting but difficult problem to find general conditions to guarantee 
all solutions are nonoscillatory. In [16], Nehari proved that all solutions to the equation 

(1.4) y"(x)+p(x)i =0 

7+3 

are nonoscillatory if p(x)(x\nx) 2 is nonincreasing for sufficiently large x. This result 
was subsequently improved by Chiou [5], Nehari [17] and Kaper-Kwong [15]. In [15], 
it was shown that all solutions to equation ( 1.4) are nonoscillatory if there exists a (3 > 0 
such that p(x)x^ (Inx)13 is nonincreasing for all sufficiently large x. However, the tech
niques employed involve clever but complicated use of differential and integral inequal
ities and identities. 

In [8]—[12], the first author of this paper and his collaborators established some 
nonoscillation criteria by using a suitable change of variables and the energy function 
method. For example, in [12] it was shown that all solutions to equation (1.4) are 
nonoscillatory if p(x)x~^ (lnx)^ is nonincreasing andp{x)x^ (lnx)^ is bounded for some 
pair (/3,77) with (5 > 0 and $ + ^ > 1. 

It is the purpose of this paper to continue the above geometrically enlightening method 
for equation (1.1) by employing a more general transformation. In Section 2, we will in
troduce our transformation and energy functions, and prove our general results which 
involve some auxiliary functions. It turns out that nonoscillation criteria depend on the 
choice of this function. In Section 3, we will illustrate how to select this function to pro
duce a series of nonoscillation criteria. It is shown that all solutions of equation ( 1.4) 
are nonoscillatory if there are pairs (/3i,r]i) with f3\ > 0, fy > 0, ^ + ^ > 1. 
^3 + ^-j- > 0 for / = 2 ,3 , . . . , TV, such that p(x)x~i~ Il^Ljthf (x)]^' is nonincreasing 
and p(x)x^ n^Litln'Oc)]77' is bounded, where In1* = ln;t,hV(x) = ln(lni_1(;c)) for 1 < 
i<N. 

2. Transformations and energy functions. Making the following change of vari
ables 

(2.1) x = e\ y = g(t)eatu, 0 < a < i 

where g: R —> R is an undetermined twice continuously differentiable function satisfying 
g(0 > 0 for sufficiently large t, we can rewrite equation (1.1) as 

(2.2) (p(t)u) ' + a(U u)u = 0 
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where 

(2.3) 

(2.4) 

(2.5) 

(2.6) 

p(t) = g2(t)e<2a-»' 

a{t,u) = p(t)[a(t)f(g(t)ea'u)/g^t)e^'^ - \(t)} 

ait) = p(eV~V)e[a(7-1>+21' 

\g"it) , (2a- l )g ' ( f ) 
A(0 

git) git) 
+ a (a — 1) 

It is easy to prove the following facts 

(2.7) 

(2.8) 

(2.9) 

(2.10) 

where 

(2.11) 

(2.12) 

and 

(2.13) 

ait, u)>0 implies \u\>k\ait), 

ait,u) > 0 if |w| > &2«(0> 

T7+1 f 
/ ait,s)sds>0 implies \u\ > k\ 

/ ait,s)sds>0 if \u\ > k2 

ait), 

7 + 1 
ait), 

* i 
1_ 

LC2 

k2 

Cl 
/GO /GO sup —-, C! = inf — -

yeR\{0} y1 >«tf\{0} y1 

A(01 ' 
oit) 

ait) = 

Our general nonoscillation criterion is as follows 

THEOREM 2.1. Suppose 

(i) kx[^}^ > k2, 
(ii) lim^oo pit) = oo, l im, .^ \(t) = a ( l - a), 

(Hi) i[^]<0,i[git)ea']>0, 
(iv) jt[p2itMt)] < 0, f,[p2it)Xit)} > 0, 

(v) l i m i n e J/^ rf[p2(s)AG0«2(s)] > 0 

with reT = S and 6 > 0 satisfying 

0<<5< 
1 

£2\/a(l ~ a)A 

7 + l \ ^ i 
^ ) an J A 

7 - 1 
2 y "AJ """ 7 + i 

77i£ft a// nontrivial solutions of equation (2.2) are nonoscillatory. 

PROOF. By way of contradiction, we assume that there exists a nontrivial oscillatory 
solution u(t) of equation (2.2). We construct the following energy function 

ru(t) 
E(t) = [p(t)u(t)f + 2p(0 / a(t, s)s ds 

( 2 ' 1 4 ) , 2 2 r MO/(*«*"'*) = [pcon'œi2 + 2P
2(o a(o yo ^ '- i 

* W ^ - 2 A ( 0 M 2 ( 0 
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With some manipulation, we get 

(2.15) E'(t) = 2[p2(t)a(t)]' / V* J ^ - [p\t)\(t)}'u\t) 

«W 3 [/(g(Qe^)-

-^«>m- ds. 
g\t)ealt 

Condition (iv) guarantees that the first two terms of E'(t) are non-positive. From condition 

(iii), we have 

tfwwori 
it) d \f(g(t)eats)] 

gJ(t)ea 
ds 2p\t)a(t) jT 

«(0 f'(ws)w1s-lw1~xf(ws) , f 
w ds 

,;27 

•wOrdw 

dws 
In 

/(™) 
(wSy 

f(ws)ws 

w ,7+1 <fc 

< 0 

where w = g(t)eat. Therefore, E'(f) < 0 for all t > to. Since u(t) is nontrivial, E{t) — 

[p(t)u'(t)]2 > 0 whenever u(t) = 0. It then follows from the oscillating property of u and 

the monotonicity of £"(0 that E(t) > 0 for all t > t0. 

Whenever u'(t) = 0, E(t) = 2p(t) j£ ( 0 a(t9 s)s ds > 0. From (2.9) and condition (i), we 

get 

r7 + 1 • 
(2.16) |M(0| > h oc(t) > k2a{t). 

Therefore, \u(0)\ > k2a(6) for all 0 in a neighborhood of t. 

Now suppose tn and tn+\ are successive zeros of u. We can find {r„}, {rn} and {sn}, 

satisfying tn < rn < rn < sn < tn+\ with \u(rn)\ = k2a(rn), \u(sn)\ = k2a(sn), \u\ > k2a 

on (r„, 5n) and «'(r^) = 0. Hence from (2.16), we get 

r 7 + l " 
(2.17) \u(rn)\ > k\ a(rn). 

We assume u(t) > 0 on (tmtn+\) (in case u(t) < 0, the argument is the same). Since 

\u(t)\ > k2a(t) on (rn,sn) we have a(t,u) > 0 from (2.8) for t G (rn,sn). Then, equa

tion (2.2) implies p(t)u'(t) is nonincreasing on (rn, sn). Consequently, with (2.17) in mind, 

we have 
i 2 _-t 

(rn - rn)u(rn) > J 
g(t)ea 

g(rn)e
a 

-u'{t)dt 

> 

(2.18) 

r ̂ —u'(t)dt 
Jr„ e~r" 

>e-(w.) rn
u\t)dt 

Jrn 

= e-(T--r")[«(TB) - «(r„)] 

= e- (T"- r» )[M(r„)-fea(r„)] 

> e-
(T»-r")[*, ( 1 ± 1 ) ^ a ( r „ ) _ kia{rn)\. 
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Since a(t) 

(2.18), 

(2.19) 

L. H. ERBE, H. X. XIA AND J. H. WU 

i PHMt) 11 ' ' t n e c o n c n t i on (1V) implies a(t) is nondecreasing. We have, by 

(T„ - rn)u(rn) > e <Tn-rn) 

W-» a(rn). 

To estimate u'(rn), we observe that E(rn) < Eo = E(to) for rn > fo, and 

(2.20) [p(r„V(r«)]2 + [2a{rn) 2p2(rn)[a(rn)cls
1 - X(rn)s] ds < E(rn) < E0. 

Note that 

rk2oc{rn) rK2(X(rn) 

2p (rn) yo [cMr^s1 - X(rn)s] ds 

2cip 2 ( r n )a( r n )^ + 1 , 2 2 2 

7 + 1 

2Clk
1+l 

1 2 p2(r„)a(r„) 
A(r„) 

^ (r„) J 
- p2(r„)A(r„)£2 A(r„) 

L^«)J 
A(r„) 

0"(>7z) 

^ r 2 c i ^ ~ 1 

7 + 1 

7 + 1 

- k2p\rn)\(rn)\ 

= -M 2 p 2 ( r , )A( r n ) a z ( r n ) . 

Therefore, from equation (2.20), we deduce 

[p(rnW(rn)]
2 < Ak2p\rn)\(rn)a

2(rn) + E0 

which implies 

(2.21) u'(rn) < [p-2(rn)E0 + M2\(rn)a
2(rn)Y2. 

It is easy to see that, from the condition (v), l i n v ^ p2(t)X(t)a2(t) = oo. If we choose 

c > y^Aa(l — a) , then (2.21) gives 

(2.22) u(rn) < ck20c(rn) for sufficiently large n. 

Combining (2.19) and (2.22), we see that 

' 7 + 1 1 

ck2 
{Tn-rn)>--e-^-rn)\kx 

or, 

(r„ - rn)e^~^ > 
cki 

2 

7 + l \ v 
= S, 

from which it follows 

(2.23) sn — rn> r. 
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On the other hand, by (2.15) we get 

E'(t) < 2[p2^t)]'clU^(t) - [p\t)\{t)]'u\t). 

and on (rn, sn), we have \u\ > kia. Then 

E'(t) < i£L[p 2(r)a(f)] '^+ 1« 7 + ' (0- [p2(t)\(t)}%ct\t) 

7 - 1 d\F(F\&] 
7 + 1 dA \GJ J 

where F(t) = p2(t)X(t) and G(t) = cip2(t)a(t). Integrating (2.24) and using (2.23), we 
have 

E(oo)-E(t0)= r E'(t)dt 

< E / É(t)dt 
n=\ Js" 

~ 7+1 „tlA. dd \G) J 

< - - — r E / d[l4p2(t)\(t)a2(t)] 
7 + 1 „=i •"» 

= -k^-rtpd[p\t)\{t)cc\t)} 

= —oo 

which contradicts E(t) > 0. This completes the proof. 

3. Nonoscillation criteria. We are now in the position to state our main nonoscil-
lation criterion 

THEOREM 3.1. Suppose that k\ [^p ]7 - 1 > k2 and for some a with 0 < a < \y we 
have 

(i) d[^} < 0, d[g(\nx)xa] > 0; 
(ii) d[g1+\\nx)xa(1+3)p(x)] < 0, d[g4 (In x)x2[2a-l]X(\nx)] > 0, 

(Hi) lim^oo g2(lnx)x2a~l = oo and lirn^oo X(\nx) = a(\ — a), 

(iv) l i m i n f ^ o o / f j ^ a n ^ ) / ^ ) ^ - 1 ^ 1 - ^ 2 ) * ] > 0 
where k = eT, g, X and r are defined in Theorem 2.1. Then all solutions of (1.1) are 
nonoscillatory. 

PROOF. It suffices to verify condition (iv) of Theorem 2.1. Since lim^oo A(f) = 
a(l — a), we can delete the term X(s) in the condition (iv) of Theorem 2.1. Then 

rt+T 

liminf / d[p2(s)X(s)a2(s)] > 0 
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is equivalent to 

liminf rd[g2(lns)/(p(s)s(y-m-a)+2)^}ds > 0 

with x — é. This completes the proof. 

Taking g(t) = t^ for /z > 0 in the above theorem, we get the following 

COROLLARY 3.1. Suppose that k\ [̂ y- ]7 ] > £2 and for some ft a with (3 > 0 and 
0 < a < ^, we have 

(i) d[f-f] < 0, d[p(x)xa{1+3)(\nxf] < 0, 

(iï) l i m i n f ^ o o / r ^ l a n ^ ) ^ / ^ ) ^ - 1 ^ 2 ) * ] > 0 
where K = eT and r is defined in Theorem 2.1. Then solutions of equation (1.1) are 
nonoscillatory. 

This corollary implies the main result of [12] if we select a — y c\ — C2 = k\ — 
fc2 = 1 mdf(x) = x1. 

The following result indicates our nonoscillation criteria depend on the choice of the 
auxiliary function g. For simplicity, we let/(x) = x1. 

COROLLARY 3.2. //* ft > 0 , ft > 0 and r/i,772 £ /? are given 50 f t o 

2ft | 2t?! > t 

7 + 3 7 - 1 

am/ 

7 + 3 7 - 1 

£/z£M «// solutions of equation (1.4) are nonoscillatory in the case where 
(i) /?(*)*" (In JX;)̂ 1 (In In x)^2 is nonincreasing, 

2+3 
(ii) p(x)x 2 (lnjc^Onlnjc)7?2 is bounded. 

PROOF. Let g(t) = P ln^ t, ft = /x(7 + 3) > 0, ft = i/(7 + 3) > 0 and a = \. Then 

d[g2(lns)/(p(s)s(1-m-a)+2)*} 

= d[g2(\ns)/(p(s)*s^+l)} 
r / 7+3 fl / , \ - - ^ r 2/3, 2/3i 2/32 . 2/32 -, 

= d[(p(s)s- \n0i s(lnlnj/2) ^ ( lns )^ + —(lnlns)^ + — ] 

> [p(s)s~ In7'1 ^ l n l n ^ 2 ] ™ (In s ) ^ ^ (In Ins ) -^ r -
2^_ 2 ^ 2/32 232 

x J[(ln5-)^3+7i ( ln lns)^ 3 ^ ] 

2 / 2ft 2ft \ 1 lËl^llL 1 IË1 J.ÏH2. 
> M~— -^- + —^- • - ( l n ^ + ^ - ^ l n l n s ) ^ " ^ ds 

V7 + 3 7 - 1 / 5 
>cd(lns) 
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for some constant c, where by (ii) we assume 

\p(s)s¥ (In s)m(\nlns)m\ <M 

for a constant M > 0. Then it follows that 

JKXd[g\\ns)/(p(s)^s^+l)] > clnn > 0. 

Therefore, condition (iv) of Theorem 3.1 is satisfied. The proof is then completed. 

By selecting more delicate auxiliary functions g, we can establish more general 
nonoscillation criteria. For example, letting g(t) = t^ n"=2(m'_1(0)/i'» where ln1^) = 
lnf, ln2(0 = ln(ln0 and \n\i) = ln(ln,'_1(0), we get 

COROLLARY 3.3. If there exist n pairs (fa^t) with fa > 0, fy > Ofor 2 < i < n 
such that 

0) ^ + jm
i>land^ + ̂ ï > Oforl <i<n. 

(ii) p(x)x~ ri/Lifln'Cx)) ' is nonincreasing, 

(Hi) p(x)x^~ n?=i(ln'(x)) ' is bounded. 
Then all solutions of equation (1.4) are nonoscillatory. 

The proof is similar to that for Corollary 3.2, and therefore is omitted. 
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