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Abstract

We construct an increasing ω-sequence 〈an〉 of Turing degrees which forms an initial segment of
the Turing degrees, and such that each an+1 is diagonally nonrecursive relative to an . It follows that
the DNR principle of reverse mathematics does not imply the existence of Turing incomparable
degrees.
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1. Introduction

In [10], Kučera and Slaman solved a long-standing open problem by showing
that no Scott set is ‘hourglass-shaped’: if S is a Scott set of reals and x ∈ S is
noncomputable then there is some y ∈ S which is Turing incomparable with x . In
other words, Turing incomparability holds in every ω-model of the system WKL0

(weak König’s lemma) – the system ensuring the existence of completions of
Peano Arithmetic. This was improved by Conidis [6] to show that the statement
holds in ω-models of the weaker system WWKL0, the system which ensures
the existence of a Martin–Löf random set. A prominent system below WWKL0

is DNR0, the system which ensures the existence of a diagonally nonrecursive
function (DNR): a function f : ω → ω which disagrees with the Turing Jump
function (J (e) = ϕe(e)) on the latter’s domain. These functions were introduced
by Jockusch [8], who showed that their Turing degrees coincide with the degrees
of fixed-point-free functions, those functions which escape the recursion (fixed-
point) theorem. The two systems WWKL0 and DNR0 were first separated by
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Ambos-Spies et al. [1]. They used a tame version of the ‘bushy tree’ forcing
technique first used by Kumabe in his construction of a fixed-point-free minimal
degree (see [11]). In this paper we extend this technique to show:

THEOREM 1.1. There is an initial segment a1 < a2 < a3 < · · · of the Turing
degrees such that each an+1 is a DNR degree relative to an .

COROLLARY 1.2. The system DNR0 does not imply Turing incomparability, in
fact it does not imply the existence of a pair of Turing incomparable reals.

We prove Theorem 1.1 in four steps. The third step (in Section 4) provides the
construction, for each n < ω, of an initial segment a1 < · · · < an of the desired
infinite sequence 〈ak〉. The fourth and last step (in Section 5) shows how to string
these constructions together and so prove Theorem 1.1. The first two steps serve as
an introduction to the construction of Section 4. In Section 2, we recast Kumabe’s
construction in the language of forcing that we subsequently use. In Section 3, we
discuss the case n = 2 (the construction of a minimal DNR degree a1 and a strong
minimal cover a2 of a1 which is DNR relative to a1). (Recall that b is a strong
minimal cover of a if b > a, but for all c < b we have c 6 a.)

1.1. Fast-growing functions. Below we use trees (or tree systems) which are
fairly ‘bushy’ but associated with them we have sets of ‘bad’ strings which we
want to avoid. In the first step we use infinite trees and for example declare every
string which is not DNC to be bad. We then extend the bad set of strings when
we force divergence or force a functional to be constant on a tree. We cannot
simply remove the bad strings from the tree because the trees will be computable
whereas the set of bad strings will be c.e. To ensure that most strings are not bad,
and that the construction can proceed, we require that the tree is h-bushy and that
the bad set of strings is b-small above the stem of the tree, where h grows much
more quickly than the order function b. Here we discuss the notion of relative
quickness that we use.

For an equivalence notion of rate of growth we close under relative elementary
recursive functions. (We could use relative primitive recursive functions but this
is not needed.) For any order function h one defines the class of order functions
which are obtained from h using a list of rules such as substitution and bounded
summation and multiplication.

We are only concerned with rates of growth. If h grows sufficiently quickly
then g is bounded by a function elementary in h if and only if it is dominated
by an iterated composition of h with itself. In particular, the elementary recursive
functions are those which are bounded by iterated exponentials.
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It will be convenient to consider functions that may be undefined on a finite
initial segment of ω.

DEFINITION 1.3. Let Q denote the collection of nondecreasing computable
functions h : ω→ [2, ω) satisfying h(n) > 2n for all n.

For h ∈Q let h(1) = h and for k > 1, h(k+1)
= h◦h(k). For two functions h and g

in Q we say that h majorizes g if h(n) > g(n) for all n (and write h > g). We say
that h > g above m if h(n) > g(n) for all n > m. We say that h dominates g if
h > g above some m (and write h >∗ g).

We use the fact that iterated exponentials of h are dominated by iterates of h.
For example:

EXAMPLE 1.4. Let h ∈Q. Let g(n) =
∏

m∈[0,n) h(m). Then g 6∗ h(3). For g 6 hh

whereas h(2) > 2h and h(3) > 22h , and 22h
>∗ hh .

DEFINITION 1.5. Let h, g ∈ Q. We say that h dominates the iterates of g
uniformly, and write h � g, if there is a computable sequence 〈dk〉 such that
for all k > 1, h > g(k) on the interval (dk, ω).

The relation� on Q is transitive. Indeed if h � g, h′ >∗ h and g >∗ g′ then
h′ � g′. Further, h � g(k) for all k, and so for example h � 2g.

The following density lemma will be used to keep extending conditions.

LEMMA 1.6. For all h, g ∈ Q such that h � g there is some f ∈ Q such that
h � f � g.

Proof. The idea is to gradually let f copy g(k). If f is bounded by g(k) for a
long time, then for a shorter time we can ensure that f (k) is bounded by g(k

2), so
we do this until the point where h starts to majorize g((k+1)2), and only then start
copying g(k+1).

Since g is nondecreasing and dominates the identity, each g(k) is nondecreasing
and g(k+1) > g(k).

Let k > 1, e > 0 and let f be a function. Suppose that f 6 g(k) on the interval
[0, g(k

2)(e)] (actually the interval [0, g(k
2
−k)(e)] will suffice). Then f (k) 6 g(k

2) on
the interval [0, e]: by induction on j 6 k we see that f ( j) 6 g(k j) on the interval
[0, g(k(k− j))(e)].

Let 〈dk〉 witness that h � g. We may assume that 〈dk〉 is nondecreasing.
We define a computable sequence −1 = a0 6 a1 6 · · · and then define f

by letting f = g(k) on the interval (ak−1, ak]. So the sequence 〈ak−1〉 witnesses
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that f � g. But also f 6 g(k) on the interval [0, ak] for all k > 1. So we let
ak = g(k

2)(d(k+1)2). This ensures that f (k) 6 g(k
2) on [0, d(k+1)2], which in turn

shows that h > f (k) on the interval (dk2, d(k+1)2]. Since f ∈ Q, f (m) > f (k) if
m > k, so the sequence 〈dk2〉 witnesses that h � f .

1.2. Other notation and conventions. A string is a finite sequence of natural
numbers, an element of ω<ω. If σ is a string then we let σď be the collection of
strings which extend σ , and [σ ]ă be the set of elements of Baire space ωω which
extend σ . If C is a set of strings then Cď

=
⋃

σ∈C σ
ď and so [C]ă =

⋃
σ∈C [σ ]

ă.
We may assume that for any Turing functional Γ and for any string τ ,

the domain of Γ (τ) is downwards closed. Thus, Γ determines a monotone
computable map τ 7→ Γ (τ) from strings to strings, which induces a partial
computable function on Baire space: Γ (x) =

⋃
{Γ (τ) : τ ă x}.

We let lowercase Greek letters denote strings, lowercase Roman letters denote
elements of Baire space, and uppercase Roman letters denote sets of strings and
sometimes subsets of Baire space.

1.3. Compactness, splittings and computability

DEFINITION 1.7. A subset X of Baire space is computably bounded if some
computable function majorizes every element of X .

Every computably bounded and closed subset of Baire space is compact.
The following is well known.

LEMMA 1.8. Let X ⊆ ωω be Π 0
1 and computably bounded; let f : X → 2ω be a

computable function. (Here we think of X and 2ω as computable metric spaces. A
computable function from X to 2ω is given by a uniform Turing reduction.)

• If f is constant on X then this constant value is computable.

• If f is 1-1 on X then for all x ∈ X, x ≡T f (x).

Proof. Suppose that f is constant on X ; let f [X ] = {y}. The fact that X is
computably bounded implies that the set of α ∈ 2<ω such that X = f −1

[[α]ă]

is c.e.; this is the set of initial segments of y, so y is computable.
Suppose that f is 1-1 on X . Let Y = f [X ]. Then Y a Π 0

1 subset of 2ω and f
is a homeomorphism between X and Y . And f −1 is computable: the set of pairs
(α, τ ) such that [α]ă ∩ Y ⊆ f [[τ ]ă] is c.e.

If X ⊆ (ωω)2 and x ∈ ωω we let X x = {y : (x, y) ∈ X}.
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LEMMA 1.9. Let X ⊆ (ωω)2 be Π 0
1 and computably bounded. Let f : X → 2ω

be computable and suppose that the collection of sets f [X x ] for x ∈ dom X are
pairwise disjoint. Then for all (x, y) ∈ X, x 6T f (x, y).

Proof. For τ ∈ ω<ω let Xτ =
⋃

x∈[τ ]ă X x . The set of pairs (τ,C) where C ⊆ 2ω

is clopen and f [Xτ ] = C ∩ f [X ] is c.e.

1.4. Forcing with closed sets

DEFINITION 1.10. Let P be a notion of forcing. Suppose that with each condition
p ∈ P we associate a closed subset Xp of Baire space. We call this assignment
acceptable if:

(a) for all p ∈ P, Xp is nonempty;

(b) if q extends p then Xq
⊆ Xp; and

(c) for every m, the set of conditions p ∈ P such that Xp
⊆ [σ ]ă for some

string σ of length m is dense in P.

(Below we consider finite powers (ωω)n of Baire space, but these are of course
effectively isomorphic to Baire space.)

Recall the Borel codes for Borel subsets of Baire space. These can be identified
with propositional sentences in Lω1,ω. To be precise:

• Every finite set of strings C is a Borel code;

• if C is a Borel code then ¬C is a Borel code;

• if C is a countable set of Borel codes, then
∨

C and
∧

C are Borel codes.

The semantics are obvious (a finite set of strings C defines the set [C]ă); if C
is a Borel code then we let bCc be the Borel subset of Baire space defined by C .

Suppose that P is a notion of forcing equipped with an acceptable assignment
of closed sets Xp. We define the forcing relation p 
 C between conditions in P
and Borel codes C . We start with strong forcing.

DEFINITION 1.11. Let C be a Borel code and let p ∈ P. We say that p strongly
forces C if Xp

⊂ bCc. We write p 
∗ C .

Now by recursion on Borel codes C we define forcing.

• For a finite set of strings D, p 
 D if the collection of conditions which strongly
force D is dense below p.
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• p 
 ¬C if no extension of p forces C .

• p 

∧

C if p 
 C for all C ∈ C.

• p 

∨

C if the set of conditions which force some element of C is dense
below p.

The basic properties of forcing hold.

LEMMA 1.12. Let p ∈ P and let C be a Borel code.

(1) No condition forces both C and ¬C.

(2) The set of conditions which decide C is dense in P.

(3) If q extends p and p 
 C then q 
 C.

(4) If the set of conditions which force C is dense below p then p 
 C.

Forcing equals truth. It will be convenient to consider directed subsets of P
rather than filters; of course the upwards closure of a directed set is a filter, so we
can always pass to filters without adding information. Genericity for directed sets
is defined using dense open sets: dense subsets of P which are closed downwards
(closed under taking extensions). Note that the dense sets of conditions mentioned
above are all open.

Suppose that G ⊂ P is a directed set. If G meets all of the dense open sets of
conditions guaranteed by (c) above, then

⋂
p∈P Xp is a singleton that we denote

by {xG
}. (This uses the completeness of Baire space; we do not need the sets Xp

to be compact.)
In the rest of the paper, the statement ‘for all sufficiently generic G ⊂ P . . .’

means: there is a countable collection D of dense open subsets of P such that for
every directed subset of P meeting all the sets in D, . . .

LEMMA 1.13. Let C be a Borel code. If G ⊂ P is a sufficiently generic directed
set then xG

∈ bCc if and only if p 
 C for some p ∈ G.

Proof. First note that if p ∈ G and p 
∗ C then xG
∈ bCc. On the other hand,

suppose that D is a finite set of strings, and suppose that xG
∈ [D]ă: there is

some τ ă xG such that τ ∈ D. By assumption, there is some string η of length |τ |
and some p ∈ G such that Xp

⊆ [η]ă. Then η = τ , and so p 
∗ D, which implies
that p 
 D.

The rest of the argument follows the usual proof of the equivalence of forcing
and truth for generic filters.
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Since every condition can be extended to a sufficiently generic directed set, we
conclude:

COROLLARY 1.14. Let p ∈ P and let C be a Borel code.

(1) p 
 C if and only if for every sufficiently generic directed set G, if p ∈ G
then xG

∈ bCc.

(2) If bCc ⊆ bC ′c and p 
 C then p 
 C ′.

(3) If p 
∗ C then p 
 C.

In light of (2) we write p 
 xG
∈ A when A is a Borel subset of Baire space,

rather than a code for such a set.

1.5. Simplified iterated forcing. We give a not completely standard definition
for restriction maps between notions of forcing.

DEFINITION 1.15. Let P and Q be partial orderings. A restriction map from Q
to P is an order-preserving map i from Q to P such that for all q ∈ Q, the image
of Q(6 q) (the set of extensions of q) under i is dense below i(q).

That is, for all q ∈ Q and p 6 i(q) there is some r 6 q in Q such that i(r) 6 p.

LEMMA 1.16. Let i : Q→ P be a restriction map.

(1) If G ⊂ Q is a directed set then i[G] ⊂ P is a directed set.

(2) If D ⊆ P is dense and open then i−1
[D] ⊆ Q is dense and open.

Hence, for any collection D of dense open subsets of P there is a collection E
of dense open subsets ofQ such that if G ⊂ Q is a directed set which meets every
set in E , then i[G] is a directed set which meets every set in D. In other words, if
G is sufficiently generic then so is i[G].

Suppose that P and Q have acceptable assignments of closed sets Xp
⊆ ωω for

p ∈ P and Y q
⊆ (ωω)2 for q ∈ Q. Suppose that i : Q→ P is a restriction map and

further that for all q ∈ Q, X i(q)
⊇ dom Y q. Let G ⊂ Q be sufficiently generic; we

denote the generic pair of reals by (xG, yG). Then x i[G]
= xG .

1.6. The plan. To prove Theorem 1.1, for each n < ω we define a notion of
forcing Pn which adds an initial segment of the degrees of length n, each degree
DNC relative to the one below it. We then show that there are restriction maps
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from each Pn to Pn−1. This allow us to obtain generic Gn ⊂ Pn which are coherent,
from which we obtain the desired ω-sequence of degrees.

2. A DNR minimal degree

Khan (see [9]) showed that for any x ∈ 2ω there is a DNRx function of minimal
Turing degree. He presented an elaboration on the Kumabe–Lewis construction
using the language of forcing in computability (rather than give an explicit
construction). The extra complication is due to the fact that the set of strings
which are not DNRx is c.e. in x , rather than merely c.e. We have no access to
this set when defining the computable trees. For this reason Khan needs to use
trees with terminal elements (and the set of terminal elements is co-c.e. but not
computable).

In this section, we present a proof of the original Kumabe–Lewis theorem using
the language of forcing. We use c.e. sets of bad strings and trees with no terminal
elements.

2.1. Trees and forests. We follow [1, 7, 9] and use trees which are sets of
strings rather than function trees (as in [5, 11]). We localize to basic clopen sets.

Recall that for a string σ , σď is the set of strings extending σ . A tree above σ
is a nonempty subset of σď which is closed in σď under taking initial segments.
A set of strings A is prefix-free if no two distinct elements of A are comparable.
If A is a finite prefix-free set of strings then a forest above A is a set T ⊆ Aď

such that for all σ ∈ A, T ∩ σď is a tree above σ . In particular, we require that
A ⊆ T . When we just say ‘tree’ we mean a tree above σ for some σ ; the string σ
will usually be clear from the context or unimportant. The same holds for forests.
We mostly only use finite forests, but use both finite and infinite trees.

Let T be a forest and let τ ∈ T . An immediate successor of τ on T is a string
τ ′ ą τ on T such that |τ ′| = |τ |+1. A leaf of a forest T , also known as a terminal
element of T , is a string on T which has no proper successors on T .

A subtree of a tree T is a subset S ⊆ T which is a tree. Note that the stem
of S may equal the stem of T , or properly extend the stem of T . If T is a tree
and τ ∈ T then the full subtree of T above τ is T ∩ τď, the set of strings on T
which extend τ .

If T is a tree above σ then [T ] is the set of infinite paths of T , the set of x ∈ ωω

such that x�n ∈ T for all n > |σ |. This is a closed subset of ωω. Recall that [σ ]ă

is the set of extensions of σ in Baire space; in our notation, [σ ]ă = [σď
].

A tree T is bounded by a function h if for all τ ∈ T , τ(n) < h(n) for all n 6 |τ |.
It is computably bounded if h can be taken to be computable. If T is computably
bounded then so is [T ] (Definition 1.7).
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2.2. Bushy notions of largeness. The basic notions of ‘bushiness’ were
extended from constant bounds to order functions; see [4, 9]. We recall the
definitions and basic properties. A bounding function is a computable function
from ω to [2, ω).

DEFINITION 2.1. Let T be a forest above a finite prefix-free set of strings A; let
h be a bounding function. We say that T is h-bushy if every nonterminal τ ∈ T
has at least h(|τ |) many immediate successors on T .

DEFINITION 2.2. Let A be a finite prefix-free set of strings and let B be a set of
strings. Let h be a bounding function. The set B is h-big above A if there is a
finite forest T above A which is h-bushy, all of whose leaves are elements of B.

If A is an infinite set of strings then we say that B is h-big above A if B is h-big
above every finite, prefix-free subset of A.

If B is not h-big above A then we say it is h-small above A.

If A is a singleton {σ } then we say that B is h-big (or h-small) above σ . If
A ⊆ B then B is h-big above A for all bounding functions h. A set B is h-big
above A if and only if the set of minimal strings in B is h-big above A. We thus
often use the notion for either prefix-free sets of strings, or for open sets of strings
— those that are upwards closed (closed under taking extensions). Also note that
sometimes we do not assume that B only contains extensions of A, but of course
for this notion it suffices to look at B ∩ Aď.

The following remark is trivial. Its generalizations in later sections will be
less so.

REMARK 2.3. Suppose that B is a set of strings, h-big above A, and that A,
B ⊆ T for some tree T . Then any forest S which witnesses that B is h-big above A
is a subset of T .

The basic combinatorial properties of this notion of largeness have been
repeatedly observed [7–9, 11].

LEMMA 2.4 (Big subset property). Let h and g be bounding functions. Let B
and C be sets of strings, let σ be a string, and suppose that B ∪ C is (h + g)-big
above σ . Then either B is h-big above σ or C is g-big above σ .

Here it is important that we work above a single string σ and not above any
finite A.
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Proof. Let T be a tree which witnesses that B ∪ C is (h + g)-big above σ . Label
a leaf τ of T ‘B’ if it is in B, and ‘C’ otherwise. Now if ρ ∈ T and all immediate
successors of ρ have been labelled then since ρ has at least h(|ρ|) + g(|ρ|)
immediate successors on T , either at least h(|τ |) of these are labelled ‘B’ or at
least g(|τ |) of them are labelled ‘C’. In the first case label ρ ‘B’, in the other label
it ‘C’. Eventually σ is labelled. If σ is labelled ‘B’, then the set of ρ ∈ T labelled
‘B’ form a tree which witnesses that B is h-big above σ ; and similarly if σ is
labelled ‘C’.

LEMMA 2.5 (Concatenation property). Let h be a bounding function. Let A, B
and C be sets of strings. Suppose that B is h-big above A, and that C is h-big
above every τ ∈ B. Then C is h-big above A.

Proof. Let A′ be a finite, prefix-free subset of A. Let T be a forest which witnesses
that B is h-big above A′. For a leaf τ of T let Rτ be a tree which witnesses that C
is h-big above τ . Then T ∪

⋃
Rτ , where τ ranges over the leaves of T , witnesses

that C is h-big above A′.

The concatenation property will sometimes be used to recursively build bushy
trees meeting infinitely many big sets. Again the following are fairly immediate;
their generalizations in the next sections will be less so.

DEFINITION 2.6. A forest R is an end extension of a forest S if every string in
R \ S extends some leaf of S.

(This is not the same as the usual definition for partial orderings, but under the
usual definition, any tree extension is an end extension.) The argument proving
the concatenation is broken up to show:

LEMMA 2.7. Let A, B,C be sets of strings, and let h be a bounding function.

(1) Suppose that C is h-big above every τ ∈ B. Then C is h-big above B.

(2) Suppose that A is prefix-free and finite; suppose that B is h-big above A and
that C is h-big above B. Then any forest which witnesses that B is h-big
above A has an end extension which witnesses that C is h-big above A.

REMARK 2.8. Throughout, we assume that whenever we are given a set of strings
which is guaranteed to have some largeness property, then this set is the set of
leaves of a forest witnessing this property. For example, suppose that we are given
a set B which is h-big above some σ . We assume, often without mentioning it,
that B is finite, that it is prefix-free, and that every string in B extends σ .
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2.3. The notion of forcing and the generic. Let BDNR be the set of strings σ
that are not initial segments of diagonally nonrecursive functions: σ(e) = J (e)↓
for some e < |σ |, where J is a fixed universal jump function. This is traditionally
taken to be J (e) = ϕe(e), but any universal partial computable function would do.

Let T be a tree. We say that a set of strings B ⊆ T is open in T if it is upwards
closed in T : if σ ∈ B and τ ě σ is in T then τ ∈ B.

We let P1 be the set of tuples p = (σ p, T p, Bp, hp, bp) satisfying:

(1) T p is a computably bounded, computable tree above σ p with no leaves.

(2) hp
∈ Q and T p is hp-bushy.

(3) Bp
⊂ T p is c.e. and open in T p, and Bp

⊇ BDNR ∩ T p.

(4) bp
∈ Q and Bp is bp-small above σ p.

(5) hp
� bp and hp > bp above |σ p

|.

LEMMA 2.9. P1 is nonempty.

Proof. The set BDNR is c.e. and is 2-small above the empty string 〈〉. Fix some
b ∈ Q (and recall that b > 2); and find some h ∈ Q such that h � b and h > b
(for example h(n) = b(n+1)(n)). Recall that h<ω is the set of h-bounded strings.
Then p = (〈〉, h<ω, BDNR ∩ h<ω, h, b) is a condition in P1.

We define a partial ordering on P1 as follows. A condition q extends a
condition p if σ p ď σ q, T q is a subtree of T p, Bp

∩ T q
⊆ Bq, and hq 6 hp

and bq > bp above |σ q
|.

To use the machinery of forcing developed in Section 1.4 we need to associate
with each condition p ∈ P1 a closed set Xp.

LEMMA 2.10. The assignment of closed sets X p
= [T p

] \ [Bp
]
ă
= [T p

\ Bp
] for

p ∈ P1 is acceptable (Definition 1.10).

Proof. Requirement (b), that Xq
⊆ Xp if q extends p, follows directly from the

definition of the partial ordering on P1.
Let p ∈ P1. Suppose that [T p

] ⊆ [Bp
]
ă. Since T p is bounded, [T p

] is compact.
This implies that there is a prefix-free, finite set C ⊂ Bp such that every τ ∈ T p is
comparable with some element of C . The collection of strings in T p extended by
some string in C witnesses that Bp is hp-big above σ p. Since hp > bp above |σ p

|

this implies that Bp is bp-big above σ p. We get requirement (a): Xp is nonempty.
Again let p ∈ P1. Let m > |σ p

|. There is some τ ∈ T p of length m above
which Bp is bp-small; otherwise, the concatenation property implies that Bp is bp-
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big above σ p. If Bp is bp-small above τ then q = (τ, T p
∩ τď, Bp

∩ τď, hp, bp)

is a condition in P1 extending p and satisfying Xq
⊆ [T q

] ⊆ [τ ]ă. This gives
requirement (c) of Definition 1.10.

As discussed in Section 1.4, if G ⊂ P1 is sufficiently generic then
⋂

p∈G[T
p
\

Bp
] is a singleton {xG

}. In fact

xG
=

⋃
{σ p
: p ∈ G}.

Let p ∈ P1; since BDNR∩T p
⊆ Bp we see that Xp

⊆ DNR. Since strong forcing
implies forcing (Corollary 1.14(3)) we get:

PROPOSITION 2.11. Every condition in P1 forces that xG
∈ DNR.

REMARK 2.12. Let A be an open set of strings and let g be a bounding function.
We say that A is g-closed if every string above which A is g-big is an element
of A.

The concatenation property implies that every set A has a g-closure: the set of
all strings above which A is g-big is g-closed.

Let p ∈ P1. We could require that Bp be bp-closed by replacing it by its bp-
closure. In this case, T p

\ Bp is an (hp
− bp)-bushy tree with no leaves.

In later sections we use notions of largeness for which the concatenation
property fails, and so will not be able to quite mimic this operation. A very weak
form of such closure will however be used to get a restriction map from Pn to Pn−1.

2.4. Totality. Recall that for a set of strings C we let [C]ă =
⋃

σ∈C [σ ]
ă be

the set of x ∈ ωω which extend some string in C .

LEMMA 2.13. Let p ∈ P1. Let C ⊆ T p be c.e. and open in T p. Suppose that
p 
 xG

∈ [C]ă. Let τ ∈ T p; let g ∈ Q such that hp
� g, and hp > g > bp

above |τ |. Then the set Bp
∪ C is g-big above τ .

Proof. Otherwise q= (τ, T p
∩τď, (Bp

∪C)∩τď, hp, g) is a condition extending p
which strongly forces that xG /∈ [C]ă. (We need g > bp above |τ | not to ensure
that q is a condition but to ensure that it extends p.)

REMARK 2.14. Let p ∈ P1, let C ⊆ T p be c.e. and open in T p, and suppose that p
strongly forces that xG

∈ [C]ă. By compactness there is some level m such that
all strings in T p of length m are in Bp

∪C . This shows that Bp
∪C is hp-big above

every τ ∈ T p.
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The following proposition shows that when we force totality of Γ (xG) (for
some Turing functional Γ ), we in fact can force strong totality.

PROPOSITION 2.15. Let C ⊆ ωω be Π 0
2 and let p ∈ P1. Then p 
 xG

∈ C if and
only if the set of conditions which strongly force that xG

∈ C is dense below p.

Proof. It suffices to show that if p 
 xG
∈ C then p has an extension which

strongly forces that xG
∈ C . Fix such p.

By Lemma 1.6, find some g ∈ Q such that hp
� g � bp. As discussed above,

every level of T p contains a string above which Bp
∩ T p is bp-small. So by

extending σ p (and taking the full subtree above that string) we may assume that
hp > g > bp above |σ p

|.
Let 〈Ck〉 be a uniform sequence of c.e. subsets of T p, open in T p, such that

C ∩ [T p
] = [T p

] ∩
⋂

k[Ck]
ă. Lemma 2.13 says that for all τ ∈ T p, for all k, the

set Bp
∪ Ck is g-big above τ .

We effectively define an increasing sequence 〈Sk〉 of finite g-bushy trees with
the following properties:

• Sk is g-bushy;

• Sk+1 is an end extension of Sk , and no leaf of Sk is a leaf of Sk+1;

• Sk ⊂ T p; and

• the leaves of Sk+1 lie in Bp
∪ Ck .

We start with S0 = {σ
p
}. We know that Bp

∩ C0 is g-big above σ p; Lemma 2.7
shows that for all k > 0, Bp

∪Ck is g-big above Bp
∪Ck−1. Thus, given Sk we can

find a g-bushy end extension S′k of Sk with leaves in Bp
∪ Ck ; Remark 2.3 shows

that S′k ⊂ T p. Since T p has no leaves, we can extend S′k to the required Sk+1 by
adding children from T p to each leaf of S′k (using the fact that hp > g above |σ p

|).
Having defined the trees Sk we let S =

⋃
k Sk . Then S ⊆ T p, S is g-bushy,

and S has no leaves. Also, S is computable: a string of length k is in S if and only
if it is in Sk .

Every path in S lies in [Bp
∪ Ck]

ď for all k and so [S \ Bp
] ⊆ C . We required

that g � bp, so q = (σ p, S, Bp
∩ S, g, bp) is a condition which extends p and

strongly forces that xG
∈ C .

2.5. Minimality. We prove:

PROPOSITION 2.16. Every condition in P1 forces that degT(x
G) is minimal.
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Let Γ : ωω → 2ω be a Turing functional. There are three ways to ensure
that Γ (xG) does not violate the minimality of degT(x

G): ensuring that it is partial,
ensuring that it is computable, or ensuring that it computes xG .

For the rest of this section, fix a Turing functional Γ : ωω → 2ω.

DEFINITION 2.17. Let B be a set of strings. Two sets A0 and A1 of strings Γ -split
mod B if Γ (τ0) ⊥ Γ (τ1) for all τ0 ∈ A0 \ B and τ1 ∈ A1 \ B.

LEMMA 2.18. Suppose that p ∈ P1 strongly forces that Γ (xG) is total, and forces
that Γ (xG) is noncomputable.

Let τ ∈ T p. Let g ∈ Q such that hp
� g, and hp > 3g and g > bp above |τ |.

Then there are A0, A1 ⊂ T p, each g-big above τ , which Γ -split mod Bp.

Proof. Suppose that τ and g witness the failure of the lemma; we find an
extension of p which forces that Γ (xG) is computable.

For α ∈ 2<ω let
Aα = Bp

∪ {ρ ∈ T p
: Γ (ρ) ě α}

and
A⊥α =

⋃
Aβ Jβ ∈ 2<ω & β ⊥ αK.

Let α ∈ 2<ω and suppose that Aα is 2g-big above τ . By Remark 2.14 the
set Aαˆ0 ∪ Aαˆ1 is hp-big above every ρ ∈ Aα. Since hp > 2g above |τ |, the
concatenation property implies that Aαˆ0 ∪ Aαˆ1 is 2g-big above τ . By the big
subset property there is some i < 2 such that Aαˆi is g-big above τ . (Here we use
that the range of Γ is in Cantor rather than Baire space; we also use this in the
proof of Lemma 2.20.)

The assumption implies that A⊥αˆi is g-small above τ . Since Aαˆi ∪ A⊥αˆi is hp-
big above τ and 3g 6 hp above |τ | it must be that in fact Aαˆi is 2g-big above τ .

By recursion define the unique z ∈ 2ω such that for all α ă z, Aα is 2g-big
above τ . Note that z is computable. The set

A⊥z =
⋃
k<ω

A⊥z�k

is g-small above τ because it is the union of an increasing sequence of sets, each
g-small above τ ; since largeness is witnessed by a finite tree, g-smallness above τ
is preserved when taking the union. The fact that z is computable shows that A⊥z

is c.e., whence the tuple (τ, T p
∩ τď, A⊥z ∩ τ

ď, hp, g) is a condition extending p
as required (recalling that Bp

⊆ A⊥z).

The following lemma will allow us to construct a ‘delayed splitting’ subtree
of T p.
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LEMMA 2.19. Suppose that p ∈ P1 strongly forces that Γ (xG) is total, and forces
that Γ (xG) is noncomputable. Suppose that τ1, τ2, . . . , τk ∈ T p. Let g ∈ Q such
that hp

� g, and g > bp and hp > 3k g above min{|τ1|, |τ2|, . . . , |τk |}. Then there
are sets A1, A2, . . . , Ak ⊂ T p, each A j g-big above τ j , which pairwise Γ -split
mod Bp.

To prove Lemma 2.19 we need the following, which (mod B) is [11,
Lemma 6.2].

LEMMA 2.20. Let g, h ∈ Q; let B be a set of strings. Suppose that:

• τ and τ ∗ are strings;

• A is a set of strings, 3g-big above τ ;

• For all ρ ∈ A, Eρ,0 and Eρ,1 are 3g-big above ρ and Γ -split mod B; and

• F is a set of strings, 3h-big above τ ∗, satisfying |Γ (σ)| > |Γ (ν)| for all σ ∈
F \ B and all ν ∈ E \ B, where E =

⋃
Eρ,i Jρ ∈ A, i < 2K.

Then there are E ′ ⊆ E, g-big above τ , and F ′ ⊆ F, h-big above τ ∗, which Γ -split
mod B.

We delay the proof of Lemma 2.20 until the end of the section.

Proof of Lemma 2.19, given Lemma 2.20. The proof is by induction on k. The
lemma is vacuous for k = 1. Assume the lemma has been proven for k. Let τ1,

. . . , τk and τ ∗ be strings on T p; suppose that hp
� g, and hp > 3k+1g and g > bp

above min{|τ ∗|, |τ1|, |τ2|, . . . , |τk |}. The hypothesis for k holds for the bound 3g
instead of g, and so by induction we find finite sets A1, . . . , Ak ⊂ T p, each A j

3g-big above τ j , which pairwise Γ -split mod Bp. As per Remark 2.8 we assume
that A j ⊂ τ

ď
j .

For every j = 1, . . . , k, for every ρ ∈ A j , by Lemma 2.18 find finite Eρ,0

and Eρ,1, subsets of T p, each 3g-big above ρ and contained in ρď, which Γ -split
mod Bp. Let E j =

⋃
Eρ,i Jρ ∈ A j , i < 2K. Note that the E j also pairwise Γ -split

mod Bp.
Since

⋃
j6k E j is finite, p strongly forces totality of Γ (xG) and 3k+1g 6 hp

above |τ ∗|, by Remark 2.14 we find F ⊂ T p which is 3k g-big above τ ∗, such that
|Γ (σ)| > |Γ (ν)| for all σ ∈ F \ Bp and ν ∈

⋃
j6k E j \ Bp.

Let Fk = F . By (reverse) recursion on j = k, k − 1, . . . , 1 we define sets
E ′j ⊆ E j and F j−1 ⊆ F j such that every E ′j is g-big above τ j , F j is 3 j g-big
above τ ∗ and E ′j and F j−1 pairwise Γ -split mod Bp. To do this, given F j apply
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Lemma 2.20 with τ = τ j , A = A j , g, τ ∗ and Eρ,i as themselves, F = F j and
h = 3 j−1g.

In the end the sets E ′j for j 6 k and F0 are as required.

PROPOSITION 2.21. Every condition in P1 forces that if Γ (xG) is total and
noncomputable then Γ (xG) ≡T xG .

Proof. It suffices to show that if p ∈ P1 forces that Γ (xG) is total and
noncomputable then p has an extension which forces that Γ (xG) ≡T xG . By
Proposition 2.15 we may assume that p strongly forces that Γ (xG) is total.

By Lemma 1.6 find some g ∈ Q such that hp
� g � bp. Let ḡ(n) =∏

m<n g(m). As above by extending σ p we may assume that hp > 3ḡg and g > bp

above |σ p
| (see Example 1.4).

We effectively define an increasing sequence 〈`k〉 and a sequence 〈Sk〉 of finite
subtrees of T p such that: (a) Sk+1 is an end extension of Sk ; (b) the leaves of Sk

all have length `k ; and (c) Sk is exactly g-bushy: every nonterminal τ ∈ Sk has
precisely g(|τ |) many immediate extensions on Sk .

Let `0 = |σ
p
| and S0 = {σ

p
}. Suppose that Sk and `k have been defined. For

every leaf τ of Sk we find a finite tree Rτ ⊂ T p, exactly g-bushy above τ , such that
the sets of leaves of the various Rτ pairwise Γ -split mod Bp. This can be done
since the number of leaves of Sk is

∏
m∈[|σ p|,`k )

g(m), which is bounded by ḡ(`k).
We assumed that hp > 3ḡg and so hp > 3ḡ(`k )g above `k ; so Lemma 2.19 applies.

Let S′k be the union of Sk with the trees Rτ for all leaves τ of Sk . Let `k+1 be
greater than the height of S′k ; obtain Sk+1 by appending a subtree of T p, exactly
g-bushy above ρ, to every leaf ρ of S′k .

Let S =
⋃

k Sk . As in the proof of Proposition 2.15, S is computable,
computably bounded and has no leaves. It is g-bushy, and Γ is 1–1 on [S \ Bp

]:
if x, x ′ ∈ [S \ Bp

] and x�`k
= x ′�`k

then Γ (x�`k+1
) ⊥ Γ (x ′�`k+1

). The tuple (σ p,

S, Bp
∩ S, g, bp) is a condition as required (Lemma 1.8).

Proof of Proposition 2.16. Let p ∈ P1. Let Γ be a Turing functional. If p has
an extension which forces that Γ (xG) is partial then we are done. Otherwise p
forces that Γ (xG) is total. We can extend p to a condition q which decides
whether Γ (xG) is computable or not. If the former then we are done. Otherwise,
Proposition 2.21 says that q forces that Γ (xG) ≡T xG .

Proof of Lemma 2.20. Let E =
⋃

Eρ,i Ji < 2 & ρ ∈ AK.
For a string α ∈ 2<ω let

Fěα = (F ∩ B) ∪ {σ ∈ F : Γ (σ) ě α},

and similarly define F⊥α, Eěα, Eďα and so on.
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If F ∩ B is h-big above τ ∗ then we can let F ′ = F ∩ B and E ′ = E . Similarly
if E ∩ B is g-big above τ .

Suppose otherwise. In that case, for sufficiently long α, Fěα is h-small above τ ∗

(as it equals F ∩ B). Let α be a string, maximal with respect to Fěα being h-big
above τ ∗. We show that either

(1) E⊥α is g-big above τ ; or

(2) Eěα is g-big above τ and F⊥α is h-big above τ ∗.

In both cases we can find E ′ and F ′ as required.
We examine two cases, depending on Eďα.
First, suppose that Eďα is g-big above τ . Let R be a tree witnessing this. Every

leaf of R extends some element of A, so every element of R is comparable with
some element of A. Since A is an antichain, the restriction of R to initial segments
of elements of A is g-bushy. This shows that A′, the set of ρ ∈ A such that Eďα

is g-big above ρ, is g-big above τ . We show that E⊥α is g-big above every ρ ∈
A′; with the concatenation property this implies (1). Let ρ ∈ A′; there are two
possibilities. If B∩E is g-big above ρ then we are done. Otherwise for some i < 2,
Eρ,i intersects Eďα \ B. But then Eρ,1−i ⊆ E⊥α, and Eρ,1−i is 3g-big above ρ.

In the second case, suppose that Eďα is g-small above τ . Since E = E⊥α ∪
Eěα ∪ Eďα is 3g-big above τ , either (1) holds, or Eěα is g-big above τ . Assume
the latter. We assumed that E∩B is g-small above τ ; together, we see that Eěα\B
is nonempty. In turn this implies that |Γ (σ)| > |α| for all σ ∈ F \ B; so F =
Fŋα ∪ F⊥α.

The maximality of α ensures that Fŋα is 2h-small above τ ∗. (Here again we
use the fact that Γ maps into Cantor space.) Since F is 3h-big above τ ∗ it must
be that F⊥α is h-big above τ ∗, so (2) holds.

3. A relative DNR strong minimal cover of a DNR minimal degree

We now construct two sequences x, y ∈ ωω such that x ∈ DNR, x has minimal
Turing degree, y ∈ DNRx and degT(x, y) is a strong minimal cover of degT(x).

We use the mechanism of tree systems that was used by Cai [2, 3, 5] to show
that there is a generalized high degree which is a minimal cover of a minimal
degree. This is a more versatile approach than the homogeneous trees which are
usually used to construct initial segments of the Turing degrees (as in [12]).

3.1. Length 2 tree systems. Let A ⊆ ω<ω × ω<ω be a set of pairs of strings.
For τ ∈ ω<ω we let

A(τ ) = {ρ ∈ ω<ω : (τ, ρ) ∈ A}.
Of course dom A = {τ : ∃ρ[(τ, ρ) ∈ A]}.
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DEFINITION 3.1. A tree system of length 2 above a pair (σ, µ) is a set T of pairs
of strings satisfying:

• dom T is a tree above σ ;

• for all τ ∈ dom T , T (τ ) is a finite tree above µ; and

• if τ ă τ ′ are in dom T then T (τ ′) is an end extension of T (τ ).

In this section, we only consider systems of length 2 and so we omit mentioning
the length.

A tree system S is a subsystem of T if S ⊆ T . This means that dom S is a
subtree of dom T and for all τ ∈ dom S, S(τ ) is a subtree of T (τ ). If (τ, ρ) ∈ T
then T ∩ (τ, ρ)ď is a tree system, the system whose domain is the full subtree
of dom T above τ and which maps all τ ′ in its domain to the full subtree of T (τ ′)
above ρ. Here of course (τ, ρ)ď = τď

× ρď is the upwards closure of {(τ, ρ)} in
the partial ordering ď on (ω<ω)2 defined by the product of extension on strings:
(τ, ρ) ď (τ ′, ρ ′) if τ ď τ ′ and ρ ď ρ ′.

A tree system is h-bounded if for all (τ, ρ) ∈ T , τ(n) < h(n) for all n < |τ |
and ρ(n) < h(n) for all n < |ρ|. It is computably bounded if it is bounded by
some computable function.

If T is a computable and computably bounded tree system then dom T is
computable and the map τ 7→ T (τ ) is computable (for each τ ∈ dom T we obtain
a canonical index for T (τ ) as a finite set).

Forest systems. To iterate largeness we require the notion of forest systems.
We call a set of pairs of strings A ⊂ (ω<ω)2 prefix-free if dom A is prefix-

free and for all τ ∈ dom A, A(τ ) is prefix-free. For a set of pairs A let Aď
=⋃

(σ,µ)∈A(σ, µ)
ď be the upwards closure of A under ď. If A is prefix-free then Aď

is the disjoint union of (σ, µ)ď for (σ, µ) ∈ A. In other words, if (τ, ρ) extends
some element of A then that element is unique. We denote this element by (τ,
ρ)−A.

DEFINITION 3.2. A forest system of length 2 above a finite prefix-free set A ⊂
(ω<ω)2 is a set T of pairs of strings satisfying:

• dom T is a forest above dom A;

• for all τ ∈ dom T , T (τ ) is a finite forest above A(τ−dom A) (where again τ−dom A

is τ ’s unique predecessor in dom A); and

• if τ ă τ ′ are in dom T then T (τ ′) is an end extension of T (τ ).
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A leaf of a forest system T is a pair (τ, ρ) ∈ T such that τ is a leaf of dom T
and ρ is a leaf of T (τ ). Equivalently, it is a maximal element of the set of pairs T ,
if T is partially ordered by double extension ď. The set of leaves of a finite forest
system is prefix-free.

Paths of tree systems. Let T be a tree system above (σ, µ). For x ∈ [dom T ] we
let

T (x) =
⋃

T (τ ) Jσ ď τ ă xK.

We also let
[T ] = {(x, y) : x ∈ [dom T ] & y ∈ [T (x)]}.

In general the set [T ] need not be closed.

LEMMA 3.3. Suppose that for all x ∈ [dom T ] the tree T (x) has no leaves.
Then [T ] is a closed subset of [σ,µ]ă.

Proof. For τ ∈ dom T let

Eτ =

⋃
[ρ]ă Jρ a leaf of T (τ )K;

for n > |σ | let

En =
⋃

([τ ]ă × Eτ ) Jτ ∈ dom T & |τ | = nK.

Each En is clopen. We show that [T ] =
⋂

En . We always have [T ] ⊆
⋂

n>|σ | En .
For suppose that (x, y) ∈ [T ], and let n > |σ |. Let τ = x�n; so τ ∈ dom T . Let m
be greater than the height of T (τ ), and let ρ = y�m . Since ρ ∈ T (x) there is
some τ ′ ă x such that ρ ∈ T (τ ′). Since ρ /∈ T (τ ) we must have τ ă τ ′, and so ρ
extends some leaf of T (τ ); this shows that y ∈ Eτ , so (x, y) ∈ En .

In the other direction we use our assumption. Suppose that (x, y) ∈
⋂

n>|σ | En .
For all n > |σ |, (x, y) ∈ En implies that x�n ∈ dom T , so x ∈ [dom T ]. For
all n > |σ |, some leaf of T (x�n) is an initial segment of y. To show that y ∈ [T (x)]
it suffices to show that the minimum length of a leaf in T (x�n) is unbounded as
n→∞. But otherwise T (x) would have a leaf.

We require that the pairs in tree systems appearing in our conditions can be
extended to paths. It is not enough to require that the system not have leaves.

LEMMA 3.4. Let T be a bounded tree system and suppose that dom T has no
leaves. The following are equivalent:
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(1) For all k there is some m such that for every τ ∈ dom T of length m, every
leaf of T (τ ) has length at least k.

(2) For all x ∈ [dom T ], T (x) has no leaves.

Proof. That (1) implies (2) is immediate. Suppose (2) holds. By Lemma 3.3, [T ]
is closed; since T is bounded, [T ] is compact. Let k < ω. The collection of clopen
rectangles [τ, ρ]ă where τ ∈ dom T , ρ is a leaf of T (τ ), and |ρ| > k is an open
cover of [T ]; a finite subcover gives the desired m.

To simplify the combinatorics of finding big splittings, we restrict ourselves to
‘balanced’ tree systems.

DEFINITION 3.5. Let T be a tree system and let n < ω. We say that m is a
balanced level of T if for all τ ∈ dom T of length m, every leaf of T (τ ) has
length m. We say that T is balanced if dom T has no leaves and T has infinitely
many balanced levels.

If T is bounded and balanced then it satisfies the conditions of Lemma 3.4 and
so by Lemma 3.3, [T ] is closed. If T is balanced, computable and computably
bounded then [T ] is effectively closed (this is really where we use the requirement
that if τ ′ extends τ in dom T then T (τ ′) is an end extension, rather than any
extension, of T (τ )).

3.2. Bushiness for forest systems

DEFINITION 3.6. Let g and h be bounding functions. A forest system T is (g, h)-
bushy if dom T is g-bushy and for all τ ∈ dom T , T (τ ) is h-bushy.

LEMMA 3.7. Let A ⊂ (ω<ω)2 be finite and prefix-free, and let g and h be
bounding functions. The following are equivalent for a set B of pairs of strings:

(1) There is a finite (g, h)-bushy forest system above A, all of whose leaves lie
in B.

(2) The set of τ such that B(τ ) is h-big above A(τ−dom A) is g-big above dom A.

Proof. Assume (2). We define a forest system S by first defining dom S, and then
for all τ ∈ dom S, defining S(τ ). We let dom S be a g-bushy forest above dom A
such that for every leaf τ of dom S, B(τ ) is h-big above A(τ−dom A). Now, let τ ∈
dom S; let σ = τ−dom A. There are two cases. If τ is a leaf of dom S then we
let S(τ ) be an h-bushy forest above A(σ ) which witnesses that B(τ ) is h-big
above A(σ ). If τ is not a leaf of dom S then we let S(τ ) = A(σ ).
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These equivalent conditions define the notion of B being (g, h)-big above A; if
they fail, we say that B is (g, h)-small above A. If A is infinite then we say that B
is (g, h)-big above A if it is (g, h)-big above every finite prefix-free subset of A.

For brevity we let for B ⊆ (ω<ω)2, a bounding function h and a finite prefix-free
set of strings D

π h
D(B) = {τ : B(τ ) is h-big above D}.

Note that π h
D(B) =

⋂
ρ∈D π

h
ρ (B), where of course we let π h

ρ (B) = π
h
{ρ}(B). A set

B is (g, h)-big above a finite prefix-free set A if and only if for all σ ∈ dom A,
π h

A(σ )(B) is g-big above σ .
The big subset property (the analogue of Lemma 2.4) holds.

LEMMA 3.8. Let g, g′ and h, h′ be bounding functions and let (σ, µ) ∈ (ω<ω)2.
Suppose that B,C ⊆ (ω<ω)2 and that B ∪ C is (g + g′, h + h′)-big above (σ, µ).
Then either B is (g, h)-big above (σ, µ) or C is (g′, h′)-big above (σ, µ).

Proof. The set π h+h′
µ (B ∪ C) is (g + g′)-big above σ . The big subset property

implies that π h+h′
µ (B ∪ C) ⊆ π h

µ(B) ∪ π
h′
µ (C). Utilizing the big subset property

again, this time on the left coordinate, we see that either π h
µ(B) is g-big above τ

or π h′
µ (C) is g′-big above τ . The first means that B is (g, h)-big above (σ, µ); the

second, that C is (g′, h′)-big above (σ, µ).

Weak concatenation. The concatenation property (Lemma 2.5) fails. Suppose
that A is (g, h)-big above (σ, µ), and that B is (g, h)-big above every (τ, ρ) ∈ A.
It is possible that B is not (g, h)-big above (σ, µ): take for example two strings
ρ1 and ρ2 and a string τ such that (τ, ρ1), (τ, ρ2) ∈ A. Then π h

ρ1
(B) and π h

ρ2
(B)

are both g-big above τ , but the trees witnessing these facts need not be the same.
That is, it is possible that π h

{ρ1,ρ2}
(B) is g-small above τ . As a result, it is possible

that a set B is (g, h)-small above some (σ, µ) but the set of pairs above which B
is (g, h)-big is (g, h)-big above (σ, µ). Instead, we employ a weak version of the
concatenation property.

DEFINITION 3.9. Let S and R be forest systems. We say that R is an end
extension of S if:

• dom R is an end extension of dom S;

• if τ ∈ dom S is not a leaf of dom S, then R(τ ) = S(τ );

• if τ is a leaf of dom S then R(τ ) is an end extension of S(τ ).
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Note that this relation is transitive. Now, if T is a finite (length 1) forest above A,
E is the set of leaves of T , and U is a forest above E , then T ∪ U is a forest
above A, an end extension of T whose leaves are the leaves of U . For forest
systems we cannot take unions. Suppose that S is a finite forest system above A;
let D be the set of leaves of S, and suppose that R is a forest system above D. We
define the concatenation SˆR of S and R:

• dom(SˆR) = (dom S) ∪ (dom R);

• for τ ∈ dom S \ dom D, (SˆR)(τ ) = S(τ );

• for τ ∈ dom R, (SˆR)(τ ) = (S(τ−dom D)) ∪ R(τ ).

This is a forest system above A, an end extension of S whose leaves are the leaves
of R. Note that if τ ∈ dom D then we do not assume that R(τ ) = D(τ ), and so it
is possible that (SˆR)(τ ) = S(τ ). If both S and R are (g, h)-bushy then so is SˆR.
We conclude:

LEMMA 3.10. Suppose that B is (g, h)-big above A, and that C is (g, h)-big
above B. Then C is (g, h)-big above A. Indeed, every finite (g, h)-bushy forest
system whose leaves are in B has a finite (g, h)-bushy end extension whose leaves
are in C.

A set B of pairs of strings is open if it is upwards closed in the partial
ordering ď: closed under taking extensions in either coordinate.

The following lemma concerns sets of strings, not pairs of strings. It is a
consequence of the concatenation property, and is formally proved by induction
on |B|.

LEMMA 3.11. Let B be a finite collection of open sets of strings, and let A be
a finite, prefix-free set of strings. Suppose that each B ∈ B is g-big above every
σ ∈ Aď. Then

⋂
B is g-big above A.

LEMMA 3.12. Let A and B be sets of pairs of strings, and let g and h be bounding
functions. Suppose that B is open. Suppose that for all (σ, µ) ∈ A, for all σ ′ ě σ ,
B is (g, h)-big above (σ ′, µ). Then B is (g, h)-big above A.

Proof. It suffices to show that for any σ ∈ dom A and any finite, prefix-free E ⊆
A(σ ), π h

E(B) is g-big above σ . We apply Lemma 3.11 to the collection of sets
π h
µ(B) for µ ∈ E . The fact that B is open implies that each π h

µ(B) is open; the
assumption is that each π h

µ(B) is g-big above every extension of σ .

https://doi.org/10.1017/fms.2016.3 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2016.3


DNR and incomparable Turing degrees 23

COROLLARY 3.13 (Weak concatenation property). Let A, B and C be sets of
pairs of strings, and suppose that C is open. Suppose that B is (g, h)-big above A,
and that for all (τ, ρ) ∈ B, for all τ ′ ě τ , C is (g, h)-big above (τ ′, ρ). Then C
is (g, h)-big above A.

Working within tree systems. We need to apply the weak concatenation property
while working within a given tree system T .

REMARK 3.14. Suppose that B is (g, h)-big above A, that T is a tree system and
that A, B ⊆ T . Then the forest system constructed in the proof of Lemma 3.7 is
a subset of T .

Fix a tree system T . Suppose that S is a finite forest system; let D be the set
of leaves of S. Let R be a forest system above D. Suppose that both S and R are
subsets of T . Then SˆR is also a subset of T . Thus, Remark 3.14 can be extended.
Suppose that B is (g, h)-big above A, that C is (g, h)-big above B, and that A, B,
C ⊆ T . Then not only is there a finite (g, h)-bushy forest system S ⊆ T above A
whose leaves are in B, but further, any such system S can be end-extended to a
finite (g, h)-bushy forest system R ⊆ T above A whose leaves are in C .

If T is a tree system and B ⊆ T then we say that B is open in T if it is
upwards closed in the restriction of the partial ordering ď to T . Lemma 3.11
can be ‘restricted to a tree S’: if A, B ⊆ S and each B ∈ B is open in S and
g-big above Aď

∩ S, then
⋂

B is g-big above A. We then obtain a version of
Lemma 3.12 restricted to T :

LEMMA 3.15. Let T be a tree system; let A, B ⊆ T , and let g and h be bounding
functions. Suppose that B is open in T , and that for all (σ, µ) ∈ A, for all σ ′ ě σ

in dom T , B is (g, h)-big above (σ ′, ρ). Then B is (g, h)-big above A.

And so we get the weak concatenation property within a tree system:

COROLLARY 3.16. Let T be a tree system, let A, B,C ⊆ T , and suppose that C
is open in T . Suppose that B is (g, h)-big above A, and that for all (τ, ρ) ∈ B, for
all τ ′ ě τ in dom T , C is (g, h)-big above (τ ′, ρ). Then C is (g, h)-big above A,
and in fact every finite (g, h)-bushy forest system S ⊆ T which witnesses that B
is (g, h)-big above A has an end extension R ⊆ T which witnesses that C is
(g, h)-big above A.

We obtain a lemma which will allow us to take full subsystems as extensions.
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LEMMA 3.17. Let T be a bounded and balanced (b, c)-bushy tree system above
(σ, µ) and let B ⊂ T be open in T and (b, c)-small above (σ, µ). Then for every m
there is some (τ, ρ) ∈ T such that |τ |, |ρ| > m and above which B is (b, c)-small.

Proof. Let m be some balanced level of T . Let D be the set of pairs (τ, ρ) ∈ T
such that |τ | = |ρ| > m. Then D is (b, c)-big above (σ, µ). If there is no pair
as required then the weak concatenation property localized to T (Corollary 3.16)
shows that B is (b, c)-big above (σ, µ).

REMARK 3.18. We use the same convention discussed in Remark 2.8; we assume
that large sets given to us are sets of leaves of tree systems witnessing their
largeness. For example, if we are given a set B of pairs, (g, h)-big above some A,
then we assume that B is finite and prefix-free; that for all τ ∈ dom B, B(τ ) is
h-big above A(τ−dom A); and that B ⊆ Aď.

3.3. The notion of forcing and the generic. Let BDNR2 be the set of pairs
(τ, ρ) such that τ ∈ BDNR or ρ ∈ BDNRτ ; the latter means that ρ(e) = J τ (e)↓ for
some e < |ρ|. Note that this set of pairs is (2, 2)-small above (〈〉, 〈〉).

We let P2 be the set of tuples p = ((σ p, µp), T p, Bp, hp, bp) satisfying:

(1) T p is a computably bounded, computable, balanced tree system above (σ p,

µp);

(2) hp
∈ Q and T p is (hp, hp)-bushy;

(3) Bp
⊂ T p is c.e. and open in T p, and Bp

⊇ BDNR2 ∩ T p;

(4) bp
∈ Q and Bp is (bp, bp)-small above (σ p, µp); and

(5) hp
� bp and hp > bp above min{|σ p

|, |µp
|}.

We define a partial ordering on P2 as follows. A condition q extends a
condition p if (σ p, µp) ď (σ q, µq), T q is a subsystem of T p, Bp

∩ T q
⊆ Bq,

and hq 6 hp and bq > bp above min{|σ q
|, |µq
|}.

LEMMA 3.19. The assignment of closed sets X p
= [T p

] \ [Bp
]
ă for p ∈ P2 is

acceptable (Definition 1.10).

Note that T p
\Bp may not be a tree system and so we have not defined [T p

\Bp
].

Proof. As discussed above, the fact that T p is balanced implies that [T p
] is closed.

That Xq
⊆ Xp when q extends p again follows directly from the definition of the

partial ordering on P2.
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Let p ∈ P2. Suppose that [T p
] ⊆ [Bp

]
ă. Since T p is bounded, [T p

] is compact.
There is some finite C ⊂ Bp such that [T p

] ⊆ [C]ă. We may assume that C is
prefix-free. Then C shows that Bp is (hp, hp)- and so (bp, bp)-big above (σ p, µp).
Hence, Xp is nonempty.

Let m < ω. Since hp > bp above min{|σ p
|, |µp
|} Lemma 3.17 shows that there

is some pair (τ, ρ) ∈ T p with |τ |, |ρ| > m above which Bp is (bp, bp)-small. Then
q = ((τ, ρ), T p

∩ (τ, ρ)ď, Bp
∩ (τ, ρ)ď, hp, bp) is a condition in P2 extending p

satisfying Xq
⊆ [T q

] ⊆ [τ, ρ]ă. Thus, for every m, the set of conditions p ∈ P2

such that Xp
⊆ [τ, ρ]ă for some strings τ, ρ, both of length at least m, is dense

in P2; this implies requirement (c) of Definition 1.10.

As in the previous section, if G ⊂ P2 is sufficiently generic then
⋂

p∈G[T
p
] \

[Bp
]
ă is a singleton which we denote by {(xG, yG)}. In fact xG

=
⋃
{σ p
: p ∈ G}

and yG
=

⋃
{µp
: p ∈ G}.

Let p ∈ P2; since BDNR2 ⊆ Bp we see:

PROPOSITION 3.20. Every condition in P2 forces that xG
∈ DNR and that yG

∈

DNRxG
.

The restriction of P2 to P1. We do not actually have a restriction map to P1

from P2 but from a dense subset of P2. Note that if Q ⊆ P is dense and G ⊂ Q is
a generic directed set, then it is also a generic directed subset of P.

PROPOSITION 3.21. There is a dense subset Q2 ⊆ P2 and a restriction map i :
Q2 → P1 such that for all p ∈ Q2, X i(p)

⊇ dom X p.

In particular, this shows that P2 is nonempty.

Proof. We define i : P2 → P1 by letting

i(q) = (σ q, dom T q, π bq

µq(Bq), hq, bq)

where we recall that π bq

µq(Bq) is the set of τ such that Bq(τ ) is bq-big above µq.
Let q ∈ P2. It is routine to check that i(q) ∈ P1.
However, we cannot show that i is order-preserving. For this reason we let

Q2 = {p ∈ P2 : π
bp

µp(Bp) = {τ ∈ dom T p
: µp
∈ Bp(τ )}}.

Suppose that q ∈ Q2; then X i(q)
⊇ dom Xq. To check this we observe that if

(x, y) ∈ [T q
] \ [Bq

]
ă then for all τ ă x , (τ, µq) /∈ Bq and so τ /∈ B i(q); so

x ∈ [dom T q
] \ [B i(q)

]
ă. (In fact X i(q)

= dom Xq; if x ∈ X i(q) then Bq(x) is
bq-small above µq, so T q(x) \ Bq(x) has a path.)
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Let q ∈ P2. Define a set B ⊂ T q: for τ ∈ dom T q
\ π bq

µq(Bq) we let B(τ ) =
Bq(τ ); for τ ∈ π bq

µq(Bq) we let B(τ ) = T q(τ ). Let ν(q) = ((σ q, µq), T q, B, hq,

bq). The concatenation property implies that π bq

µq(Bq) = π bq

µq(B), which shows
that ν(q) ∈ P2, in fact that ν(q) ∈ Q2, and it extends q. Hence, Q2 is dense in P2.
We observe that i(q) = i(ν(q)).

To show that the restriction of i toQ2 is order-preserving we need to check that
if q, s ∈ Q2 and q extends s, then B i(s)

∩ T i(q)
⊆ B i(q). If τ ∈ B i(s) (and τ ∈ T i(q))

then (τ, µs) ∈ Bs; since Bs is open in T s, this means that (τ, µq) ∈ Bs; since
Bs
∩ T q

⊆ Bq, (τ, µq) ∈ Bq and so τ ∈ B i(q).
Let q ∈ Q2 and let p ∈ P1 extend i(q); we need to find r ∈ Q2 extending q such

that i(r) extends p. Using the map ν, it suffices to find r ∈ P2.
Let T be the restriction of T q to T p: dom T = T p and for τ ∈ T p, T (τ )= T q(τ ).

The system T is (hp, hq)-bushy above (σ p, µq).
Also define B ⊆ T ; if τ ∈ Bp then B(τ ) = T (τ ); if τ ∈ T p

\ Bp then B(τ ) =
Bq(τ ). The set B is open in T , is c.e., and is (bp, bq)-small above (σ p, µq). To
see that let S be (bp, bq) bushy above (σ p, µq); by Remark 3.14 we may assume
that S ⊂ T . Since dom S is a subtree of T p we find a leaf τ of dom S which is not
in Bp. Since p extends i(q), τ /∈ B i(q) and so B(τ ) = Bq(τ ) is bq-small above µq,
so S(τ ) has a leaf ρ which is not in B(τ ).

Since hp > bp above |σ p
| and hq > bq above |µq

|, T is (bp, bq)-bushy. By
Lemma 3.17 we can find (σ, µ) ∈ T such that |σ |, |µ| > max{|σ p

|, |µq
|} and

above which B is (bp, bq)-small.
We now define r = ((σ, µ), T ∩ (σ, µ)ď, B∩ (σ, µ)ď, hp, bp). The point is that

hp 6 hq and bp > bq above min{|σ |, |µ|} and so T r is (hp, hp)-bushy and Br is
(bp, bp)-small above (σ, µ). This also shows that r extends q. To show that i(r)
extends p we need to show that Bp

∩ dom T r
⊆ B i(r). Let τ ∈ Bp

∩ dom T r. Then
τ ě σ and so µ ∈ T (τ ) = B(τ ), so τ ∈ B i(r).

COROLLARY 3.22. Every condition in P2 forces that xG has minimal Turing
degree.

Totality.

PROPOSITION 3.23. Let C ⊆ (ωω)2 be Π 0
2 and let p ∈ P2. If p 
 (xG, yG) ∈ C

then p has an extension which strongly forces that (xG, yG) ∈ C.

Proof. The proof is similar to the proof of Proposition 2.15. We choose a
function g ∈ Q such that hp

� g � bp. By Lemma 3.17 we may assume that
hp > g > bp above min{|σ p

|, |µp
|}.
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We fix a sequence of c.e. sets Ck ⊆ T p, open in T p, such that C ∩ [T p
] =

[T p
] ∩

⋂
k[Ck]

ă. For all (τ, ρ) ∈ T p, for all k, the set Bp
∪ Ck is (g, g)-big

above (τ, ρ); otherwise ((τ, ρ), T p
∩ (τ, ρ)ď, (Bp

∪ Ck) ∩ (τ, ρ)
ď, hp, g) is a

condition extending p which forces that (xG, yG) /∈ C .
We define a sequence of finite tree systems Sk ⊂ T p such that: each Sk is (g,

g)-bushy; Sk+1 is a proper end extension of Sk ; the leaves of Sk+1 are in Ck ∪ Bp;
if k > 0 then there is some `k such that for every k > 1, for every leaf (τ, ρ) of Sk ,
|τ | = |ρ| = `k . We begin with S0 = {(σ

p, µp)}. Given Sk , Corollary 3.16 says
that Ck ∪ Bp is (g, g)-big above the set of leaves of Sk , so we can find a finite
(g, g)-bushy end extension S′k ⊂ T p of Sk with leaves in Ck ∪ Bp.

Now find some `k+1, greater than |τ | and |ρ| for any leaf (τ, ρ) of S′k , which is a
balanced level for T p (Definition 3.5). Then the set of (τ, ρ) ∈ T p such that |τ | =
|ρ| = `k+1 is (g, g)-big above the set of leaves of S′k . Hence, we can find Sk+1 ⊂

T p to be an end extension of S′k as required.
It follows that S =

⋃
k Sk is a computable, (g, g)-bushy and balanced tree

system above (σ p, µp) and that the condition ((σ p, µp), S, Bp
∩ S, g, bp)

extends p and strongly forces that (xG, yG) ∈ C .

3.4. Minimal cover. We work towards showing that degT(x
G, yG) is a strong

minimal cover of degT(x
G). (For x ∈ ωω, degT(x) denotes the Turing degree of x .)

We do this in two steps. First, we show that it is a minimal cover. This mostly uses
the tools of the previous section.

Let Γ : (ωω)2→ 2ω be a Turing functional. For a condition p ∈ P2, a bounding
function g and a string µ let Γ -Spg

µ(p) be the set of τ ∈ dom T p such that T p(τ )

contains two sets A0(τ ) and A1(τ ), both g-big above µ, which Γ (τ,−)-split mod
Bp(τ ).

LEMMA 3.24. Suppose that p ∈ P2 strongly forces that Γ (xG, yG) is total and
forces that Γ (xG, yG) 
T xG .

Let (σ, µ) ∈ T p. Let g ∈ Q such that hp
� g, and hp > 3g and g > bp above

min{|σ |, |µ|}. Then Γ -Spg
µ(p) is g-big above σ .

Proof. Suppose that (σ, µ) and g witness the failure of the lemma; we find an
extension of p which forces that Γ (xG, yG) is computable from xG .

LetΘ be the (c.e.) set of pairs (τ, α) such that τ ∈ dom T p, α ∈ 2<ω and Aα(τ )
is g-big above µ, whereas before Aα = Bp

∪ {(τ, ρ) ∈ T p
: Γ (τ, ρ) ě α}.

For brevity let C = Γ -Spg
µ(p). The set C is open in dom T p. If τ ∈ dom T p

\C
then the strings in Θ(τ) are pairwise comparable.

Let τ ∈ dom T p
\ C . The argument of the proof of Lemma 2.18 shows that if

|Γ (τ, ρ)| > m for every leaf ρ of T p(τ )which is not in Bp(τ ) thenΘ(τ) contains
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a string of length m. Also, Bp(τ ) is g-small above µ and so Θ(τ) is finite; in this
case we let Θτ

=
⋃
Θ(τ) be the longest string in Θ(τ).

If τ ď τ ′ are in dom T p
\ C then Θτ ď Θτ ′ . This follows from the fact that

Aα(τ ) ⊆ Aα(τ ′) for all α.
Let D = {(τ, ρ) ∈ T p

: τ ∈ C or Γ (τ, ρ) ⊥ α for some α ∈ Θ(τ)}. The set D
is c.e. and is open in T p. Also, D ∪ Bp is (g, g)-small above (σ, µ). To see this,
suppose that S ⊂ T p is a finite (g, g)-bushy tree system above (σ, µ) (as above
we use Remark 3.14). Then there is a leaf τ of dom S which is not in C ; and then
S(τ ) must contain a leaf ρ /∈ Bp(τ ) such that Γ (τ, ρ) is compatible with Θτ .

Now suppose that (x, y) ∈ [T p
] \ [D ∪ Bp

]
ď. No initial segment of x is in C .

A compactness argument shows that Θ(x) =
⋃

τăx Θ
τ is total, and so Γ (x, y) =

Θ(x). CertainlyΘ(x) 6T x . Therefore, the condition ((σ, µ), T p
∩ (σ, µ)ď, (D∪

Bp)∩ (σ, µ)ď, hp, g) extends p and (strongly) forces that Γ (xG, yG) 6T xG .

DEFINITION 3.25. Let B ⊆ (ω<ω)2. Two sets A0 and A1 of pairs of strings locally
Γ -split mod B if for all τ , A0(τ ) and A1(τ ) form a Γ (τ,−)-splitting mod B(τ ).
That is, if (τ, ρ0) ∈ A0 \ B and (τ, ρ1) ∈ A1 \ B then Γ (τ, ρ0) ⊥ Γ (τ, ρ1).

We introduce the notion of uniform largeness.

DEFINITION 3.26. Let A be finite and prefix-free, and let B be a collection of
sets of pairs of strings. We say that the sets in B are uniformly (g, h)-big above A
if the set of τ such that for all B ∈ B, B(τ ) is h-big above A(τ−dom A), is g-big
above dom A.

The conclusion of Lemma 3.24 is that there are A0 and A1, subsets of T p

uniformly (g, g)-big above (σ, µ), which locally Γ -split mod Bp.

LEMMA 3.27. Suppose that p ∈ P2 strongly forces that Γ (xG, yG) is total and
forces that Γ (xG, yG) 
T xG .

Let σ ∈ dom T p, and let µ1, µ2, . . . , µk be elements of T p(σ ). Let g ∈ Q such
that hp

� g, and hp > 3k g and g > bp above min{|σ |, |µ1|, |µ2|, . . . , |µk |}. Then
there is a set A ⊂ T p, (g, g)-big above {(σ, µ j) : j 6 k}, such that the sets
A ∩ (σ, µ j)

ď pairwise locally Γ -split mod Bp.

Proof. The idea is to extend bushily on the first coordinate so that we can
emulate the proof of Lemma 2.19 on the second coordinate. Formally this is
done by induction on k. Suppose this has been shown for k; let µ1, . . . , µk and
µ∗ be elements of T p(σ ); suppose that h � g, and hp > 3k+1g and g > bp

above min{|σ |, |µ∗|, |µ j | : j 6 k}. Then h � 3g; so by induction we can find

https://doi.org/10.1017/fms.2016.3 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2016.3


DNR and incomparable Turing degrees 29

a set A, (3g, 3g)-big above {(σ, µ j) : j 6 k} such that the sets A ∩ (σ, µ j)
ď

pairwise locally Γ -split mod Bp. In fact, we only need (g, 3g)-big.
Let (ζ, ν) ∈ A. By Lemma 3.24, for all ζ ′ ě ζ on dom T p, Γ -Sp3g

ν (p) is 3g-
big above ζ ′ (again we only need g-big). By repeatedly extending we see that
for all ζ ∈ dom A, Qζ = ζ

ď
∩

⋂
ν∈A(ζ ) Γ -Sp3g

ν (p) is 3g-big above ζ . We extend
the set A by letting A(τ ) = A(ζ ) for all τ ∈ Qζ . Let Q =

⋃
ζ∈dom A Qζ ; it is

3g-big above σ . For every τ ∈ Q and all ν ∈ A(τ ) we can find sets Eν,0(τ ),

Eν,1(τ ) ⊂ T p(τ ), each 3g-big above ν, which Γ (τ,−)-split mod Bp(τ ).
Further, by extending in dom T p, we may assume that for all τ ∈ Q we can find

F(τ ) ⊂ T p(τ ) which is 3k g-big above µ∗ and such that |Γ (τ, ρ)| > |Γ (τ, η)| for
all ρ ∈ F(τ ) \ Bp(τ ) and all η ∈ Eν,i(τ ) (for both i < 2 and all ν ∈ A(τ )).

Overall, we see that for all τ ∈ Q we can run the argument proving Lemma 2.19
inside T p(τ ) and using Lemma 2.20 find F ′(τ ) ⊆ F(τ ), g-big above µ∗ and for
j 6 k, E ′j(τ ) ⊂ T p(τ ), g-big above µ j , with every string in E ′j(τ ) extending
some string in A j(τ ), such that F ′(τ ) and E ′j(τ ) form a Γ (τ,−)-splitting mod
Bp(τ ); the fact that strings in E ′j(τ ) extend strings in A(τ ) ∩ µď

j shows that the
sets E ′j(τ ) also pairwise Γ (τ,−)-split mod Bp(τ ).

PROPOSITION 3.28. Every condition in P2 forces that if Γ (xG, yG) is total and
Γ (xG, yG) 
T xG then Γ (xG, yG)⊕ xG >T yG .

Proof. As in the proof of Proposition 2.21 we take some p ∈ P2 which strongly
forces that Γ (xG, yG) is total and forces that Γ (xG, yG) 
T xG , and find an
extension of p which forces that Γ (xG, yG)⊕ xG >T yG .

Find some g ∈ Q such that hp
� g � bp. Let ḡ(m) =

∏
k<m g(k). By

Lemma 3.17 we can extend (σ p, µp) so that hp > 3ḡg and g > bp above min{|σ p
|,

|µp
|}.

We define an increasing sequence 〈`k〉 and a sequence 〈Sk〉 of finite subsystems
of T p such that: dom Sk is g-bushy and for all τ ∈ dom Sk , Sk(τ ) is exactly g-
bushy; Sk+1 is a proper end extension of Sk ; for every leaf (τ, ρ) of Sk , |τ | =
|ρ| = `k .

To begin we find some `0 > |σ
p
|, |µp
|, a balanced level for T p. We let dom S0 =

dom T p�ω6`0 and for each leaf τ of dom S0 we let S0(τ ) be an exactly g-bushy
subtree of T p(τ ) whose leaves all have length `0. As usual, if τ ∈ dom S0 is not a
leaf then we let S0(τ ) = {µ

p
}.

Given Sk we note that for every leaf σ of dom Sk , the number of leaves
of Sk(σ ) is precisely

∏
m∈[|µp|,`k )

g(m)which is bounded by ḡ(`k); and hp > 3ḡ(`k )g
above `k . By Lemma 3.27, we can find for each leaf σ of dom Sk a finite
(g, g)-bushy forest system Rσ ⊂ T p above {(σ, ν) : ν a leaf of Sk(σ )}, such that
for every leaf τ of dom Rσ , the sets Rσ (τ )∩ νď for the leaves ν of Sk(σ ) pairwise
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Γ (τ,−)-split mod Bp. By shrinking we may assume that for all leaves τ ∈
dom Rσ , Rσ (τ ) is exactly g-bushy. Let R =

⋃
σ Rσ and let S′k = SkˆR.

Now, as in the proof of Proposition 3.23, we let `k+1 be a balanced level of T p,
greater than the length of any string appearing in S′k , and let Sk+1 ⊂ T p be an end
extension of S′k with the desired properties.

Let S =
⋃

k Sk . Then for all x ∈ [dom S], Γ (x,−) is 1-1 on [S(x)] \ [Bp(x)]ă.
The tuple ((σ p, µp), S, Bp

∩ S, g, bp) is a condition as required (relativize
Lemma 1.8 to each x).

3.5. Strong minimal cover. The following is the usual definition of splitting,
restated for pairs of strings.

DEFINITION 3.29. Let B ⊆ (ω<ω)2. Two sets A0 and A1 Γ -split mod B if for all
(τ, ρ) ∈ A0 \ B and (τ ′, ρ ′) ∈ A1 \ B, Γ (τ, ρ) ⊥ Γ (τ ′, ρ ′).

LEMMA 3.30. Let g1, g2, h1, h2 ∈ Q; let B be an open set of pairs of strings.
Suppose that:

• (σ, µ) and (σ ∗, µ∗) are pairs of strings;

• A is (3g1, 3g2)-big above (σ, µ);

• E0 and E1 are uniformly (3g1, 3g2)-big above A; and for all (τ, ρ) ∈ A,
E0 ∩ (τ, ρ)

ď and E1 ∩ (τ, ρ)
ď locally Γ -split mod B; and

• F is (3h1, 3h2)-big above (σ ∗, µ∗), and |Γ (λ, ν)| > |Γ (ζ, η)| for all (λ, ν) ∈
F \ B and all (ζ, η) ∈ E \ B, where E = E0 ∪ E1.

Then there are E ′ ⊆ E, (g1, g2)-big above (σ, µ), and F ′ ⊆ F, (h1, h2)-big
above (σ ∗, µ∗), which Γ -split mod B.

Proof. The proof is very similar to that of Lemma 2.20. As above, for a string
α ∈ 2<ω let Fěα = (F ∩ B) ∪ {(τ, ρ) ∈ F : Γ (τ, ρ) ě α}, and similarly define
F⊥α, Eěα, Eďα and so on. If F ∩ B is (h1, h2)-big above (σ ∗, µ∗) then we can
let F ′ = F ∩ B and E ′ = E . Similarly if E ∩ B is (g1, g2)-big above (σ, µ).

Suppose otherwise. In that case, for sufficiently long α, Fěα is (h1, h2)-small
above (σ ∗, µ∗). Let α be a string, maximal with respect to Fěα being (h1, h2)-big
above (σ ∗, µ∗). As above, we show that either

(1) E⊥α is (g1, g2)-big above (σ, µ); or

(2) Eěα is (g1, g2)-big above (σ, µ) and F⊥α is (h1, h2)-big above (σ ∗, µ∗).

In both cases we can find E ′ and F ′ as required.
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Again we examine two cases, depending on Eďα.
First suppose that Eďα is (g1, g2)-big above (σ, µ). Let R witness this. Fix ζ , a

leaf of dom R. The argument of the proof of Lemma 2.20 is now carried out within
R(ζ ). Let τ = ζ−dom A. Every ν ∈ E(ζ ) extends some unique ρ ∈ A(τ ). The tree
R(ζ ) restricted to initial segments of strings in A(τ ) shows that A(τ ) ∩ R(ζ )
is g2-big above µ; for each ρ ∈ A(τ ) ∩ R(ζ ), Eďα(ζ ) is g2-big above ρ. The
previous argument shows that for each such ρ, E⊥α(ζ ) is g2-big above ρ. The
concatenation property shows that E⊥α(ζ ) is g2-big above µ. And then dom R
shows that E⊥α is (g1, g2)-big above (σ, µ).

Next suppose that Eďα is (g1, g2)-small above (σ, µ); the argument is now
identical to the comparable one in Lemma 2.20, using Lemma 3.8. It shows
that (2) holds.

LEMMA 3.31. Suppose that p ∈ P2 strongly forces that Γ (xG, yG) is total and
forces that Γ (xG, yG) 
T xG .

Let C ⊂ T p be prefix-free and finite; let g ∈ Q such that hp
� g, and hp >

3|C |2 g and g > bp above min{|σ |, |µ| : (σ, µ) ∈ C}.
Then there is a set A ⊂ T p, (g, g)-big above C, such that the sets A∩ (σ, µp)ď

(for σ ∈ dom C) pairwise Γ -split mod Bp.

Proof. We prove the lemma by induction on |C |. Let C∗ = C∪{(σ ∗µ∗)} ⊂ T p be
finite and prefix-free, and suppose that the lemma is already known for C . Let g
satisfy the assumptions of the lemma for C∗. The assumptions of the lemma hold
for the set C and the function 3|C |g. Let A be as guaranteed by the lemma for C
and 3|C |g.

Let (σ1, µ1), (σ2, µ2), . . . , (σk, µk) list the elements of C such that σ j = σ
∗. By

reverse recursion on j 6 k we define a set A j ⊂ T p, (3 j g, 3 j g)-big above C∗. We
ensure that A j ∩Cď

⊂ Aď, and so the sets A j ∩ (σ, µ
p)ď for σ ∈ dom C pairwise

Γ -split mod Bp. Further, we ensure that A j−1 ∩ (σ
∗, µ∗)ď and A j−1 ∩ (σ j , µ j)

ď

Γ -split mod Bp; and that A j−1 ⊂ Aď
j . Thus, in the end, the set A0 is as required.

We start with Ak = A ∪ {(σ ∗, µ∗)}. Now suppose that j > 0 and we are given
the sets A j . Let τ ∈ (dom A j) ∩ σ

ď
j . Lemma 3.24 says that for all τ ′ ě τ in

dom T p, for all ρ ∈ A j(τ ) ∩ µ
ď
j , the set Γ -Sp3 j g

ρ (p) is 3 j g-big above σ j . So
applying Lemma 3.11 to these sets, and repeating this process for all such τ , we
find (finite) E j,0 ⊂ T p and E j,1 ⊂ T p, uniformly (3 j g, 3 j g)-big above A j ∩ (σ j ,

µ j)
ď, such that for every (τ, ρ) ∈ A j∩(σ j , µ j)

ď, E j,0∩(τ, ρ)
ď and E j,1∩(τ, ρ)

ď

locally Γ -split mod Bp. Given E j = E j,0 ∪ E j,1 we can find F j ⊂ T p, (3 j g, 3 j g)-
big above A j ∩ (σ

∗, µ∗)ď (and lying above that set) such that |Γ (τ, ρ)| > |Γ (τ ′,
ρ ′)| for all (τ, ρ) ∈ F j \ Bp and all (τ ′, ρ ′) ∈ E j . We then appeal to Lemma 3.30
with F j in the role of F , E j,i in the role of Ei , A j ∩ (σ j , µ j)

ď in the role of A,
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and using the function 3 j−1g we get F ′j ⊆ F j , (3 j−1g, 3 j−1g)-big above (σ ∗, µ∗)
and E ′j ⊆ E j , also (3 j−1g, 3 j−1g)-big above (σ j , µ j), which Γ -split mod Bp.

We now define the set A j−1. We first define dom A j−1, and we do this by
defining (dom A j−1) ∩ σ

ď for all σ ∈ dom C∗. Let σ ∈ dom C∗. If σ = σ j , σ
∗

then (dom A j−1) ∩ σ
ď
= (dom A j) ∩ σ

ď. We let (dom A j−1) ∩ (σ
∗)ď = dom F ′j

and (dom A j−1) ∩ (σ j)
ď
= dom E ′j .

Now for τ ∈ dom A j−1 we define A j−1(τ ). Fix such τ ; let ζ = τ−dom A j and
let σ = τ−dom C∗

= ζ−dom C∗ . If σ = σ ∗, σ j then ζ = τ and we let A j−1(τ ) =

A j(τ ). Otherwise, we define A j−1(τ ) by defining A j−1 ∩ µ
ď for all µ ∈ C∗(σ ).

Suppose that σ = σ ∗. If µ = µ∗ then we let A j−1(τ )∩µ
ď
= A j(ζ )∩µ

ď (which
inductively will just equal A(τ−dom A) ∩ µď). We let A j−1(τ ) ∩ (µ

∗)ď = F ′j(τ ).
Similarly, if σ = σ j and µ = µ j then we let A j−1(τ )∩µ

ď
= A j(ζ )∩µ

ď; we let
A j−1(τ ) ∩ (µ j)

ď
= E ′j(τ ).

PROPOSITION 3.32. Every condition in P2 forces that if Γ (xG, yG) is total and
Γ (xG, yG) 
T xG then Γ (xG, yG) >T xG .

Proof. The construction is similar to the one in Propositions 2.21 and 3.28. It is
here that we really use the fact that T p is balanced, for we ensure that each Sk

we build is exactly (g, g)-bushy. We assume that hp
� 3ḡ2

g above min{|σ p
|,

|µp
|} and then apply Lemma 3.31 to C being the set of leaves of Sk . We use

Lemma 1.9.

And as a result:

PROPOSITION 3.33. Every condition in P2 forces that degT(x
G, yG) is a strong

minimal cover of degT(x
G).

REMARK 3.34. We could combine the proofs of Lemmas 3.27 and 3.31 to build a
‘totally Γ -splitting’ extension: a set A such that if (σi , µi) ∈ C (for i < 2) and (τi ,

ρi) ∈ A ∩ (σi , µi)
ď
\ B, then Γ (τ0, ρ0) ⊥ Γ (τ1, ρ1) provided that either σ0 = σ1,

or τ0 = τ1 (and ρ0 = ρ1). We could then have a single construction (replacing
Propositions 3.32 and 3.33) giving a condition forcing that Γ (xG, yG) ≡T (xG,

yG).

4. The general step

We now generalize to get a linearly ordered initial segment of length n. Once
the correct definitions are in place, much of the development closely follows the
previous section.
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4.1. Length n forest systems. We work with n-tuples of strings. We use
boldface notation for tuples. If τ is a tuple then τi denotes the i th component
of τ . The partial ordering of extension ď on (ω<ω)n is defined as expected. For a
set A ⊆ (ω<ω)n we let Aď be the upward closure of A under this partial ordering.
If τ is an n-tuple and k 6 n then we let τ�k = (τ1, . . . , τk) and τ�(k,n] = (τk+1,

. . . , τn).
For a set A ⊆ (ω<ω)n and k < n we let domk A be the domain of A thought of

as a relation between k-tuples and (n − k)-tuples:

domk A = {τ�k : τ ∈ A}.

For τ ∈ (ω<ω)k we let

A(τ ) = {ρ ∈ (ω<ω)n−k
: (τ , ρ) ∈ A}.

We frequently need to chop off the last bit, so for compact notation we let τ↓ =

τ�n−1 for all τ ∈ (ω<ω)n , and let A↓ = domn−1 A = {τ↓ : τ ∈ A} for all A ⊆
(ω<ω)n .

DEFINITION 4.1. By induction on n we define the notion of a prefix-free set of
tuples of strings: a set A ⊂ (ω<ω)n is prefix-free if A↓ is prefix-free, and for all
τ ∈ A↓, A(τ ) is a prefix-free set of strings.

If A is prefix-free and τ ∈ Aď then there is a unique σ ∈ A such that σ ď τ

(formally this is proved by induction on n); we denote this σ by τ−A. Note that
if A is prefix-free and τ ∈ Aď then τ↓ ∈ (A↓)ď and (τ↓)−A↓

= τ−A
↓.

DEFINITION 4.2. By induction on n we define the notion of a length n forest
system. Let A ⊂ (ω<ω)n be prefix-free and finite. A length n forest system above A
is a set T ⊆ Aď such that:

• T↓ is a length n − 1 forest system above A↓;

• for all τ ∈ T↓, T (τ ) is a finite forest above A(τ−A↓);

• if τ ď τ ′ ∈ T↓ then T (τ ′) is an end extension of T (τ ).

A forest system S is a subsystem of T if S ⊆ T . We write `(T ) for the length
of T . If A is a singleton σ then we say that T is a tree system above σ .

LEMMA 4.3. Let T be a tree system and let σ ∈ T . Then T ∩ σ ď is a tree system
above σ .

(In fact σ can be replaced by any finite, prefix-free subset of T ).
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Proof. By induction on `(T ). Let R = T∩σď. The point is that R↓ = T↓∩(σ↓)ď.
For suppose that τ ∈ T↓ ∩ (σ↓)ď. Then T (σ↓) ⊆ T (τ ) and σ ∈ T imply that
(τ , σn) ∈ T and witnesses that τ ∈ R↓. Finally, we also observe that for τ ∈ R↓
we have R(τ ) = T (τ ) ∩ (σn)

ď.

The definition of an h-bounded (and so of a computably bounded) tree system
is as expected. If T is computable and computably bounded then for all k < `(T ),
domk T is computable and the map τ 7→ T (τ ) is computable.

A leaf of a forest system T is a ď-maximal element of T . A tuple τ is a leaf
of T if and only if τ↓ is a leaf of T↓ and τ`(T ) is a leaf of T (τ↓). The set of leaves
of a forest system is prefix-free.

If T and S are length n forest systems then we say that T is an end extension
of S if:

• T↓ is an end extension of S↓;

• if τ ∈ S↓ is not a leaf of S↓ then T (τ ) = S(τ );

• if τ is a leaf of S↓ then T (τ ) is an end extension of S(τ ).

Note that this is a transitive relation.

LEMMA 4.4. Let 〈Sm〉 be a sequence of forest systems above A, with each Sm+1

an end extension of Sm . Then
⋃

m Sm is a forest system above A.

Proof. Let S =
⋃

m Sm . Then S↓ =
⋃

m Sm↓, and so by induction on the length,
S↓ is a forest system above A↓. Let τ ∈ S↓. Then S(τ ) =

⋃
m Sm(τ ) is the union

of a sequence of end extensions above A(τ−A↓), and so is a forest above that set;
note that if τ ∈ Sm↓ but is not a leaf of Sm↓ then S(τ ) = Sm(τ ).

Other breaking points. We do not have to isolate only the last coordinate. For
example:

LEMMA 4.5. Let A ⊆ (ω<ω)n . The following are equivalent:

(1) A is prefix-free;

(2) for some k ∈ {1, . . . , n − 1}, domk A is prefix-free and for all τ ∈ domk A,
A(τ ) is prefix-free; and

(3) for all k ∈ {1, . . . , n−1}, domk A is prefix-free and for all τ ∈ domk A, A(τ )
is prefix-free.

The proof relies on the fact that (A↓)(τ ) = (A(τ ))↓, and induction. For forest
systems we do not get as nice a result.
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LEMMA 4.6. Let A ⊂ (ω<ω)n be prefix-free and let T ⊆ Aď.

(1) Suppose that T is a forest system above A. Then for all k ∈ {1, 2, . . . , n−1}:
(a) domk T is a forest system above domk A; (b) for all τ ∈ domk T , T (τ )
is a forest system above A(τ−domk A); and (c) if τ ď τ ′ are in domk T then
T (τ ) ⊆ T (τ ′).

(2) Let k ∈ {1, 2, . . . , n − 1}; suppose that domk T is a forest system
above domk A, that for all τ ∈ domk T , T (τ ) is a forest system above
A(τ−domk A), and that if τ ď τ ′ are in domk T then T (τ ) is an end extension
of T (τ ′). Then T is a forest system above A.

Again the proof is routine. In the situation of (1) we do not always get that
T (τ ′) end-extends T (τ ). Suppose, for example, that τ ă τ ′ are in dom1 T and
that ρ ă ρ ′ are in dom1 T (τ ) (and so also in dom1 T (τ ′)). It is possible that T (τ ′,
ρ) = T (τ, ρ), even though ρ is not a leaf of T (τ ). For example, we could have
T (τ ′, ρ ′) = T (τ ′, ρ) = T (τ, ρ ′) which is a proper end extension of T (τ, ρ). For
end-extending, though, we do get full invariance of breaking point:

LEMMA 4.7. Let S and T be forest systems of length n. The following are
equivalent:

(1) T is an end extension of S;

(2) For some k ∈ {1, . . . , n − 1}, domk T is an end extension of domk S, for all
τ ∈ domk S, T (τ ) is an end extension of T (τ ), and if τ ∈ domk S is not a
leaf of domk S, then T (τ ) = S(τ ).

(3) For all k ∈ {1, . . . , n − 1}, domk T is an end extension of domk S, for all
τ ∈ domk S, T (τ ) is an end extension of T (τ ), and if τ ∈ domk S is not a
leaf of domk S, then T (τ ) = S(τ ).

Also note that if S is a forest system then τ ∈ S is a leaf of S if and only if for
some (all) k ∈ {1, 2, . . . , `(S) − 1}, τ�k is a leaf of domk S and τ�(k,`(S)] is a leaf
of S(τ�k).

Paths of tree systems. We simplify our presentation by restricting ourselves to
balanced tree systems.

DEFINITION 4.8. Let T be a tree system and let m < ω. We say that m is a
balanced level of T if for all τ ∈ dom1 T of length m, every component of every
leaf of T (τ ) has length m. We say that T is balanced if dom1 T has no leaves
and T has infinitely many balanced levels.
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For a balanced tree system T we let

[T ] = {x ∈ (ωω)`(T ) : x�m ∈ T for every balanced level m of T }.

The set [T ] is a closed subset of (ωω)n .
For x ∈ [T↓] we let T (x) =

⋃
τăx T (τ ). This is a tree with no leaves. If T

is balanced then so is T↓, and [T ] = {(x, y) : x ∈ [T↓] & y ∈ [T (x)]}. If T is
balanced, computable and computably bounded then [T ] is effectively closed.

Bushiness for forest systems. Let g = (g1, . . . , gn) be a tuple of bounding
functions, and let T be a length n forest system. We say that T is g-bushy if
T↓ is g↓-bushy and for all τ ∈ T↓, T (τ ) is gn-bushy. As usual, T is g-bushy if
and only if for some (all) k ∈ {1, 2, . . . , n − 1}, domk T is g�k-bushy and for all
τ ∈ domk T , T (τ ) is g�(k,n]-bushy.

We say that a set B ⊆ (ω<ω)n is g-big above some finite prefix-free set A ⊂
(ω<ω)n if there is a g-bushy finite forest system R above A whose leaves lie in B.
This is extended to all sets A as above. For k < n, B ⊆ (ω<ω)n , a finite, prefix-free
A ⊆ (ω<ω)n and h, an (n − k)-tuple of bounding functions, we let

π h
A(B) = {τ ∈ (domk A)ď : B(τ ) is h-big above A(τ−domk A)}.

Note that this notation is different from the one used in the previous section;
however, if A is a singleton σ then we revert to the old notation and write
π h

σ�(k,n]
(B) instead of π h

σ (B). A set B is g-big above A if and only π
g�(k,n]
A (B)

is g�k-big above A. The proof of this follows the proof of Lemma 3.7, using
Lemma 4.6(2) (and the fact that every finite prefix-free set is a forest system above
itself, and any forest system R above A is an end extension of A). The proof gives
the analogue of Remark 3.14: if B is g-big above A, T is a forest system and
A, B ⊆ T then a finite forest system S witnessing the largeness can be taken to
be a subset of T .

REMARK 4.9. Let 1 6 k < m < n, let σ ∈ (ω<ω)m−k , µ ∈ (ω<ω)n−m , g be
an (m − k)-tuple of bounding functions, and h and (n − m)-tuple of bounding
functions. Let B ⊆ (ω<ω)n . Then

π g
σ (π

h
µ(B)) = π

g,h
σ ,µ(B).

The big subset property holds for largeness over singletons, with the same proof
as that of Lemma 3.8.

For the weak concatenation property, we straightaway work within tree systems.
But first we discuss concatenations. Suppose that S is a finite forest system, that A
is the set of leaves of S, and that R is a forest system above A. Since S is finite,
A↓ is the set of leaves of S↓. We then define SˆR by letting:
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• (SˆR)↓ = S↓ˆR↓;

• for τ ∈ S↓, not a leaf of S↓, we let (SˆR)(τ ) = S(τ );

• for τ ∈ R↓ we let (SˆR)(τ ) = S(τ−A)ˆR(τ ) = S(τ−A) ∪ R(τ ).

Then SˆR is an end extension of S, whose leaves are the leaves of R. Also note
that if S, R ⊆ T for some forest system T then SˆR ⊆ T . If both S and R are g-
bushy then so is SˆR. We thus get the restricted analogue of Lemma 3.10. From
now we fix a forest system T .

• Suppose that B is g-big above A, and that C is g-big above B. Then C is g-big
above A. If A, B,C ⊆ T then every forest system S ⊆ T witnessing that B is
g-big above A has an end extension R ⊆ T which witnesses that C is g-big
above A.

We get an analogue of Lemma 3.11. The notion of an open subset of T is as
expected.

LEMMA 4.10. Let B be a finite family of subsets of T which are open in T .
Let A ⊆ T be finite and prefix-free. Suppose that each B ∈ B is g-big above Aď

∩

T (recall that this means that it is g-big above every finite, prefix-free subset of
Aď
∩ T ). Then

⋂
B is g-big above A.

We can now prove the analogue of Lemma 3.12.

LEMMA 4.11. Let T be a forest system and let A, B ⊆ T ; suppose that B is open
in T . Suppose that for all τ ∈ Aď

∩ T , B is g-big above τ . Then B is g-big
above A.

Proof. By induction on the length of T . We may assume that A is finite and prefix-
free. We need to show that C = π gn

A (B) is g↓-big above A↓. Let τ ∈ (A↓)ď∩T↓.
We claim that C is g↓-big above τ (and then apply the induction hypothesis).
Let σ = τ−A↓. Then C ∩σ ď equals

⋂
µ∈A(σ ) π

gn
µ (B). By assumption, each π gn

µ (B)
is g↓-big above every tuple in σ ď

∩ T↓; we apply the analogue of Lemma 3.11
mentioned above.

COROLLARY 4.12. Let T be a tree system, let A, B,C ⊆ T , and suppose that C
is open in T . Suppose that B is g-big above A, and that C is g-big above every
tuple in Bď

∩ T . Then C is g-big above A, and in fact every finite g-bushy forest
system S ⊆ T which witnesses that B is g-big above A has an end extension
R ⊆ T which witnesses that C is g-big above A.
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As a corollary we get the analogue of Lemma 3.17:

• If T is a bounded and balanced b-bushy tree system above σ , and B ⊂ T is
open in T and b-small above σ , then for every m there is some τ ∈ T such that
|τi | > m for all i 6 `(T ), and above which B is b-small.

4.2. The notion of forcing and restriction maps. We let BDNRn be the set of
tuples τ ∈ (ω<ω)n such that either τ↓ ∈ BDNRn−1 , or τn ∈ BDNRτ↓ , that is, if there
is some e < |τn| such that τn(e) = J τ↓(e).

For brevity, for a tuple σ ∈ (ω<ω)n we let |σ | = min{|σi | : i 6 n}. When a tuple
length n is clear from the context, then for a function g we let g = (g, g, . . . , g).

We let Pn be the set of tuples p = (σ p, T p, Bp, hp, bp) satisfying:

(1) T p is a computably bounded, computable, balanced tree system above σ p;

(2) hp
∈ Q and T p is hp-bushy;

(3) Bp
⊂ T p is c.e. and open in T p, and Bp

⊇ BDNRn ∩ T p;

(4) bp
∈ Q and Bp is bp-small above σ p; and

(5) hp
� bp and hp > bp above |σ p

|.

We define a partial ordering on Pn as follows. A condition q extends a
condition p if σ p ď σ q, T q is a subsystem of T p, Bp

∩ T q
⊆ Bq, and hq 6 hp and

bq > bp above |σ q
|.

The assignment of closed sets Xp
= [T p

] \ [Bp
]
ă for p ∈ Pn is acceptable; the

proof is identical to the proof of Lemma 3.19.
If G ⊂ Pn is sufficiently generic then we denote the generic tuple (the element

of the singleton
⋂

p∈G[T
p
] \ [Bp

]
ă) by xG . As above, every condition in Pn forces

that xG
n is DNR relative to xG

↓.

The restriction maps. For all n > 2, define in : Pn → Pn−1 by letting

in(q) = (σ q
↓, T q

↓, π bq

σ
q
n
(Bq), hq, bq),

where we have

π bq

σ
q
n
(Bq) = {τ ∈ T q

↓ : Bq(τ ) is bq-big above σ q
n }.

It is routine to check that in(q) ∈ Pn−1 for all q ∈ Pn . Inductively, we define
Qn ⊂ Pn: Q1 = P1, and Qn is the set of conditions q ∈ Qn such that:

• in(q) ∈ Qn−1; and

• π bq

σ q(Bq) = {τ ∈ T q
↓ : σ q

n ∈ Bq(τ )}.
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We again observe that for all q ∈ Qn , Xq
↓ = X in(q); the proof is the same as above.

The proof that the restriction of in to Qn is order-preserving is identical to that in
the proof of Proposition 3.21.

LEMMA 4.13. There is a map νn : Pn → Qn such that:

(1) νn(q) 6 q for all q ∈ Pn; and

(2) in ◦ νn = νn−1 ◦ in .

In particular, Qn is dense in Pn .

Proof. We omit the indices n and n−1 from in , νn and so forth; they will be clear
from the context.

Let q ∈ Pn . For brevity we let Cn = Bq and for k ∈ {1, . . . , n − 1} we let
Ck = π

bq

σ q�(k,n]
(Bq). Remark 4.9 says that if k < m 6 n then Ck = π

bq

σ q�(k,m]
(Cm).

We define a tuple ν(q) = (σ q, T q, Bν(q), hq, bq) by letting

Bν(q)
= {τ ∈ T q

: τ�k ∈ Ck for some k 6 n}.

The set Bν(q) is bq-small above σ q. For let D be the set of leaves of a bq-bushy
finite tree system S ⊂ T q above σ q. Since C1 is bq-small above σ q

1 we find some
τ1 ∈ (dom1 D) \ C1. Since C1 = π

bq

σ
q
2
(C2), C2(τ ) is bq-small above σ q

2 ; we find

some τ2 such that (τ1, τ2) ∈ (dom2 D)\C2; and so on, we find some τ ∈ D \ Bν(q).
We conclude that ν(q) ∈ Pn (and ν(q) 6 q).

Now B i(q)
= Cn−1; so Bν(i(q)) is the set of tuples τ ∈ T q

↓ such that τ�k ∈ Ck

for some k 6 n − 1.
Let τ ∈ T q. If τ↓ ∈ Bν(i(q)) then Bν(q)(τ ) = T q(τ ), in particular, σ q

n ∈ Bν(q)(τ ).
Otherwise, Bν(q)(τ ) = Bq(τ ), and since in this case τ /∈ Cn−1 we see that Bν(q)(τ )

is bq-small above σ q
n . We conclude that B i(ν(q))

= π bq

σ
q
n
(Bν(q)) = Bν(i(q)) and so that

i(ν(q)) = ν(i(q)).
We also conclude that τ ∈ π bq

σ
q
n
(Bν(q)) if and only if σ q

n ∈ Bν(q)(τ ). By induction,
ν(i(q)) ∈ Qn−1, so ν(q) ∈ Qn .

PROPOSITION 4.14. in�Qn
is a restriction map from Qn to Qn−1.

Proof. It remains to show that if q ∈ Qn and p ∈ Qn−1 extends in(q) then there is
some r ∈ Qn extending q such that in(r) 6 p. By using the map νn , it suffices to
find r ∈ Pn . The proof is identical to that of Proposition 3.21.

LEMMA 4.15. in�Qn
is onto Qn−1.
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Proof. Let p ∈ Qn−1. We define q ∈ Qn such that in(q) = p by letting, for σ ∈

T p, T q(σ ) = (hp)6|σ |, and let Bq(σ ) = T q(σ ) if σ ∈ Bp, otherwise Bq(σ ) =

BDNRσ .

Totality.

PROPOSITION 4.16. Let C ⊆ (ωω)n be Π 0
2 and let p ∈ Pn . If p 
 xG

∈ C then p
has an extension which strongly forces that xG

∈ C.

The proof is identical to the proof of Proposition 3.23.

4.3. Minimality. Let Γ : (ωω)n → 2ω be a Turing functional.

DEFINITION 4.17. Let B ⊆ (ω<ω)n . Two sets A0, A1 ⊂ (ω
<ω)n form a local Γ -

splitting mod B if for all τ ∈ (ω<ω)n−1, the sets A0(τ ) and A1(τ ) Γ (τ ,−)-split
mod B(τ ).

DEFINITION 4.18. Let A ⊂ (ω<ω)n be finite and prefix-free, and let B be a
collection of subsets of (ω<ω)n . We say that the sets in B are uniformly g-big
above A if

⋂
B∈B π

gn
A (B) is g↓-big above A↓.

LEMMA 4.19. Suppose that p ∈ Pn strongly forces that Γ (xG) is total, and forces
that it is not computable from xG

↓. Let σ ∈ T p; let g ∈ Q such that hp
� g, and

hp > 3g and g > bp above |σ |. Then there are sets A0, A1 ⊂ T p, uniformly g-big
above σ , which locally Γ -split mod Bp.

Proof. Identical to the proof of Lemma 3.24.

LEMMA 4.20. Let g and h be n-tuples of bounding functions; let B ⊆ (ω<ω)n be
open. Suppose that:

• σ , σ ∗ ∈ (ω<ω)n;

• A is 3g-big above σ ;

• E0 and E1 are uniformly 3g-big above A; and for all τ ∈ A, E0 ∩ τď and
E1 ∩ τď locally Γ -split mod B; and

• F is 3h-big above σ ∗, and |Γ (ρ)| > |Γ (ζ )| for all ρ ∈ F \B and all ζ ∈ E \B,
where E = E0 ∪ E1.

Then there are E ′ ⊆ E, g-big above σ , and F ′ ⊆ F, h-big above σ ∗, which
Γ -split mod B.
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Proof. Identical to the proof of Lemma 3.30.

LEMMA 4.21. Suppose that p ∈ Pn strongly forces that Γ (xG) is total, and forces
that it is not computable from xG

↓. Let k ∈ {0, 1, . . . , n−1}. Let C ⊂ T p be finite
and prefix-free. Let g ∈ Q such that hp

� g, and hp > 3|C |2 g and g > bp above
|σ | for all σ ∈ C.

Then there is a set A ⊂ T p, g-big above C, such that for all τ ∈ domk A, the
sets in the collection

{A(τ ) ∩ (ρ, σ p�(k+1,n])
ď
: ρ ∈ dom1 A(τ )}

pairwise Γ (τ ,−)-split mod Bp(τ ).

Proof. The notation for the case k = 0 is slightly easier. In this case we closely
follow the proof of Lemma 3.31. For simplicity of notation, for a set A ⊆ T p

and some tuple τ ∈ domk T p (for some k < n) we let A ∩ (τ )ď = A ∩ (τ ,
σ p�(k,n])

ď. We prove the lemma by induction on |C |; we let C∗ = C ∪ {σ ∗}; by
induction we are given A which is 3|C |g-big above C , and the sets A ∩ (ρ)ď (for
ρ ∈ dom1 C) pairwise Γ -split mod Bp. We list the elements σ 1, σ 2, . . . , σ m of C
such that (σ j)1 = σ

∗

1 . By reverse recursion on j 6 m we define sets A j ⊂ T p

with A j−1 ⊂ Aď
j and Am ∩ σ ď

⊂ Aď for all σ ∈ C . We ensure that A j is 3 j g-big
above C∗ and that A j−1 ∩ σ ď

j and A j−1 ∩ σ ∗ form a Γ -splitting mod B.
We start with Am = A∪{σ ∗}. Say we are given A j , j > 0. For brevity let D j =

(A j ∩ σ ď
j )↓. For τ ∈ A j ∩ σ ď

j we let Qτ be the set of ζ ∈ D j
ď
∩ T p
↓ such that

either:

• τ↓ ę ζ ; or

• in T p(ζ ) there are G0 and G1, 3 j g-big above τn , which Γ (ζ ,−)-split mod
Bp(ζ ).

Then Lemma 4.19 says that for all µ ∈ Dď
j ∩ T p

↓ the set Qτ is 3 j g-big above µ.
By Lemma 4.11, Qτ is 3 j g-big above Dď

j ∩ T p
↓. By Lemma 4.10,

⋂
τ∈A j∩σ

ď
j

Qτ

is 3 j g-big above D j . Thus, we can find E j,0 and E j,1, finite subsets of T p

which are uniformly 3 j g-big above A j ∩ σ ď
j , which locally Γ -split mod Bp. We

obtain F j as before. Applying Lemma 4.20 we finally get F ′j ⊂ Aď
j ∩ (σ

∗)ď,
3 j−1 g-big above σ ∗, and E ′j ⊂ Aď

j ∩ σ ď
j , 3 j−1 g-big above σ j , which Γ -split

mod Bp.
In this proof, we employ the following notation: for a set X ⊂ (ω<ω)n and

k 6 n we let Xk = domk X . To define a set X it suffices to first define X1; then,
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for all τ1 ∈ X1, define X2(τ1) (a set of strings); then, for all (τ1, τ2) ∈ X2, define
X3(τ1, τ2), and so on.

We define the set A j−1. First, we consider all σ ∈ C∗ such that σ1 = σ
∗

1 , (σ j)1.
For all such σ we let A j−1 ∩ σ ď

= A j ∩ σ ď. We let A j−1,1 ∩ (σ
∗

1 )
ď
= (F ′j)1 and

A j−1,1 ∩ ((σ j)1)
ď
= (E ′j)1.

Next, consider all σ ∈ C∗ such that σ1 = σ
∗

1 , but σ2 = σ
∗

2 . For all τ1 ∈ (F ′j)1 we
let A j−1(τ1) ∩ (σ �(1,n]) = A j(τ

−A j,1
1 ) ∩ (σ �(1,n]); this completely defines A j−1 ∩

+σď. We similarly define A j−1 ∩ σ ď for σ ∈ C∗ such that σ1 = (σ j)1 but σ2 =

(σ j)2. Then, for all τ1 ∈ (F ′j)1 we let A j−1,2(τ1) = (F ′j)(τ1); this defines A j−1,2 ∩

(σ ∗�2)
ď, and similarly define A j−1,2 ∩ (σ j�2)

ď. The process continues similarly
until all of A j−1 is defined.

The case k > 0 is very similar. Morally it follows the idea of the proof of
Lemma 3.27, extending bushily on the first k coordinates so that we can emulate
the proof of the case k = 0 (but with n − k replacing n) within the image. We
give a sketch. Again we work by induction on |C |; we start with some C for
which we inductively already have A as required; and add to C a tuple σ ∗ to
get C∗. We now let the list σ 1, σ 2, . . . , σ m contain those elements σ ∈ C such that
σ �k = σ ∗�k but σk+1 = σ

∗

k+1. We start with Am = A∪ {σ ∗} and build sets A j with
the same properties as above. Given A j we aim to find E j,0, E j,1 and F j as above,
except that we also require that domk E j = domk F j ; this is possible because
σ j�k = σ ∗�k : we first get E j as above, and then extend domk E j to domk F j ; and
‘relabel’ E j by letting E j(ζ ) = E j(τ ) for all ζ ∈ dom F j extending τ ∈ dom E j .
Then we obtain E ′j and F ′j but require that domk E ′j = domk F ′j = dom F j ; we
apply Lemma 4.20 within T p(ζ ) for each ζ ∈ dom F j . We then define A j−1 as
above.

PROPOSITION 4.22. Every condition in Pn forces that degT(xG) is a strong
minimal cover of degT(xG

↓).

Proof. Let p ∈ Pn which strongly forces that Γ (xG) is total, and forces that it
is not computable from xG

↓. Fix k ∈ {0, 1, . . . , n − 1}. Using Lemma 4.21 and
the by now familiar construction, we obtain an extension q of p which (strongly)
forces that Γ (xG) ⊕ (xG�k) >T xG

k+1. Iterating for each k we obtain a condition
which forces that Γ (xG) ≡T xG .

5. Proof of the main theorem

We prove Theorem 1.1. We have obtained a directed sequence of forcing
notions
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Q1 Q2 Q3 Q4
i2 i3 i4 i5

· · ·

With each in a restriction map. For m < n let in→m = im+1 ◦ im+2 ◦ · · · ◦ in (and
of course let in→n = idQn ). A composition of restriction maps is a restriction map,
so each in→m is a restriction map.

As sets, the forcing notions Qn are pairwise disjoint. Let Q<ω =
⋃

n Qn . We
order Q<ω as follows: if p ∈ Qn and q ∈ Qm then q extends p if m > n and
im→n(q) 6 p in Qn . Note that the ordering on each Qn agrees with this ordering.

For n < ω let Q6n =
⋃

m6n Qm , ordered as a suborder of Q<ω. Define jω→n :

Q<ω → Q6n by letting, for q ∈ Qm , jω→n(q) = q if m 6 n, and otherwise
jω→n(q) = im→n(q). For m > n let jm→n : Q6m → Q6n be jω→n�Q6m

. These maps
are restriction maps and they commute: for n 6 m 6 α 6 ω, jα→n = jm→n ◦ jα→m .

Let G<ω ⊂ Q<ω be very generic. Let G6n be the filter in Q6n generated by the
generic directed set jω→n[G<ω]. By Lemma 4.15, each Qn is dense in Q6n; so
Gn = G6n ∩ Qn is a fairly generic filter of Qn; and im→n[Gm] ⊆ Gn . (By ‘very
generic’ and ‘fairly generic’ we mean that if we need Gn to be sufficiently generic,
then we can ensure that by making G<ω sufficiently generic. Technically, for any
countable collection D of dense subsets of Qn we can find a countable collection
E of dense subsets of Q<ω, such that if G<ω meets every set in E , then Gn meets
every set in D.)

This gives us a sequence x1, x2, . . . of elements of Baire space such that (x1,

. . . , xn) = xGn . By Proposition 4.22, each tuple (x1, . . . , xn) is a strong minimal
cover of (x1, . . . , xn−1); and xn ∈ DNR(x1,...,xn−1).
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