POLARITIES AND OVALS IN THE HUGHES PLANE
T. G. ROOM

(Received 18 July 1969)

Summary. In 1946 Baer (Polarities in finite projective planes, Bull. Am. Math. Soc. 52, 77-93)
showed that the absolute points of a polarity in a finite projective plane of odd non-square order
always form an oval, that is, in a plane of order » there are exactly n+1 absolute points and no
three are collinear. It is well known that the absolute points of polarities in planes of odd square
order form ovals in some cases.

If the oval is a subset of the set of absolute points, then the oval itself determines the polarity,
and this makes it appear unlikely that the oval could be a proper subset. Among other results
in the paper it is to be proved that in the regular Hughes plane there is a polarity which is deter-
mined by an oval which is a relatively small subset of the set of absolute points. Explicitly, if
L2 is the Hughes plane of order g2 and A is the central subplane of order g, then every conic in 4
can be extended to an oval in £, and this oval determines a polarity in which there are 3(¢®—¢q)
additional absolute points.

1. Algebraic preliminaries

F: GF(q), q odd; elements of F: lower case italic letters.
Fs, Fy: the sets respectively of squares and not-squares in F.
@ : GF(q?); elements of &: lower case Greek letters (except (x,y,z) for

coordinates). « = a+va’, a* = a—va’ = o4, v® =u, ueFy. d, = a*—ua'?* =

odtt,

Ps, Py : a € Pg or Py according as d, € Fg or Fy. Subscripts S and N will be
used to designate the subset to which an element belongs, thus ag:a€ Py,
ay : o€ Py. For all p, p? € &s.

¥ : the Dickson near-field with the same elements as &, in which addition
(and multiplication by members of F) are identical with the corresponding opera-
tions in @, and, in an obvious notation, multiplication is defined by:

) (pos)y = (pO)a, (por)y = (p*a)q,.

From these definitions we deduce the following product-relations in ¥':

(2 (PO'EI)?' = (Po'_l)dn (PU;I)W = (.0*0'*_1)<p-
() ps' = psld,, pn ' = pyld,.
(4) Ps0Os = OgpPs, PsON = ON PS5,
Py Os = 05py, PNON = TN PN -
196
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2] Polarities and ovals in the Hughes plane 197

() PsPs = psps = d,,
(PN P;)xv = (P*z)qh (P;;PN)W = (P2)¢-

The Hughes plane Q@ over ¥, Hughes [1]7, is defined thus:

Points: column-vectors (x, y, z). (x, y, z)k is the same point for all ¥ # 0.
Real point (x, y, z) : for som: «, each component of (x, y, z)x € F.

4 : the subplane of order ¢ in ¥ containing the real points.

Complex point : point of Q—A4.

Line of Q:a set of points (a,b,c) v {(a,b, ) +(p,0,1): ke ¥}.

As an immediate consequence of this definition we have:

LEMMA 1. ac F, be F are the coordinate-vectors of two distinct points of
A and ne ¥ is a coordinate-vector of any point not collinear with a, b. Then the
set of points {ra+sb+1q :r,s, 1€ F} forms a subplane of order q in Q.

The definition of a line, given above, is equivalent to that given by Ostrom
[3], namely; a line is the set of points satisfying one of the following equations:

(6) (i) y—sz = k(x—rz), r,s,me F, ke ¥Y—F,
(ii) y=mx+iz,Ae ¥,
0=x+4z;z=0.

In general, results in this paper will be proved only for equations in the first form.
Proofs in other relevant cases are straightforward adaptations.

2. The extension of a conic in 4 to an oval in

The group of projectivities of 4 extends to 2 (Rosati [4]) so that all non-
singular conics in the subplane 4 are equivalent in their relations to the complex
points of Q. Take in 4 ths conic

y:ixy = 22,

and define I as the following set of points in Q:
r:{(1,0,0),(0,1,0)} u {xz™! = (zy s} v {xz7! = (z*y* "W}

I' contains g2+ 1 points, g+ 1 real points forming y, and ¢>—¢ complex points,
forming the set

r"")’ : {(Ps, p.;l’ 1)} v {(pN’ P;_l, 1)’ PE W_F} = {(P, p*/dp’ 1)}

Let C be any projectivity of the group € of projective automorphisms of y in
4 extended to Q, and let C(p, p~*, 1) = (4, p, v). Then, since (4, p, v), considered

! Hughes defines the plane in terms of a left-near-field; in this paper (following Hall [2]),
we use a right-near-field.
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as a point of the Galois plane over @, is a point of the conic xy = z? in that plane,
we have

(" Do = (1™ Do,

and therefore, from relations (2),

(Avs'l)w} _ {(wg‘)w

(A e G ™
That is, for points of @, Av™! = (vu™1)s or (v*p*~!)y.
THEOREM | The set of g%+ 1 points:

r:{(1,0,0),(0,1,0)} U {ps. ps ", D} U {(on> P~ 1)} pe ¥

is invariant under the extension to Q of the projectivities of A that fix the conic
xy = z% in A.

In relation to y, the points of A may be split into three subsets:

{P,} : the vertices of y, for which z2—xy = 0,

{Ps} : the exterior points of y, z>—xy € Fg,

{Py} : the interior points of y, z>—xy € Fy
These three subsets are invariant under the operations of €, and operations of €
can be found which map any point of 4 to any point of the same subset. Conse-
quently all points of each of the subsets {P,}, {Ps}, {Py} are equivalent in their
relations to the complex set I'—y, and we can discuss the relation of vertices of
I’ —y to points of 4 in terms of their relations to the three typical points:

X =(1,0,0)of {P,}, Z = (0,0, 1) of {Ps} and U = (—1, 4, 0) of {Py}.
We are to prove:

THEOREM 2. If Q is any vertex of I’ —y then:

(i) XQ contains no other vertex,
(ii) ZQ contains exactly one other vertex,
(iii) For two particular vertices Q,, Q. the lines UQ,, UQ, contain no other
vertex, for every other vertex Q the line UQ contains exactly one other
vertex.

Take Q to be (ps, ps', 1) or (py,py "5 1)-

(i) (a) A general point K of XQ is (x, p5 ', 1) or (x, py ", 1). K is a point of
I'—y onlyif k = p; thatis, K = Q.

(b) The tangent to y at X is y = 0; this line contains no point of I'—y.

(ii) A general point K of ZQ is (ps, p5 ', k) or (pn, px ", K); to test whether
K eI —y we have to consider the following four cases:

(a) (PSaPs_l,Ks)5 psks ' = Ksps = psKs = Kg = 1.
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Thus in this set there is one point K, # Q, namely (ps, ps ', —1), which
belongs to I' —7y.

(b) (PSaPs—l’ Ky): psky' = KypP§ = psky
= ky' = Ky = Ky = Kky/d,. No solution.
(@) (on. Py~ " Kn) ipuky ' = Kypy = pyip. No solution.

(b") (on.pr "1 Ks):pyks' = Kepy = pyKs = k5 = 1. Again there is one
point of I'—7y other than Q on ZQ .

(iii) A general point K of UQ may be taken to be
K= (p—x)U+Q = (x, [p™! or p* ']+ pu—xu, 1).

Since Ke -y = K = (x, [k™' or k*7!],1), the first two coordinates must be-
long either both to &g or both to &y.

U= p7 '+ pu—xu

(@) (xs,ps'+psu—xsu,1)el—y =K~
'—pTl = (p—xu
= (p—rxu = (1—ps'es)es' = (1~xsps s

I |

= (ps—Ks)ks 'ps' =K =p, ot kK =u"lp

= K 1

The line UQ therefore contains exactly two points of I'—v unless

ps = u 'ps !, thatis, p2 = u"lor pg = +ou"l.
But

veds=> —ueFg=> —1ledy=q = —1(mod 4).

That is, there are two lines through U each containing only one point of I'—y
provided ¢ = —1 (mod 4). If g = 1 (mod 4) there is no such line.
The cases

) (xy,ps'+pu—xu,1)el—y,

@) (xy,p¥ '+pu—xu,1)el—y and

(v) (ks, px~ ' +pu—xu,1)eI—y
can be analysed similarly and lead to corresponding results. In particular in case
(a’) we find there are two solutions ¥ = p and k* = u~!p~!. These coincide when

u™' = (pyomly = (0*)e = py = +tvu" ! when g = 1 (mod 4)
and otherwise there is no coincident pair.

This completes the proof of Theorem 2. Since X, Z, U can be transformed into
respectively any points of the sets {P,}, {Ps}, {Py}, it follows that any line through
a point of 4 which contains one vertex of I', either contains only that vertex or it
contains altogether exactly two vertices. But every line of Q contains at least one

point of 4, so that every line of Q intersects the set I' in no point or one point or
two points. We have proved that every tangent of y contains no other point of I',
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and that through U, and therefore through each point of the set {Py} in 4, there
are two lines each containing only one point of I'. The number of points in {Py}
is 3(¢*—¢) and the number of points in I'—7 is the number of elements of ¥ —F,
namely, g®>—gq, consequently there is a single line through any point of I'—y
which contains no other point of I'. We have proved therefore that I is a set of
g% +1 points in 2 with no three collinear, that is:

THEOREM 3. The set I' is an oval.
Consider now the set of vertices of I' for which p = Av, he F. Since u = (v?)g =
(vsvs)y = (vyvy)e, the coordinate-vectors are (h%u, 1, iv). The set

7, = (1,0,0) U {(Fu, 1, ) : he F}

is a subset of the set {/(1,0,0)+m(0,1,0)+n(0,0,v)} and consequently, by
Lemma 1, all points of y, lie in a subplane, 4,, say, of order ¢g. Also y,, since it
is a subset of I', consists of g+ 1 points no three collinear, so that the set forms an
oval, that is, since 4, is a Galois plane:

THEOREM 4. The set of points y, = (1,0,0) v {(K* u, 1, v) : he F} forms
a conic y, in a subplane A, of order q.

The group of projectivities of the real subplane 4 which leaves y invariant is
doubly-transitive on the vertices of y; the extension of the group to 2 leaves I'
immvariant and maps 4, to other subplanes of order 4. Consequently, since

y oy = {(1,0,0), (0, 1,0)},

vy can be mapped to a conic y; which lies in a subplane 4;, and has among its
vertices any two of the vertices of y.

In particular, consider the set of g conics {y;} obtained from y, by the set of
harmonic homologies of which the axis is a chord of y through (1, 0, 0) and the
vertex is the pole of this chord. If (¢2, 1, ) is the second vertex of y on this chord,
then the matrix of the homology is

1 42 —4
0 1 0
0 2t -1

and the point (h*u, 1, hv) maps to
((2t—hv)3, 1, (2t —hv)) or (2t — ho)§(2t —ho)y, 1, (2t — hv)).

Thus every point (A2, 1, As) or (AyAx, 1, A%) of I' belongs to exactly one of these
conics. Similarly the subplanes 4; into which 4, is mapped are disjoint except for
the point (1, 0, 0).

THEOREM 5. The oval I' can be dissected into q conics y; in subplanes 4, of order
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q, every conic passing through any assigned vertex K of y. Each conic y; contains
one other vertex of y, and, except for K, the conics y; are disjoint and the subplanes
A; are disjoint.

3. The polarity determined by the oval I'

There are two known types of polarities in 2, corresponding to the polarities
in the Galois plane determined by a real quadratic form and a Hermitian form
(Room, [5]). The numbers of absolute points in the polarities of the two types
in Q are 3(¢> +4+2) and (¢ +29%—q+2). (An absolute pont is a point which
is incident with its polar line.) In the paper referred to above, the polarities are
the consequence of a combinatorial definition of the Hughes plane; in the present
account they are to be defined in terms of the Ostrom coordinates.

In A the conic y : z2—~xy = 0, determines the polarity

(a,b,c) > bx+ay—2cz = 0.

Writing the equation of the line in the form (6)(i) appropriate to Q we obtain the
mapping:
(1, —k, 3(s—rk)) » y—sz = k(x—rz).

We are to show that this polarity can be extended to Q in such a way that I' is a
subset of the set of absolute points. We prove first:

THEOREM 6. The relations

€:(1, -k, 3(s—rx)) > y—sz = k(x—rz),
€*: (1, —x, 5(s—rk)) > y—sz = x*(x—rz),
where r,s € F, x € ¥, are polarities in Q.
The point and line are determined by the triplets of parameters (x; r, s), so
that we may write the mapping % in the form;

P = P(k;r,s) > CP = l(x; r, 5).
We are to prove that
P(A;a,b)el(x;r,s)= P(x;r,s)el(%; a,b),
from which relation it follows that a set of collinear points maps to a set of
concurrent lines, and that Q € ¥P = P e ¥ Q. That is, the mapping is a polarity.

Also since P — P* is an involutory mapping, the mapping P — €P* = €*P
is likewise a polarity.

(1, =4, 3(b—ad))e y—sz = k(x—rz)
= —A—3s(b—ald) = k(1 —3r(b—al)).
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Assume ra # 0 (r = 0 or a = 0 can easily be dealt with), multiply through by ra,
and write 3rad = n+4rb—1; we obtain

(Gas—1)(n+3br—1)—Labrs = Lraxn.
Simplifying this relation, and substituting for #, we find
(3as—1—1tarx)(3br—1—3%arl) = tas+31br—1

This relation is invariant under the interchange (a, b, 1) < (r, s, k), that is, we
have the required relation:

P(A;a,b)el(k;r,s)= P(x;r,s)el(4; a,b).

As a preliminary to the investigation of the dependence of these polarities on
the oval I', we may state the following connection between ovals and polarities:

THEOREM 7. A given oval in a finite projective plane determines at most one
polarity in which all the points of I' are absolute points.

If there is such a polarity, then the polar of each point P of I is the tangent
tp at P, the polar of the point which is the intersection of the tangents at P and Q
is the chord PQ, and, if K is any point of the plane and PQ, RS are two distinct
chords through K, then the polar of Kis {tp N t,, tg N t5).

In the Hughes plane 2 denote by € and €* the sets of absolute points in the
polarities ¥ and €*, that is, € = {P: Pe 4P} and €* = {P: Pe %*P}. Both
@ and €* include the set of points y in the subplane 4. If we write the coordinates
of a point of Q as (1, =, B), so that its polar line in € is

y—sz+a(l-rz) =0,

where
o =a+va’, B =>b+vb, 2B = s+ra,
so that
2b = s+ra, 2b' = r'a’,
then,

C={(1,o,p):a—sp+a(l—rp) =0in ¥} v (0, 1,0),
C*={(1,oB): a—sp+a*(1-rf) =0in ¥} U (0, 1, 0).
It follows that, formally,
where I'y, is the conic xy = z? in the Galois plane over @, and Iy is the corre-
sponding Hermitian set of ¢* + 1 absolute points.
The sets € and €* are to be split into subsets §g, €y, €5, €5, where

Cs={(l,o, B): a—sB+a(l—rf) =0in ¥ & 1 —rf € &g}, etc.

It is to be proved that:
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THEOREM 8. The constituent parts of the sets of absolute points for the polarities
C =CsuCyandC* = CF U EF are:

€% >y and|€s—y| = 1(¢° ~9), €yl = 3¢ —q);
—1 (mod 4): Cs =T, € =0
1 (mod 4): Cs =7y, CF=T-—y.

il

for q
for q

To convert the coordinates of the points of I' to the form in which the first
coordinate is 1, replace by t~! the parameter p in the forms (ps, ps’, 1),
(on>pn~ % 1) used in §2, so that the mew parametric forms are (1,73, Ts),
(1, T3y, Tv) in . We are to carry out algebraic operations in ¢ rather thanin ¥,
so that we may treat the two forms of coordinates together, by writing I' =
(o, 7)o = (1)} U (0, 1,0).

Now consider simultaneously the two sets of points:

Cs, €% = {(1, o, B); a—sB+ ol —rf) = 0in P},

where, for €5, 1 —rf € &g and, for &, 1 —rf e Gy.
The condition satisfied by the points (1, «, ) reduces to

%= ("o,

a=b*+ub? a = 2bb,

that is

so that
1—rf = —v-2b?%a'.

Consequently (excluding the set for which g € F), we have
1-rfeds—F= —uecFs= —1€Fy.

Thus, the condition 1—rf € @ is a restriction not on the choice of f in the coordi-
nates (1, (8%)s, B), but on the characteristic of the Galois field itself. That is, when,
in GF(q), —1 € Fy, every point (1, a, B) of g satisfies the condition o = (%),
and therefore €5 = I', while no point of €y satisfies the condition. Likewise when,
in GF(q), ~1€ Fs, 8y = I'~y and, as is to bz proved later, €5 = y.

Let us consider now the other two sets:

Cr,Cs = {(1, o B) :a—sB+a*(1—rp) = 0in &}
The condition satisfied by the points of the sets is

20+ a*—(B*B)o = O,
that is,
2a = b*—ub? = d,.

Thus €y, €F are the subsets of the set of points {(1, dg+va’, B)} for which 1 —rp
belongs respectively to ¢y and @5. We have
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a'’’dy_,5 = (a'—a'rb)*—a"’ur’b’* = (a’—2bb')* —4ub".

Thus, to obtain the set €y, the parameter f in the coordinates (1, d;+va’, f) can
be selected arbitrarily in ¥, while @’ has to be such that (a’—2bb')* —4ub’* € F,.
For €5 we have (a’—2bb')? —4ub'* € Fs. This condition is satisfied for all ' when
b = 0, and G5 therefore contains the set of points {(1,b5>—va’,b):a’,be F};
y is the subset of this set for which @’ = 0. The explicit listing of the sets of absolute
points in the combinatorial description of 2 (Room [5]) shows that, in agreement
with the nombers of solutions of the above congruences, each of the sets €y and
C% —y consists of 3(¢° —q) points.
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