

21–25 October 2019 Hilo, Hawaii, USA Proceedings of the International Astronomical Union

White Dwarfs as Probes of Fundamental Physics: Tracers of Planetary, Stellar and Galactic Evolution

Edited by

Martin A. Barstow Scot J. Kleinman Judith L. Provencal Lilia Ferrario

International Astronomical Union

WHITE DWARFS AS PROBES OF FUNDAMENTAL PHYSICS: TRACERS OF PLANETARY, STELLAR AND GALACTIC EVOLUTION

IAU SYMPOSIUM 357

COVER ILLUSTRATION:

Rainbow over Hilo bay, Big Island, Hawai'i, viewed from the Grand Naniloa hotel (credit: Rachel Barstow).

IAU SYMPOSIUM PROCEEDINGS SERIES

Chief Editor MARIA TERESA LAGO, IAU General Secretary Universidade do Porto Centro de Astrofísica Rua das Estrelas 4150-762 Porto Portugal mtlago@astro.up.pt

Editor JOSE M. RODRIGUEZ ESPINOSA, IAU Assistant General Secretary Instituto de astrofísica de Canarias La Laguna 38205 Tenerife Spain jre@iac.es

INTERNATIONAL ASTRONOMICAL UNION UNION ASTRONOMIQUE INTERNATIONALE

International Astronomical Union

WHITE DWARFS AS PROBES OF FUNDAMENTAL PHYSICS: TRACERS OF PLANETARY, STELLAR AND GALACTIC EVOLUTION

PROCEEDINGS OF THE 357th SYMPOSIUM OF THE INTERNATIONAL ASTRONOMICAL UNION HELD IN HILO, HAWAII, USA 21–25 OCTOBER, 2019

Edited by

MARTIN A. BARSTOW University of Leicester, United Kingdom

> **SCOT J. KLEINMAN** *Gemini Observatory, USA*

JUDITH L. PROVENCAL University of Delaware, USA

and

LILIA FERRARIO The Australian National University, Australia

CAMBRIDGE UNIVERSITY PRESS University Printing House, Cambridge CB2 8BS, United Kingdom 1 Liberty Plaza, Floor 20, New York, NY 10006, USA 10 Stamford Road, Oakleigh, Melbourne 3166, Australia

© International Astronomical Union 2020

This book is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of the International Astronomical Union.

First published 2020

Printed in the UK by Bell & Bain, Glasgow, UK

Typeset in System $\mathbb{P}T_{E} X 2 \varepsilon$

A catalogue record for this book is available from the British Library Library of Congress Cataloguing in Publication data

This journal issue has been printed on FSCTM-certified paper and cover board. FSC is an independent, non-governmental, not-for-profit organization established to promote the responsible management of the world's forests. Please see www.fsc.org for information.

ISBN 9781108492027 hardback ISSN 1743-9213

Table of Contents

Foreword	viii
Editors	x
Participants	xi
Type Ia supernova sub-classes and progenitor origin Ashley J. Ruiter	1
Convection in common envelopes and the formation of double white dwarfs E. C. Wilson and J. Nordhaus	16
Double degenerate candidates in the open cluster NGC 6633 Joseph W. Barnett and Kurtis A. Williams	20
ANTARES: A gateway to ZTF and LSST alerts Chien-Hsiu Lee, Monika Soraisam, Gautham Narayan, Thomas Matheson, Abhijit Saha, Carl Stubens and Nicholas Wolf	24
Exoplanetary oxygen fugacities from polluted white dwarf stars Alexandra E. Doyle, Beth Klein, Ben Zuckerman, Hilke E. Schlichting and Edward D. Young	28
Near-infrared observations of dusty white dwarfs Laura K. Rogers, Siyi Xu, Amy Bonsor, Simon Hodgkin, Kate Y. L. Su, Ted von Hippel and Michael Jura	33
The search for planet and planetesimal transits of white dwarfs with the Zwicky Transient Facility	37
Searching for low-mass companions around white dwarfs and subdwarfs from Kepler field	41
Variation of fundamental constants and white dwarfs	45
Clues to the origin and properties of magnetic white dwarfs	60
A new look at magnetic white dwarfs François Hardy, Patrick Dufour and Stefan Jordan	75
Continuous gravitational waves from magnetized white dwarfs Surajit Kalita and Banibrata Mukhopadhyay	79
Laboratory studies of Vacuum Ultra-Violet (VUV) emission spectra of heavy element ions <i>WÜ Lydia Tchang-Brillet, Ali Meftah, Djamel Deghiche,</i> <i>Jean-François Wyart, Christian Balança, Norbert Champion and</i> <i>Christophe Blaess</i>	84

Neutral helium line profiles through the simulation of local interactions Patrick Tremblay, Alain Beauchamp and Pierre Bergeron	89
White-dwarf asteroseismology: An update Alejandro H. Córsico	93
Variable white dwarfs	107
Evolution and asteroseismology of ultra-massive DA white dwarfs F. C. De Gerónimo, A. H. Córsico, M. E. Camisassa and L. G. Althaus	110
Validation of asteroseismic fitting with the new white dwarf evolution code $\ldots \ldots$. Agnès Kim	114
The chemical structure of the hot pulsating DB white dwarf KIC 08626021 from asteroseismology	119
Searching for ZZ Ceti white dwarfs in the Gaia survey Olivier Vincent, Pierre Bergeron and David Lafrenière	123
Pulsating white dwarfs and convection J. L. Provencal, M. H. Montgomery, H. L. Shipman and The WET Team	127
Accreting pulsating white dwarfs: Probing heating and rotation Paula Szkody, Boris Gänsicke, Odette Toloza, Patrick Godon, Edward Sion, Stella Kafka, Keaton Bell, Zachary Vanderbosch and AAVSO observers	131
QPOs from post-shock accretion column of strongly magnetized accreting white dwarfs	134
White dwarfs as advanced physics laboratories. The axion case	138
The real time evolution of post-AGB stars	154
(Pre)-white dwarf stars as measuring tools for yields of AGB nucleosynthesis Lisa Löbling	158
The spectral evolution of hot white dwarfs Antoine Bédard, Pierre Bergeron and Gilles Fontaine	162
The spectral evolution of cool white dwarfs Simon Blouin and Patrick Dufour	166
The completeness of Gaia-selected samples of white dwarfs Terry D. Oswalt, Jay B. Holberg and Edward M. Sion	170
Two delays in white dwarf evolution revealed by <i>Gaia</i>	175

Contents

vi

Contents	vii
Ensemble evolutionary studies of white dwarfs in open star clusters	179
New population synthesis approach: The golden path to constrain stellar and galactic physics	184
A catalog of 159,238 white dwarf ages Ted von Hippel, Adam Moss, Isabelle Kloc, Natalie Moticska, Jimmy Sargent, Elliot Robinson, David Stenning, David van Dyk, Elizabeth Jeffery, Morgan Fouesneau and Coryn Bailer-Jones	188
A Bayesian analysis of white dwarfs in open clusters observed with Gaia Elizabeth J. Jeffery, Ted von Hippel, Elliot Robinson, David van Dyk and David Stenning	192
Testing white dwarf cosmochronology using wide double white dwarfs Tyler Heintz and JJ Hermes	197
Statistics of white dwarf properties in intermediate polars Valery F. Suleimanov, Victor A. Doroshenko and Klaus Werner	202
Realistic models of Globular Clusters with white dwarfs, neutron stars and black holes using GPU supercomputer	206
Masses of white dwarfs in symbiotic binaries	211
Four new self-lensing binaries from <i>Kepler</i> : Radial velocity characterization and astrophysical implications	215
Kento Masuda, Hajime Kawahara, David W. Latham, Allyson Bieryla, Morgan MacLeod, Masanobu Kunitomo, Othman Benomar and Wako Aoki	
 What can ISM and non-photospheric highly ionised lines in white dwarf spectra reveal about the β CMa tunnel? Nicolle L. Finch, S. P. Preval, M. A. Barstow, S. L. Casewell, T. Ayres, B. Welsh, M. Bainbridge and N. Reindl 	220
Geometry of nova ejecta M. Pavana, G. C. Anupama, Ramya M. Anche, U. S. Kamath and G. Selva Kumar	225
Main conclusions from Symposium discussions M. A. Barstow	230
Author Index	233

Foreword

IAU Symposium 357 - White Dwarfs as probes of fundamental physics and tracers of planetary, stellar and galactic evolution – was held in October 21st to 25th 2019, at the Grand Naniloa hotel in Hilo on the Big Island of Hawai'i, USA. At the time of writing this foreword, approximately 5 months later, the World is in the middle of the COVID-19 crisis. Many communities are confined to their homes, with many of us, working remotely. It is sobering to realise how our usual privilege and freedom to travel the World to meet fellow scientists can be brought to a halt in such a short space of time. It also brings into focus discussions we had in Hawai'i about how to organise remote meetings to reduce costs and the travel-related carbon footprint of our community.

Hawai'i is among the most remote and beautiful places on the planet. This makes it a wonderful location for a scientific meeting. Participants feel apart from the rest of the world and the effort of travel encourages long-duration visits. I am very grateful to the Local Organising Committee for an exceedingly well-organised, fruitful and enjoyable meeting. Thanks also go to my co-chairs and other members of the Scientific Organising Committee for helping with the original symposium application and devising a vigorous scientific programme. All the organisers and participants are grateful to the IAU for selecting the symposium and supporting the attendance of early career scientists. We would also like to thank the Association of Universities for Research in Astronomy (AURA), the Royal Astronomical Society (RAS) and the University of Leicester for financial support for the meeting organisation and travel. The image chosen for the cover was fortuitously recorded by my wife Rachel at the opening of the meeting, when the whole audience was completely distracted from my opening remarks by that stunning rainbow – impossible to compete with... but also a fitting and encouraging start to the symposium.

White dwarfs are the most numerous members of the stellar graveyard. Over 90 percent of all stars currently on the main sequence will end their lives as white dwarfs. As such, they are important laboratories for fundamental studies of the evolution of stars, the formation and history of the Milky Way Galaxy and of planetary systems. Furthermore, white dwarfs give us crucial insights on the behavior of matter at extreme temperatures and densities. Surveys such as SDSS, SPY and ELM have given us access to an unprecedented wealth of information on the white dwarf population. Recent studies incorporating these databases have initiated a revolution in our understanding of its global properties that will continue to grow with the *Gaia* data releases and upcoming LSST results.

Once a white dwarf is formed, its evolution is only dominated by cooling. As white dwarfs cool over billions of years, determinations of the age of the oldest and therefore coolest white dwarfs place limits on the ages of the components of the Galaxy, such as the thin disk, and the thick disks, the halo, and the system of open and globular clusters. The characteristics, such as temperature and mass, of the white dwarf population contain invaluable information on the star formation history of the Galaxy.

White dwarfs are also extremely important indicators for cosmology. Type Ia supernovae are the standard candles that allow us to study the acceleration history of cosmic expansion. However, although it is crucial to identify the progenitor systems, the evolutionary paths leading to these explosions are still poorly understood. Recent surveys have begun to reveal the properties of single and double degenerate progenitors, but the picture is still very unclear and more work is needed.

In the past few years, white dwarfs have also begun to influence our understanding of the evolution of planetary systems. We have strong evidence that some white dwarfs harbour planets. We now know that white dwarfs can disrupt terrestrial planets, asteroids

Foreword

and other minor bodies and the resulting debris is accreted onto the white dwarf. White dwarfs have a unique atmospheric characteristic. The high surface gravity (log $g \sim 8$) naturally leads to chemically pure hydrogen or helium photospheres. This means that the spectral features produced by the accreted material are not contaminated by original abundances. The observed features provide a unique opportunity to study the bulk composition of extrasolar planetary material. A subset of accreting white dwarfs contains spectral features of highly ionized heavy elements. Furthermore, accurate measurements of observed wavelengths can be compared with laboratory measurements to probe the possible variation of the fine structure constant in a strong gravitational field.

White dwarf research is fascinating in its own right, since it requires developments in atomic data and the study of properties of matter under extreme conditions. However, the impact that these studies have on other areas of astrophysics is also enormous. Thus, the time was ripe to bring together experts from different branches of science so that they could share their knowledge and provide feedback to each other.

The Symposium was highly interdisciplinary, bringing together not just astronomers working on white dwarfs, but also astronomers with expertise in a wide range of relevant disciplines. Such a gathering presented an opportunity to formulate the direction of white dwarf studies for the next decade.

The programme consisted of sessions organized around a number of key themes: SN Ia progenitors, debris from extrasolar planetary systems, fundamental physics, precision studies of white dwarf structure, stellar physics and galactic evolution. Each session included one or two invited keynote talks plus a number of contributed papers. Time was set aside for extensive discussion following the sessions associated with each them. These were moderated by members of the SOC, posing a number of questions of the audience to stimulate the discussion. The nature of such discussions makes them hard to record in detail, but a number of key points have been extracted and incorporated into a short concluding paper in these proceedings.

Martin Barstow – 31^{st} March 2020

Editors

Martin A. Barstow University of Leicester, United Kingdom

Scot J. Kleinman Gemini Observatory, USA

Judith L. Provencal University of Delaware, USA

Lilia Ferrario The Australian National University, Australia

Organising Committee Scientific Organising Committee

SOC Chairs

Martin Barstow	University of Leicester, United Kingdom
Barbara Castanheira-Endl	Baylor University/UT Austin, USA
Lilia Ferrario	Australian National University, Australia
S.O. Kepler	Universidade Federale do Rio Grande do Sul, Brazil

SOC Members

Pierre Bergeron	University of Montreal, Canada	
Zhanwen Han	Yunnan Observatory, China	
Daniel Maoz	Tel Aviv University, Israel	
Jayant Murthy	Indian Institute of Astrophysics, India	
Judi Provencal	University of Delaware, USA	
Lydia Tchang-Brillet	Observatoire de Paris/Sorbonne Université, France	
Siyi Xu	Gemini Observatory, USA	
G. C. Anupama	Indian Institute of Astrophysics, India	
Shazreen Mohamed	South African Astronomical Observatory, South Africa	

Local Organising Committee

LOC Chairs

Siyi Xu	Gemini Observatory, USA
Atsuko Nitta	Gemini Observatory, USA
Scot Kleinman	Gemini Observatory, USA
Sandy Leggett	Gemini Observatory, USA

LOC Members

Sarah Casewell University of Leicester, United Kingdom Chris Stark Gemini Observatory, USA Terry Lee Gemini Observatory, USA Erik Dennihy Gemini Observatory, USA Trent Dupuy Gemini Observatory, USA Peter Michaud Gemini Observatory, USA Ben Shappee Institute for Astronomy, Manoa, USA Andre-Nicolas Chene Gemini Observatory, USA

х

Participants

First Name	Last Name	Affiliations
Carlos	Badenes	University of Pittsburgh
Andrzej	Baran	Cracow Pedagogical University
Joseph	Barnett	Texas A&M University-Commerce
Martin	Barstow	University of Leicester
Evan	Bauer	UC Santa Barbara
Antoine	Bédard	Universite de Montreal
Keaton	Bell	University of Texas, Austin
Presanta	Bera	University of Southampton
Simon	Blouin	Universite de Montreal
Kevin	Burdge	California Institute of Technology
Barbara	Castanheira	Baylor College
Stephane	Charpinet	Observatoire Midi-Pyrenees
André-Nicholas	Chené	Gemini Observatory
Sihao	Cheng	Johns Hopkins University
Patricia	Cho	University of Texas, Austin
Aleksandar	Cikota	Lawrence Berkeley National Laboratory
Matthew	Coleman	Institute for Advanced Study
Alejandro Hugo	Córsico	Universidad Nacional de La Plata
Elena	Cukanovaite	University of Warwick
Tim	Cunningham	University of Warwick
Francisco	De Geronimo	Instituto de Astrofisica de La Plata-CONICET
Jacqueline	den Hartogh	Konkoly Observatory
Erik	Dennihy	Gemini Observatory
Alexandra	Doyle	UC Los Angeles
Patrick	Dufour	Universite de Montreal
Bart	Dunlap	University of Texas, Austin
Trent	Dupuy	Gemini Observatory
Nick	Fantin	University of Victoria
Lilia	Ferrario	Australian National University
Nicolle	Finch	University of Leicester
Nicola	Gentile Fusillo	University of Warwick
James	Green	University of Colorado
Marcin	Hajduk	University of Warmia and Mazury
Na'ama	Hallakoun	Weizmann Institute of Science
Gerald	Handler	Nicolas Copernicus Astronomical Centre
François	Hardy	Universite de Montreal
Tyler	Heintz	Boston University
JJ	Hermes	Boston University
Kenneth	Hinkle	National Optical Astronomy Observatory
Mark	Hollands	University of Warwick
Jordi	Isern	Institut de Ciencies de l'Espai
Elizabeth	Jeffery	Cal Poly
Surajit	Kalita	Indian Institute of Science
Steven	Kawaler	Iowa State University
Adela	Kawka	Curtin University
Bhusan	Kayastha	NAOC
S. O.	Kepler	Universidade Federal do Rio Grande do Sul
Agnes	Kim	Pennsylvania State University
Markus	Kissler-Patig	European Space Agency
Scot	Kleinman	Gemini Observatory
Jerzy	Krzesinski	Astronomical Observatory of the Jagiellonian University
Nadège	Lagarde	Institut UTINAM
Susana	Landau	IFIBA-CONICET-UBA
Chien-Hsiu	Lee	National Optical Astronomy Observatory

Participants

First Name	Last Name	Affiliations
Sandy	Leggett	Gemini Observatory
Lisa	Löbling	Universitat Tubingen
Christopher	Manser	University of Warwick
Nadine	Manset	Canada France Hawaii Telescope
Paola	Marigo	University of Padova Vicolo
Kento	Masuda	Princeton University
Lucy	McNeill	Monash University
Pavana	Muralimohan	Indian Institute of Astrophysics
Atsuko	Nitta	Gemini Observatory
Terry	Oswalt	Embry-Riddle Aeronautical University
Thomas	Prince	California Institute of Technology
Judith	Provencal	Unversity of Delaware
Thomas	Rauch	Universitat Tubingen
Harvey	Richer	University of British Columbia
Laura	Rogers	Cambridge University
Ashley	Ruiter	University of New South Wales
Didier	Saumon	Los Alamos National Laboratory
Ben	Shappee	University of Hawaii
Henry	Shipman	Unversity of Delaware
Paulina	Sowicka	Nicolaus Copernicus Astronomical Centre
Valery	Suleymanov	Universitat Tubingen
Paula	Szkody	University of Washington
Lydia	Tchang-Brillet	Observatiore de Paris, Meudon
Patrick	Tremblay	Universite de Montreal
Michael	Tucker	University of Hawaii
Zach	Vanderbosch	University of Texas, Austin
Eva	Villaver	Universidad Autónoma de Madrid
Olivier	Vincent	Universite de Montreal
Ted	von Hippel	Embry-Riddle Aeronautical University
Kurtis	Williams	Texas A&M University-Commerce
Emily	Wilson	Rochester Institute of Technology
David	Wilson	McDonald Observatory
Don	Winget	University of Texas, Austin
Matt	Wood	Texas A&M University-Commerce
Siyi	Xu	Gemini Observatory
Yossef	Zenati	Technion Israel