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1. Introduction

When a shock wave moving through an isentropic ideal gas catches up
with, and passes into a simple expansion wave, the shock decays. Because of
this the gas will not be isentropic in the region behind the shock. The problem
of determining the motion of the gas in this region is as yet unsolved. In this
paper we introduce a simple compression wave behind the shock which catches
up with it at the instant of its entry into the leading expansion wave. This
second wave is chosen so as to counteract the decaying effect of the first, and
keep the shock strength constant throughout the motion. We assume the first
wave to be point-centred, and caused by the withdrawal of a piston at a finite
velocity from a gas at rest in a shock tube. After a finite time the piston is
halted causing the shock. The problem is then to determine the subsequent
motion of the piston to produce a compression wave with the desired property.

2. The gas equations
For simplicity we take the gas to have adiabatic exponent 5/3. The three

possible types of one-dimensional isentropic gas motion are then as follows (1).

(i) Steady motion. This is characterised by u = constant and c = constant,
where u and c are the gas velocity and the sound speed respectively.

(ii) Simple waves. These are regions in which either r = constant or
5 = constant where r and s are the " Riemann invariants " defined by

r = i(3c + u), s = i(3c-u).

(iii) General Motion. Here r and s are constant along the respective
characteristics

dx . . _
— = u + c (r —characteristic)
at

— = u — c (s—characteristic)
dt

E.M.S.—T
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and the flow is given by the equations

where

r+s
and / , g are functions to be determined by the boundary conditions on the
region.

In such a region the particle paths satisfy the condition

where

= \f(f)dr, G(s) = L(s)ds.

3. The shock conditions
We use subscripts b and/"to denote the values of the variables on the back

and front of the shock respectively. Then the shock strength z> 1 is defined by

Pb =

where p is the pressure. The relationships between other variables are then

ub = uf+Acf ; (2)

cb = Bcf

and the speed of the shock itself is given by

U = u,+Dcf, (3)
where

3(z — 1) |z (4+z) I /4z + l\^
A = B = I 1 D = I I

[5(4z + l)]* |_ l + 4 z J \ s J
are functions of z. When a shock moves into an isentropic gas, the region
behind the shock will also be isentropic only if z remains constant throughout
the motion. When this happens, A, B, D are constant, and (3) becomes a dif-
ferential equation for the path of the shock. Equations (2) now give the
boundary condition along this path which enable us to determine the region
behind the shock.

4. The solution of the problem
The various regions of the flow are shown in fig. 1. Henceforward, numerical

suffices will refer to the corresponding regions in the figure, capital letters to the
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respective points. At t = 0, the gas is at rest with c — c0 in the region x^O
of the x/-plane. The piston is then withdrawn at a speed less than the critical
speed, 3c0, at which a vacuum would form between piston and gas-front, to
the point ( — xA, tA) where it is halted. We introduce a dimensionless constant

r _ co*A

XA

which, by the above condition on the speed, must be greater than $, and the
dimensionless variables

wX , / C o _ t
x = —, t = —- = C —, w =

XA XA ^A COXA

~ — u - _ c - _ r ~ _ s

U — , C — , T — , S — .
c0 c0 c0 c0

Dropping the tilda, we find that all the equations in Sections 2 and 3 remain
true for these new variables. We now set out to solve the regions of the flow in
turn.

Region (0) is at rest with

«o =0 . c0 = 1, r0 = s0 = i,

and the bounding characteristic OD is

x = t (4)

Region (1) is a simple wave with

Region (2) is a region of steady motion in which

and the r-characteristic OB has equation

icl
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The piston is stopped at the point A ( - 1 , C). The path OA is therefore

Cx + t = 0.

From A, the shock AB moves into the gas bringing it to rest in region (3).
Thus from (2) we have

u2 + Ac2=0,

which is an equation for z having one root greater than unity. Thus we have
found the shock strength and so the values of B and D. Hence we know

c3 = Bc2

and the equation for the shock path AB,

x = (u2+Dc2)t-DCc2.

This in turn gives us the co-ordinates of the point B as

The point C at which the piston is to be restarted is determined by the fact
that CB is to be an /"-characteristic since the compression wave caused by
restarting the piston must catch up with the shock at B. Thus the line CB is

from which C is found to be the point

xc= - 1 ,

tc = (BD + A -D)(BD-BylC.

The shock now moves into the simple wave. Since we assume the shock
strength to remain constant, the differential equation for its path becomes

4 ^ = ( 3 + D ) -
dt t

which has the solution

as noted in Mackie and Weir (2). Here P = |(3 + D) and the constant of
integration k is known since the point B must lie on the shock. The intersection
of this curve with the characteristic OD (4) is

-(-:
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where a = (/J-l)~1 = 4(Z>— I)"1. Here we see that the shock will pass
through the simple wave in a finite time.

Beyond D, the shock is moving into the gas at rest. It is therefore a straight
line given by

We now consider the flow behind the shock. We have already seen that
region (3) is a rest region while region (4) is a simple compressive wave with
j 4 constant. Similarly region (7) is in a state of uniform motion with

u-i = A, c7 = B,

and region (6) must therefore be a simple wave in which we have r6 constant.
The remaining region (5) is of type (iii), with boundary conditions along the
curve BD.

These conditions are determined in terms of the Riemann invariants from
the shock relations and the conditions in region (1). If we introduce new
variables

we find that the problem is to find a function w of the form

R + S

satisfying — = LR*+\ — = MR*+1 along the line R = GS,
dR dS

where

, M -,4 + 35 + 3 A + 3B+3 1-E
and

F
 8

 E
F E

3kB(l+E)' 3B '
From the homogeneity of these conditions we see that the required solution

will be
w _aR%

for values of a and b which are found immediately on substitution. Then in
this region we have

x + 3t = (

t = -i(R5 + S5y
3{aR%+2l(0L+ l)R5 +(«+ 3)S5]
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The characteristics BF and DF will be given parametrically by these equa-
tions with S5 = %(B-l) + iBu2 and R5 = %(B+l)+iA respectively.

From (1), the trajectories in this region will satisfy

= aR%+2<D = aR
«+4

= constant, .. .(5)

and one of these trajectories will be the required piston path.
Region (4) is a simple wave with S4 = §(B— \)+\Bu2- The /--characteristics

are the straight lines

, (6)
where K(R4) is found to be

K(R4) = (i?4 + S4)-2{aK4
+2[(a + 2)K4 + (a + 3)S4]-fcSJ+3}

since we know x and t in terms of RA along BF.
We may now substitute (6) in the differential equation for the particle paths

— = u4 = R4 —S4 —3
at

and integrate to find

(R4 + S4)
4f = - 3aR%+ 2 f"(g+1X« + 2) R i + 2 ( a + ^ s 4 + (a

L « + 4
- 6bR4S%+ 3 + constant .. .(7)

and this, together with (6), gives the parametric equation for the particle paths.
The particular value of the constant in this equation needed to give the piston
path is found since this path passes through the point C at which i?4 = R3 and
t = tc. Once this is known the coordinates of the point F can be found, and
hence also the value of the constant in (5) corresponding to the piston path
through region (5). This in turn enables us to find the coordinates of G.

Region (6) is a simple wave which may be solved in a similar fashion to
region (4). Corresponding to (6) and (7) we have

x =

g l + 2(a + 1)R6S6 + (a + 3)K21 + constant,
L « + 4 J

where R6 = %{\+B) + \A, and S6 is the parameter. The value of the constant
corresponding to the piston is found from conditions at G.
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- PISTON

SHOCK

CHARACTERISTICS

FIG. 1

z

A
B
C
D
E
F
G
H

2

X

-1-00
4-85

-1-00
51-34

-1-73
1-01
3-83

30-36

t

2-57
1009
4-26

51-34
18-22
14-53
21-69
80-99

5

X

- 1 0 0
-0-29
-1-00

8-14
-1-50
-0-71

1-81
7-45

t

1-19
2-32
1-64
8-14
4-49
2-80
5-75

10-53

11

X

- 1 0 0
-0-75
- 1 0 0

3-47
-1-07
-0-90

105
3-52

t

0-83
1-25
1-03
3-47
2-32
1-40
2-86
4-08

20

X

-1-00
-0-86
- 1 0 0

2-20
-0-89
-0-94

0-74
2-31

t

0-69
0-91
0-80
2-20
1-62
0-99
1-92
2-47

50

X

- 1 0 0
-0-93
- 1 0 0

1-31
-0-68
-0-97

0-47
1-41

t

0-55
0-65
0-60
1-31
108
0-69
1-21
1-42
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Region (7) is in uniform motion with u7 = A, c7 = B.
The iS-characteristic DH has equation

x-xD = {A-B){t-tD)

and the point H is the intersection of this line with the piston path in region (6).
Finally the piston path beyond H is also a straight line given by

x-xB = A(t-tH).

In illustration, we list the coordinates of the various points in fig. 1 for
different values of the shock strength z. Fig. 1 is approximately to scale for
z = 11.

I would like to thank Dr. A. G. Mackie for suggesting the problem and for
many helpful comments.
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