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POSITIVE SOLUTIONS OF FOURTH-ORDER SUPERLINEAR
SINGULAR BOUNDARY VALUE PROBLEMS

GUOLIANG SHI AND SHAOZHU CHEN

This paper investigates fourth-order superlinear singular two-point boundary value
problems and obtains necessary and sufficient conditions for existence of C2 or C3

positive solutions on the closed interval.

1. INTRODUCTION

In this paper, we are concerned with the fourth-order singular two-point boundary
value problem

\ «(0) = u(l) = u"(0) = «"(1) = 0,

where / € C((Q,1) x [0, +00), [0, +00)) and is quasi-homogeneous with respect to the
second variable, namely, there are constants A, n, N, M with 1 < A ̂  \i < 00 and
0 < N ^ 1 < M such that for all 0 < t < 1, u ̂  0,

(2) c"/(i,u) ^ / ( t , c u ) < c \ f (*,«), if 0 < c ^ J V ,

(3) cxf(t,u) ^ f(t,cu) < c"f(t,u), if c^M.

A t y p i c a l q u a s i - h o m o g e n e o u s f u n c t i o n i s / = f \ ( t ) u X l + ••• + f m ( t ) u X m , w h e r e A

^ Aj < n, i = l,... ,m.

Singular or nonsingular fourth-order boundary value problems have been exten-
sively studied by many authors (see [1, 2, 3, 4, 5, 6, 7] for nonsingular cases and [8, 9]
for singular cases). In [3, 4, 5] the right hand side function in the equation of (1) has
separated variables, namely, f(t,u) — Xa(t)g(u), and in [1, 6, 7, 8] the function / in-
volves the second derivative u". O'Regan considered the singular case where f(t, u, u")

is singular at u = 0 or u" = 0, while in [9] singularity occurs at t — 0 or t = 1. Using a
modified upper and lower solution method, Chen and Zhang [10] established necessary
and sufficient conditions for existence of positive solutions to second-order sublinear
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boundary value problems on a half-line. Using a similar method, Wei [9] obtained nec-
essary and sufficient conditions for existence of positive solutions to the fourth-order
problem (1) in the sublinear case. The results in [9, 10] involve integrability conditions
in terms of the function / and the Green's function. To this connection, however, the
upper and lower solution method can hardly be used to treat the superlinear case.

In this paper, based on a careful analysis of the Green's function, we shall apply a
fixed point theorem in cones to the superlinear problem (1) and obtain necessary and
sufficient conditions for existence of a positive solution with different smoothness on the
closed interval.

2. MAIN RESULTS

Our main results are the two following theorems.

THEOREM 1 . The boundary value problem (1) has a positive solution u

G C2[0,1] n C4(0,1), if and only if,

(4) f t(l-t)f(t,t(l -t))dt< oo.
Jo

THEOREM 2 . The boundary value problem (1) has a positive solution u

G C3[0,1] n C4(0,1), if and only if,

r1

/ f(t,t(l-t))dt
Jo

(5) / f(t,t(l-t))dt<oo.
Jo

We note that (5) implies (4). To prove Theorems 1 and 2, we shall prepare some
lemmas. First, we state a fixed point theorem in a cone as follows:

LEMMA 1 . ([11, Theorem 2.3.4].) Let E be a Banach space and P a cone in E.

Suppose that Cl\ and fl2 are two bounded open subsets of E with 6 G fii, f2i C O2 -

If T : P Pi (O2 \ fii) —t P is a completely continuous operator satisfying

\\Tx\\ s$ \\x\\ forxePD dfti and \\Tx\\ ^ ||x|| forxePndQ2,

then T has a fixed point in P n (H2 \ 9.\).

Let E = {u G C2[0,l] : u(O) = u(l) = 0, u"(0) = u"(l) = 0 } . Define the norm
||u|| for every u G E by ||u|| — \u\0 + |u"|0, where | • |o is the usual sup-norm for
continuous functions over [0,1]. It is seen that E equipped with the norm || • || is a
Banach space.

Let G(t, s) be the Green's function of the second-order boundary value problem

r -u"(t)=0,
1 «(0) = u(l) = 0,
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that is,
f s(l-t), 0< s < t < 1,

Let
f1

h(t, s)= G(t, T)G{T, s)dT.
Jo

Then h(t, s) is the Green's function of the homogeneous fourth-order boundary value
problem corresponding to (1). It is easily seen that

and for 1/4^ t s$ 3/4,

(7) G(t,s)>±G(8,8), O O ^ l .

Denote

P = j u e E | u(t) ̂  0, u"(t) < 0, 0 < « < 1;

u(i) ^ —|it|o> —«"(*) ^ TIU"IOI T ^ * ^4' 4 4
It can be easily seen that P is a cone in E.

Next, we define an operator T : P —> E by

(8) r1

{Tu)(t)= / /i(M)/(s,u(s))ds, w€ P.
Jo

We observe that a fixed point of T in E is indeed a positive solution of the boundary

value problem (1).

Using the Green's function, for every u G P , we shall have an estimate for u(t) in

terms of the magnitude of its second derivative, namely, for t € [0,1],

u(t)= f G(t,s)(-u"(s))ds^ (f s(l-t)ds+ f t(l - s)ds\\u"\0

(9) = i*( l - t ) | t t " | 0 .

Let u € P and let c be a positive number such that c ̂  M and |u"|o/(2c) ^ N.

Prom (9), u(s)/(cs(l - s)) ^ |u"|0/(2c) < M. Then, from (2) and (3),

f G(s,s)c»f{s,u(s)/c)ds
Jo

Hence, T is well defined on P provided that (4) or (5) holds.
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LEMMA 2 . If (4) holds, then T(P) C P .

P R O O F : Let u G P. Obviously, Tu(t) ^ 0 and -(Tu)"{t) ^ 0 . For 1/4 ^ t

^ 3 / 4 , we claim tha t

Tu{t) > -\Tu\0.

Indeed, from (4), by Fubini's theorem, (8) can be rewritten as

(10) (Tu)(t)= [ G(t,r) f G(r,s)f(s,u(s))dsdr.
Jo Jo

It follows from (6) that

(11) |Tu|0 < / G(T,T) f G(T,s)f(s,u{s))dsdT.
Jo Jo

On the other hand, for 1/4 < t < 3/4, (7) together with (11) gives

(12) (Tu)(t) > \ \ G(T,T) f G(T,s)f(s,u(s)) dsdr >\\Tu\0.
^ Jo Jo **

Next, we claim that -(Tu)"(t) ^ (l/4)|(Tu)"|0 for t € [1/4,3/4]. In fact, from

-{Tu)"{t)= f1G(t,s)f(s,u(s))dS,
Jo

it follows from (6) and (7) that

|(rU)"|0< [ G(s,s)f{s,u(s))ds
Jo

and, for 1/4^ t 5*3/4,

(13) -{Tu)"{t)>\ £ G{s,s)f{s,u{s))ds>\\{Tu)"\0.

We now conclude that T : P —• P from (12) and (13) and complete the proof. D

LEMMA 3 . If (4) holds, then T is a completely continuous operator on P.

PROOF: If un € P and un -> u0 in E as n -* oo, then we have that u0 S P by
the definition of the cone P and that {||un||} is bounded, say, ||un|| ^ Co, n ̂  1. As
a result, from (9), we have

(14) U n W ^ t ( l _ t ) .
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Let c be a positive number such that c ̂  M and CQ/2C ^ N. Prom (2) and (3),

r1

s(l-s)f(S,un(s))ds
Jo

f s(l-s)c?f(s,un(s)/c)ds
Jo

^ ) A fs(l-s)f(s,s(l-S))ds.

Now, from (4), an application of Lebesgue's dominant convergence theorem gives the
continuity of T on P.

To prove T is a compact operator, we shall show that for every bounded sequence
{un} in P, the sequence {Tun} C P has a convergent subsequence in E. Since {Tun}
is bounded in E, {|(Tun)"|0}. is bounded and hence {Tun(t)} is equicontinuous. By
Ascoli—Arzela's lemma, it suffices to show that {(Tun)"(t)} is equicontinuous. Let
Co be a positive number such that ||u,,|| ^ Co, n = 1,2,.... Then (14) holds from (9).
Again, choose a c ̂  max{M, Co/(2AQ}. Then

(Tu)'"(t)= [ sf(s,u(s))ds- f (l-s)f(s,u(s))ds
Jo Jt

^ f sf(s,u(s))ds+ [ (l-s)f(s,u(s))ds
Jo Jt

^ d (f sf(s, s(l - s)) ds+ f (1 - s)f(s, s(l - s)) ds\

=•• F(t),

where Cx = c / J - A (C 0 /2) A . Since, in view of (4),

f F(t)dt = Ci I f sf(s,u(s))dsdt + d f f (l-s)f(s,u(s))ds
Jo Jo Jo Jo Jt

= 2Ci / s(l - s)f(s, s(l - s)) ds < oo,
Jo

we have the equicontinuity of the sequence {(Tun)"(t)} from the uniform continuity
of the convergent integral of F(t) with respect to the Lebesgue measure over [0,1].

Therefore, T is a compact operator on P and the proof of Lemma 3 is complete. D

We are now in a position to prove our main results.
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P R O O F OF THEOREM 1: Necessity. Let u e C 2 [0 , l ] f lC 4 (0 , l ) be a positive
solution of (1). Obviously, u"(t) ^ 0 for 0 < t ^ 1 and hence u(i) is concave. It
follows from u(0) = u(l) = 0 that u'(0) > 0 and it'(l) < 0. Consequently, there must
be a positive number k such that u(t) ^ kt(l — t). Let c ̂  max{M, l/(kN)}. Then,
for 0 < t < 1, t(l - t)/(cu(t)) < N, and we get

f{t,t(l-t))<cff(t,t(l-t)u(t)/(cu(t)))

(15) < c»-xk-xf(t,u(t)) = <f-xk-xv.W(t).

Since u"(0) = u"(l) = 0, there is a t0 € (0,1) such that u'"(t0) = 0. Then

(16) u"( tO)= [u'"(s)ds= f f
JO JO Js

On the other hand,

u"(t0) = - f u'"(s)ds = - f f vS
Jt0 Jt0 Jt0

r1

(17) = - / (l-7>(4>(r)d-r.
Jt0

Therefore,

/ t(l-t)v.W(t)dt= ( f° + f )t(l-t)u(4\t)dt
o \Jo Jt0J

^ [°tu^(t)dt+ [ (l-t)u4(t)dt
Jo Jt0

(18) =2(-u"{t0)) <oo.

We now obtain (4) from (15) and (18), and complete the proof of the necessity.

Sufficiency. Let Cl\ — {u G E | ||u|| < r } , where

(19) r^minl.2N,2n s(l - s)f(s,s(l - s)) dsj \.

Let u e dtli D P. Then ||u|| = |u|0 + \u"\0 = r, and |u|0 ^ r, \u"\0 ^ r. It follows
from (9) that

(20) u { i ) ^ \t{\ - t ) \ u " \ 0 ^ - t ( l - t ) ^ N t ( l - t ) .
Jl LI
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In view of (2), (3), and (20), we have

Tu{t)= I h(t,s)f(s,u(s))ds
Jo

/•i
/ s(l - s)f(s, s(l - a))
Jo
/ ( )f(, ( )) ds

Jo

and

r1

(21) \Tu\0^2~xrx s(l-s)f(s,a(l-s))ds, u
Jo

On the other hand,

-(T«)"(t)= f G(t,s)f(s,u(s))ds
Jo

2~xrx r1

/ s(l - a)/(a, s(l - s)) ds,
Jo

and so

(22) I W ' l o < 2'ArA f
Jo
f s(l - s)/(s,s(l - a)) ds.

Jo

Thus, from (21), (22), and (19),

||Tu|| - |Tu|o + |(ru)"|0 < 2 1 - V f s(l - s)f{s, 5(1 - a)) ds
Jo
f
o

(23) <r = ||u||, uEdfliDP.

Next, set £l2 = {u € E \ \\u\\ < R}, where

(24) JR = maxJ288M,2(9 A + 1>/(A-1>( / s( l - s)f(s,s(l - a))

Let u 6 9 f i 2 n P . Then ||u|| = |M|0 + \u"\0 = R, \u\0 < R,\u"\0 < R. From (9),

we have

(25) Mo^K'lo, WloZ^R.
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Also, by the definition of the cone P, we have that for 1/4 ^ t ^ 3/4,

u(t)= f G(t,s)(-u"(s))ds> f G{t,s)(-u"(s))ds
Jo Jl/4

l/4

3/4 1

and hence,

(26) |u|o

Since u € P, from (26), we have

(27) _ ^ _

and so, from (24) and (25), for 1/4 ^ s ^ 3/4,

For 1/4 < t < 3/4, from (27) and (28), we have

Tu{t)= / G{t,r) j G(T,s)f(s,u(s))dsdT
Jo Jo

,3/4 ,3/4

^ / G(t,r) / G(T,s)f(s,u(s))dsdT
Jl/4 Jl/4

/
l/4 Jl/4

3 / 4 r3/4 i u(s) \*

1 /"3/4

(29) /

On the other hand, from (27),

-(Tu)"(t) = f
Jo

z-3/4

2-8A-2|U"|o / 3(1 - S)f(s, 8(1 ~ S)) ds,
Jl/4
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and hence,

z-3/4

(30) |(2V)"|o^2-8*-2K|oA / s(l-s)f(s,S(l-s))dS.
Jl/4

Now, from (29), (30), and the fact that ax + bx ^ 21~x(a + b)x for A ^ 1 and a,
b > 0, we arrive at

/*3/4
\\Tu\\ ̂  (2~8|u|o + 2~8A~2|u"|A) / s(l - s)f(s, s(l - s)) ds

Jl/4
„ z-3/4

^ 2~8A~2(|u|A+|u |A) / s{l-s)f(s,s(l-s))ds
Jl/4

> 2-9A-1(|u|0 + \U"\O)X f 5(1 - S)f(s, 8(1 ~ 8)) ds.
Jl/4'1/4

Consequently, by the definition of R, we have

f3/4

11/4

fi/4

\\Tu\\ = \Tu\0 + \(Tu)"\Q > 2-9X~1Rx / a(l - s)f(s, s(l - a)) ds
Jl/4

(31) ^ i ?= | | u | | , u

Finally, from (23) and (31), by Lemma 1, the operator T has at least one fixed point
u € PD (^2 \ Cli) which is a positive C2[0,1] solution to the boundary value problem

The proof of Theorem 1 is complete. 0

PROOF OF THEOREM 2: We prove the sufficiency first. Since (5) implies (4),
Theorem 1 provides a C2[0,1] solution uG P. From (9), u(t) ̂  (l/2)t(l - *)K'lo-

To prove that u € C3[0,1], choose a positive number c ̂  max{M, |u"|0/(2JV)}.
Then, from (2) and (3), we have

f \uW(s)\ds= [ f(s,u(s))ds^c» f f(s,^
Jo Jo Jo K c

Now, u^(t) is absolute integrable over [0,1] from (5), and hence, u £ C3[0,1].
To prove the necessity, let there be a positive solution u € C3[0,1] of (1). The same

reasoning at the beginning of the proof of Theorem 1 asserts that u(t) ̂  k\t(\ — t) for
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all t € [0,1] and for some constant fci > 0. Let c ^ max{M, l/(kiN)}. Then, from

(2) and (3),

f(t,t(l-t)) <c»f(t,(t(l-t)u(t))/(cu(t))) ^cf-xk-xf(t,u{t)),

and hence,

f f(t,t(l-t))dt^(f-xk^x f f(t,u(t))dt = c^-xk
Jo Jo

[
o

Thus, (5) holds and the proof of Theorem 2 is complete. D
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