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Previous European guidance for environmental risk assessment of genetically modified plants emphasized the
concepts of statistical power but provided no explicit requirements for the provision of statistical power anal-
yses. Similarly, whilst the need for good experimental designs was stressed, no minimum guidelines were set
for replication or sample sizes. Furthermore, although substantial equivalence was stressed as central to risk
assessment, no means of quantification of this concept was given. This paper suggests several ways in which
existing guidance might be revised to address these problems. One approach explored is the ‘bioequivalence’
test, which has the advantage that the error of most concern to the consumer may be set relatively easily.
Also, since the burden of proof is placed on the experimenter, the test promotes high-quality, well-replicated
experiments with sufficient statistical power. Other recommendations cover the specification of effect sizes,
the choice of appropriate comparators, the use of positive controls, meta-analyses, multivariate analysis and
diversity indices. Specific guidance is suggested for experimental designs of field trials and their statistical
analyses. A checklist for experimental design is proposed to accompany all environmental risk assessments.

Keywords: environmental risk assessment / statistical analysis / experimental design / equivalence test / genetically modified
plant / statistical power

INTRODUCTION plant is shown to be different from the comparator this
. is a ‘proof of difference’. Such a difference may con-
The need for review stitute a hazard (potential risk), which is then subject

to further safety evaluation. For this reason the differ-
ence test is sometimes referred to as a ‘proof of hazard’.
From the statistical aspect, there are two major reasons
why the current European Food Safety Authority (EFSA)
guidance (EFSA, 2006) may require review.

Traditionally, the major statistical test done for compar-
ative assessment within risk assessments for GM plants
is a ‘difference test’ between a GM plant and an ap-
propriate (usually near-isogenic) comparator. If the GM

* Corresponding author: joe.perry @bbsrc.ac.uk

Article published by EDP Sciences

https://doi.org/10.1051/ebr/2009009 Published online by Cambridge University Press


http://www.ebr-journal.org
http://dx.doi.org/10.1051/ebr/2009009
http://www.edpsciences.org
https://doi.org/10.1051/ebr/2009009

J.N. Perry et al.

First, whilst the guidance rightly emphasized the con-
cepts of statistical power detailed below, it provided
no explicit requirements for the provision of statistical
power analyses. Whilst the need for good experimental
designs was correctly stressed, no minimum guidelines
were set for replication or sample sizes. A more proscrip-
tive approach may have avoided problems of poorly repli-
cated and ill-thought experimental designs or the use of
experimental data from experiments designed initially for
different purposes (EFSA, 2009c¢).

Second, the guidance rightly emphasizes the concepts
of familiarity (a history of safe use) and substantial equiv-
alence (existing food/feed organisms with a history of
safe use acting as comparators), but provides no means
of quantification of these concepts or explicit means for
them to enter into the recommended statistical analy-
ses. An opportunity to formalize these concepts is avail-
able through the use of the so-called ‘bioequivalence’ ap-
proach, first used in pharmaceutical studies (Schuirmann,
1987; Tempelman, 2004).

For the consumer, the error of most concern in a dif-
ference test is of falsely inferring that no hazard exists
where there may be one. Because the traditional statisti-
cal null hypothesis employed is one of equality, this error
is relatively difficult to estimate accurately and/or set to a
desired magnitude. This had led to obvious problems with
credibility and transparency. This disadvantage is over-
come by the equivalence test, sometimes referred to as a
‘proof of safety’, since here the null hypothesis is one of
inequality, and the error of most concern to the consumer
may be set relatively easily. The advantage of equivalence
testing is therefore that the onus is placed back on to those
who wish to demonstrate the safety of GMOs to do high-
quality, well-replicated experiments with sufficient statis-
tical power. Such tests have a place in both environmental
risk assessment, the subject of this paper, and in food-
feed risk assessment. However, they were introduced first
in updated guidance for the latter (EFSA, 2009a); the next
section explains their role in more detail.

Equivalence testing in food-feed risk assessment

For food-feed risk assessment, any differences found are
placed into biological context, by defining equivalence as
the absence of differences other than those expected nat-
urally through variation between crop varieties. To per-
form an equivalence test, several quantities are required,
for each endpoint tested. All statistical tests require a test
statistic, a value calculated from data, and used to de-
cide whether to reject the null hypothesis. In the case
of food-feed risk assessment the test statistic is the dif-
ference between the mean of the GM and the mean of
several commercial varieties with a history of safe use;
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the mean value of the comparator does not enter the cal-
culations in any form. Furthermore, the null hypothesis
for the equivalence test requires the specification of an
upper and a lower so-called equivalence limit. In the up-
dated Guidance (EFSA, 2009a) these equivalence lim-
its are set based upon estimates of the natural variation
between the commercial varieties from the same com-
positional field trials used to derive the difference tests
between the GM and its comparator. It is essential that
the commercial varieties are integrated into those field
trials as fully randomized and replicated treatments, be-
cause the data on commercial varieties must be obtained
in identical conditions to that of the GM and its com-
parator. This eliminates uncontrollable confounding ef-
fects and conforms to the need for randomization as a
fundamental principle of good experimental design.

The analysis proceeds through the simultaneous ap-
plication of both tests, of difference and of equivalence;
the whole process is illustrated in Figure 1A. It is rec-
ommended to consider a logarithmic transformation be-
cause experience suggests it is appropriate, not only to
stabilize variance, but also for the more important reason
that, for many endpoints, the treatment effects combine
multiplicatively rather than additively. The particular ap-
proach taken is one termed ‘average equivalence’ in the
drug testing literature (Wellek, 2002). In this, tests are
based on endpoint values averaged across sites and sea-
sons. However, because of concerns that negative effects
may only show at single locations, allowance is also made
for the need to assess differences in treatment effects be-
tween sites, the so-called ‘site X treatment’ interaction.

Further technical details with worked examples are
given in a report of the EFSA Statistics Working Group
(EFSA, 2009b).

Statistical power and equivalence tests

Of crucial importance in any risk assessment framework
is the probability that a given test will detect effects of a
defined magnitude, known as the statistical power of the
test. For transparency and public confidence it is impor-
tant in GMO risk assessment that the consumer risk be
both well defined and low.

Equivalence testing contrasts with much other biolog-
ical experimentation: in the former the risk assessor tests
a null hypothesis of inequality between the GMO and its
control, which must be actively disproved if the experi-
menter is to conclude that the GMO is equivalent to the
comparators concerned. By contrast, in the statistical test
and in most biological experiments the null hypothesis is
one of equality (no difference).

In any difference test of a null hypothesis
there are two possible types of errors, which are
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Figure 1. Examples showing difference between testing procedures for: A, compositional field trials for food-feed risk as-
sessment, and B, NTO field trials for environmental risk assessment. (A) For food-feed risk assessment, two separate tests are
performed: a difference test between the means (shown as filled circles with appropriate confidence intervals shown as bars) of the
GM and the near-isogenic comparator (n-i ¢); and an equivalence test between the mean GM and the mean of the commercial varieties
with a history of safe use. Limits for the equivalence test are derived from the natural variation between the commercial varieties as
estimated from the trials, and shown as vertical lines. To reject the null hypothesis of no difference for the difference test, a confidence
interval for the difference between the means of GM and n-i ¢ must not include zero. To reject the null hypothesis of non-equivalence
for the equivalence test, the confidence limit for the GM must lie entirely within the equivalence limits (as in the example shown).
(B) For environmental risk assessment, two separate tests may again be performed, usually after a logarithmic transformation to
achieve a multiplicative scale. Here, example mean values are shown for the GM and the n-i ¢, as well as, on the same axis, the
difference between these quantities. To reject the null hypothesis of no difference for the difference test, the confidence interval for
the difference between the means of GM and n-i ¢ must not include the value zero shown on the endpoint value axis (as is the case in
the example shown). Limits of concern for the difference between GM and n-i ¢ are set prior to the field trials and shown as vertical
lines. To reject the null hypothesis of non-equivalence for the equivalence test, the confidence limit for the difference between GM
and n-i ¢ must lie entirely within these limits of concern (as is not the case in the example shown). Similar considerations apply to
laboratory experiments as to field trials.

mutually exclusive. A so-called ‘type I’ error occurs
if the null hypothesis is erroneously rejected when it
is actually true. A ‘type II’ error occurs when the null
hypothesis is not rejected even though it is actually
untrue. It is relatively simple for scientists to set the
type I error rate for an experiment, but it is much more
difficult to estimate the type II error rate accurately, and
technically impossible to set it a priori to a desired value.

Traditionally, in many experimental disciplines the
type I error rate, a, is set to a = 0.05. The so-called
‘5% level’ is conventionally considered as acceptable for
safety tests (Marvier, 2002). However, in risk assessment,
it is the type II error of the difference test that is the most
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serious and relevant one (Hill and Sendashonga, 2003).
Poorly designed experiments, or those with inadequate
replication, even though using a 5% type I error rate, may
have such large type II error that they lack the ability to
discriminate in a difference test between the GMO and
its comparator. The mathematical complement of type II
error is termed ‘statistical power’, which is defined as
unity minus the type II error. Recall from above that for
equivalence tests the error of most concern to the con-
sumer is the type I error, which may be set at 5% rel-
atively easily. Also, the framing of the null-hypothesis
as one of non-equivalence, rather than equivalence, is
fully in line with a precautionary approach, in which
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the experiment must have sufficient statistical power to
reject the null hypothesis in favor of the alternative, which
is the only way a conclusion of no safety concern may be
drawn. It is for this reason that equivalence testing was
said (see above) to place the onus on to those who wish
to demonstrate the safety of GMOs to do high-quality,
well-replicated experiments, which should achieve the
required degree of statistical power for both the equiv-
alence and difference tests. For some information con-
cerning the power of equivalence tests see Niazi (2007),
Yata (2008) and http://www.tau.ac.il/cc/pages/docs/sas8/
analyst/chap12/sect4.htm.

Contrasts between statistical approaches
for environmental risk assessment
and food-feed risk assessment

In order to apply the concept of equivalence testing to
environmental risk assessment (ERA) it may help to
identify some major statistical issues concerning the re-
quirements for ERA and for food-feed risk assessment.
First, the particular GM trait concerned is often designed
specifically to have effects that necessarily impinge on
ecosystems but would not be intended to affect food-feed
parameters. For example, GM herbicide-tolerance and
GM insect-resistance systems, by intention, cause some,
albeit small, environmental impact, but are not intended
to affect, say, allergenicity. Therefore, the concept of a
history of safe use from food safety relates less easily to
ERA, in which environmental harm is measured. Here, it
is more fruitful to base arguments on the likely effect of a
GMO, and then to contextualize whether that effect is suf-
ficient to cause significant environmental harm. To retain
the undoubted benefits of the equivalence approach, out-
lined above, the test must therefore be adapted. Second,
for ERA, it makes little practical sense for the equiva-
lence limits to be based on the natural variation of extra-
neous varieties. Instead, it is more appropriate to define
them directly as ‘limits of concern’, by which is meant
the minimum relevant ecological effect that is deemed
biologically significant, and is deemed of sufficient mag-
nitude to cause harm. Experience suggests that the set-
ting of limits of concern is more feasible than in food-
feed risk assessment. Third, if commercial varieties do
not form an essential part of the process, it is natural to
use the same test statistic for the equivalence test as is
used for the difference test, i.e. the difference between the
GM and its (usually near-isogenic) comparator (Fig. 1B,
and see section on comparators below and EFSA, 2009b).
Fourth, there is even more reason to recommend a log-
arithmic transformation for endpoints in ERAs than for
endpoints in food-feed assessments, because the data are
often counts, and the treatment effects are usually multi-
plicative in nature. Hence, for example, a toxin may cause

68

https://doi.org/10.1051/ebr/2009009 Published online by Cambridge University Press

sub-lethal effects in a certain percentage of a non-target
organism population; after a logarithmic transformation
the effects become additive on the new scale, facilitat-
ing analysis. Fifth, compositional field trials in food-feed
applications represent a fairly restricted range of designs
compared to the much wider variety of possible studies
in ERA. Sixth, experience shows that coefficients of vari-
ation are often smaller for food-feed endpoints than for
ERA endpoints, and that experimental designs for food-
feed tend to have relatively high efficiency, compared to
those for ERA that have a greater requirement for the con-
fidence given by a power analysis. Seventh, by their na-
ture, limits of concern may well be non-symmetric, be-
cause there might be less reason for concern if the effect
of a GM plant was to increase the population of an non-
target organism (NTO) rather than if it decreased it; by as-
sumption this is not usually the case for equivalence lim-
its estimated in food-feed risk assessment. Here it is noted
briefly that a common medical equivalence test adopts a
one-sided approach termed ‘non-inferiority’ (e.g. Laster
and Johnston, 2003).

All the above considerations apply equally to field tri-
als as well as to laboratory experiments.

An attempt to summarize some of the above issues
and to contrast the ERA approach and that for food-feed
risk assessment is shown in Figure 1.

STATISTICAL RECOMMENDATIONS
FOR ENVIRONMENTAL RISK ASSESSMENT

Choice of comparators

As outlined above, for ERA, the basic comparison of
interest focuses on the difference between the GM and
the appropriate (usually near-isogenic) comparator. How-
ever, whilst typically consumers would be reassured by
a conclusion of equality from statistical tests in food-
feed risk assessment, such a conclusion is often not cred-
ible in NTO ERA. Furthermore, equality is clearly nei-
ther reasonable nor possible when genetically modified
insect-resistant (GMIR) systems (e.g. Bf maize crops) are
compared with a near-isogenic variety managed without
the insecticides that would be typically applied to con-
ventional, non-GM crops. Therefore, it is sensible also
to consider extra comparators that help to place differ-
ences between the GM and its comparator into context.
For example, Marvier et al. (2007) reported that a meta-
analysis of 42 field experiments that indicated that non-
target invertebrates were generally more abundant in Bt
cotton and Bf maize fields than in non-transgenic fields
managed conventionally with insecticides, but in com-
parison with insecticide-free control fields, certain NTO
taxa were less abundant in Br fields. The use of extra
comparators that help to contextualize such differences
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between the GM and its major comparator is recom-
mended.

However, it is recognized that conventional manage-
ment is difficult to define for some events, such as a
GM plant with a composition-modification trait. Also,
that conventional management must be site- and year-
specific. Care is undoubtedly required in the definition
of treatments in studies of GMIR systems, particularly
with regard to typical management, because the scientific
threshold for action may differ from that of the market,
and at different sites there may be different typical prac-
tices, particularly if sites are in different regions. The use
of detailed record-keeping and published agronomic au-
dits by trained personnel may help to give confidence that
management practices are appropriate (Champion et al.,
2003).

In particular, for the case of herbicide-tolerant GM
plants, three test materials should be compared: the GM
plant exposed to the intended herbicide, the conventional
counterpart treated with conventional herbicide(s) and
the GM plant treated with the same conventional herbi-
cide(s). Such comparisons allow the identification within
the assessment of which elements of the altered agricul-
tural practices influence the studied endpoints (the GM
plant per se or the GM plant in concert with the intended
herbicide). The appropriate conventional counterpart for
stacked events should be selected in accordance with the
principles defined in other sections of this document. In
addition, single parental GM lines or GM lines contain-
ing previously stacked events that have been fully risk
assessed may also be included as additional comparators.

It is essential that if extra comparators are employed,
these should be fully integrated within the experimental
design, randomized and replicated in the same way as the
GM and near-isogenic comparator. Commercial varieties
might be useful to provide information concerning vari-
ability, but their inclusion in field trials should certainly
not be mandatory, particularly because the need for ad-
equate plot sizes puts major constraints on the number
of treatments that can be randomized as integral compo-
nents of a trial. If included, commercial reference vari-
eties should be treated conventionally, not untreated. Of
course, detailed information should be provided to justify
the choice of any additional comparators and the manage-
ment employed.

Specifying effect sizes for environmental risk assessment

The size of the effect that it is desired to detect should
be stated explicitly for each endpoint sampled. At first
sight, it might be thought that it may not always be easy to
specify the effect size that it is believed is a threshold for
environmental harm for those who wish to demonstrate
the safety of GMOs. Of course, the effect of a given per-
centage decline in abundance in some life stage due, say,
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to a GMIR system, may not lead to an equivalent decline
in the population as a whole. Hence, there may be a need
for upscaling to the landscape and higher scales, in or-
der to assess and place into context smaller-scale effects
found at the plot or field level. Also, it is reasonable to
assume that the effect size may vary by taxa, crop type or
functional group.

However, several reasons point to why the specifica-
tion of effect size is considered an achievable task. First, a
major part of the risk assessment dossier is risk character-
ization; such characterization cannot be done without re-
lating effect to potential harm. Second, it is no more than
good scientific practice when planning an experiment to
have a good idea of the size of effect that the experiment
is designed to detect. Third, in any event, a power analy-
sis, which is deemed essential (see below), must always
involve the specification of the magnitude of the effect
size that the experiment is designed to detect. Fourth, the
approach is routine in other risk assessment administra-
tions, notably the United States of America (for exam-
ple, see US Environmental Protection Agency (2006) or
FIFRA SAP (2000)). There is considerable flexibility in
the choice; the effect size may or may not be asymmetric
and be placed on either the natural scale, the multiplica-
tive scale, or some other scale, on a case-by-case basis.

Risk managers need to understand clearly that there is
a difference between statistical significance and biologi-
cal significance (Perry, 1986). In particular, for a given
effect size, the p-value of a difference test is not constant,
but decreases quickly as sample size increases. Hence, if
there is any non-zero effect a difference test will always
detect it and be statistically significant if the sample size
is large enough. As an example, if the difference between
two groups of size N is d = o/4 (where o is the standard
deviation in both groups), then the difference test will not
be significant for a sample size of N = 50 (for which
p = 0.21) but will be highly significant for a sample size
of N =500 (for which p = 0.001).

In conclusion, for each study, it is recommended that
the size of the effect that it is desired to detect should
be stated explicitly for each endpoint sampled. The effect
size should be linked to the minimum relevant ecological
effect that is deemed biologically significant. Again, full
justification for the choice of scale and effect size should
be given.

Statistical power for environmental
risk assessment

For the difference test, statistical power is the probability
of detecting an effect of a given size, when such a real
effect exists. Power is often quoted as a percentage. The
risk assessor must ensure that an evaluation has sufficient
power to provide reasonable evidence. A level of 80%
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is usually considered to be an acceptable level for statis-
tical power (ICH, 1998; Marvier, 2002), although it must
be appreciated that for ecological studies this may be an
aspiration that can only be achieved in well-resourced
and extensive experiments (Perry et al., 2003). Statistical
power depends, amongst other things, upon the chosen
experimental design, the magnitude of the variety differ-
ence, the baseline variability of the experimental units,
the critical probability level of the test and the replication
of the experiment. In general, other things being equal, a
decrease in this critical probability level i.e. a, the type I
error rate will generally lead to a decrease of power.

A power analysis, executed when the study is being
planned and prior to its start (Perry et al., 2003), may
be used to estimate power, to choose appropriate repli-
cation, and to give confidence that the experiment will
detect any significant effect that is present. As Marvier
(2002) expresses it: “such details of risk assessment stud-
ies could greatly increase the public’s ability to eval-
uate industry’s claims of safety”. However, there have
rightly been many criticisms of the calculation of statisti-
cal power from the experimental data obtained (so-called
retrospective or post-hoc power analysis). Firstly, power
depends on several parameters, notably the baseline vari-
ability of the experimental unit, here denoted 0>. Whereas
the magnitude of the variability of estimates of treatment
means is proportional to 6 the magnitude of the variabil-
ity of estimates of variability greatly exceeds that, often
by several orders of magnitude, being proportional to o*.
For the range of experiments envisaged here, estimates
of variability, and hence of power, may be expected to be
imprecise. Schuirmann (1987) showed how, for techni-
cal statistical reasons concerned with the lack of convex-
ity of what is termed the rejection region, retrospective
power analysis may lead to completely wrong inferences,
incompatible with common sense. Further problems as-
sociated with such a strategy were identified, for exam-
ple by Hoenig and Heisley (2001) and by Walters (2008).
Andow (2003) argued that it should not be used in pub-
lications in this journal. Hence, it is recommended that
post-hoc or retrospective power analysis should never be
used in the risk assessment of GMOs.

The provision of a power analysis is recommended for
the difference test for each experiment done to support
an ERA, to aid transparency and public confidence that
the consumer risk is well defined and low. This should
ideally be based on the provision of 80% power for a de-
fined treatment effect size with a 5% type I error rate. The
power analyses should use only information verifiable as
available prior to the study, and, in particular, should not
use data from the study itself. They should be done at the
planning stage of the study.
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Experimental design for environmental risk
assessment

The following section contains eight sub-sections de-
signed to give guidance to experimenters on how to de-
sign efficient experiments for NTO risk assessment. It
may be read in conjunction with the checklist that forms
an appendix to this document.

(i) General principles for all studies — sample sizes

It is recommended to give a quantitative justification of
the sample sizes used for each experiment (replication,
number of experimental units, number of each type of
blocking factor such as cages, cohorts, sites, years). It
might help in the planning of studies to estimate the ex-
pected width of the confidence interval(s) of the mean
difference(s) between the GM and its comparator(s), al-
though this is not deemed essential. It is recommended
that a checklist be provided and completed (see Appendix
to this document) to guide those who wish to demonstrate
the safety of GMOs through a series of questions intended
to foster sound experimental designs.

(ii) General principles for all studies — use of positive
controls

It is recommended to consider the inclusion of a posi-
tive control in each study, for two possible reasons. First,
to demonstrate post-hoc that the study was capable of
detecting the desired effects, for example that there was
sufficient population density of NTOs present in the ex-
perimental area. The form of the positive control should
be decided on a case-by-case basis and may vary with
the GM trait; examples might be: current management,
reference substance, broad-spectrum insecticide (Marvier
et al.,, 2007). It may be necessary to sample both be-
fore and after applications, and possibly to repeat ap-
plications. Whilst positive controls might be external
to the experiment, for example on a single unrandom-
ized plot, it must be realized that in that case, no sta-
tistical tests can be applied, so it would not be possi-
ble to distinguish whether any difference recorded be-
tween the positive control and a treatment was merely
random error or a true effect. Hence, it is recommended
that the following treatments should be fully random-
ized and replicated with the experimental design: the
GMO:; its near-isogenic comparator untreated with insec-
ticide; and its near-isogenic comparator treated conven-
tionally with insecticide (where appropriate). The sec-
ond reason for including positive control(s) is that they
may allow any differences that are detected between the
GMO and its near-isogenic comparator to be placed into
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a proper agronomic context (e.g. Marvier et al., 2007).
This is particularly the case for GMHT (genetically-
modified herbicide tolerant) or GMIR systems, where
an untreated near-isogenic comparator would not pro-
vide a realistic comparison, because in usual agronomic
practice this would be treated if necessary with, respec-
tively, herbicides or insecticides. Indeed, meta-analyses
(Marvier et al., 2007) of GMIRs have shown that, on
average, abundances of NTOs are ranked according to
treatment as near-isogenic treated conventionally (small-
est) through GMIR to near-isogenic untreated (largest).
Although baselines for biodiversity in arable ecosystems
differ between regions, it seems sensible for ERA to as-
sess risk of harm due to GMOs relative to existing such
conventional baselines rather than to agronomically un-
realistic paradigms.

(iii) Field trials — size of plots

The sizes and scales of experimental units vary widely,
from paired fields and grower fields at the larger scale,
to small plots of a few square meters at the small scale.
Larger plots produce more realistic and representative
data, particularly for relatively mobile NTOs such as pol-
linators, and may suffer less from treatment interference
between plots. However, they require more land and thus
limit possibilities for adequate replication. The limita-
tions of land may be severe if GM plants are grown, and
this also restricts the number of treatments that can be
studied. In particular, it is a further disincentive to em-
ploy several commercial varieties as extra comparators.
Furthermore, for grower fields, there may be a need to
(1) pay compensation, hence increasing the cost of the
study, and (ii) to exercise care in the definition of man-
agement. Grower fields or paired fields are probably of
most use for post-commercial studies, particularly for
what are termed ‘tier 4 studies’ (large-scale monitoring or
mitigation studies). For pre-commercial experimentation,
smaller plots, where variation could be controlled and de-
fined treatments imposed more easily, are more appropri-
ate. It is recommended to separate plots within sites, often
by strips of bare soil of specified width, and to sample
towards the center of plots. Attempts to determine opti-
mum plot size (e.g. Prasifka et al., 2005; Winder et al.,
1999) require considerable resources and the ephemeral
nature of aggregation patterns means that inferences may
be subject to major temporal heterogeneities. A related
problem is how to determine the optimal intensity of sam-
pling within a plot; again, for most cases, the resources
required (Perry, 1989) may not make its determination
prior to studies cost-effective, although Clark et al. (2007)
made progress using a components of variance approach.
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(iv) Field trials — optimal design

It is recommended to choose the precise form of design
on a case-by-case basis. However, a randomized block
design is usually appropriate.

(v) Field trials — additional factors and split-plot designs

When there are factors that may interact with the main
factor of interest, which is always the contrast between
the GM and its (usually near-isogenic) comparator, then
these may need to be built into the experimental design.
For reasons of practicality, the introduction of the ex-
tra factor may need to be done in a split-plot design.
For example, if the extra factor is a sprayed application
of a chemical, then the equipment used may restrict the
plot size to be larger than some minimum width, perhaps
corresponding to the spray boom. As an example, con-
sider an herbicide-tolerant oilseed rape system, suppose
the NTOs studied are Collembola, and it is thought that
timing of herbicide application may have a major effect
on the difference in observed abundance between GMHT
rape and its near-isogenic comparator (n-i ¢). Suppose
further that at each site there are four replicate blocks.
A suitable experimental design would be to randomize all
four combinations of the main factor, GMHT versus n-ic,
and an extra treatment factor with two levels, early appli-
cation versus late application, over each of the four plots
in each of the four blocks (Fig. 2A). However, this may
not be possible if the plots are too small for the spray-
ing equipment. Then, a split-plot design can be used. In
this design, the extra factor is first randomized onto two
main plots within each of the blocks (Fig. 2B), and then
the main factor of interest, GM herbicide-tolerant ver-
sus n-i ¢, is randomized onto two sub-plots within each
of the eight main plots (Fig. 2C). It is important to real-
ize that for reasons of maximizing power, the main fac-
tor of interest should always be randomized to sub-plots
(giving replication of 8 in this instance), whilst the fac-
tor with which it is believed to interact should always be
randomized to main plots (giving replication of 4). The
ANOVA for the completely randomized design in Fig-
ure 2A is sketched in Table 1A; for the split-plot design
in Figure 2C see Table 1B.

(vi) Field trials — use of same plots in successive years

Designs often use part of a field in one year and a dif-
ferent part of the same field in the next year; this is sat-
isfactory. More rarely, exactly the same plots are used
over more than one year at a particular site. Consider-
able care is required for this latter case, because of pos-
sible residual effects in year 2 from the treatment applied
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late late early early late early late late early early
GMHT n-i ¢ n-i ¢ GMHT GMHT n-ic GMHT n-ic
early early late late early late early early late late
n-i ¢ GMHT n-i ¢ GMHT n-ic GMHT GMHT n-ic
late early early late early late early early late late
n-i ¢ GMHT nic | GMHT n-ic GMHT | GMHT n-ic
late early late early late early late late early early
n-i ¢ GMHT GMHT n-i ¢ GMHT n-ic n-ic GMHT

\\//’

plots \ main /

plots within

—

Four randomized blocks of two main plots

—

Block

Four fully randomized blocks of four plots

A

\ two sub-plots

each main plot

Four randomized blocks of two main plots,
each split into two sub-plots

Figure 2. Example of design for NTO study with two factors. The major factor with two levels is the contrast: GM herbicide-
tolerant oilseed rape versus its near-isogenic comparator (n-i ¢). An extra factor, also with two levels, is the contrast defined by the
timing of herbicide application: early versus late. A: Each treatment combination is completely randomized to the four plots within
each of four replicate blocks. B: Example of similar design where spray applications cannot be applied to plots smaller than twice
the width of those in A. In the first stage of allocation of treatments to plots, the timing factor is randomized to two main plots within
each of the four replicate blocks. In the second stage, C, the full design is shown, after the GM effect factor has been randomized to

two sub-plots within each of the eight main plots. See also Table 1.

in year 1. Indeed, it is recommended that in general such
designs should be avoided, unless the biology of the NTO
requires impacts over more than one growing season to
be tested. In that case the design is suitable to estimate
the residual effects that require study, since that element
is explicitly incorporated into the design. Of course, a
proper statistical analysis of such designs should account
for possible correlations between repeated measurements
from the same experimental units.

(vii) Field trials — replication

The question of how many replicates to use within each
site differs in kind from the question of how many sites
and how many years to employ. The principle applied
for food-feed assessments is that each field trial at a site
should have sufficient replication to be able to yield a
stand-alone analysis if required, even though the main
analysis averages over the complete set of field trials
at all sites and years. It is recommended that this prin-
ciple should be retained for ERA assessments. Repli-
cation within sites is motivated by the need for suffi-
cient power and efficiency to achieve such stand-alone
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analyses. Under the case-by-case approach, it is not pos-
sible to recommend a minimum number of replicates per
field. However, this will be determined by the recom-
mended mandatory power analysis (see above). Notwith-
standing this, it is most unlikely that less than three repli-
cates per site would provide an adequate design.

By contrast, there is an additional need to replicate
over sites and years, namely to achieve representative-
ness across geography and climate. The choice of sites
of the trials must represent as fully as possible the range
of receiving environments where the crop will be grown,
reflecting relevant meteorological, soil and agronomic
conditions; the choice must be justified explicitly. En-
vironmental conditions may vary greatly between sites,
even locally, and in general years vary even more than
sites. It is recommended that each field trial be replicated
over at least two years, within each of which there should
be replication over at least three sites, and that explicit
justification be given for any deviation from any of these
recommendations for replication.

The use of data from different continents could be
informative, so long as the sites within these conti-
nents are each representative of where the crop will
be grown, reflecting relevant meteorological, soil and

Environ. Biosafety Res. 8, 2 (2009)
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Table 1. ANOVA structure for (a) the fully randomized and (b) the split-plot designs.

A B
Source Degrees Source Degrees
of freedom  (main plots) of freedom
Blocks 3 Blocks 3
Timing 1 Timing 1
(Early versus Late) (Early versus Late)
GM 1 Error 3
(GMHT! versus n-i c?) (main plots)
Interaction between GM 1 Total 7
factor and (main plots only)
timing factor
Error 9 Source Degrees
(sub plots) of freedom
Total 15 Main plots 7
GM 1

(GMHT versus n-i c)
Interaction between GM 1

factor and

timing factor

Error 6
(sub plots)

Total (sub plots) 15

! GM herbicide-tolerant.
2 Near-isogenic comparator.

agronomic conditions. However, within Europe it is rec-
ommended that strong and explicitly-argued justification
be provided for not having field trials in EU Member
States.

(viii) Laboratory experiments

Experimental designs are recommended to follow the
general principles set out above, and in addition to con-
form to accepted international standards and protocols
such as those published, for example, by OECD or simi-
lar organizations specializing in ecotoxicology.

Statistical analysis for environmental

risk assessment

The following section contains four specific and one
general sub-sections designed to give guidance to
experimenters on the statistical analysis of data from ex-
periments for NTO risk assessment.

(i) Statistical protocols

It is recommended to provide a statistical analysis proto-
col for each study which should include full information
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on the questions the study addressed, what the measure-
ment endpoints were and why they were included, what
form the analysis took, why that form of analysis was
chosen, the criteria for identifying outliers, reasons for
any transformations used, justification for distributional
assumptions, assumptions made, and any other relevant
information. For field trials, the protocol should include a
clear and explicit statement concerning the minimum lev-
els of abundance acceptable for each taxa sampled, below
which results would lack credibility, with full justification
for the values chosen.

(ii) Equivalence testing for environmental
risk assessment

At least one pair of limits of concern should be set
for each endpoint; the values set should reflect, and in
most cases be identical to the desired effect size which
will have been defined explicitly. As much relevant in-
formation as possible should be employed to set such
‘limits of concern’, including information from historical
databases. However, it is recommended that further pairs
of limits may be set if desired; an equivalence test should
then be performed for each pair of limits.

It would be helpful and facilitate clarity if the presen-
tation of the results followed the principles of graphical
presentation adopted for food-feed assessment detailed
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in EFSA (2009b). There, both the difference test and the
equivalence test are implemented using the well-known
correspondence between hypothesis testing and the con-
struction of confidence intervals. The graph combines
both tests, difference and equivalence, in a user-friendly
form of presentation. Presentation in the form of confi-
dence intervals gives extra information compared with
a mere statement of whether a test is or is not signifi-
cant. In the case of equivalence testing, the approach used
follows the two one-sided tests (TOST) methodology
(e.g. Schuirmann, 1987) by rejecting the null hypothesis
only when the entire confidence interval falls between the
equivalence limits. The choice of the 90% confidence in-
terval corresponds to the customary 95% level for statis-
tical testing. The graph shows the line of zero difference
between the GM and its major comparator and, for each
endpoint: the lower and upper limits of concern, the mean
difference between the GM and its comparator, and its
confidence interval, as in Figure 1B. Note that the line
of zero difference on the logarithmic scale corresponds
to a multiplicative factor of unity on the natural scale.
The horizontal axis may then be labeled with values that
specify the change on the natural scale. In the case of
logarithmic transformation, changes of 2 X and !> X will
appear equally spaced on either side of the line of zero
difference.

For studies that use extra comparators, the analysis
should encompass separate difference tests (between the
GM and each of its different comparators) and separate
equivalence tests (between the GM and each of its differ-
ent comparators), and these should be reported similarly.

As a simplified numerical example to facilitate un-
derstanding, consider an imaginary experiment involving
a GMIR maize plant and a non-target lepidopteran as the
NTO selected for study, with the endpoint as abundance
as measured by observation along a transect walk, and
with three treatments to be compared: the GMIR maize
variety; its near-isogenic comparator (denoted n-i ¢) un-
treated with insecticides; and a positive control compris-
ing the n-i ¢ managed conventionally with insecticides
(denoted conv). All abundances, c, are to be transformed
to log,(c+1) for analysis. Suppose the mean abundances
on the logarithmic scale (with geometric means on natu-
ral scale in brackets) for the GMIR, n-i ¢ and conv are,
respectively, 0.600 (3.98), 1.050 (11.2) and 0.50 (3.16),
and suppose for the sake of simplicity that replication
was equal and therefore all differences between pairs of
means have confidence intervals with the same width of
0.110. In contrast to the graph recommended for food-
feed risk assessment, where all values were referred to
the same zero line defined by the conventional counter-
part, here it would seem to be more sensible for all val-
ues to be referred to the same zero line defined by the
GMIR. Further, suppose that prior to the experiment it
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was decided that an increase in abundance of this lepid-
poteran of greater than 65% would constitute a biologi-
cally significant effect and define the upper limit of con-
cern, whilst a similar magnitude decrease in abundance
would define the lower limit of concern. Then, assum-
ing all abundances, c, are transformed to log;,(c + 1)
for analysis, the upper and lower limits of concern are
+0.217. Hence, if all values were referred to the baseline,
the mean of the logarithmically transformed abundances
of the GMIR, of 0.600, the graph in Figure 3 would be
obtained. The graph shows the difference between un-
treated n-i ¢ and GMIR centered on 0.45 (indicating an
almost three-fold decrease in abundance of GMIR rel-
ative to its untreated n-i ¢) and that between conv and
GMIR centered on —0.10. Note that the line of zero dif-
ference on the logarithmic scale corresponds to a multi-
plicative factor of unity on the natural scale. Regarding
inferences, clearly the lack of overlap of the confidence
interval for the difference between n-i ¢ and GMIR with
the zero line implies this difference test is significant;
similarly the difference between conv and GMIR is not
significant. Even allowing for the uncertainty expressed
through its confidence interval the almost three-fold dif-
ference between n-i ¢ and GMIR can be seen to greatly
exceed the 1.65-fold effect size defined by the upper limit
of concern, so the conclusion from the relevant equiva-
lence test is that the magnitude of the difference between
n-i ¢ and GMIR is of ecological significance. By contrast,
the entire confidence interval for the difference between
conv and GMIR lies within the upper and lower limits of
concern, so the conclusion is that any difference does not
represent a significant ecological effect. The importance
of contextualizing such inferences on the risk assessment
of GMIR plants through the use of a positive control has
been stressed by Marvier et al. (2007).

The use of a statistical mixed model is an important
feature of analysis for food-feed assessments because of
the need to estimate the natural variation of the commer-
cial varieties. However, for ERA it is recommended that
equivalence limits are set explicitly and the use of com-
mercial varieties is not mandatory. Hence it is not recom-
mended that mixed models be required forms of analy-
sis, although their use should be encouraged if they are
appropriate.

(iii) Testing for interactions

It is recommended that the presence of a treatment X site
interaction should always be tested. If data from sites in
different continents are included in the same set of field
trials, then the continent X treatment interaction should
be tested where possible. This will reveal if the level of
risk varies significantly across sites and/or continents.
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Figure 3. Imaginary worked example of graphical data analysis with equivalence tests for an ERA of an NTO. Three treatments
are compared: a GMIR variety; its near-isogenic comparator (n-i ¢) and a positive control comprising a non-GM commercial variety
managed with conventional insecticides (conv). Mean abundances (filled circles) and confidence intervals (bars) are shown on a
logarithmic scale. Limits of concern for multiplicative differences for the equivalence test are shown as vertical lines. All values are

referred to a zero baseline defined by the mean of the GMIR.

(iv) Multiple comparisons

With many endpoints, or many species in a study, there
will be a multiplicity of tests. It is accepted that setting
the size of the difference test at the 10% level will lead to
a large proportion (about 10%) of tests being found to be
significant by chance alone. Of course, a large proportion
of significant differences is not considered a sufficient
reason for safety concern per se, unless the proportion
is significantly larger than the 10% expected. Safety con-
cerns may also be raised if the differences follow some
systematic pattern such that endpoints of a certain type
form a cluster that are all statistically significant. When
many species have been included in a study the results
of all species for which sufficient records have been ob-
tained should be reported, not just those deemed to be of
particular biological or statistical interest.

The principle behind the statistical tests of difference
and equivalence is to provide information with quantified
uncertainty that may be used by biologists in risk char-
acterization of those endpoints for which differences or
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lack of equivalence are found and put into context. There
is a well-known distinction between statistical and bi-
ological significance, and it should not be the function
of statistical analysis to lead to a decision-theoretic ap-
proach, in which data is fed into very proscriptive pro-
tocols that yield decisions on safety. Indeed, because of
the many difficulties of formalizing the complete safety
assessment, a full statistical decision-theoretic approach
is not feasible. This would, in any case, be counter to the
principle of the case-by-case approach. Rather, the judg-
ments on biological significance are left to experts.

As for food-feed assessment, the following approach
is recommended: the independent univariate evaluation of
single endpoints, a joint graphical presentation, and the
simple reporting of the frequency of significant results in
the set of investigated endpoints.

(v) General issues

Meta-analysis is a statistical technique to assess simul-
taneously the results of several studies. The use of
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meta-analysis (e.g. Marvier et al., 2007) is recommended,
particularly to quantify studies that may not all have the
power to be individually significant, in the statistical or
biological sense. It can also serve to provide an overview
of broad patterns when individual studies may appear to
contradict each other.

Diversity indices are not recommended for general
risk assessment in pre-commercialization studies. Diver-
sity indices might be useful but are not essential for
post-commercial studies. Whilst it may be desirable to
measure diversity, the idea that it can be represented as
a single number is overly naive for environmental im-
pact studies. Studies of diversity are complex and require
considerable technical expertise; they are most suited to
tier-4 studies of assemblages and communities at large
scales.

A multivariate approach, commonplace in commu-
nity ecology, is not essential but may be very useful,
particularly for: (a) post-commercial studies of the com-
position of assemblages and their community dynam-
ics and (b) in data screening, for the identification of
the correlation structure between endpoints, and to pro-
vide a holistic approach to summarizing complex data
structures. For general ecological research multivariate
methods are standard, but for small-scale risk assess-
ment studies that demand the study of specific species,
other methods are recommended to comprise the pri-
mary method of analysis. Where parametric assumptions
are of dubious validity for multivariate tests, permuta-
tion tests provide a useful alternative. Principal Response
Curves (van den Brink and ter Braak, 1999) and explana-
tory ordination methods are recommended as methods if
multivariate approaches are employed. MANOVA should
usually be avoided, since the distributional assumptions
underlying the method can rarely be justified empirically.
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APPENDIX

Checklist for all experiments concerning
Environmental Risk Assessment

List all the questions that this experiment is asking, in
words:

Now frame the questions listed above formally, in the
form of null hypotheses of all the tests that will be done
using the experimental data:

What is the experimental design?

(tick the design that applies):
completely randomized
randomized block
latin square
split-plot
incomplete block (balanced)
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incomplete block (unbalanced)
other (please specity):

Describe the experimental units and give details of the
blocking structure.

Give the experimental unit (e.g. plot, cage, individual
insect):

Give its dimensions:

Write in words the details of the structure of the ex-
perimental units, often termed the blocking structure
(e.g. 4 main plots per randomized block, each split into
3 sub-plots):

State what factors represent the blocking structure
(e.g. sub-plots, main plots, blocks):

How many levels does each factor have (e.g. sub-plots 2;
main plots 3; blocks 5), and what are they:

State how are the blocking factors nested within or
crossed amongst each other (formulae or words may be
used). For example, in Genstat formulae: blocks/main
plots/sub plots, or in words: sub plots nested within main
plots nested within blocks):

State briefly why this blocking structure was chosen:

State how many samples are to be taken from each
experimental unit:

State whether repeated measurements will be taken from
the same experimental unit:

Describe the treatments that will be applied in the
experiment.

What factors represent the
(e.g. varieties, irrigation):

treatment structure

For each factor:

state whether it is qualitative, ordered categorical or
quantitative

give the number of levels

and list the levels
(For example:
varieties — qualitative - 2 levels - GMHT, near isogenic;
irrigation — ordered categorical - 3 levels — none, weekly,
daily as required.):

For designs with more than one treatment factor, state
whether any, and if so which, interactions are required to
be estimated:

(For example: Yes, it is required to estimate the variety X
irrigation interaction.)

State how the treatment factors will be randomized to
the experimental units specified in the blocking structure
in the previous page.
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(For example: varieties will be randomized to sub-plots
within main plots; irrigation will be randomised to main
plots within randomized blocks.)

State which of the factors and their levels represent
controls, and describe the control(s) briefly, indicating if
any are positive controls:

(For example: variety — level 2 — near isogenic.)

Answer some more detailed statistical questions.

State, if applicable and if known, which of the factors in
the experiment will be regarded as fixed and which as
random:
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For each of the questions listed in the first box of this
checklist, state:

(1) the size of the effect that the experiment is designed to
detect;

(i1) the expected power of the experiment to detect this
effect for a 5% size of test.

State the number of years and sites per year the experi-
ment is designed to be replicated over:

What scale are the effects in the experiment assumed to
be additive on (e.g. natural untransformed scale, probit
scale, logarithmic scale, etc.):
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