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Jonathan Barlev

Abstract

Let X be an algebraic curve. We study the problem of parametrizing geometric

structures over X which are only generically defined. For example, parametrizing

generically defined maps (rational maps) from X to a fixed target scheme Y . There

are three methods for constructing functors of points for such moduli problems (all

originally due to Drinfeld), and we show that the resulting functors are equivalent in

the fppf Grothendieck topology. As an application, we obtain three presentations for

the category of D-modules ‘on’ B(K)\G(A)/G(O), and we combine results about this

category coming from the different presentations.
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1. Introduction

Let k be an algebraically closed field of characteristic 0, and let X be a smooth, projective and

connected algebraic curve over k. Denote by A, O and K the algebra of adeles, algebra of integer

adeles, and the field of rational functions over X, respectively.

In this paper we study the problem of parametrizing geometric structures over X which

are only generically defined. The basic example of such a moduli problem is that of generically

defined maps (rational maps) from X to a fixed target scheme Y . That is, the starting point is

the given set of k-points (in this case it is the set Hom(spec(K), Y )) and the task at hand is

that of constructing a functor of points Schemeop
→ Set which describes what is an S-family

of such generic maps.

The main example in which we are interested is motivated by the Langlands program. In the

classical setting, one encounters sets such as B(K)\G(A)/G(O), N(K)\G(A)/G(O) and their

relatives. The premise of the geometric program is that these sets are the k-points of some space

(‘space’ interpreted very loosely). The story goes that each point in the set B(K)\G(A)/G(O)

is to be interpreted as representing a G-bundle on X, together with the data of a reduction to

B at the generic point of X.1 We wish to describe a space parametrizing such data via a functor

of points, and as above our starting point is the given set of k-points, and our task is to define

what is an S-family of such generic reductions.

The literature (and mathematical folklore) contains three, a priori different, constructions

of functors of points for such moduli problems (all originally due to Drinfeld). The main theme

of this paper is that all three constructions give rise to functors of points which are equivalent

in the fppf Grothendieck topology. Consequently, their categories of D-modules are equivalent,

as are derivative invariants such as homology groups.

The main result of this paper is Theorem 6.2.4 which is an application of the results in the

body of the paper to the geometrization of the set B(K)\G(A)/G(O). This space is equipped

with a map to BunG, and we prove that it has a certain proper-like property (it is not schematic)

and that it has homologically contractible fibers.

1.1 Overview

1.1.1 In § 2 we present the first construction schema, which we consider to be the

conceptually fundamental one. In particular, we construct the presheaves GMap (X,Y ) and

Bun
H(gen)
G which are the functors of points of the space which classifies rational maps from X to

a fixed scheme Y , and of the space which classifies G-bundles on X with a generically defined

reduction to a subgroup H ⊆ G, respectively. Unfortunately, conceptual appeal notwithstanding,

this approach is deficient in the sense that invariants of the spaces so constructed are not easy

to describe (directly).

1 This is admittedly equivalent to the set of global reductions to B, but this interpretation leads to a different
space! See also Remark 2.2.4.
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1.1.2 In §§ 3 and 4 we describe an approach for classifying generic maps as degenerations of
regular maps. This approach uses the notion of a quasi-map and Drinfeld’s BunB which were first
presented by Finkelberg and Mirkovic in [FM99], and have received a fair amount of attention
since. In particular, the construction we present is the one used by Gaitsgory in [Gai10].

For a locally closed subscheme Y ↪→ Pn, the space of quasi-maps QMap (X,Y ) is a scheme.
The main result of § 3 is given in the following proposition.

Proposition 3.2.2. The presheaf GMap (X,Y ) is a quotient of the scheme QMap (X,Y ) by a
schematic and proper equivalence relation (up to Zariski sheafification).

A pleasing corollary of this result is that, while the space of quasi-maps depends on the
embedding Y ↪→ Pn, the quotient which yields the space of rational maps depends on the scheme
Y alone.

As an application concerning the categories of D-modules we obtain the following corollary.

Corollary 3.2.4. Consider the pullback functors

Dmod(QMap (X,Y ))
f !

←−− Dmod(GMap (X,Y ))
t!
←−− Dmod(spec(k)).

The functor f ! always admits a left adjoint (‘!-push-forward’). When Y ↪→ Pn is a closed
embedding, the functor t! also admits a left adjoint.

In § 4 we discuss a relative setup over BunG, involving BunB and Bun
B(gen)
G , with analogous

results.

1.1.3 In § 5 we describe an approach for parametrizing generic data using the Ran space. This
is the approach taken by Gaitsgory in [Gai10, Gai13]. It has the advantage that certain invariants
of the spaces so constructed are amenable to computation. Namely, in [Gai13, Theorem 1.8.2]
Gaitsgory computes the homology groups of the spaces of rational maps in certain cases (see
Theorem 6.2.1 for the statement). The main results in this section are Proposition 5.3.2 and
Theorem 5.2.1.

We construct a monad, M, acting on the category of presheaves over the Ran space,
Pshv(Aff)/RanX . The essence of Proposition 5.3.2 is that the data of a module for M is equivalent
to that of a moduli space which classifies generic data, as formulated in § 2. In particular, there
exists a presheaf GMap (X,Y )RanX

∈ Pshv(Aff)/RanX classifying generic maps which is naturally
a module for M.

The main result of this section is a fully faithful embedding between categories of D-modules,
which enables us to apply Gaitsgory’s contractibility result to the functors defined in § 2. Namely,
Gaitsgory’s theorem applies to the presheaf GMap (X,Y )RanX

(for certain choices of Y ), and we
prove the following theorem.

Theorem 5.2.1. There exists a natural map GMap (X,Y )RanX
→ GMap (X,Y ), which induces

a fully faithful pullback functor

Dmod(GMap (X,Y )RanX
)←− Dmod(GMap (X,Y ))

on the categories of D-modules. In particular, this map induces an isomorphism on homology
groups.

This theorem is a consequence of the structure of the monad M which acts on the category
Pshv(Aff)/RanX , and has little to do with the particular properties of generic maps. The statement
in § 5 is given in greater generality.
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1.1.4 In § 6 we use Gaitsgory’s initial homology computation for spaces of rational maps

to obtain similar results for additional moduli problems not discussed in [Gai13]. The following

theorem concerning Bun
B(gen)
G , the space of G-bundles over X equipped with a generic reduction

to the Borel subgroup, which is a geometrization of the set B(K)\G(A)/G(O), is the main result

of the paper.

Theorem 6.2.4. There exists an adjunction (!-forward, !-back)

Dmod(Bun
B(gen)
G )

!-forward //
Dmod(BunG)

!-back
oo

Moreover, !-back is fully faithful.

This theorem is expected to play a role in the understanding of the geometric Eisenstein

series functors, as well in the construction of an extended Whittaker model for D-modules on

BunG, as proposed in [Gai10].

2. Moduli spaces of generic data

Notation 2.0.1. Let k be an algebraically closed field of characteristic 0, and let X be a smooth

connected and projective curve over k. We denote by S the category of finite type schemes over

k, and by Aff the category of finite type affine schemes over k.

By an∞-category we mean an (∞, 1)-category. We denote by Cat∞the∞-category of (small)

∞-categories. We denote by Set and Gpd∞ the full subcategories of sets and ∞-groupoids in

Cat∞, respectively.

For a category C, we let Pshv(C) denote the ∞-category of presheaves, that is, functors

Cop
→ Gpd∞. In the particular case when C = Aff we use the term functor of points to refer

to a presheaf in Pshv(Aff). When C is equipped with a Grothendieck topology τ , we denote

the corresponding ∞-category of sheaves by Shv(C; τ) (or omit τ when it is obvious from the

context).

If C is a category which has been constructed to classify certain data, we shall often denote

an object of C by listing the data which it classifies (and we shall say that the data presents the

object). For example, in Definition 2.1.1 below, we use the expression (S,US ⊆ S×X) to denote

an object of the category DomX ; it should be clear from the context what type of datum each

term in the parenthesis refers to. When the data is required to satisfy certain conditions, these

are implicitly assumed to hold and are not reflected in the notation.

2.1 Families of domains

In the interest of motivating Definition 2.1.1, consider the problem of constructing a moduli

space of rational functions on X (i.e., generically defined maps to A1), KX : Affop
→ Set. An

S-point of this functor, f ∈ KX(S) should be presented by a rational function on S × X. Let

U ⊆ S × X be the largest open subscheme on which f is defined. In order for KX to be a

functor, we must be able to pull back f along any map of schemes, T → S. Requiring that these

pullbacks be defined amounts to the condition that for every s ∈ S, U intersects the fiber s×X.

The following definition captures this property of the domain of f .
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Definition 2.1.1. (i) An open subscheme US ⊆ S ×X is universally dense (in X) if for every

map of schemes T → S the open subscheme UT ⊆ T ×X formed by the Cartesian square

UT //

��

US

��
T ×X // S ×X

is dense. It suffices to check this condition at closed points of S; we require that for every closed

point s ∈ S, the open subscheme Us ⊆ X is dense.

(ii) Let DomX be the (ordinary) category whose objects are pairs (S,US ⊆ S × X) where

S ∈ Aff, and US ⊆ S ×X is universally dense.

A morphism (S,US ⊆ S ×X)→ (T,UT ⊆ T ×X) is a map of affine schemes S
f−−→ T which

induces a commutative diagram

US //

��

UT

��
S ×X f×idX // T ×X

There exists an evident functor

DomX
q // Aff

(S,US ⊆ S ×X) � // S

which is a Cartesian fibration, and whose fiber, (DomX)S , is the poset of universally dense

subschemes in S ×X (a full subcategory of all open subschemes of S ×X).

2.2 Abstract moduli spaces of generic data

Notation 2.2.1. A functor between small categories C
f−−→ D induces, via pre-composition, a

functor Pshv(C)
f∗
←−− Pshv(D). f∗ fits into an adjoint triple (LKEf , f∗,RKEf ), where LKEf and

RKEf are defined on an object of F ∈ Pshv(C), by left and right Kan extensions (respectively)

along f :

Cop

f
��

F // Gpd∞

Dop

::

The following definition formalizes what we mean by a moduli problem of generic data overX.

Definition 2.2.2. The category of (abstract) moduli spaces of generic data is Pshv(DomX).

For FDomX
∈ Pshv(DomX), its associated functor of points is F := LKEq(FDomX

) ∈ Pshv(Aff),

where q denotes the fibration DomX
q−→ Aff.

Example 2.2.3. Rational functions form a moduli problem of generic data if we set KX,DomX
:

(DomX)op
→ Sets to be the functor

(S,US ⊆ S ×X) 7→ HomS(US ,A1).
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Its associated functor of points, KX := LKEq(KX,DomX
) : Affop

→ Set, sends

S 7→ {f ∈ K(S ×X): the domain of f is universally dense in X}

where K(S ×X) is the algebra of global sections of the sheaf of total quotients of OS×X .

Replacing A1 with an arbitrary target scheme Y , we obtain similarly constructed presheaves
classifying generically defined maps from X to Y :

GMap (X,Y )DomX
: Domop

X → Set

and its associated functor of points, which we denote

GMap (X,Y ) : Affop
→ Set.

Remark 2.2.4. Let Y be a projective scheme, and let Map(X,Y ) denote the functor of points
which parametrizes families of regular maps. Since X is a curve and Y is projective, every
generically defined map from X to Y admits a (unique) extension to a regular map defined
across all of X. However, this is no longer the case in families, and consequently the map
Map(X,Y )→ GMap (X,Y ) is not an equivalence, despite inducing an isomorphism on the set
of k-points. For example, when Y = P1 the functor Map(X,P1) has infinitely many components
(labeled the degree of the map), but GMap

(
X,P1

)
is connected.

Example 2.2.5 (Reduction spaces). Let Bun
B(DomX)
G : (DomX)op

→ Gpd be the functor which
sends (S,US ⊆ S ×X) to the groupoid which classifies the data(

PG,P
US
B ,PUSB ×B G

φ−−→∼= PG
∣∣
US

)
where PG is a G-torsor over S×X, PUSB is a B-torsor on US , and φ is an isomorphism of G-bundles
over US (the data of a reduction of the structure group of PG|U to B). Denote its associated
functor of points by

Bun
B(gen)
G := LKEq(Bun

B(DomX)
G ) ∈ Pshv(Aff).

The latter is a geometrization of the set B(K)\G(A)/G(O). That is, the isomorphism classes of
the groupoid Bun

B(gen)
G (k) are in bijection with this set.

More generally, if H is any subgroup of G, we define in a similar way a functor of points
Bun

H(gen)
G , which classifies families of G-bundles on X with a generically defined reduction to H.

In particular, Bun
1(gen)
G is the moduli space of G-bundles equipped with a generic trivialization

(equivalently, a generic section).

Notation 2.2.6. We denote objects of Pshv(DomX) using a subscript as in FDomX
. Given

FDomX
∈ Pshv(DomX), we remove the subscript to denote F := LKEq(FDomX

) ∈ Pshv(Aff)
– the associated functor of points.

Remark 2.2.7. Given a presheaf (DomX)op
FDomX−−−−−→ Gpd∞, the points of F can be computed

as follows:

(DomX)op
FDomX //

qop

��

Gpd∞

Affop
F=LKEq(FDomX

)

77
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The functor qop is a co-Cartesian fibration, whence it follows that, for every S ∈ Aff,

F(S) ∼= colim((DomX)op
S

FDomX−−−−−→ Gpd∞).

That is, the passage from FDomX
to F simply identifies data which agrees on a smaller domain.

Ultimately, the object we wish to study is F := LKEq(FDomX
) and its invariants; FDomX

itself is
no more than a presentation of the former.

We record the following lemma for later use.

Lemma 2.2.8. The functor Pshv(DomX)
LKEq−−−−→ Pshv(Aff) is a left exact localization.

Proof. For every S ∈ Aff, the fiber category (DomX)S is a filtered poset, hence weakly
contractible. Thus for G ∈ Pshv(Aff) the transformation (LKEq ◦ q∗)G

∼=−→ G is an equivalence.
That is, the functor Pshv(Aff)

q∗−−→ Pshv(DomX) is fully faithful, and the functor LKEq is a
localization. The left exactness of LKEq follows from [Lur11b, Lemma 2.4.7] after observing that
DomX admits all finite limits, and that the functor q preserves these. 2

2.3 D-modules
For the most part the Langlands program is not as much interested in the set B(K)\G(A)/G(O)
as it is in the space of functions on this set. The appropriate geometric counterpart of this space of
functions should be a suitable category of sheaves on the space chosen as the geometrization
of the set. When k is of characteristic 0, this category is expected to be the category of
sheaves of D-modules. We now explain how to assign to every F ∈ Pshv(Aff) a category of sheaves
of D-modules.

We denote by Ĉat
Ex,L

∞ the∞-category of stable∞-categories which are cocomplete, together
with colimit preserving functors (equivalently, are left adjoints). In [GR11, § 2] Gaitsgory and
Rozenblyum construct a functor

Pshv(Aff)op Dmod−−−−→ Ĉat
Ex,L

∞

whose value on a scheme S is a stable ∞-category Dmod(S) such that its homotopy category is
the usual triangulated category of sheaves of D-modules on S. The functor Dmod carries colimits
of presheaves to limits of categories. In particular, for F ∈ Pshv(Aff) the natural functor

Dmod(F) −→ lim
S−→F

Dmod(S)

is an equivalence.

Remark 2.3.1. For FDomX
∈ Pshv(DomX), the category Dmod(F) can be presented as a limit

over the category ((DomX)/FDomX
)op

Dmod(F) = Dmod(LKEq(FDomX
)) ∼= lim

(S,U)→F
(Dmod(S)).

The premise of this paper is that a presheaf on DomX is the conceptually natural way of
classifying structures which are generically defined over X. However, in practice the limit
presentation of Dmod(F) we obtain as above is unwieldy. In the following sections we shall
present more economical presentations of this category.

2.4 Grothendieck topologies on DomX

In [GR11, Corollary 3.1.4] it is proven that D-modules may be descended along fppf covers, that
is, the functor Dmod factors though fppf sheafification. For a presheaf FDomX

∈ Pshv(DomX),
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this ‘continuity’ property with respect to the fppf topology can be harnessed to obtain more
economical presentations for the category Dmod(F), than the one given in Remark 2.3.1. To this
end we proceed to define a few natural Grothendieck topologies on DomX .

Let τ be the be either the Zariski, étale or fppf Grothendieck topology on S. We endow
DomX with a corresponding Grothendieck pulled back from S using the functor

DomX
// S

(S,US ⊆ S ×X) � // US .

Explicitly, a collection of morphisms in DomX , {(Si, USi ⊆ Si × X)→ (S,US ⊆ S × X)}, is a
τ -cover in DomX if and only if the collection of morphisms {USi → US} is a τ -cover in S.

Observe that for all the choices of τ above, the functor DomX
q−→ Aff is continuous in the

sense that every for cover {(Si, USi ⊆ Si × X) → (S,US ⊆ S × X)} in DomX , its image in
Aff, {Si → S}, is a cover (this follows from the observation that US → S is a cover in all our
topologies). Furthermore, DomX and Aff both admit all finite limits, and q preserves these. By
[Lur11b, Lemma 2.4.7], q induces an adjoint pair of functors, Shv(DomX)

(q∗,q∗)
←−−−−− Shv(Aff) in

which the functor q∗ is pullback along q, and the functor q∗ is the composition of LKEq followed
by sheafification. The functor q∗ preserves finite limits.2

3. Quasi-maps

Recall Example 2.2.3, in which we constructed a moduli problem GMap (X,Y ), classifying
generically defined maps fromX to Y . In this section we present another approach to constructing
a functor of points for this moduli problem using the notion of quasi-maps. The latter notion
is originally due to Drinfeld, was first described by Finkelberg and Mirkovic in [FM99], and
has received a fair amount of attention since. This approach has the advantage of presenting
the space of generic maps as a quotient of a scheme by a proper (and schematic) equivalence
relation.

The main result of this section is to prove that, up to sheafification in the Zariski topology,
both approaches give equivalent functors of points. Consequently, the associated categories of
D-modules are equivalent.

For the duration of this section fix Y ↪→ Pn, a scheme Y together with the data of a quasi-
projective embedding. The space of generic maps constructed using quasi-maps a priori might
depend on this embedding, however it follows from the equivalence with GMap (X,Y ) which we
prove that, in fact, it does not (up to sheafification).

3.1 Definitions
First, a minor matter of terminology. Let V and W be vector bundles over a scheme. We
distinguish between two properties of a map of quasi-coherent sheaves V → W: The map is
called a subsheaf embedding if it is an injective map of quasi-coherent sheaves. It is called a
subbundle embedding if it is an injective map of sheaves whose cokernel is flat (i.e., also a vector
bundle). The latter corresponds to the notion of a map between geometric vector bundles which
is (fiberwise) injective.

We start by defining the notion of a quasi-map from X to Pn. Recall that that a regular
map X → Pn classifies the data of a line bundle L on X together with a subbundle embedding

2 That is, it is a geometric morphism of topoi.
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L
⊆−−→ On+1

X . A quasi-map from X to Pn is a degeneration of a regular map consisting of the
data of a line bundle L on X, together with a subsheaf embedding L ↪→ On+1

X (i.e., it may not
be a subbundle). Observe that to any quasi-map we may associate the open subscheme U ⊆ X
over which L|U ↪→ On+1

U is a subbundle determining a regular map U → Pn. In particular, to
every quasi-map we may associate a generically defined map from X to Pn.3

Definition 3.1.1. Let QMap (X,Pn) : Affop
→ Set be the functor of points whose S-points are

presented by the data (L,L ↪→ On+1
S×X), where L is a line bundle over S ×X, and L ↪→ On+1

S×X is
an injection of quasi-coherent sheaves, whose cokernel is S-flat.

If Y ↪→ Pn is a locally closed subscheme, then a quasi-map from X to Y should be given by
the data of a quasi-map from X to Pn, with the additional property that the generic point of X
maps to Y . We proceed to define this notion in a way better suited for families.

In the case when Y �
� // Pn is a closed subscheme, it is defined by a graded ideal IY ⊆ k[x0,

. . . , xn]. A regular map X
f−−→ Pn, presented by the data of a subbundle L ⊆ On+1

X , lands in Y
if and only if the composition

SymXL
∨ � SymXO

n+1
X
∼= OX ⊗ k[x0, . . . , xn]←− OX ⊗ IY

vanishes. We degenerate the subbundle requirement to obtain the notion of a quasi-map into Y .

Definition 3.1.2. When Y ↪→ Pn is closed embedding, we define QMap (X,Y ) to be the
subfunctor of QMap (X,Pn) consisting of those points classifying the data (L,L ↪→ On+1

S×X) such
that the composition

SymS×XL
∨
←− SymS×XO

n+1
X ←− OS×X ⊗ IY

vanishes.4

We emphasize that the definition of QMap (X,Y ) depends on the embedding Y ↪→ Pn, and
not on Y alone.

The following lemma is well known (see, for example, [FM99, Lemma 3.3.1]).

Lemma 3.1.3. QMap (X,Pn) is representable by a scheme, which is moreover a disjoint (infinite)
union of projective schemes.

If Y ↪→ Pn is a projective embedding, then QMap (X,Y ) → QMap (X,Pn) is a closed
embedding.

Definition 3.1.4. If U ⊆ Pn is an open subscheme then we define

QMap (X,U) ⊆ QMap (X,Pn)

to be the open subscheme which is the complement of QMap (X,Pn\U) (this is independent of
the closed subscheme structure given to Pn\U).

Finally, if Y ↪→ Pn is an arbitrary locally closed subscheme we define

QMap (X,Y ) = QMap
(
X,Y

)
∩QMap

(
X,Pn\(Y \Y )

)
.

It is a locally closed subscheme of QMap (X,Pn).

3 Such a map of course admits an extension to a regular map (in terms of bundles, every invertible subbundle
L

φ−−→ On+1
X extends to a line subbundle L ↪→ (Im(φ∨))∨ ⊆ On+1

X ), but see Remark 2.2.4.

4 The definition could have been given more economically, by replacing the entire symmetric algebras with their
finite-dimensional subspaces containing generators of IY .
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We point out that a map S → QMap
(
X,Y

)
lands in the open subscheme QMap (X,Y ) if

and only if for every geometric point s ∈ S(k), the corresponding quasi-map carries the generic
point of X into Y .

3.1.5 In § 4 we shall need to replace QMap (X,Y ) with a relative and twisted version,
QSectS (S ×X,Y ), corresponding to a scheme Y over S × X. The details are given at the
end of § 3.3.

3.2 Degenerate extensions of generic maps
Recall the presheaves GMap (X,Y ) and GMap (X,Y )DomX

introduced in Example 2.2.3. There
is an evident map

QMap (X,Y )→ GMap (X,Y )

via which we think of every quasi-map as presenting a generic map. Namely, for every S ∈ Aff
it is given by the composition

QMap (X,Y ) (S) −→
∐

(S,U)∈DomX

GMap (X,Y )DomX
(S,U)→ GMap (X,Y ) (S)

where the first map is given by sending a quasi-map presented by L ↪→ On+1
S×X to the open

subscheme U ⊆ S ×X where the cokernel is flat, and the regular map it defines on U . However,
there is some redundancy in the presentation because a generic map may be presented by several
different quasi-maps. We introduce the equivalence relation EY ⊆ QMap (X,Y )×QMap (X,Y )
to be the subfunctor whose S-points are presented by those pairs

((L,L ↪→ On+1
S×X), (L′,L′ ↪→ On+1

S×X)) ∈ (QMap (X,Y )×QMap (X,Y ))(S)

which agree over the intersection of their regularity domains. Observe that the square

EY //

��

p

QMap (X,Y )

��
QMap (X,Y ) // GMap (X,Y )

is Cartesian. The following lemma is well known; we add a proof for completeness.

Lemma 3.2.1. The equivalence relation EY → QMap (X,Y )×QMap (X,Y ) is (representable by)
a closed subscheme. The space EY has countably many connected components and the restriction
of either projection, EY → QMap (X,Y ), to every component of EY is proper.

Proof. Let us first consider the case Y = Pn, and show that the subfunctor

EPn → QMap (X,Pn)×QMap (X,Pn)

is a closed embedding.
We start by examining when two quasi-maps S

φ,ψ−−−→ QMap (X,Pn) are generically
equivalent, that is, map to the same S-point of GMap (X,Pn). Let φ and ψ be presented by
invertible subsheaves

Lφ
� � κφ // On+1

S×X and Lψ
� � κψ // On+1

S×X

whose cokernels are S-flat. Let U ⊆ S × X be the open subscheme where Lφ|U ↪→ On+1
U

is subbundle, and thus a maximal invertible subbundle. The points φ and ψ are generically
equivalent if and only if Lψ|U is a subsheaf of Lφ|U (both viewed as subsheaves of On+1

U ).
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Fix a vector bundle, M, on S ×X whose dual surjects on the kernel as indicated below:

L∨φ
κ∨φ
←−−− (On+1

S×X)∨←↩ Ker(κ∨φ)�M∨.

Dualizing and restricting to U , we have

Lψ|U

��
Lφ|U κφ

⊆ // On+1
U0

// // coker(κφ)
⊆ //M|U

where map coker(κφ) → M is injective (in fact a subbundle). Thus, φ and ψ are generically
equivalent if and only if the composition Lψ|U → M|U vanishes on U if and only if Lψ → M

vanishes on all of S ×X (since U ⊆ S ×X is dense, and both sheaves are vector bundles).
For an arbitrary quasi-projective scheme, Y ↪→ Pn, the lemma now follows from the

Cartesianity of the squares below, using the fact that both right vertical maps are proper when
restricted to a connected component:

EY //

��

EPn

��
QMap (X,Y )×QMap (X,Pn)

��

// QMap (X,Pn)×QMap (X,Pn)

π1

��
QMap (X,Y ) // QMap (X,Pn) 2

Denote the evident simplicial object in Pshv(Aff)

· · ·
//

//
... EY ×QMap(X,Y ) EY //

//

//
EY

//
//oo

oo
QMap (X,Y )oo (3.1)

by

∆op
E•Y // Pshv(Aff)

[n] � // E
(n)
Y

where
E

(n)
Y := EY ×QMap(X,Y ) · · · ×QMap(X,Y ) EY︸ ︷︷ ︸

n-times

.

We denote by QMap (X,Y ) /EY the functor of points which is the quotient by this equivalence
relation – the colimit of this simplicial object. However, in this case it simply reduces to the naive
pointwise quotient of sets

(QMap (X,Y ) /EY )(S) = QMap (X,Y ) (S)/EY (S)

because EY (S) ⊆ (QMap (X,Y ) (S))×2 is an equivalence relation in sets.
The functor of points QMap (X,Y ) /EY presents another candidate for the ‘space of generic

maps’, a priori different from GMap (X,Y ). Relative to GMap (X,Y ), it has the advantage
of being concisely presented as the quotient of a scheme by a proper (schematic) equivalence
relation. The following proposition shows that both functors are essentially equivalent, and
in particular that (up to Zariski sheafification) QMap (X,Y ) /EY is independent of the quasi-
projective embedding Y ↪→ Pn.
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Proposition 3.2.2. The map QMap (X,Y )→ GMap (X,Y ) induces a map of presheaves

QMap (X,Y ) /EY −→ GMap (X,Y )

which becomes an equivalence after Zariski sheafification.

We prove this proposition, after some preparations, at the end of this subsection. First, a
couple of consequences.

Corollary 3.2.3. The Zariski sheafification of the presheaf QMap (X,Y ) /EY is independent
of the quasi-projective embedding Y ↪→ Pn.

The main invariant of GMap (X,Y ) which we wish to study in this paper is homology, and
by extension the category of D-modules (see § 6.1). The following corollary is to be interpreted as
providing a convenient presentation of this category of D-modules, and using this presentation
to deduce the existence of a de Rham cohomology functor (left adjoint to !-pullback).

Corollary 3.2.4. (i) Pullback induces an equivalence

lim
[n]∈∆op

Dmod(E
(n)
Y )

∼=
←−− Dmod(GMap (X,Y )).

(ii) Consider the pullback functors

Dmod(QMap (X,Y ))
f !

←−− Dmod(GMap (X,Y ))
t!
←−− Dmod(spec(k)).

The functor f ! always admits a left adjoint (‘!-push-forward’). When Y ↪→ Pn is a closed
embedding, the functor t! also admits a left adjoint.

The second assertion above is a kind of ‘properness’ property of the (non-representable) map
QMap (X,Y ) −→ GMap (X,Y ), and the functor of points GMap (X,Y ) (when Y ↪→ Pn is a
closed embedding).

The following remark is not used in the rest of the paper. We point it out for future use.

Remark 3.2.5. Corollary 3.2.4 implies that Dmod(GMap (X,Y )) is compactly generated.
Namely, the push-forwards of compact generators of Dmod(QMap (X,Y )) are generators because
f ! is faithful (as is evident from (1)), and are compact because f ! is colimit preserving.

Proof. (1) is an immediate consequence of Proposition 3.2.2.
Regarding (2), it follows from Lemma 3.2.1 that all the maps in E•Y are proper on each

component, hence, on the level of D-module categories, each pullback functor admits a left
adjoint (a ‘!-push-forward’). Consequently, the object assignment

[n] ∈ ∆ 7→ Dmod(EnY ) ∈ Ĉat
Ex,L

∞

extends to both a cosimplicial diagram (implicit in the statement of (1)) and a simplicial diagram.
In the former, which we denote

Dmod!(E•Y ) : ∆→ Ĉat
Ex,L

∞ ,

functors are given by pullback. In the latter, which we denote

Dmod!(E
•
Y ) : ∆op

→ Ĉat
Ex,L

∞ ,
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the functors are given by the left adjoints to pullback (!-push-forward). When Y ↪→ Pn is a closed
embedding, each of the E

(n)
Y is proper on each component, hence the push-forward diagram is

augmented over Dmod(spec(k)).
Under the equivalence of (1), the functors whose adjoints we wish to construct are identified

with
Dmod(QMap (X,Y ))←− lim

∆op
Dmod!(E•Y )←− Dmod(spec(k)).

The setup above falls into the general framework of adjoint diagrams which we describe in
the appendix (Lemma A.1.1). In this setup there exists an equivalence,

colim
∆

Dmod!(E
•
Y )

∼=−→ lim
∆op

Dmod!(E•Y ).

Under this equivalence, the pair of natural functors

Dmod(QMap (X,Y ))←− lim
∆op

Dmod!(E•Y ),

Dmod(QMap (X,Y )) −→ colim
∆

Dmod!(E
•
Y )

are adjoint.
Likewise in the case when Y ↪→ Pn is a closed embedding we conclude that

lim
∆op

Dmod!(E•Y )←− Dmod(spec(k)), colim
∆

Dmod!(E
•
Y ) −→ Dmod(spec(k))

are adjoint functors. 2

We proceed with the preparations for the proof of Proposition 3.2.2.

3.2.6 Divisor complements. Recall that an effective Cartier divisor on a scheme Y is the data
of a line bundle L together with an injection of coherent sheaves L ↪→ OY . The complement of
the support of OY /L is an open subscheme, UL ⊆ Y . We call an open subscheme arising in this
way a divisor complement.

Lemma 3.2.7. Let (S,U) ∈ DomX , and let LU be a line bundle on U ⊆ S ×X. There exists a
finite Zariski cover

{(Si, Ui)→ (S,U)}i∈I
such that for every i the open subscheme Ui ⊆ Si × Ui is a divisor complement. Moreover, we
can choose each Ui so that LU |Ui is a trivial line bundle.

Proof. Since S × X is quasi-projective, the topology of its underlying topological space is
generated by divisor complements. Thus, we may cover U by a finite collection of open
subschemes, {Ui}i∈I , which trivialize LU , and such that each Ui ⊆ S×X is a divisor complement.
Let Si ⊆ S be the open subscheme which is the image of Ui ⊆ S ×X → S. Note that Ui might
not be universally dense in S×X, but that it is in Si×X. Also note that {(Si, Ui)→ (S,U)}i∈I
is a Zariski cover in DomX . 2

Lemma 3.2.8. Let V be a vector bundle over S ×X, let L
� � κ // V be an invertible subsheaf,

and let U ⊆ S×X be the open subscheme where κ is a subbundle embedding. Then, the following
two conditions are equivalent:

(i) the coherent sheaf V/L is S-flat;

(ii) the open subscheme U ⊆ S ×X is universally dense relative to S, that is, The data (S,U)
defines a point of DomX .
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In particular, for an effective Cartier divisor, L ↪→ OS×X , the open subscheme UL ⊆ S ×X
determines an S-point of DomX if and only if the coherent sheaf OS×X/L is S-flat.

Proof. Let p and j denote the maps U
j−→ S × X p−−→ S. Both conditions may be tested on

closed points of S. That is, it suffices to show that for every maximal sheaf of ideals Is ⊆ OS ,

corresponding to a closed point s ∈ S,

Tor1
S(V/L, Is) = 0 iff U ×S {s} 6= ∅.

Indeed, Tor1
S(V/L, Is) vanishes if and only if L|{s}×X

κ|{s}×X−−−−−−→ V|{s}×X is injective if and only

if κ|{s}×X 6= 0 if and only if U ×S {s} 6= ∅. 2

The following lemma contains the geometric input for the proof of Proposition 3.2.2.

Lemma 3.2.9. Assume given:

– (S,U) ∈ DomX ;

– V, a rank m vector bundle over S ×X;

– LU , a line bundle over U together with a subbundle embedding

LU
κU−−−→ V|U .

Then there exist:

– a Zariski cover (S̃, Ũ)
p−−→ (S,U) in DomX ;

– a line bundle L on S̃ × X together with a subsheaf embedding L
� � κ // V|S̃×X whose

cokernel is S̃-flat;

– an identification L|Ũ ∼= LU |Ũ which exhibits κ as an extension of

LU |Ũ
κU |Ũ−−−−→ V|Ũ .

Above, we have used (−)|Ũ to denote pullback along Ũ → U .

Proof. According to Lemma 3.2.7, we may find a Zariski cover in DomX , (S̃, Ũ)→ (S,U), such

that:

– LU |Ũ is a trivial line bundle;

– the open subscheme Ũ ⊆ S̃ × X is a divisor complement associated to a Cartier divisor

N ↪→ OS̃×X .

We proceed to show that the subbundle embedding

(∗) LU |Ũ
κU |Ũ−−−−→ V|Ũ

admits a degenerate extension across S̃ ×X. We point out that the line bundle N is trivialized

over Ũ , and we fix identifications N|Ũ = OŨ
∼= LU |Ũ . By a standard lemma in algebraic geometry

[Har77, II.5.14], there exist an integer l and a map of coherent sheaves N⊗l
κ−−→ V|S̃×X whose

restriction to Ũ may be identified with (∗). By Lemma 3.2.8, coker(κ) is S̃-flat. 2
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3.2.10 Proof of Proposition 3.2.2. The square

QMap (X,Y ) //

��

p

QMap (X,Pn)

��
QMap (X,Y ) // GMap (X,Pn)

is Cartesian, hence it suffices to prove the proposition for Y = Pn.
It suffices to fix an S-point, S → GMap (X,Pn), and show that there exist a Zariski cover

S̃ → S, and a lift as indicated by the dashed arrow below:

QMap (X,Pn)

��
S̃ //

55

S
φ // GMap (X,Pn)

Let φ be presented by the data of a point (S,U) ∈ DomX , and a subbundle embedding LU
κU−−−→
⊆

On+1
U over U . Lemma 3.2.9 guarantees the existence of a cover S̃→ S, and an invertible subsheaf
L
� � κ // On+1

S̃×X , which is an extension of κU |Ũ to all of S̃×X. The data associated with κ presents

a map, S̃ → QMap (X,Pn), which is the sought-after lift.

3.3 Quasi-sections
In the next section we shall need a relative and twisted generalization of the notion of quasi-map,
which we now define. All the results in this section proven above could have been stated and
proven in this more general setup (at the cost of encumbering the presentation).

Fix S ∈ Aff, and let V be a vector bundle on S ×X. Denote the relative projectivization by

P(V) := projS×X(symOS×XV
∨);

it is a locally projective scheme over S×X. We define the space of quasi-sections of P(V)→ S×X,
relative to S, as in the following definition.

Definition 3.3.1. (i) The functor

QSectS (S ×X,P(V)) : Affop
/S → Set

is defined to be the functor of points over S, whose T -points are presented by the data (L,
L ↪→ V|T×X), where L is a line bundle over T × X, and L ↪→ V|T×X is an injection of quasi-
coherent sheaves, whose cokernel is T -flat.

(ii) For a closed embedding Y ↪→ P(V), defined by a graded sheaf of ideals IY ⊆ SymT×XV
∨,

we define
QSectS (S ×X,Y ) ⊆ QSectS (S ×X,P(V))

to be the subfunctor consisting of those points presented by the data (L,L ↪→ V|T×X) such that
the composition

SymT×XL
∨
←− SymT×XV

∨
←− IY

vanishes.

When S = spec(k) and V = On+1
S×X , this definition reduces to QMap (X,Y ).

As for the absolute version, there exists a map

QSectS (S ×X,Y )→ GSectS (S ×X,Y )
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and the counterpart of Proposition 3.2.2 holds. The proof is virtually identical (after adjusting
notation), and is omitted.

Proposition 3.3.2. The map QSectS (S ×X,Y ) → GSectS (S ×X,Y ) induces a map of
presheaves

QSectS ([, S)×X][Y ]/EY −→ GSectS (S ×X,Y )

which becomes an equivalence after Zariski sheafification.

4. Drinfeld’s compactification of BunB

Recall Example 2.2.5, in which we introduced a moduli problem of generic data Bun
B(DomX)
G ∈

Pshv(DomX), and denoted its associated functor of points by

Bun
B(gen)
G := LKEq(Bun

B(DomX)
G ) ∈ Pshv(Aff).

It is a geometrization of B(K)\G(A)/G(O). Conceptual appeal notwithstanding, this
presentation of Bun

B(gen)
G is too unwieldy to be of much value. Namely, the issue is that using it

(directly) to obtain presentations of invariants such as homology or of the category of D-modules
is a non-starter.

In the unpublished note [Gai10, § 1.1], Gaitsgory introduces a category denoted Dmod(Bunrat
B ),

which is cast to play the role of the category of D-modules ‘on’ B(K)\G(A)/G(O). In this
section we present the construction of Gatisgory’s category, and show that it is equivalent to
Dmod(Bun

B(gen)
G ). The discussion parallels that of the previous section.

Notation 4.0.1. Let G be a connected reductive affine algebraic group. Choose a Borel subgroup
B, denote by N the unipotent radical of B, and by H = B/N the canonical Cartan. Choose a
root system for G and B, and denote by Λ+

G the semigroup of dominant integral weights. For a
dominant integral weight λ, let V λ denote the irreducible representation of G with highest weight
λ. For an H-torsor, PH , we denote by λ(PH) the Gm-torsor PH ×λGm (as well as the associated
line bundle – a quasi-coherent sheaf). For a G-torsor, PG, we denote by VλPG the vector bundle
corresponding to V λ.

4.1 Constructions
4.1.1 Plucker data. Given a scheme Y and a G-bundle PG on Y , a convenient way of

presenting the data of a reduction of the structure group of PG to B is given by specifying
an H-bundle, PH , together with bundle maps for every λ ∈ Λ+

G,

λ(PH)
κλ−−→
⊆

VλPG ,

which satisfy the Plucker relations. That is, for λ0 the trivial character, κ0 is the identity map

O ∼= λ0(PH)→ V0
PG
∼= O

and for every pair of dominant integral weights the following diagram commutes:

(λ+ µ)(PH)
κλ+µ //

��

V
λ+µ
PG

��
λ(PH)⊗ µ(PH)

κλ⊗κµ // VµPG ⊗ VλPG

From now on, we adopt this Plucker point of view for presenting points of Bun
B(gen)
G .
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4.1.2 Degenerate reduction spaces. Degenerating the data of a reduction of a G-torsor to B,
in a similar fashion to the degeneration of a regular map to a quasi-map, we obtain Drinfeld’s
(relative) compactification of BunB → BunG.

Let BunBG ∈ Pshv(Aff) be the presheaf5 which sends a scheme S to the groupoid which
classifies the data

(PG,PH , λ(PH)
κλ−−→ VλPG : λ ∈ Λ+

G)

where:

– PG is a G-torsor on S ×X;

– PH is an H-torsor on S ×X;

– for every λ ∈ Λ+
G, κλ is an injection of coherent sheaves whose cokernel is S-flat.

The κλ are required to satisfy the Plucker relations. Informally, this is a moduli space of G-
bundles onX equipped with a degenerate reduction to B. There is an evident map BunB→ BunBG
whose image consists of those points for which the κλ are subbundle embeddings. For more details
on BunBG, see [FM99] or [BG02].

Let {λj}j∈J ⊆ Λ+
G be a finite subset which generates Λ+

G over Z>0. The natural map6

G/B→ ×
j∈J

P(V λj ) ↪→ P(⊗j∈JV λj )

is a closed embedding. For every j ∈ J let Vλj be the vector bundle on BunG×X corresponding
to the representation V λj , and let V := ⊗j∈JVλj .
Lemma 4.1.3 [BG02, Proposition 1.2.2]. Let S → BunG classify a G-bundle PG on S ×X, and
denote (BunBG)S := S ×BunG

BunBG. There exists a natural isomorphism

(BunBG)S
∼=−→ QSectS ([, S)×X][PG/B]

where the space of quasi-sections is defined via the closed embedding

PG/B ↪→ P(V|S×X).

In particular, BunBG is schematic and proper over BunG.

Example 4.1.4. When G = SL2 the presheaf BunBSL2
is equivalent to the presheaf which sends

a scheme S to the groupoid BunBSL2
(S) classifying the data (L,V,L ↪→ V), where L is a line

bundle on S ×X, V is a rank-2 vector bundle on S ×X with trivial determinant, and L ↪→ V is
an injection of quasi-coherent sheaves whose cokernel is flat over S.

Observe that when S = spec(k), we may associate to every degenerate reduction (L,V,
L ↪→ V) ∈ BunBSL2

(k) the genuine reduction (L̃,V, L̃
⊆−−→ V) ∈ BunB(k) where L̃ is the maximal

subbundle, L ↪→ L̃⊆ V extending L. However, there may not exist such extension for an arbitrary
S-family.

We wish to use BunBG to construct a geometrization for B(K)\G(A)/G(O). Note that on the
level of k-points there exists a surjective map

π0(BunBG(k))→ B(K)\G(A)/G(O)

but that this map is not bijective.

5 Often denoted by BunB .

6 Which maps 1 ∈ G to the highest-weight line in each component.
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4.1.5 Gaitsgory’s Dmod(Bunrat
B ) of [Gai10, § 1.1] may be defined as follows: to every point

P ∈ BunBG(S) we may associate its regular domain UP ⊆ S ×X – the maximal open subscheme

where the Plucker data is regular, and hence defines a genuine structure reduction of PG|UP to B.

Define H ∈ Pshv(Aff) be the presheaf which sends S to the groupoid classifying the data

(P ∈ BunBG, P
′ ∈ BunBG, φ)

where φ is an isomorphism of the underlying G-torsors (defined on all of S×X), which commutes

with the κλ over UP ∩ UP ′ (hence induces an isomorphism of B-reductions there). It is evident

that H admits a groupoid structure (in presheaves) over BunBG. In [Gai10], Dmod(Bunrat
B ) is

defined to be the category of equivariant D-modules with respect to this groupoid.

On the level of points, we may define BunBG
H

to be the quotient of BunBG by this groupoid

(i.e., the colimit of the associated simplicial object in Pshv(Aff)). It follows that Dmod(Bunrat
B ) ∼=

Dmod(BunBG
H

). After taking this quotient, we do have an identification of sets

π0(BunBG
H

(k)) ∼= B(K)\G(A)/G(O).

The main result of this section is the following proposition.

Proposition 4.1.6. There exists a map in Pshv(Aff),

(BunBG)H → Bun
B(gen)
G ,

which becomes an equivalence after sheafification in the Zariski topology.

The following corollary is of particular interest in the geometric Langlands program.

Corollary 4.1.7. (i) Pullback along the map constructed in Proposition 4.1.6 gives rise to an

equivalence

lim
[n]∈∆op

(Dmod(H(n))) ∼= Dmod((BunBG)H)← Dmod(Bun
B(gen)
G )

where

H(n) := H ×
BunBG

· · · ×
BunBG

H︸ ︷︷ ︸
n-times

.

(ii) The pullback functors

Dmod(BunBG)←− Dmod(Bun
B(gen)
G )←− Dmod(BunG)

admit left adjoints (‘!-push-forward’).

In Theorem 6.2.4 we shall prove that the pullback functor is, moreover, fully faithful. The

proof of this corollary is completely analogous to that of Corollary 3.2.4.

4.1.8 Proof of Proposition 4.1.6. We proceed to reduce the statement to Proposition 3.3.2.

Given S → BunG, we denote

(BunBG)S := S ×BunG
BunBG

and denote similarly for Bun
B(gen)
G and H.
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It follows from Lemma 4.1.3 that

(BunBG)S ∼= QSectS
(
S ×X,PSG/B

)
,

and it is evident that

(Bun
B(gen)
G )S ∼= GSectS

(
S ×X,PSG/B

)
and that HS is equivalent to the fiber product

HS
//

��

QSectS
(
S ×X,PSG/B

)
��

QSectS
(
S ×X,PSG/B

)
// GSectS ([, S)×X][PSG/B]

Thus we obtain maps, for every S → BunG,

(Bun
B(gen)
G )S/HS

∼=−→ (Bun
B(gen)
G )S

which become equivalences after sheafification in the Zariski topology by Proposition 3.3.2. These
maps are all natural in S → BunG, and we conclude the existence of a map of presheaves

BunBG
H ∼= colim

S→BunG
(BunBG)S/HS −→ colim

S→BunG
(Bun

B(gen)
G )S ∼= Bun

B(gen)
G

which becomes an equivalence after sheafification in the Zariski topology. 2

Remark 4.1.9 (Drinfeld’s parabolic structures). In [BG02, 1.3], Braverman and Gaitsgory
consider two different notions (attributed to Drinfeld) of a degenerate reduction of a G-torsor (on
X) to P . These two notions agree in the case when P = B, but differ in general. Correspondingly,
they construct two different relative compactifications of the map BunP → BunG, denoted BunP
and B̃unP , both schematic and proper over BunG. The categories of D-modules, Dmod(BunP )
and Dmod(B̃unP ), have received a fair amount of attention (e.g., in [BG02, BFGM02]) due to
their part in the construction of a geometric ‘Eisenstein series’ functor

Dmod(BunG)
EisGM
←−−−− Dmod(BunM )

where M is the Levi factor of P .
It can be shown that BunP and B̃unP give rise to two different presentations of Bun

P (gen)
G

(up to fppf sheafification) as a quotient of a scheme (relative to BunG) by a schematic and proper
equivalence relation

(BunP )/HP −→ Bun
P (gen)
G and (B̃unP )/H̃P −→ Bun

P (gen)
G .

Consequently, we obtain two different presentations for the category of D-modules on Bun
P (gen)
G

as a category of equivariant objects,

Dmod((BunP ))HP
∼=
←−− Dmod(Bun

P (gen)
G )

and

Dmod((B̃unP ))H̃P
∼=
←−− Dmod(Bun

P (gen)
G ).
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5. The Ran space approach to parametrizing domains

In this section we describe an approach to presenting moduli problems of generic data using
presheaves over the Ran space. This approach has the advantage that D-modules presented this
way are amenable to chiral homology techniques. After presenting the framework we prove that
it is equivalent, in an appropriate sense, to the approach described in § 2 using DomX .

5.1 The Ran space
Notation 5.1.1. Let Finsur denote the category of finite sets with surjections as morphisms.

Definition 5.1.2. The Ran space, denoted RanX , is the colimit of the diagram

Finop
sur

I 7→XI

−−−−−→ Pshv(Aff)

in which a surjection of finite sets J � I maps to the corresponding diagonal embedding XJ =
Maps(J,X) ↪→ Maps(I,X) = XI .

In the appendix (Proposition A.3.1) it is proven that a point S→ RanX is equivalent to the
data of a finite subset F ⊂ Hom(S,X), that is, RanX(S) is the set of finite, non-empty subsets
of Hom(S,X). Note that, as we have defined it, RanX is not a sheaf even in the Zariski topology
(e.g., it is not separated), and in any case its sheafifications are not representable.

It is common to think of the Ran space as the moduli space for finite subsets7 of X. Indeed,
a closed point spec(k) → RanX corresponds to a finite subset F ⊂ X(k). However, since we
are concerned with generic data, we take the opposite perspective and interpret such a point as
parametrizing the complementary open subscheme UF := X\F . We point out that because X is
a curve, every open subscheme is the complement of a finite collection of points, whence we are
justified in thinking of RanX as a moduli of open subschemes of X.

Notation 5.1.3. (i) Let S → RanX be a point of the Ran space classifying F = {f1, . . . , fn} ⊆
Hom(S,X). We denote by ΓF the closed subspace ΓF := ∪Γfi ⊆ S ×X, where Γfi ⊆ S ×X is
the graph of S

fi−−→ X. We denote the complementary open subscheme by

UF := (S ×X)\ΓF .

It is universally dense in the sense of Definition 2.1.1.

(ii) Denote the ‘category of points’ of the Ran space by

RanX := Aff/RanX .

Let RanX
i′−−→DomX denote the evident functor which is defined on objects by i′(S, F ) = (S,UF ).

Remark 5.1.4. The functor i′ fits in a commutative triangle

RanX
i′ //

s ##

DomX

q
{{

Aff

in which the diagonal arrows are Cartesian fibrations. The functor i′ preserves Cartesian edges.

7 We emphasize the distinction between finite subsets and finite subschemes.
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There are two differences between RanX and DomX . The first, concerning objects, is that
not every family of domains (S,U) ∈ DomX may be presented using a map S → RanX . That
is, RanX classifies a restrictive collection of open subschemes in S × X – graph complements.
The second difference, concerning morphisms, is that while the fibers DomX over Aff are posets
accounting for the inclusion of open subschemes, the fibers RanX are sets and do not account
for such inclusions.

In order to minimize cumbersome notation we use the following conventions.

Notation 5.1.5. We implicitly identify the categories Pshv(RanX) ∼= Pshv(Aff)/RanX . We denote
objects of this category using a subscript as in GRanX . Under this convention, the functors

Pshv(RanX)
LKEs−−−−→ Pshv(Aff) and Pshv(Aff)/RanX

forget−−−−→ Pshv(Aff)

are implicitly identified. The left Kan extension of a presheaf LKEs(GRanX ) ∈ Pshv(Aff) is
abusively denoted by GRanX as well. That is to say, we drop LKEs from the notation, and the
ambient category is to be inferred from the context.

We denote objects of Pshv(DomX) using a subscript as in FDomX
. Given FDomX

∈
Pshv(DomX), we drop the subscript to denote F := LKEq(FDomX

) ∈ Pshv(Aff). We also denote
FRanX := i′∗(FDomX

) ∈ Pshv(Aff)/RanX .

Example 5.1.6. As an example of how we use this notation, take FDomX
= GMap (X,Y )DomX

.
Then GMap (X,Y ) := LKEq(GMap (X,Y )DomX

) agrees with our previously defined notation.
The presheaf GMap (X,Y )RanX

classifies the data

(S
F−−→ RanX , UF

f−−→ Y )

where f is regular map. That is, it classifies a generically defined map together with a domain
where it is regular. Depending on the context, it denotes either an object of Pshv(RanX) ∼=
Pshv(Aff)/RanX or the corresponding object of Pshv(Aff).

5.2 Main statement
The main statement of this section is the following (we use the conventions of Notation 5.1.5).

Theorem 5.2.1. Let FDomX
∈ Pshv(DomX). There exists a natural map FRanX

π−−→ F in
Pshv(Aff). The pullback functor induced by π,

Dmod(FRanX )
π!

←−− Dmod(F),

is fully faithful.

The rest of this section is devoted to the proof of this theorem, which is completed in § 5.5.
The reader who is willing to take this theorem on faith can safely skip to § 6.

5.2.2 Overview. Let FDomX
∈ Pshv(DomX). We think of the associated functor of points

F ∈ Pshv(Aff) as classifying some generically defined data over X. As observed in Example 5.1.6
above, FRanX classifies the same type of generic data together with the additional data of a
domain where it is regular. We will endow FRanX with additional structure which reflects the
fact that a pair of its points may be parametrizing the same generic data, but with different
domains.

The extra structure on FRanX will be that of a module for a certain monad acting on the
category Pshv(Aff)/RanX , which will be constructed in Definition 5.4.1. Theorem 5.2.1 will be
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proved by examining the structure of this monad. At a first approximation, this monad is similar
to the one induced by adjunction,

Pshv(Aff)/RanX

LKEi′ //
Pshv(DomX)

i′∗

oo .

However, the monad we shall actually use will be defined using an intermediate domain category,
constructed in § 5.3, which is more closely related to RanX .

5.3 DomΓ
X – a more economical category of domains

Recall that objects of RanX present open subschemes which are graph complements, but that
RanX does not include morphisms to account for the inclusions between such subschemes. The
category defined below is obtained by adding the appropriate morphisms.

Definition 5.3.1. Let DomΓ
X be the category which has the same objects as RanX . That is, an

object is a pair (S, F ) where S ∈ Aff and F ⊆ Hom(S,X) is a finite non-empty subset.
A morphism (S, F )→ (T,G) is a map of schemes S

f−−→ T such that ∀g ∈ G, g ◦ f ∈ F –
that is, pre-composition with f carries G into F .

It is evident that DomΓ
X is sandwiched in a commuting diagram

RanX
i //

s

))

DomΓ
X

p //

r

##

DomX

q

{{
Aff

(5.1)

in which p(S, F ) = (S,UF ). Note that all three diagonal maps are Cartesian fibrations, and that
i and p preserve morphisms which are Cartesian over Aff. We remark that p is not full (though
it is faithful).

We endow DomΓ
X with the fppf Grothendieck topology pulled back from DomX along p. That

is, a collection of morphisms

{(Si, Fi ⊆ Hom(Si, X))→ (S, F ⊆ Hom(S,X))}

is a cover if and only if the collection of scheme morphisms {UFi → UF } is an fppf cover.

Proposition 5.3.2. The adjunction

Pshv(DomΓ
X)

LKEp //
Pshv(DomX)

p∗
oo

induces mutually inverse equivalences after sheafification in the fppf Grothendieck topology.

The proof is given in § 5.6.
The upshot of this subsection is Corollary 5.3.3 below. The adjunction co-unit for the functors

(p∗,LKEp) induces a natural transformation LKEr ◦ p∗
η−−→ LKEq in the following triangle:

Pshv(DomΓ
X)

LKEr ''

Pshv(DomX)

LKEqww

p∗oo

Pshv(Aff)
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As in Notation 5.1.5, given FDomX
∈ Pshv(DomX), we denote

FDomΓ
X

:= p∗(FDomX
) ∈ Pshv(DomΓ

X).

Corollary 5.3.3. Let FDomX
∈ Pshv(DomX). The natural transformation

LKEr(FDomΓ
X

)
η−−→ F

becomes an equivalence after fppf sheafification. Consequently, D-module pullback gives rise to
an equivalence

Dmod(LKEr(FDomΓ
X

))
∼=
←−− Dmod(F),

the point being that when formulating a moduli problem of generic data as functor of points, it
suffices to describe its points over DomΓ

X , rather than over the much larger category DomX .

5.4 The Ran space formulation for moduli problems of generic data
In this subsection we describe the category Pshv(DomΓ

X) as the category of modules for a monad
acting on Pshv(Aff)/RanX .

Definition 5.4.1. Recall the functor RanX
i−→ DomΓ

X introduced in (5.1). Let M be the monad
on Pshv(Aff)/RanX

∼= Pshv(RanX) induced by the adjunction

Pshv(Aff)/RanX
∼= Pshv(RanX)

LKEi //
Pshv(DomΓ

X)
i∗
oo .

That is, its underlying endofunctor is i∗ ◦ LKEi, and its unit and action transformations are
induced by the adjunction unit and co-unit. We denote the category of modules for the monad
M by

ModM = ModM(Pshv(Aff)/RanX ).

Remark 5.4.2. We describe the action of M explicitly. Let G ∈ Pshv(RanX). The value of M(G)
at (S, F ) ∈ RanX is

M(G)(S, F ) ∼=
∐
G⊆F

G(S,G).

The simplicial resolution in the following proposition is the main ingredient for the proof
of the full faithfulness assertion in Theorem 5.2.1. Note that the functor Pshv(Aff)/RanX

i∗
←−−

Pshv(DomΓ
X) canonically factors through ModM.

Proposition 5.4.3. The canonical functor

ModM Pshv(DomΓ
X)oo

is an equivalence. For every FDomX
∈ Pshv(DomX) there exists an augmented simplicial object

in Pshv(Aff),

· · ·
//

//
... M2(FRanX ) //

//

//
M(FRanX )

//
//oo

oo
FRanX

oo

��
F

(5.2)

which becomes a colimit diagram, after sheafification in the fppf Grothendieck topology.
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In the simplicial complex above, M refers to the endofunctor i∗ ◦ LKEi underlying the
eponymous monad acting on Pshv(Aff)/RanX . We remark that despite the vagueness in the
existence statement of the simplicial complex, it can be made quite explicit, as will be explained
in § 5.4.4.

Proof. The first assertion is a consequence of the Barr–Beck–Lurie theorem [Lur11a,
Theorem 6.2.0.6], since i∗ is conservative and colimit preserving (it admits a right adjoint
given by right Kan extension).

We proceed to prove the second assertion. Recall the functors denoted p, q, r, s and i which
were introduced in (5.1). Below we use the conventions of Notation 5.1.5. In particular, note that
i∗FDomΓ

X
= FRanX .

The Bar construction for FDomΓ
X
∈ Pshv(DomΓ

X) ∼= ModM yields an augmented simplicial
complex in Pshv(DomΓ

X),

· · ·
//

//
... LKEiM

2(FRanX ) //
//

//
LKEiM(FRanX )

//
//oo

oo
LKEi(FRanX )oo

��
FDomΓ

X

which is a colimit diagram [Lur11a, Theorem 4.3.5.8 or Proposition 6.2.2.12].
Applying LKEr, we obtain an augmented simplicial complex in Pshv(Aff) which is colimit

diagram,

· · ·M2(FRanX ) //
//

//
M(FRanX )

//
//oo

oo
FRanX

oo

��
LKErFDomΓ

X

(5.3)

where, as explained in Notation 5.1.5, we also use Mn(FRanX ) to denote

LKEr◦i(M
n(FRanX )) = LKEs(M

n(FRanX )) ∈ Pshv(Aff).

By Proposition 5.3.2, there exists a map LKErFDomΓ
X
→ F which becomes an equivalence

after to fppf sheafification. Composing the augmentation in (5.3) with this map, we obtain the
sought-after augmented complex, (5.2). 2

5.4.4 We make the simplicial complex appearing in the proposition explicit. For the sake
of concreteness, let us consider the case FDomX

= GMap (X,Y )DomX
. We denote an S-point

of GMap (X,Y )RanX
× (RanX)n by (f ;F0, . . . , Fn), where it is understood that each Fi is a

finite subset of Hom(S,X), and that f is a generic map from S ×X to Y , defined on the open
subscheme determined by F0.

Using Remark 5.4.2, we see that the nth term of the simplicial complex (5.2) is the subsheaf

Mn(GMap (X,Y )RanX
) ⊆ GMap (X,Y )RanX

× (RanX)n

whose S-points are the tuples (f ;F ⊆ F1 · · · ⊆ Fn) (i.e., in which the finite subsets are increasing).
The maps are given as follows:

(i) for a degeneracy [n+ 1]
di // // [n] (which maps i, i+ 1 to i),

Mn+1(GMap (X,Y )RanX
) Mn(GMap (X,Y )RanX

)oo

(f ;F0 ⊆ · · · ⊆ Fi ⊆ Fi ⊆ · · · ⊆ Fn) (f ;F0 ⊆ · · · ⊆ Fn)�oo
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(ii) for a face map [n+ 1] [n]? _
sioo (skip i ∈ [n+ 1]),

Mn+1(GMap (X,Y )RanX
) //Mn(GMap (X,Y )RanX

)

(f ;F0 ⊆ · · · ⊆ Fn+1) � // (f ;F0 ⊆ · · · F̂i . . . ⊆ Fn+1)

where the hat over F̂i denotes that the ith term has been omitted. We point out that, since

Fi ⊆ Fi+1 the ith term in (f ;F0, . . . , F̂i, . . . , Fn+1) is the equal to Fi ∪ Fi+1.

Remark 5.4.5. There is another closely related way of describing the category ModM. Namely,

the presheaf RanX has the structure of a semigroup and the category ModM is equivalent to

a certain category of its modules (in Gpd∞). This approach is related to Gaitsgory’s unital

structures introduced in [Gai13]. The comparison of these description will be taken up a future

note.

5.5 Proof of Theorem 5.2.1

In the proof below we use the following general fact: if C is an ∞-category, then equivalences in

C satisfy ‘two-out-of-six’. That is, given a commutative diagram in C

a
∼= //

��

c

��
b ∼=

//

@@

d

in which the horizontal morphisms are equivalences, we may conclude that all the morphisms

are equivalences (the sixth being the composition a→ d).

Proof of Theorem 5.2.1. By Proposition 5.3.2, it suffices to prove that for FDomΓ
X

= p∗FDomX
∈

Pshv(DomΓ
X) the pullback functor

Dmod(FRanX )←− Dmod(LKErFDomΓ
X

)

is fully faithful.

We start by reducing to the case when FDomΓ
X

is in the essential image if the Yoneda

functor DomΓ
X −→ Pshv(DomΓ

X). Denote the Yoneda image of point (S, F ) ∈ DomΓ
X by Y(S,F ) ∈

Pshv(DomΓ
X). Present the presheaf FDomΓ

X
as the ‘colimit of its points’,

colim
Y(S,F )→F

(Y(S,F ))
∼=−→ FDomΓ

X
.

Noting that both LKEi and i∗ preserve colimits (since both admit right adjoints), we also have

colim
Y(S,F )→F

(LKEi(i∗Y(S,F )))
∼=−→ LKEi(i∗FDomΓ

X
) = LKEiFRanX .

Consequently, it suffices to show that the functor

lim
Y(S,F )→F

Dmod(LKEr◦i(i∗Y(S,F )))←− lim
Y(S,F )→F

Dmod(LKErY(S,F ))
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is fully faithful. The latter will follow if we show that for every (S, F ) ∈ DomΓ
X the functor

Dmod(LKEr◦i(i∗Y(S,F )))←− Dmod(LKErY(S,F )) = Dmod(S)

is fully faithful.
The latter functor is induced by the map in Pshv(Aff),

LKEr◦i ◦ i∗Y(S,F ) = LKEs(i∗Y(S,F ))→ S.

The functor of points LKEs(i∗Y(S,F )) sends a scheme T to the set

{((T,G), T
f−−→ S) : G ⊂ Hom(T,X) finite, non-empty, G ⊇ f∗F}.

‘Union with F ’ gives rise to a map

RanX × S ∪F // LKEs(i∗Y(S,F ))

((T,G), T
f−−→ S) � // (T

f−−→ S,G ∪ f∗F )

which fits into the commutative diagram

Y(S,F )
id //

⊆ %%

Y(S,F )

ρ

!!
RanX × S π2

//

∪F
99

S

Passing to D-modules, pullback along the bottom map is fully faithful by [Gai13, Theorem 1.6.5]
(or [BD04, Proposition 4.3.3]). We conclude by a ‘two-out-of-six’ argument: for every pair M,
N ∈ Dmod(S), the maps above give rise to a diagram of ∞-groupoids

Map(ρ!M,ρ!N) Map(ρ!M,ρ!N)

uu

=oo

Map(π!
2M,π!

2N)

ii

Map(M,N)
∼=oo

hh

By ‘two-out-of-six’ for equivalences in Gpd∞, it follows that the map

Map(ρ!M,ρ!N)←− Map(M,N)

is an equivalence of ∞-groupoids, so that

Dmod(i∗Y(S,F ))
ρ!

←−− Dmod(S)

is fully faithful.

5.6 The proof of Proposition 5.3.2
The following lemma contains the geometric input for the proof of Proposition 5.3.2.

Lemma 5.6.1. The functor DomΓ
X → DomX has dense image with respect to the fppf topology.

That is, every point of DomX has a cover by points in the essential image of DomΓ
X .

Proof. Let (S,U) ∈ DomX ; we must show that it admits a cover by points in the essential image
of DomΓ

X .
We may assume that S is connected, and by Lemma 3.2.7 we may also assume that U ⊆ S×X

is a divisor complement. Let L→ OS×X be an effective Cartier divisor whose complement is U .
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Since S is connected, the data of the divisor L→ OS×X is equivalent to a map S → HilbnX
for some n, where HilbnX is the degree n component of the Hilbert scheme of X.8 The standard
map Xn

→ HilbnX is an fppf cover (it is faithfully flat and finite of index n!). Form the pullback

S̃ //

��

Xn

��
S // HilbnX

The components of the top map give rise to a subset F ⊆ Hom(S̃,X), which in turn determines
a point (S̃, F ) ∈ DomΓ

X . Observing that UF = S̃ ×S U , we get a map (S̃, UF )→ (S,U) which is
an fppf cover in DomX , and whose domain is in the essential image of DomΓ

X . 2

Factor p as

DomΓ
X

p′−−→ Dom00
X

j−→ DomX

where Dom00
X is the essential image of p, the full subcategory of DomX consisting of ‘graph

complements’. We endow Dom00
X with the Grothendieck topology pulled back from the fppf

topology on DomX . We will prove that j and p′ both induce equivalences on sheaf categories,
whence Proposition 5.3.2 will follow.

Regarding p′, the idea is that every fiber of p′ is weakly contractible, and that every map
in such a fiber is a cover. Thus, it is reasonable to suspect that p′ might be a site equivalence.
The necessary accounting is a little involved, and the relevant site-theoretic properties of p′,
which allow the argument to go through, are embodied in the hypothesis of Lemma 5.6.3. Before
stating the lemma, we introduce some notation.

Notation 5.6.2. For a category D and an object d ∈ D, we use D/d to denote the overcategory,
and we use Dd/ to denote the undercategory. We shall denote an object of D/d by (d′, d′ −→ d)
where d′ is an object of D, and d′ −→ d is a morphism in D (similarly for undercategories).

If C is another category and C
F−−→D is a functor, Cd denotes the fiber of f over d, that is, the

fibered product C×D {d} in Cat∞. We denote C/d := C×DD/d; it is a relative overcategory. We
denote an object of this category by the data (c, F (c)→ d) where it is implicitly understood that
c is an object in C, and that F (c)→ d is a morphism in D. Dually, we denote Cd/ = C ×D Dd/;
it is a relative undercategory. This notation is slightly abusive since obviously these categories
are dependent on the functor F , and not only on C and d.

Lemma 5.6.3. Let C and D be small sites whose underlying categories admit all finite non-empty
limits, and whose Grothendieck topologies are generated by finite covers. Let C

p−−→ D be a
functor such that:

(i) the Grothendieck topology on C is the pullback of the topology on D;

(ii) the functor p is essentially surjective;

(iii) for every c ∈ C, and for every morphism in D, d
f̃−−→ p(c), there exists a morphism in C,

c′
f̃−−→ c, which lifts9 f ;

(iv) p preserves finite limits;

8 Since X is a curve, HilbnX ∼= X(n), the nth symmetric power.

9 But we do not assume that a Cartesian lift exists.
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(v) for every d ∈ D, the functor (Cd)
op
→ (Cd/)

op is cofinal;

(vi) for every d ∈ D, the category Cd is a cofiltered poset.

Then the functor

Shv(C)
p∗
←−− Shv(D)

is an equivalence, and left Kan extension along p is its inverse (no sheafification necessary).

In § 5.6.4 we will show that DomΓ
X

p′−−→ Dom00
X satisfies the hypothesis of this lemma.

Proof. We will show that the left Kan extension

Shv(C)
LKEp−−−−→ Pshv(D)

lands in sheaves, and prove that the resulting adjoint functors (LKEp, p∗)

Shv(C)
LKEp //

Shv(D)
p∗
oo

are mutually inverse equivalences.
The following is the key observation: Let G ∈ Shv(C), and let d ∈ D. Then G is constant on

the fiber Cd. First we point out that (4) implies that Cd admits all finite non-empty limits, which
may be computed in C. Let c′

f−−→ c be a morphism in Cd; it is a cover by (1). The value of G at
c may be computed using the Čech complex of f . However, (6) implies that this Cech complex
is the constant simplicial object with value c′, since c′×c c′ = c′ because Cd is a poset. It follows
that G(c′)←− G(c) is an equivalence. Since Cd it is weakly contractible (being a cofiltered poset),
the observation follows.

Let G ∈ Shv(C), and let us show that the co-unit transformation (a priori in Pshv(C))

p∗ ◦ LKEpG→ G

is an equivalence. Fix c ∈ C, and let us prove that the map

p∗ ◦ LKEpG(c)→ G(c)

is an equivalence of groupoids. We compute

p∗LKEpG(c) = LKEpG(p(c)) = colim ((Cp(c)/)
op G−−→ Gpd∞) ∼= .

Since (Cp(c))
op
→ (Cp(c)/)

op is cofinal by (5),

∼= colim ((Cp(c))
op G−−→ Gpd∞) ∼= .

Because G is constant on the fibers, and these fibers are weakly contractible, we conclude

∼= G(c).

Next we show that for every G ∈ Shv(C), the presheaf LKEpG is in fact a sheaf. Let d ∈ D,

and let {di → d}ki=1 be a cover in D. Let c ∈ C be such that p(c) = d, and let {ci
f̃i−−→ c}ki=1

be a lift of the fi; it is a cover of c by (1). For every n-tuple of indexes in {1, . . . , k}, i,we
let ci and di denote the corresponding n-fold fibered products over c and d, and we note that

862

https://doi.org/10.1112/S0010437X13007707 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X13007707


D-modules on spaces of rational maps

p(ci)
∼= di by (4). Consequently, forming the Čech covers associated with the covers, we obtain

a commutative square

lim
[n]∈∆op

(∐
|i|=n

G(ci)

)
∼=
��

G(c)

∼=

��

∼=oo

lim
[n]∈∆op

(∐
|i|=n

LKEpG(di)

)
LKEpG(d)oo

in which the vertical maps are equivalences by computation above, and the top map is an
equivalence because G is a sheaf. We conclude that the bottom map is an equivalence for every
cover of d, thus LKEpG is a sheaf.

We complete the proof of the lemma by observing that we have exhibited adjoint functors

Shv(C)
LKEp //

Shv(D)
p∗
oo

for which the co-unit transformation is an equivalence. In addition, Since p is essentially
surjective, p∗ is conservative, whence we conclude that the unit transformation is also an
equivalence. The equivalence of sheaf categories follows. 2

5.6.4 Proof of Proposition 5.3.2. Below, all sites are endowed with their (respective)
fppf Grothendieck topologies, and we suppress the topology in the notation – for example,
Shv(DomX) := Shv(DomX ; fppf).

Recall the factorization
DomΓ

X
p′−−→ Dom00

X
j−→ DomX .

We endow Dom00
X with the Grothendieck topology pulled back from the fppf topology on DomX .

We treat p′ and j separately.

(i) We prove that Shv(Dom00
X )

j∗
←−− Shv(DomX) is an equivalence by showing that it satisfies

the hypothesis of a general criterion for the inclusion of a subsite to induce an equivalence on
sheaf categories (often referred to as the ‘comparison lemma’). A statement of this criterion is
proved in the appendix (Lemma A.2.1).

The functor j has dense image by Lemma 5.6.1. The category DomX admits all finite limits.
In particular, fibered products in DomX are given by squares of the form

(R×T S,U ×T W ) //

��

(R,W )

g

��
(S,U)

f // (T, V )

From this it is evident that whenever U ⊆ S ×X and W ⊆ T ×X are graph complements (i.e.,
are points in Dom00

X ), then so is

U ×T W ⊆ R×S T ×X,

whence it follows that (R ×T S,U ×T W ) ∈ Dom00
X . These are precisely the hypothesis of the

comparison lemma (Lemma A.2.1), and we conclude that j∗ is an equivalence of sheaf categories.
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(ii) We prove that Shv(DomΓ
X)

p′∗
←−− Shv(Dom00

X ) is an equivalence by showing that the
functor p′ satisfies the hypothesis of Lemma 5.6.3. Aside from (5), which we will show, the rest
of the hypothesis is immediate.

Fix (S,U) ∈ Dom00
X . In order to prove that

(DomΓ
X)op

(S,U)→ ((DomΓ
X)(S,U)/)

op

is cofinal, it suffices to show that, for every point Q ∈ ((DomΓ
X)(S,U)/)

op, the category

((DomΓ
X)op

(S,U))Q/

is weakly contractible – or equivalently, that its opposite category

((DomΓ
X)(S,U))/Q (5.4)

is weakly contractible. The object Q is presented by the data of

(T,G) ∈ DomΓ
X_

p′

��
(S,U)

f :S→T// (T,UG) ∈ Dom00
X

and the category (5.4) classifies all the ways of lifting f to a ‘commutative’ square

(S, F ) //
_

p′

��

(T,G) ∈ DomΓ
X_

p′

��
(S,U)

f :S→T// (T,UG) ∈ Dom00
X

This category of ‘lifts’ is equivalent to the category of all finite subsets F ⊆ Hom(S,X) such
that UF = U , and such that {g ◦ f : T → X : g ∈ G} ⊆ F , with morphisms being the opposite
of the inclusion of F s. This category is non-empty, because the assumption that (S,U) ∈ Dom00

X

implies that it is the image of some (S, F ′), and then (S, F ′ ∪ f∗G) completes the square. It
also admits finite products (given by the union of F s), thus is weakly contractible by [Lur11b,
Lemma 2.4.6]. 2

6. Some ‘homological contractibility’ results

In this section we present a few results which relate the D-module categories associated to
different moduli spaces of the kind we have been considering. Namely, we prove that certain
maps between the spaces induce, via pullback, fully faithful functors on D-module categories.
These results are of interest in the geometric Langlands program.

We emphasize the difference between the results we will discuss below, and those discussed
in § 5. Previously we compared the D-module categories of different functors of points classifying
the same type of generic structures in different ways. Below we compare D-module categories
associated to moduli problems parametrizing different generic structures.

Full faithfulness of D-module pullback has implications for classical invariants such as
homology groups, and we start by pointing these out in § 6.1.

6.1 The homology of a functor of points
In this subsection we define the homology groups of an arbitrary functor of points, and relate
this invariant to the category of D-modules.
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6.1.1 Motivation. To every scheme S of finite type over C, we may associate its analytic
topological space, San. By the homology of the scheme S, we mean the topological (singular)
homology of San with coefficients in C.

Let F ∈ Pshv(Aff) be any functor of points over C. We define the homotopy type of F to be
the homotopy colimit of all the points of F,

type(F) := hocolim
S→F

(San).

It is the homology groups of this homotopy type that we are after. The point of the circuitous
definition for the homology of F given below is to have it presented in terms of D-module
categories. In Proposition 6.1.7 we prove that (over C) both notions of homology agree.

Notation 6.1.2. For a functor of points, F ∈ Pshv(Aff), and a pair ofD-modulesM,N ∈Dmod(F)
we denote the mapping space (an ∞-groupoid) by

MapF(M,N) := MapDmod(F)(M,N).

6.1.3 Let F ∈ Pshv(Aff) be an arbitrary functor of points, and let

F
t−→ spec(k) =: pt

denote the map to the terminal object. We denote by Vect the stable ∞-category of chain
complexes of vector spaces over k, mod quasi-isomorphism (whose homotopy category is
equivalent to the derived category of the ordinary category of k-vector spaces). We shall identify
Dmod(spec(k)) = Dmod(pt) ∼= Vect.

A left adjoint, t!, to the pullback functor Dmod(F)
t!
←−−Vect may not be globally defined, but

nonetheless makes sense as a partial functor, defined on the full subcategory of those G ∈Dmod(F)
for which the functor

Vect // Gpd∞

V � //MapF(G, t!V )

(6.1)

is co-representable. For such G, the object t!G ∈ Vect is such a co-representing object.

Definition 6.1.4. The canonical sheaf of a functor of points, F ∈ Pshv(Aff), is

ωF := t!(kpt) ∈ Dmod(F).

Lemma 6.1.5. Let F ∈ Pshv(Aff). The partial functor t! is defined on ωF.

Proof. Define an object of Vect,
H := colim

S
s−→F

(t!ωS),

where the index diagram is the category of points of F (so each S is an affine scheme). We remark
that t!ωS ∈ Vect is well defined because ωS is bounded holonomic.

We show that H co-represents the functor (6.1). Indeed,

MapF(ωF, t
!V )∼= lim

S
s−→F

MapS(ωS , t
!V ) ∼= lim

S
s−→F

Mappt(t!ωS , V )

∼=Mappt

(
colim
S

s−→F

(t!ωS), V

)
= Mappt(H,V ).

We conclude that t!ωF is defined. 2
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Definition 6.1.6. We define the homology of F to be

H•(F; k) := t!ωF ∈ Vect.

It follows from the proof of Lemma 6.1.5 that

H•(F; k) ∼= colim
S

s−→F

(t!ωS) = colim
S

s−→F

H•(S; k).

The following well-known proposition justifies our use of the word ‘homology’ (we include a
proof for completeness).

Proposition 6.1.7. Assume k = C, and let F ∈ Pshv(Aff). Then

H•(F;C) ∼= Htop
• (type(F);C)

where Htop
• denotes topological homology.

Proof. Since both homology theories are the left Kan extensions from affine schemes
(equivalently, they are colimit preserving), it suffices to consider the case when F is representable
by an affine scheme S.

For an affine scheme S, ωS is a bounded holonomic complex, and using the Riemann–Hilbert
correspondence we obtain an equivalence

H•(S;C) = t!t
!Cpt

∼= tc! t
!
cCpt

∼=

where t!c and tc! denote the !-functors on the (derived) category of constructible sheaves of
vector spaces on San. Denote the duality functor on constructible sheaves by D, and topological
cohomology by H•top. By Verdier duality we have an equivalence

∼= tc! t
!
cDCpt

∼= Dtc∗t∗cCpt = D(H•top(San;C)) ∼= .

Using the universal coefficient theorem (and that San has finite-dimensional cohomologies), we
conclude

∼= Htop
• (San;C)

as claimed. 2

Remark 6.1.8. If a map between functors of points F
f−−→ G induces a fully faithful pullback

functor on
Dmod(F)

f !

←−−
⊇

Dmod(G)

then
H•(F; k) ∼= H•(G; k)

since
Mappt(t!ωF, k) ∼= MapF(ωF, ωF)

f !

←−−∼= MapG(ωG, ωG) ∼= Mappt(t!ωG, k).

In the particular case of F
t−→ spec(k), the full faithfulness of t! is equivalent to H•(F; k)

∼=−→
H•(kpt; k) = k being an equivalence, that is, to F being homologically contractible.

6.2 Back to D-modules
The following theorem of Gaitsgory is the prototype for the main result of this section, as well
as its foundation.
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Theorem 6.2.1 [Gai13, Theorem 1.8.2]. Let Y be a connected affine scheme which can be
covered by open subschemes Uα, each of which is isomorphic to an open subscheme of the affine
space An (for some integer n). Then, the pullback functor

Dmod(GMap (X,Y )RanX
)

t!
←−− Dmod(spec(k)) = Vect

is fully faithful.

In particular, we conclude that under the assumptions of the theorem

H•(GMap (X,Y )RanX
; k) ∼= k.

In this section we use Theorem 6.2.1 to obtain additional results of a similar nature.
Recall that the a priori premise of this paper is that ‘the correct’ (from a conceptual point

of view) space of generic maps is presented by the functor of points GMap (X,Y ), introduced in
Example 2.2.3.

Corollary 6.2.2. Let Y be as in Theorem 6.2.1. The pullback functor

Dmod(GMap (X,Y ))←− Dmod(spec(k)) = Vect

is fully faithful.

Proof. Consider the pullback functors

Dmod(GMap (X,Y )RanX
) Dmod(GMap (X,Y ))

π!
oo Dmod(spec(k))

t!oo .

The composition is fully faithful by Theorem 6.2.1. π! is fully faithful by Theorem 5.2.1. We
conclude that t! is fully faithful. 2

The next result is a minor extension of Theorem 6.2.1, in which we remove the requirement
that the target be affine.

Theorem 6.2.3. Let Y be a connected and separated scheme which can be covered by open
subschemes Uα, each of which is isomorphic to an open subscheme of the affine space An (for
some integer n). Then the pullback functor

Dmod(GMap (X,Y ))
t!
←−− Dmod(spec(k)) = Vect

is fully faithful. When Y is projective, t! admits a (globally defined) left adjoint.

The main examples to consider for Y (aside from An), are Pn, a connected affine algebraic
group G, and its flag variety G/B. We prove this theorem in § 6.2.7.

Recall the functors of points Bun
H(gen)
G and Bun

1(gen)
G ∈ Pshv(Aff) which were introduced in

Example 2.2.5. The following theorem is the main result of this section.

Theorem 6.2.4. Let G be a connected reductive algebraic group. Let H be a subgroup of G
such that G/H is rational (e.g., H = 1, N , or any parabolic subgroup). Then the pullback functor

Dmod(Bun
H(gen)
G )←− Dmod(BunG)

is fully faithful. When H = B, this pullback functor admits a (globally defined) left adjoint.

Theorem 6.2.4 is proven in § 6.2.11, after some preparations.
The existence of the left adjoint can be extended to include any parabolic subgroup, if the

statement (and proof) of Proposition 4.1.6 is extended accordingly.
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We remark that the existence of the left adjoint above (and in Theorem 6.2.7) is a proper-like
property of the map Bun

B(gen)
G → BunG (GMap (X,Y ) −→ spec(k)), though this map is not

schematic. We also emphasize, as a concrete application, that pullback full faithfulness implies
that the homology groups of the spaces in question are isomorphic (see Remark 6.1.8).

The rest of this section contains the proofs (and supporting lemmas) of Theorems 6.2.3
and 6.2.4.

By a Zariski cover of presheaves we mean a morphism of presheaves, which becomes an
effective epimorphism after sheafification in the Zariski Grothendieck topology.

Lemma 6.2.5. The functor
GMap (X,−) : S→ Pshv(Aff)

carries Zariski covers to Zariski covers.

Proof. Let Y be a scheme, and {Yi→ Y }i∈I its finite cover by open subschemes. We must show
that for every point S

s−→ GMap (X,Y ), there exist a Zariski cover S̃ → S, and a lift∐
i∈I

GMap (X,Yi)

��
S̃ //

66

S
s // GMap (X,Y )

The point s is presented by a point (S,U) ∈ DomX , together with a regular map U → Y .
For every i ∈ I, let Ui := U ×Yi Y ⊆ U (it is an open subscheme of U), and let Si ⊆ S be the
open subscheme which is the image of Ui → S ×X → S. The composition Ui → U → Y lands
in Yi, and thus determines a lift

GMap (X,Yi)

��
Si //

55

S
s // GMap (X,Y )

Taking S̃ =
∐
Si, the map

∐
Si→

∐
GMap (X,Yi) is the sought-after lift of s. 2

Lemma 6.2.6. The functor
GMap (X,−) : Aff→ Pshv(Aff)

preserves finite limits.

Proof. GMap (X,−) is the composition

Aff
GMap(X,−)DomX−−−−−−−−−−−−→ Pshv(DomX)

LKEq−−−−→ Pshv(Aff)

GMap (X,−)DomX
preserves (all) limits, and LKEq preserves finite limits. 2

6.2.7 Proof of Theorem 6.2.3. The theorem is now an almost immediate result of
Lemmas 6.2.6 and 6.2.5.

Let {Ui → Y }i∈I be a cover of Y by its affine open subschemes, which are each isomorphic
to an open subscheme of An. We note that since Y is separated, every intersection of the Ui has
the same property.
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Construct the Čech complex corresponding to the cover

∆op U• // Aff

[n] � //
∐
|i|=n

Ui

where i = (i1, . . . , in) is a multi-index of elements in I, and Ui =
⋂n
k=1 Uik . We have that Y =

colim
[n]∈∆op

(
∐
|i|=n Ui). By Lemma 6.2.6, the simplicial object

∆op GMap(X,U•) // Pshv(Aff)

[n] � //
∐
|i|=n

GMap (X,Ui)

is the Čech nerve of {GMap (X,Ui)−→GMap (X,Y )}i∈I , which is a Zariski cover by Lemma 6.2.5.
We conclude that the homology of GMap (X,Y ) is isomorphic to that of a point, being the colimit

H•(GMap (X,Y ) ; k)∼= colim
[n]∈∆op

H•

(∐
|i|=n

GMap (X,Ui); k

)
∼= colim

[n]∈∆op
H•

(∐
|i|=n

spec(k); k

)
∼= H•(spec(k); k).

Finally, the equivalence H•(F) ∼= H•(spec(k); k) implies the full faithfulness of t! (see

Remark 6.1.8).

Regarding the existence of the left adjoint, when Y is projective, this is a restatement of

Corollary 3.2.4(2). 2

We continue with the preparations for the proof of the Theorem 6.2.4. The following is a

corollary of Lemma 6.2.6.

Corollary 6.2.8. Let be G an algebraic group.

(i) GMap (X,G) is a group object in Pshv(Aff).

(ii) If Y is a scheme acted on by G, then GMap (X,Y ) is acted on by GMap (X,G).

Definition 6.2.9. A map of presheaves E → B is an fppf-locally trivial fibration with fiber F,

if there exist an fppf cover B′ → B (i.e., a morphism of presheaves which becomes an effective

epimorphism after fppf sheafification), and a map

B′ ×B E→ F

which exhibits the former as a product B′ ×B E ∼= F ×B′.

Lemma 6.2.10. Let E
p−−→ B be an fppf-locally trivial fibration with fiber F. If Dmod(F)

t!
←−−

Dmod(spec(k)) is fully faithful, then Dmod(E)
p!

←−− Dmod(B) is fully faithful.
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Proof. Let M,N ∈ Dmod(B). We must show that

MapE(p!M,p!N)←−MapB(M,N) (∗)
is an equivalence of ∞-groupoids.

Fix a Cartesian square
F ×B0

//

��

p

E

��
B0

// B

in which B0→ B is an fppf cover. Denote the Čech simplicial complex associated with the cover
B0→ B by

∆op B• // Pshv(Aff)

[n] � // Bn := B0 ×B · · · ×B B0︸ ︷︷ ︸
n-times

and the one associated with the cover B0 × F→ E by

∆op (B0×F)•// Pshv(Aff)

[n] � // (B0 × F)n := (B0 × F)×E · · · ×E (B0 × F)︸ ︷︷ ︸
n-times

There exist equivalences of stable ∞-categories

Dmod(B) ∼= lim
[n]∈∆

Dmod(Bn) and Dmod(E) ∼= lim
[n]∈∆

Dmod((B0 × F)n)

and p! is induced by a transformation of the cosimplicial diagrams.
Let Mn and Nn denote the images of M and N in Dmod(Bn). Let (p!M)n and (p!N)n denote

the images of M and N in Dmod((B0 × F)n). We have equivalences of ∞-groupoids

MapB(M,N) ∼= lim
[n]∈∆

MapBn(Mn, Nn)

and
MapE(p!M,p!N) ∼= lim

[n]∈∆
Map(B0×BE)n((p!M)n, (p

!N)n).

We have that (p!M)n ∼= p!
nNn, where pn is the map (B0 ×B E)n

pn−−→ Bn. Furthermore, the map
(∗) is the limit of the maps

Map(B0×BE)n(p!
nMn, p

!
nNn)←−MapBn(Mn, N

′
n). (∗∗)

Finally, for each n we have a commuting diagram

(B0 ×B E)n
∼= //

pn

��

F ×Bn

��
Bn

= // Bn

Consequently, for every [n] ∈ ∆, the functor p!
n is fully faithful, and we see that map (∗∗) is an

equivalence. We conclude that the map (∗) is an equivalence. 2

The proof below proceeds by showing that the map Bun
H(gen)
G → BunG is a fibration with

contractible fibers. After the proof we indicate a strategy for another proof, similar to that of
Theorem 6.2.3.
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6.2.11 Proof of Theorem 6.2.4. Observe that there exists a Cartesian square

GMap (X,G/H)× Bun
1(gen)
G

��

// Bun
H(gen)
G

��
Bun

1(gen)
G

// BunG

The functor Bun
1(gen)
G → BunG becomes an effective epimorphism after étale sheafification.

Indeed, if PG is G-torsor on S ×X then, by the Drinfeld–Simpson theorem [DS95, Theorem 2],

there exists an étale base change S′ → S such that PG ×S S′ is Zariski locally trivial, hence

admits a generic trivialization.

Our assumptions on G/H imply that it may be covered by open subschemes which are

isomorphic to open subschemes of affine space. Thus by Theorem 6.2.3,

Dmod(GMap (X,G/H))←− Dmod(spec(k))

is fully faithful. The full faithfulness of the pullback functor

Dmod(Bun
H(gen)
G )←− Dmod(BunG)

now follows from Lemma 6.2.10.

In the case when H = B, the existence of a left adjoint is a restatement of

Corollary 4.1.7(2). 2

Remark 6.2.12. A different proof of the theorem may be deduced from the following statement.

Let Y → S ×X be an fppf fiber bundle with fiber F , which becomes Zariski locally trivial,

after a suitable fppf base change S̃ → S, and such that Dmod(F ) ←− Dmod(spec(k)) is fully

faithful. Then the pullback functor

Dmod(GSectS (S ×X,Y ))←− Dmod(S)

is fully faithful.
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A. Appendix

A.1 Limits and colimits of adjoint diagrams

Let

I
G // Ĉat

Ex,L

∞

i � // Ci
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be a small diagram. If for every morphism, i
f−−→ j in I, the functor Ci

G(f)−−−−→ Cj admits a left
adjoint,10 then there exists a unique diagram (up to contractible ambiguity)

Iop F // Ĉat
Ex,L

∞

i � // Ci

such that for every morphism, i
f−−→ j, the functor Cj

F (f)−−−−→ Ci is left adjoint to G(f). Let us
call the pair of diagrams, F and G, adjoint.

The following lemma appears in [Gai11, 1.3.3], where it is attributed to J. Lurie.

Lemma A.1.1. Let F and G be adjoint I-diagrams as above.

(i) There exists an equivalence of stable ∞-categories

colim
i∈Iop

F (i) ∼= lim
i∈I

G(i)

(the colimit and limit are taken within Ĉat
Ex,L

∞ ).

(ii) For every j ∈ I, the natural functors

Cj
δj // colimi∈IopF (i),

Cj limi∈I G(i)πj
oo

become adjoint, (δj , πj), after identifying the categories on the right via (1).

(iii) Let C ∈ Ĉat
Ex,L

∞ , and let I/
G/−−−→ Ĉat

Ex,L

∞ be a co-augmentation of C over of G, such that
for each i, the functor C → Ci admits a left adjoint. Then the natural functors

colimi∈IopF (i) // C,

limi∈I G(i) Coo

become adjoint, after identifying the categories on the left via (1).

Proof. (i) The categories Ĉat
Ex,L

∞ and Ĉat
Ex,R

∞ both admit small limits, and the inclusion
into Ĉat∞ preserves these ([Lur09, 5.5.3.5,5.5.3.18] and [Lur11a, 1.1.4.4]). Consequently, since
the diagram G lands in both categories (viewed as subcategories of Ĉat

Ex

∞ ), we have an
equivalence

lim(I
G−−→ Ĉat

Ex,L

∞ ) ∼= lim(I
G−−→ Ĉat

Ex,R

∞ ).

There exists a duality11

Ĉat
Ex,R

∞
∼=−→ (Ĉat

Ex,L

∞ )op

which is the identity on objects, and carries each functor to its left adjoint. It carries a limit

cone I/
Glim

−−−−→ Ĉat
Ex,R

∞ for G, to a colimit cone (Iop).
F colim

−−−−−→ Ĉat
Ex,L

∞ for F , supported on the

10 Not to be confused with the right adjoint it admits by virtue of being a morphism in Ĉat
Ex,L

∞ .

11 Thus, Ĉat
Ex,L

∞ and Ĉat
Ex,R

∞ admit colimits as well, but these are not (in general) preserved by the inclusion
into Ĉat∞.

872

https://doi.org/10.1112/S0010437X13007707 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X13007707


D-modules on spaces of rational maps

same objects. In particular, restricting to the cone point, we get an equivalence

lim(I
G−−→ Ĉat

Ex,R

∞ ) ∼= colim (Iop F−−→ Ĉat
Ex,L

∞ ).

(ii) In the limit and colimit diagrams above, the functors Cj
πj
←−− limi∈I G(i) and Cj

δj−−→
colim i∈IopF (i) correspond under the duality, hence are adjoint.

(iii) By the same argument as in the first part of (1), the induced functor C → limi∈I G(i)

admits a left adjoint, thus can be thought of as a map in Ĉat
Ex,R

∞ . Dualizing, we get an augmented

Iop-diagram, (Iop).
F .−−−→ Ĉat

Ex,L

∞ , whence the assertion follows. 2

A.2 A comparison lemma for sites

The following lemma is an analog of the ‘comparison lemma’ [Joh02, Theorem 2.2.3], which

applies to sheaves of sets (cf. [Lur09, Warning 7.1.1.4]).

Lemma A.2.1. Let C be a small category with a Grothendieck topology, and let C0 j−→
⊆

C be a

full subcategory. Assume that:

(i) C admits all finite limits;

(ii) for any fibered product in C, c1 ×c c2, if c1, c2 ∈ C0 then c1 ×c c2 ∈ C0 (we do not assume

that c ∈ C0);

(iii) C0 is dense in C – that is, every object in C has a cover by objects in C0.

Then the restriction functor

Shv(C0)
j∗
←−− Shv(C)

is an equivalence, where the topology of C0 is the pullback of the topology of C.

For example, the full subcategory Dom00
X ⊆ DomX satisfies the assumptions of this lemma

(see § 5.6.4).

The proof uses the slice category notation introduced in Notation 5.6.2. We start with the

following claim.

Claim A.2.2. In the context of Lemma A.2.1, the right Kan extension functor

Shv(C0)
RKEj−−−−−→ Pshv(C)

lands in Shv(C).

Proof of Lemma A.2.1. Assuming Claim A.2.2, it suffices to prove that the resulting adjoint

functors (j∗, RKEj)

Shv(C)
j∗ //

Shv(C0)
j

oo

are inverse equivalences. Indeed, it is immediate that the co-unit transformation j∗◦RKEj→ 1C0

is an equivalence.

It remains to show that the unit transformation is also an equivalence. Let F ∈ Shv(C), let

c ∈ C, and let us prove that

F(c)→ RKEj ◦ j∗F(c)
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is an equivalence of ∞-groupoids (we emphasize that F is assumed to be a sheaf, and not an
arbitrary presheaf). It is a priori true that this map is an equivalence whenever c ∈ C0. For
general c ∈ C, let c0 f−−→ c be a cover with c0 ∈ C0; since C is assumed to admit all limits, F(c)
may be calculated using the Čech complex associated to f . By assumption (2), all the terms
in this complex belong to C0 and the assertion that the unit transformation is an equivalence
follows. 2

Proof of Claim A.2.2. Let F0 ∈ Shv(C0), and denote F := RKEj(F0). Let c ∈ C, and let Sc ⊆ C/c
be a covering sieve. We must show that

lim(Sop
c

F−−→ Gpd∞)←− F(c) (A.1)

is an equivalence.
The categories C0

/c, and Sc are both full subcategories of C/c, and we denote their intersection

S0
c := C0

/c ∩ Sc.

The triangle

(S0
c)

op F0 //

⊆
��

Gpd∞

S
op
c

F

::

is a right Kan extension, since for every d → c ∈ Sc we have that C0
/d

∼=−→ (S0
c)/d→c. Thus it

suffices to show that

lim((S0
c)

op F0−−→ Gpd∞)←− lim((C0
/c)

op F0−−→ Gpd∞) ∼= F(c)

is an equivalence. In turn, the latter equivalence will follow if we show that the following triangle
is a right Kan extension:

(S0
c)

op F0 //

⊆
��

Gpd∞

(C0
/c)

op

F0

::

(A.2)

We now use our assumptions on the relation between C and C0. Let c0 f−−→ c where c0 ∈ C0.
Using hypothesis (3), conclude that S0

c generates a covering sieve over c, in C. It is always true
that the maps

{ci ×c c0
→ c0 : (ci→ c) ∈ S0

c}
generate a covering sieve, over c0, in C. However, according to hypothesis (2), each of the fiber
products belongs to C0, so that the latter maps also generate a covering sieve in C0 (over c0),
which is simply the fibered product

(S0
c)/(c0→c) //

⊆
��

S0
c

⊆
��

C0
/c0

◦f // C0
/c
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Finally, since F0 is a sheaf on C0 we have an equivalence

lim(((S0
c)/(c0→c))

op F0−−→ Gpd∞)
∼=
←−− F0(c0)

implying that (A.2) is a right Kan extension. Tracing back, we conclude that RKEjF0 ∈ Pshv(C)
is a sheaf. 2

A.3 Points of the Ran space
Proposition A.3.1. The functor of points Affop RanX−−−−→ Gpd∞ takes values in sets. Namely,
for every S ∈ Aff,

RanX(S) = {F ⊆ Hom(S,X) : F finite, non-empty}.
Proof. Consider the augmented Finop

sur diagram

(Finsur ∪ {∅})op // Set ⊆ Gpd∞

given by

Hom(S,X) //

,,

(Hom(S,X))2 //
//

S2

		

++

(Hom(S,X))3
//

//
//

S3

		

%%

· · ·
···

��
{F ⊆ Hom(S,X) : F finite}

(the circular arrows represent the action of the respective symmetric groups on n elements, Sn).
By definition, RanX(S) is the colimit in Gpd∞ of the top row,12 so we must show that diagram
is a colimit diagram.

It suffices to prove that for every F ∈ {F ⊆ Hom(S,X) : F finite}, the following homotopy
fiber is contractible:

{F} ×{F⊆Hom(S,X):F finite} RanX(S) //

��

RanX(S)

��
{F} // {F ⊆ Hom(S,X) : F finite}

Since colimits in Gpd∞ are universal, this fiber is the colimit of the Finop
sur diagram in Gpd∞

Surj({1}, F ) // Surj({2}, F )
//
//

S2

��
Surj({3}, F )

//

//
//

S3

��
· · ·

where {n} denotes a finite set with n elements and Surj({n}, F ) is the set of surjections
{n}� F . We prove that this colimit is contractible. Applying the Grothendieck unstraightening
construction, we get the Cartesian fibration

(Finop
sur)/F

��
Finop

sur

12 We emphasize that we want to show this diagram is a homotopy colimit. That this is a colimit diagram in sets
is obvious.
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(where F is now considered as an abstract finite set). The homotopy type we are after is the
weak homotopy type of the total space, (Finop

sur)/F , which is evidently contractible since it has a
terminal element. 2
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