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Abstract

A close analogue for some hypergroup measure algebras of the structure semigroup theorem
of J. L. Taylor for convolution measure algebras is constructed: a structure semihypergroup
representation is made for the hypergroup measure and its spectrum. This is done for those
hypergroup measure algebras that satisfy a condition known as the structure-strong condition.
This condition is that the norm-closure of the linear span of the spectrum of the hypergroup
measure algebra is a commutative B*-algebra. Then examples of hypergroups whose measure
algebras satisfy this condition are given. They include the space of B-orbits of G, where
B is a finite solvable group of automorphisms on a locally compact abelian group G. (The
hypergroup measure algebra may be identified with the algebra of B-invariant measures on
G.) Other examples are the algebra of central measures on a compact, connected, semisimple
Lie group, and the algebra of rotation invariant measures on the plane.

1980 Mathematics subject classification (Amer. Math. Soc): 43 A 10.
Keywords and phrases: abstract harmonic analysis, measure algebras, hypergroups, structure
semigroups.

1. Introduction

Our goal has been to duplicate, for hypergroup measure algebras, the program
of Joseph L. Taylor. He developed his structure semigroup representation of
commutative group measure algebras and successfully applied it to the study
of the structure of those algebras. (See Taylor [17].) The results of Taylor
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320 W. Christopher Lang [2]

encompass essentially only commutative semigroup measure algebras. The hope
is to extend his results to noncommutative algebras or algebras not arising from
groups. Here, under the restricted hypothesis of the structure-strong condition,
a close analogue to the structure semigroup representation (Taylor [17, 3.2.3]) is
built, for certain hypergroup measure algebras. These measure algebras include
the algebra of central measures on a compact connected semisimple Lie group,
and the algebra of rotation invariant measures on the plane. These examples rely
on the calculations of their spectra by D. Ragozin [11], [12]. A different class of
examples is provided by the algebra of measures on a locally compact abelian
group which are invariant under a finite solvable group of automorphisms.

Another approach to structural representations of hypergroup measure alge-
bras is found in C. Dunkl [3]. His theorem [3, 1.5] resembles the "structure
semihypergroup" Theorem 4.1 below; Dunkl requires a condition on the spec-
trum of the measure algebra different than the "structure-strong" condition in-
troduced in Section 3 below. Dunkl gives a sharper condition [3, 3.1] which
ensures that certain simple algebras satisfy the hypotheses of [3, Theorem 1.5],
and gives examples, such as the hypergroup measure algebra arising from ultra-
spherical series, which satisfy the conditions. These results resemble Ragozin's
results [11], [12]. Dunkl conjectured that the algebra of central measures on a
compact simple Lie group also satisfies his condition [3, 3.1]. (As stated above,
our "structure-strong" condition will be shown to hold for the algebra of central
measures on a compact connected semisimple Lie group.)

The definition of hypergroup is given in Jewett [9], our basic reference on
hypergroups (which he calls "convos"). Essentially, a hypergroup H is a locally
compact space with a binary operation H xH —» PM(H), where PM{H) is the
set of probability measures on H, satisfying certain "convolution properties" (see
below). Examples are provided by many orbit spaces, for example, the orbits in
the plane, of the group of all rotations about the origin, form a hypergroup. The
hypergroup operation corresponds to the convolution of rotation-invariant mea-
sures on the plane. Another example is given by the algebra of central measures
on a compact group (the underlying hypergroup is the space of inner automor-
phism orbits, that is, conjugacy classes.) (See Ross [14] for more information of
an expository nature.)

Hypergroups as defined by Jewett have the following three important proper-
ties.

(a) fn/dfi * v = fHfH{fHfdPx * py}d/z(i)dv{y) for all >i,v e M{H),
f £ CQ{H). We often write / (x * y) for fHfdpx * py, even though x * y has
no independent meaning, so we may write the above equation as fH f dfj, * v =
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[3] The structure of hypergroup measure algebras 321

(b) If fi, v € M(H) are probabili ty measures, then /j, * u is a probabili ty
measure.

(c) M(H) with * is a Banach algebra.

These properties are the features of a hypergroup we will generally use. Nor-
mally, we will assume hypergroups to be commutative (that is, M(H) is a com-
mutative Banach algebra).

We set down some definitions and notation. Our principal references are
Taylor [17], Jewett [9], and Rennison [13].

Let A be a Banach algebra. Then let Ai = {a € A: \\a\\ < 1}. Let A+

be the set of all positive elements of A. Let A* be the dual space of A (all
continuous linear functionals on A). Let A A be the spectrum of A (all nonzero
multiplicative linear functionals on A). Note A A C A*.

Let X be locally compact and Hausdorff. Let M(X) be the set of all finite
regular complex Borel measures on X. We will denote by px the point mass
at x € X. Let Co(X) be the space of all continuous functions which vanish at
infinity (that is, for e > 0 there exists a compact K C X such that |/(x)| < e for
all x $. K). Let CQQ{X) be the space of all continuous functions with compact
support. Then the Riesz representation theorem says that Co(X)* = M(X) by
the isometric isomorphism \i —• FM: M(X) —• Co(X)*, where F^f) = fxfdfj,
for all / G C0(X).

We now consider certain products of M{H)* and M{H)** for a hypergroup
H. Suppose H is a commutative hypergroup. A fortiori H is a locally com-
pact Hausdorff space. Then M(H) is an L-space (see Taylor [17, 2.1.1]), and
hence M(H)* is a commutative unital B*-algebra. This follows from Taylor
[17, 2.3]; the product given on M(H)** is the product of Sreider generalized
functions. (For / e M{H)*, for each \i e M(H) let /„ € L°°{H,fi) be the p-
essentially bounded function that corresponds to / restricted to Ll{H,n). Then
{fp}fi€M(H) is the generalized function for / . So f{v) = JH /M dv for any v <C /i.
Now consider / , g € M(H)*. They have generalized functions {/M}, {<7M} respec-
tively. Then fg is the bounded linear functional whose generalized function is
l / ^ } . That is, define fg e M{H)* by {fg)(n) = fH f ^ dp for all (i e M{H).
Also, the involution on M(H)* is defined by /*(/*) = f(p)~ for all // G M(H),
f e M(H)* (so the generalized function of /* is {(//*)"}• Here p, is the usual
involution of M(H) (and the other superscript bars are complex convolution).
The unit of M{H)* is l(/x) = fi(H) = fH ld/x, so the generalized function is
just the constant one function. That this is well defined and makes M(H)* a
commutative unital B*-algebra is Theorem 2.3.4 of Taylor [17].)

The Arens product on M(H)** is defined in three stages (this is actually the
right Arens product) as follows.
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(1) For / G M(H)* and // G M{H) define (/,//) G M{H)* by (f,n){") =
f(fi*v) for all veM(H).

(2) For F G M(t f ) " and / G M(#)* define [F,f] G M ( # ) ' by [

(3) For F,G € M ( # ) ~ define FG e M{H)** by FG(/) = F([G,/]) for all
fGM(H)*.

The following lemma will be useful.

LEMMA 1 . 1 . In any measure space M(K), where K is a locally compact
Hausdorff space, a measure p G M(K) is positive if and only if fk 1 dp =

PROOF. Without loss of generality let ||p|| = 1. Clearly p > 0 implies
fk 1 dp = \\p\\. By polar decomposition, dp = hd\p\ where \h\ = 1 p-a..e. Suppose
h = a + Pi (a, /? real-valued). Then 1 = fk 1 dp = fk ad\p\ so fk/3d\p\ - 0 and
Jkad\p\ = 1. Since \h\ = 1 p-a.e., — 1 < a < 1 p-a.e. This forces a = 1 p-a.e.
(/ f c(l-a) d\p\ = 0 and 1-a > 0 forces 1-a = 0 |p|-a.e.; see Rudin [15, 1.39(a)]).
Thus /3 = 0 p-a.e. So p = \p\.

2. Semihypergroups

Here a usable notion of semihypergroup is defined and some basic theory is
developed.

DEFINITION. A semihypergroup K is a locally compact Hausdorff space with
the following properties.

(a) The space M(K) of finite complex regular Borel measures has a product
* making it a Banach algebra.

(b) The product of probability measures on K is always a probability measure.
(c) The product is weak-* jointly continuous on the unit ball of M(K).
Note that a compact semihypergroup is also a semiconvo as defined by Jew-

ett [9, Section 3]. For a semihypergroup K define KA C C{K) to be {/ G
C(K): fKfdpk*pt = f(k)f{l) for all k,l G K}. We say K is unital if there
exists e G K such that pe is a unit for the Banach algebra M(K).

LEMMA 2.1 . Let K be a locally compact Hausdorff space. If L: M{K) —> C
is weak-* continuous and linear, then there is a function h G CQ(K) such that
L{u) = $Khdv for all v G M{K).

PROOF. This follows from the identification of C{K)* with M(K).
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PROPOSITION 2.2 . If K is a semihypergroup, we may write

I I I fdpk*pldii{k)dv{l)= f fd»*v
JKJKJK JK

for all f eC0(K), n,v e M(K).

PROOF. Let / e C0(K) and n, v G M(K). Consider the map r? —> JK fdy.*ri.
Since r\ —* fj,*ri is weak-* continuous (which follows from assumption (c) on K),
the map is linear and weak-* continuous on M{K). So by the lemma, there
exists h e CQ{K) such that r) —> JK f d/j, * r) is the map rj —> JKhdrj. That is,
fK fdfx * v = fKhdu. Now h(l) = fK hdp = fK f dfi * pi. So fK f d/i * v =

Now consider the map V —>• fK f dr] * pi. As before, there exists # € Co (
such that fKfdr) * fj, = fKgdrj. Now y(fc) = fKgdpk = fKfdpk * pi- So
JKfdfi*pi = fK JK fK f dpk * pi dp(fc) di/(i).

A^ote. As with hypergroups, we often write f(k*l) = JK f dpk*pi for k,l € K
and / € Co(K), even though fc * / does not represent a point in K. By assumption
(c) for semihypergroups, we know t h a t a f(k * 1) is jointly continuous on K x K.
With this notat ion, the conclusion of the proposit ion reads

/ I f{k * I) dfj,{k) du{l) = I fdfi*v.
JKJK JK

Also / e KA means /(* * I) = /(*)/(/) for all fc, I e K.
Warning: KA is not contained in Co(K), unless K is compact.

DEFINITION. Suppose H and K are semihypergroups. Then a continuous
map 4>: H —• K is a semihypergroup homomorphism if for all / e CQ{K) and all
k,leH, then fo4>eC0{H) and ( / o <t>)(k * I) = f(<t>(k) *

REMARK. If H and /£" are semigroups, this becomes f(<j>(kl)) = f(<j>(k)<t>(l))
(so 0(fc/) = </>(&)</>(/)). Since k * Z has no independent meaning, we must formulate
this definition using functions.

Note that <j> extends in a natural way to be an algebra homomorphism of
measure algebras.

PROPOSITION 2 . 3 . The map \i -> no<j)~x: M{H) -> M(K) is a norm-
continuous and weak-* continuous algebra and L-homomorphism, which sends
point-masses to point-masses.

PROOF. Clearly, point-masses are sent to point-masses, and the map is a
norm-continuous L-homomorphism by Taylor [17, 2.2.2]. Easily the map is weak-
• continuous. To show that fi —> ft o <$>~x is an algebra homomorphism, select
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|i,i/€ M{H) and / e C0(K). Then

f f d(ji * v) o d,'1 = f f ( / o <f>){k * I) dn{k) dv(l)
JK JKJK

= f f
JK JK

= f [ f{k*l)d(io(j)-1{k)duo<f>-1{l)
JKJK

= f MMo<r1)*("°<r1)
JK

3. The structure-strong condition for
a hypergroup measure algebra

The following condition enables us to build a close analogue of Taylor's theo-
rem [17, 3.2.3] for hypergroup measure algebras.

DEFINITION. A commutative hypergroup measure algebra M(H) is structure-
strong if the norm-closure of the linear span of AM(H) in M(H)* is a commu-
tative unital B*-algebra.

Note. This condition is in force for commutative convolution measure algebras
(see Taylor [17, 3.2.2]). If a hypergroup is not a semigroup, its measure algebra
will not be a commutative convolution measure algebra. This is readily shown
by checking the definition of Taylor [17, 3.1.2]. (Use [17, 2.5.2].)

EXAMPLES. Some examples of hypergroups whose measure algebras satisfy
the structure-strong condition are given by countable discrete hypergroups whose
hypergroup characters form a hypergroup; see Jewett [9, 7.3]. For them, the hy-
pergroup algebra L1 (H) and the measure algebra coincide, and the spectrum is
just the set of hypergroup characters. (See Jewett [9, 6.3].) A discrete countable
commutative hypergroup which fails to satisfy this condition appears in Lasser
[10, Remark 1 following Proposition 1]. Lasser defines the hypergroup analogue
of almost periodic functions. His example is of a hypergroup whose almost peri-
odic functions do not span an algebra (under pointwise product). In fact, Lasser
shows this by showing that the product of two certain hypergroup characters is
not almost periodic, but all hypergroup characters are almost periodic (as is any
linear combination).

Examples which are less trivial in the sense that their measure algebras differ
from their hypergroup (function) algebras are developed in Sections 4 and 5 of
this paper.
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4. Structure semihypergroups

We are now ready to state and prove the following theorem. The proof follows
Rennison's proof of Taylor's theorem [17, 3.2.3] (see Rennison [13]).

THEOREM 4 . 1 . Suppose H is a (locally compact Hausdorff) commutative
hypergroup such that M(H) is structure-strong. Then there is a compact com-
mutative semihypergroup K, known as the structure semihypergroup of M(H),
and an order-preserving linear algebra homomorphism fi —^ HK '• M(H) —»• M(K)
such that

(a) Every f e AM(H) arises as /(//) = fKfd(iK for all^e M(H), for some
f eKA, and AM(H) is exactly KA in this way,

(b) The space KA separates points of K,
(c) The image of M(H) in M(K) is weak-* dense.

PROOF. The assumption that M(H) is structure-strong is the assumption
that A = closed linear span of AM(H) in M(H)* is a commutative unital B*-
algebra. Let K = AA. The space K will be the structure semihypergroup. By
the Gelfand-Naimark theorem, A = C(AA) = C(K). By the Riesz representa-
tion theorem, A* = M(K). Let .4° C M(H)** be the annihilator of A C M{H)*.
We proceed with the help of five lemmas.

LEMMA 4 . 1 . 1 . If f & AM(H) and n € M{H) then

(1) </,/*> = /(/*)/-
If fE AM{H) and F € M{H)** then

(2)[FJ] = F(f)f.
If / € M{H)* and ft € M(H), then

IffE M{HY and F € M{H)**, then

PROOF. (1) We have {f,n)(v) = f{n*v) = /(/x)/(^) for all u € M{H). Thus
</,/*> = /(/*)/• (2) We have [F,/](/x) = F«/ , /z» = F(/(/,)/) = f(fi)F(f).
Thus [F,f\ = F(f)f, using (1).

(3), (4) These follow from the definition of the Arens product. This completes
Lemma 1.

LEMMA 4.1.2. IffeA and neM{H) then (f,n) e A.

PROOF. First consider / € AM{H). Then by (1), (/,/LJ) = /(/x)/ € A.
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For o i , . . . , a n G C and gu...,gn G AM(H), if / = X)i a«9« t n e n u s i n g (*)>

Now if / G .4 is arbitrary, for e > 0 there is / ' G >1 which is a finite
linear combination of elements of AM(H), such that | | / — f'\\ < e. Then
IK/,/*) - </',M>ll = IK/ - / » l l < 11/ - /'IIIIMII < « using (3). This
means (/, /z) is arbitrarily close in norm to members of A. So (/, n) G A.

LEMMA 4.1.3. IffeAandFe M{H)** then (F, f) G A.

PROOF. Similar to Lemma 4.1.2; use (4) of Lemma 4.1.1.

LEMMA 4.1.4. The space A0 is a closed ideal in M(H)**. Also A* and
M(H)**/A° are isometrically isomorphic Banach spaces, when M(H)**/A° is
given the canonical quotient norm. And M(H)**/A0 is commutative.

PROOF. First A0 is an ideal: Let F € A0, G e M{H)**. Let / G A. We
need to show FG(f) = 0. Now FG(f) = F([G,f]) = 0 since by Lemma 4.1.3,
[G,/] e A. Also, GF(f) = F([F,f]) = G(0) = 0 since [F,f](fi) = F((/,/z)) = 0
for all fj, € M(H) since by Lemma 4.1.2, (/,/x) e A. Thus 4̂° is a (two-sided)
ideal.

Now A0 is closed: suppose F belongs to the norm-closure of A0. Then for
e > 0 there exists G € A0 such that | |F - G\\ < e. Select / € A. Then
\F{f) - G(f)\ < e\\f\\, or |F( / ) | < | | / | |e . Then e arbitrary forces F{f) = 0.
Thus F e (A0)'. So A0 is closed.

Then M(H)**/A° is a Banach algebra under the canonical norm:

(This depends merely upon 4̂° being a two-sided ideal of M(H)**.) Using
the Hahn-Banach theorem, it may be shown for F E M(H)** that H^UH =
||F+^4°||. So A* and M(H)**/A0 are isometrically isomorphic Banach algebras.

Now it remains to show that M(H)**/A° is commutative. Let F, G € M(H)**.
It is enough to show that FG-GF € A0. Now for / G AM(H) we have FG{f) =
F([GJ\) = F(G(f)f) = G(f)F(f) (using Lemma 1) so (FG - GF)(f) = 0.
Since FG — GF is bounded and linear, this must hold for any f G A. Thus
FG-GF G A0. So FG = GF in M(H)**/A°. Thus that algebra is commuta-
tive, and Lemma 4.1.4 is complete.

Thus A* inherits the commutative Banach algebra structure of M(H)"/A°.
We may use the Arens product to write down the product of A*; this is well
defined by the lemmas above.
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[9] The structure of hypergroup measure algebras 327

Now define the m a p n —> HK '• M(H) -* M(K), as follows:

H • aft > p. > \iK

M{H) > M(H)** > M(H)**/A° = A* • M{K)
(i) (2) (3)

where
(1) is canonical
(2) is canonical: p, is an restricted to A
(3) is the adjoint of the inverse Gelfand transform followed by the Riesz rep-

resentation theorem.
Now by Taylor [17, 2.4.3], this map /x —• \IK is order-preserving and the

image is weak-* dense in M(K). (Set A = closed linear span of AM(H), and
Y = K = AA.) This establishes (c) of this theorem.

We also have the equation: For / € A, n € M{H), /(/i) = JKfdfiK (/ €
C(K) being the Gelfand transform of / ) :

f dfiK — A*/f(/) (Riesz representation theorem)

= afi(f) (definition of map (3))

= f(n) (definition of maps (1) and (2)).

Now we show that the product of two probability measures is a probability
measure: Let n, v G M(K) be probability measures. Let F, G € A* correspond
to /x, v respectively. F(l) = G(l) = 1 since fKldn = fKldv — 1. (Note
1 € M{H)* is the unit of that algebra and has Gelfand transform in C(K)
equal to the constant one function.) By Lemma 4.1.1, since 1 is a multiplica-
tive functional, [G, 1] = 1. So FG{1) = F([G, 1]) = F(l) = 1. This means
fK 1 dn * v = 1. Then ||// * v\\ < \\n\\ \\v\\ = 1 forces /z * v to be a probability
measure by Lemma 1.1.

LEMMA 4.1.5. For fi,veM{K), feC(K),

f fdn*u= I j ([ fdPk*Pl) dn{k)du{i).
JK JK JK \JK /

PROOF. Let F, G € A* correspond to fi, v respectively. Then fKfd(j,*v =
FG(f) where we write / G A for the inverse Gelfand transform of / € C(K).
Also fKfdpk *pi = kl{f) {kl € A* since k,lGK = AA = A*). Write as usual

f(k * 1) = fK fdpk * pi- Then the m a p

is the map
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or

so this is the map whose inverse Gelfand transform is [/,/]. Now / € A* and
/ € A so by Lemma 4.1.5, [/,/] € A. Then [Z,/]A e C{K). So Jfc - /(fc * I)
is a continuous function on K. So the integral JK /(fc * /) d/z(fc) is well defined.
Since fc —• /(fc * I) is [/, / ] A in C(K), and F € A* corresponds to /x, this integral
is F{[1, /]) = Fl(f) = IF(f) {A* is commutative) = 1{[F, /]) . Then the map I ->
/ K /(fc*/) d/i(fc) is / -»/([F, /]) or / -» [F, /]A(0- Since by Lemma 4.1.4, [F, / ] e
A, this map is continuous. So the integral JK JK(fK f dpk*pi) dfi(k) dv(l) is well
defined. So we may now compute fK fK{fK f dpk * Pi) dfi(k) dv{l) = F([F, /]) =
GF(f) = FG{f) = fKfdn*v. This completes Lemma 4.1.5.

With Lemma 4.1.5,we may show that if / e KA then the inverse Gelfand
transform / e AM{H) C A. (Recall KA = {/ € C{K): /(fc * I) = /(*)/(/) for
all fc, / e K}.) For n, v € M(#) we have

") = / fdHK * "K = I f f(k * I) dtiK{k) duK{l)
JK JKJK

f(k)f(l)dfiK(k)dvK(l)
KJK

= MfW)
where we use the multiplicativity of /z —• HK in the second equality, and Lemma
5 in the third.

Now we wish to show that / € K for / 6 AM(H). Consider the linear
functional \i -* fKfdfi, defined on M{K). It is multiplicative. To see this,
proceed as in Civin and Yood [1, 3.6]: The map is the same as F —> F(f)
for FeA*. For G,F e A', GF(f) = G([F,f}) = G(F(f)f) = F(f)G(f) =
G{f)F{f) using Lemma 4.1.1 (2). Formulated for M(K), we have fKfdn*u-
{fK f dfi)(fKfdv) for all /i, v € M{K). By Lemma 5 this is

f ! f{k*l)dn{k)dv{l)=(f f(k)dfi(k)) (f f(l)du(
JKJK \J K / \J K

= 11 f(k)f(l)dv(k)dv(l).
JKJK

Since this holds for any /i, v e M{K), we conclude /(fc * /) = f(k)f(l) for all
k,l & K. Thus / € AM(H) =*• / G K. This establishes (a). Since AM(H)
generates A, KA generates C(K). This establishes (b).

All that remains is to verify that multiplication on the unit ball of M(K) is
weak-* jointly continuous.
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Let U{e,f,n) = {veA[: \v{f) - n{f)\ < e}, for e > 0, / e A, n&A\. Then
of course {U{e, / ,n) : e > 0, / € A, fi € A^} is a subbasis for A\ in the weak-*
topology. Now {U(e, f,n): e > 0, / 6 AM(H), n 6 A\} is a subbasis for AJ as
well.

So it suffices to check continuity against subbasis members of form U(s, / , //)
where / € AM(H). Consider n, v € A\ and a subbasis neighborhood of /i * f
given by [/(£, /, n * v) where / G AM(#) and e > 0. Then U(e/2, f, fi) *
U(e/2,f,v) C U(e,f,n* u). This is true since if |/x'(/) - n(f)\ < e/2 and

\n' * n{f) - v' * v{f)\ = \n'(fMf) - i/(/M/)|

< \n'{f) - n(f)\ + \u'{f) - u{f)\ < e using Lemma 4.1.1 (2).

Thus the product of A\ = M(K)\ is weak-* jointly continuous. So K is a
semihypergroup (and commutative since M(K) — A* is a commutative algebra).
So the theorem is done.

The following theorem shows that in a natural way, structure semihypergroup
homomorphisms are unique.

THEOREM 4.2. Suppose H and J are structure-strong hypergroups with re-
spective structure semihypergroups K and Y. Suppose 0: M(H) —* M(J) is an
algebra and L-homomorphism. Then there exists a: K —> Y, a semihypergroup
homomorphism, such that the following diagram commutes

M{H) - ^ - + M{J)

M{K) M{Y)
in-^lioa'1

PROOF. Since <f>: M(H) —* M(J) is an algebra homomorphism, the ad-
joint map <p*: M{J)m -» M{H)* maps {0} U AM(J) into {0} U AM{H). (For
/*,!/€ M(H), f E AM(J), PUXJI * v) = fMn * i/)) = /(*(/,) * #i/)) -
f(<l>{p))n<K»)) = 4>y){nWU){y) ™ rU) e AM(H) U {O}.)

Then there is a unital algebra homomorphism \j): C(Y) —> C(K) (just cj>* with
A = closed linear span of AM(H) and B = closed linear span of AM(J) identi-
fied with C(K), C(Y) respectively). Then there is a continuous map a: K —> Y
such that (V>/)(fc) = /(a(Jfc)) for all / € C{Y), k € K. (This is true for any
unital algebra homomorphism <j>: C(X) —* C(Y) where X and Y are arbitrary
locally compact Hausdorff spaces.)

This map makes the diagram commute: Pick fi € M(H). Consider any / €
C(Y). Then f
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fK fdfXK ° a~1 (note we write / for the inverse Gelfand transform of / ) . Thus

{4>H)Y = fiKoa'1-

To see that a is a hypergroup homomorphism, note that / —+ / o a: C(Y) —*
C(K) maps YA to KA (since <j>*: B — A takes AM( J) U {0} to &M{H) U {0}).
Then for f € YA, {/o a){k * I) = {/o a)(k)(f o a)(l) = f{a(k) * a{l)) for all
k,l G K. Since C{Y) is the closed linear span of YA, it is easy to see that this
is true for all / € C{Y).

5. The hypergroup of B-orbits of G,
where B is a finite solvable group

and G is a locally compact abelian group

These interesting examples of hypergroups resemble group measure algebras
in that the product of any two point-masses has finite support. These measure
algebras will be shown to satisfy the structure-strong condition.

First we consider how B acts on various algebras. We will customarily consider
B = {e,/?i,... ,0n-i} as a solvable group of order n, acting on G as automor-
phisms. We may also think of B as acting on Go(G), by (/ o 0){x) = f(0(x))
for all / G C0(G), 0 G B, x e G. So if / € C0(G), then / o /? e C0{G). We
say / e C0(G) is B-invariant if / o /? = / for all /? € B. The group B acts
on M{G) by (/z o /?)(£) = fj,{P(E)) for /x € M(G), /? e B, and Borel £ C G .
If instead M(G) is thought of as Cb(G)*, /i o 0 is the linear functional defined
by (/i ° /?)(/) = HU o /8"1) for /i G C0(G)*, / e C0(G), /3 G B. (These agree
since / G / d/x o /? = JG f o ̂ " i dn for all ̂  G B, / G C0(G), /x G M(G).) For
/x G M(G), we say /x is B-invariant if /x o ̂  = /x for all 3̂ G B. The group B
acts on M(G)* in a similar fashion: (/ o (3)(fi) = f(n o /3) for all / G M(G)*,
H G M(G), P G B. We say / G M(G)* is B-invariant if / = / o /? for all 0 G B.

The following lemma will often be used without explicit reference:

LEMMA 5.1. If n,v e M(G), (/x * v) o £ = (/xo /?) • (u o /3) /or a// /? G B.

PROOF. Consider / G G0(G). Then for 0 € B,

f fd{n*v)o0= I fop~1dn*v
JG JG

= f f f{0-l{x + y))dii{x)dv{y) ( f f(0-1(x)+0
JGJG JGJG

= I I
JGJG

= f fd{lio0)*{uo0).
JG

Thus (/x * v) o /? = (/x o /?) * {u o 0).
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A corollary of this result is that if n, v G M(G) are /^-invariant, so is n * u.
Another corollary is that if / G AM(G), then fop G AM(G) for any 0 € B. Of
course it is clear that in CQ(G), (f °0)(g°0) = (fg) o 0 for all 0 G B (pointwise
product). Also, we have the following lemma.

LEMMA 5.2. Suppose f,g G M{G)*. Then (fg) o 0 = (f o. 0)(g o 0) for
any 0 € B (where the product is the Sreider product of generalized functions,
described above in Section 1).

PROOF. First, for any / G M(G)* consider its generalized function {/M}.
Then for p G M(G), v < / » , ( / ° P)(y) = fG(f ° 0)?dv and (/ o 0)(v) =
f(v o 0) = fQ f^p dv o 0 = fG f^o0 o0~1du (easily i/o0<&/io0). Therefore
(/ o 0)^ = /MOj8 o 0'1 n-&.e.. Then for /? € B, ^ e M(G), we have by the
definition of the product of generalized functions ((fg)°0)p = ((fg)tiop)°0~1 —
(fvopg^op) O0-1 = (/Mo/3 o 0~1)(g^O0 °0~l) {fno0 and gltO0 are just L°°(^ o 0)
functions, so composition by 0~l behaves as usual for pointwise products of
functions). Thus ((/?)• o /3)M = (/ o /?)„(» o ̂  = [(/ o /?)(ff o /?)]„. (These
inequalities are /x-a.e.) Thus (fg)°0 and (f°0)(g°0) have the same generalized
functions, so are equal.

We are interested in studying A M ( G B ) , the spectrum of M(GB)- The al-
gebra M(GB) is identified with M(G)B, the closed subalgebra of 5-invariant
measures in M(G). Then it is natural to identify AM(GB) with A ( M ( G ) B ) =
{/ £ M(G)*: / is 5-invariant, and multiplicative on products of B-invariant
measures}. (Just extend / , defined and multiplicative on M(G)B, to be a
member g of A(M(G)B), by g(/i) = / ( / ^B) for all \x G M(G), where \xB =
1/nX)/3eB f*°fi 1S easily checked to be B-invariant.) For / e M(G)*, v G M(G),
let /„ € Af (G)* be defined by /„(/*) = /(»/ * /x) for all // G M(G). (This is
actually the same as (/, v) in the Arens product.)

We are now ready for the following theorem.

THEOREM 5.3. Suppose A and B are finite groups of automorphisms on
a locally compact abelian group G, with A a normal subgroup of B. Suppose
B/A — Zp for p a prime number. Suppose f G M(G)* is B-invariant and
multiplicative on B-invariant measures. Then there exists rj G M(G) such that
fv is multiplicative on A-invariant measures and is A-invariant.

PROOF. First it makes sense to think of B/A as acting on .A-invariant mea-
sures, by fi o (0A) = n o 0 (p .A-invariant, 0 G B). This is well defined because
H o (0ai) — fi o (0a?) for all ori, c*2 G A. (This follows from the normality of A
inB.)
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Now B/A = Zp, so there exists /? € B such that (3A generates B/A as a
cyclic group of order p. From now on, when we write /? or 0A, we refer to that
generator.

Define ft e M(G) to be of type k if ft is ^-invariant and ft o (pA) = ft° P =
e2ntk/pft- Note ft is of type 0 means ft is S-invariant. So / is multiplicative on
products of type 0 measures.

Suppose ft is any ^-invariant measure. Then

CLAIM 1. We have ft = /to + ft\ + • • • + A*p-i where ftk is of type k (k —
0 , 1 , . . . , p — 1). This decomposition is unique and in fact

ftk = ~ £ e-**ilk/<>ft o (?A) (k = 0 ,1 , . . . , p - 1).
^ f=o

PROOF. We need ftk of type k for fc = 0 , 1 , . . . , p - 1 so that ft = /*o + Mi +
• • • + /Xp-i- Consider the system of linear equations, for Borel E C G,

+ /xp_ift o 0*(E) = fto°

which becomes (where X = e27r'/p),

ft{E) = fto{E) + m{E) + ft2{E)

Xm (E) + A V J Ap"

02(E) =

Now this system can be solved uniquely for the Hk(E) in terms of the ft o @l(E),
provided

"1 1 1 ••• 1
1 A A2 . . . A P - 1

det 1 A2

1 A""1

A2

In fact, det ^ 0 since the columns form an orthogonal basis for Cn . (The
columns are actually the group characters for Zp.) This forces the ftk to be
unique. To obtain the claimed formula for ftk, fix measurable E C G and define
/ € C(ZP) (for ft and E) by f(k) = fi(0k(E)). Then f(k) = YZll /(»)«
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where f(n) = l /p£^o fU)e~aitin^p = I / P E J I O K ^ ^ ) ) ^ 2 ^ 7 ^ (This
is just the inversion theorem for the Fourier transform on C(ZP).) Now let
k = 0. We get n{E) = /(0) = E^=o( l /pE^o^(^(^) )e - 2 7 r i n i / p ) - So /i =
£E=o(l/P E>=o e-2ninj/p fio/3). The terms of this sum are the claimed formu-
las. We already know that the fcth parts are unique. So all we need to do is
check that these terms are of the correct types. So compute

1 p - 1

e-2*inj/P o g i \ o a = \ t '

V 3=0

(re-index sum; sum is really Haar measure on Zp). So

(since e3""/"/! o ̂  = e2ffi°/P/i o /3° = p and yS0 € (A)). This completes Claim 1.
Note if \i is A-invariant, each /i* is A-invariant too. This follows since fx o /3

is A-invariant when fi is ^-invariant.

CLAIM 2. The measure Hk * v\ is of type (A; + /) modp for A-invariant //, v €

PROOF. We have (/ifc * vi) = (/ifc o /?) * (i/, o ^) = {e2nik/Pfik) * (e2iri'/Pi/,) =

e2Wi(fc+o/P/Xfc * ̂  T h i s c o mpietes Claim 2.

CLAIM 3. We have f(<r) = f(a0) for all yl-invariant a e M(G).

PROOF. The function / is 5-invariant so ( / o /?)(afc) = /(f/t). But
( / ° P){?h) = fiPk oP) = f{e2*ik/P(Tk) = e^ik/Pf{ak). Since e2nik^ = 1 if
and only if k = Omodp, f{vk) = 0 of k ^ Omodp. This completes Claim 3.

Note that it can be shown that the Oth part of the product of two .A-invariant
measures fi, v can be written as

Mo * "o + A*i * f p - i + A*2 * "p-2 H 1- Mp-i * v\.

(This is just by Claim 2, and uniqueness of the parts.) If fi is just of type k, then
the Oth part of fi * i> is just fi * vv-k. Thus for such fi, u, f((i * v) — f(fi * vp-k)-

Now to construct the needed measure TJ. Suppose there exists an A-invariant
w e M{G) of type 1, such that /(wp) = 1. Then let

r\ = po + w + w2 -1- w3 + • • • + wp~x.

CLAIM 4. We have /(»? * /ifc * "0 = /(»7 * l*k)f{v * "/) for A-invariant /i, î .
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PROOF. We have

* /**)/(»? * «4) = / ( " " " * * M*) / ( " P ~ ' * n ) (Claim 3)

* Mfc * w " - ' * n ) = / ( w 2 p - f c - ' * /ifc * " 0

k + l< p,

*
= f{r]*fik*ui) (Claim 3).

So Claim 4 is done.

CLAIM 5. The functional /,, is multiplicative on A-invariant measures.

PROOF. We compute

P - I P - I

/fa * [i * u) = 5 3 5Z f^ * Mfc * vi)
fc=O1=0

P-IP-I

= T^ 5 3 /(*? * Mfc)/(77 * ^0 (Claim 4)
fc=0 i=0

So Claim 5 is done.

CLAIM 6. The functional /, , is A-invariant.

PROOF. Pick a G M{G). We want to show fv{a) = / , ( I T O a ) for all a € A

So /,(<T o a) - /(i7 * (a o a)0) = /(((rj o a"1) * a) o a) = /(fa o a"1) * a) (/
is B-invariant) = /fa * <r) = /T,(CT) (/ is B-invariant and r\ is A-invariant). So
Claim 6 is done.

CLAIM 7. If no u> of type 1 can be found such that /(wp) = 1, then r\ =
Po suffices, i.e., / is already multiplicative on A-invariant measures and is A-
invariant.

PROOF. If there is no w of type 1 such that f(ojp) = l, then /(fp) = 0 for all
f G M(G) of type 1. (If /(fp) ^ 0 for some £ 6 Af(G) of type 1, then f could
be rescaled to force /(£p) = 1.)

We will show that /(/ifc*^j) = 0 if k ^ 0 or / / 0, for ^-invariant /z, u € M(G).
Without loss of generality fc ̂  0. If (A+/) / Omodp, then j{nk*i>i) — 0 already
by Claim 3. Otherwise (fc + /) = Omodp; select j > 0 such that jk = lmodp.
Then /(/ifc * , / , ) " = /((/ifc * z,,)ip) =
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(since (^fc)JP and (^j)JP are of type 0 )= 0 (since (Atfc)JP = (Mfc)p is a measure of
type 1 to the pth power). So f(nk * vfi — 0.

Then f(jt*u) = E C o E?=o /(/****») = /(Mo*^o) = /(*>)/(«*) = / M / M
(Claim 3).

This completes Claim 7, and the proof of the theorem.

COROLLARY 5.4. Let B be a solvable finite group of automorphisms on a lo-
cally compact abelian group G. Then if f € M(G)* is B-invariant and multiplica-
tive on B-invariant measures, there exists r) € M(G) such that f^ € AM(G).

PROOF. Use the theorem and induction; B solvable means B can be written

{e} < Bi < B2 < • • • < B n _ i <Bn = B

where Bk/Bk-i = lq(k) f ° r some prime q(k), for k = 1 ,2 , . . . , n. (See Hungerford
[8, II8.6].)

With the preceding theorem, it becomes easy to show that M ( G ) B is struc-
ture-strong. In fact A ( M ( G ) B ) spans an algebra (even before the closure is
taken).

For / e M{G)* define fB € M{G)* to be fB = i E / J G B / ° P- (Re c a 1 1

n = \B\.) Easily / B is B-invariant.

LEMMA 5 . 5 . Suppose f,g€ AM{G). Then fBgB = £ E ^ K / X ^ o 0)]B.

PROOF. We have

S€B

0€B

using Lemma 4.4.

THEOREM 5.6. M{GB) (or M(G)B) is structure-strong. In fact, if f,g e
A ( M ( G ) B ) then there exists fci, fc2,..., kn € A(M(G)B) such
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PROOF. For / , g G A(M (G)B), there exists h,j G AM(G) such that / = hB,
9 = 3B (there exists h,j G AM(G) such that h = f, g = j when restricted to
M{G)B\ easily / = hB, g = JB on all of M(G), since hB, JB obey hB(n) = H(HB),

jB(li) = j(nB) for all n G M{G).) Then

by the previous lemma. Recall if j G AM(G) then j ' o j J e AM(G). So by
Taylor [17, 3.2.3], (fc)tf o 0) G AM(G). Then [(ft)tf o 0))B G A(M(G)B) for
each 0 G B. So the n different functionals [(/i)(j o 0))B (for /? € B) form the
functionals fci, k?,..., kn of the theorem.

Now for / G A(M (G)B), consider /* € M(G)*, the involution of / denned by
f(p) = f(fi)- for all n G M{G). Then /* G A(M(G)B): For n,v G M(G)B,
A/* * )̂ = /((M * y)~r = f(H * o)- = (/(A)/(i>))- = [/(A)-][/(P)-]-

Thus A(M(G)B) spans a *-subalgebra of the commutative unital B*-algebra
M(G)*. So the closure of the span is a commutative unital B*-algebra. Thus
M(G)B = M(GB) is structure-strong.

Now all the results for structure-strong hypergroup measure algebras apply:
There is a structure semihypergroup K as in Theorem 4.1. But in fact a better
description of the semihypergroup is possible. We will show that if S is the
structure semigroup of M(G) then K is equal to the space of B-orbits of S,
defined in a natural way.

DEFINITIONS. Let A C M{G)* be the norm-closure of the linear span of
AM(G). Recall S = &A is the structure semigroup of M(G) (Taylor [17, 3.2.3]).
For F € A* define Fo0 G A* by (Fo0)(f) = F(fo0) for all / G A. In particular,
if s G S = AA C A*, define so0eSby so 0(f) = s(f o 0) for all / G A. (We
have so0 G 5 since (so0)(fg) = s{{fg)o0) = s{(fo0)(go0) = S(fo0)s{go0) =
s o 0(f)s o 0(g).) Define sB G A* for s G S by £ ^0eB so0. Define SB C A*
to be {aB: s G 5}.

PROPOSITION 5.7. Consider M(G)B C M(G). Let K be the structure semi-
hypergroup of M(G)B. Then if S is the structure semigroup of M(G), it follows
that K = SB.

PROOF. Recall A = closed linear span of AM(G) and S = AA. We have
shown that A(M(G)B) = AM(G) restricted to M{G)B- In fact, A(M(G)B) =
(AM(G))B = {/B: / G AM(G)}. (Recall fB = i ^ f l / ' W (Note /
restricted to M(G)B agrees with fB on M(G)B; easily /B(/x) = /(A*S)-) Then
the closed linear span of A(M(G)B) is AB = {fB: / G A}. Recall K = A(AB).
In fact, K = A{AB) = {AA)B = SB- The claim is that A(>lB) = A4 restricted
to AB Q A. This can be shown in exactly the same was as Theorem 5.3. (Note
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(AA)B = AA restricted to AB, in the same way A ( M ( G ) B ) = (AM(G))B- that
is, SB agrees with s on AB-)

THEOREM 5.8. The space SB is a semihypergroup in a natural way and the
product agrees with that of K.

PROOF. Let s,t e S. Then sBtB = £ I ^ B I 8 ^ ° P)\B- This is shown pre-
cisely as in Proposition 5.5, except it must be verified that (st) o 0 =
(s o 0)(t o 0) for all 0 € B (note s o 0 e 5 if s € 5). Here we must work
with the Arens product:

(/. AW) = /(/* * ") for all H, v € M(G), f € A;
[t, / ] ( /*) = t((f, it)) for all /i e M(G), feA,teS;
st(f) = s([t, / ] ) for all / € A, s . i e S C A * .

Note [t, f]€ A and (/, /i) e A; argue as in Theorem 4.1.
Let 0 € B, f € A, and /i,z/ G M(G). Then {/ o 0,n){y) = (/ o /3)(/i * i/) =

f{{ii*u)o0) = f((po0)*{vo0)) = (f,»o0)(vo0). Thus (/o/3,/i> = (f,n<>0)o/3.
Now let t € 5. Then [tj o /3](/i) = <((/ o /3,/i» = / ( ( / , / /o 0) o 0) =

t o /?((/, fi o /?» = [t o 0, /](yi o /?). Thus [t, / o /3] = [t o /?, /] o 0.
For 5 € S, ((st) o /3)(/) = (st)(f o /?) = «([«,/ o /?]) = S([i o /?,/] o 0) =

s o 0([t o 0, /]) = (so0)(to /?)(/). Thus (st) o /? = (s o /3)(f o 0) as claimed.
To see that the products of 5 B and K agree, note that 5 B Q A* gets its

product from A* (constructed by Rennison using the Arens product), and K =
A ( A B ) C (AB)* Q A* gets its product in effectively the same way, as constructed
in the proof of Theorem 4.1. Finally, we may identify K with the set of B-orbits
of 5 , {{0(s): 0eB}\ seS}, w h e r e 0(s) - s o 0. T h i s is b e c a u s e 0(s) = so0
agrees with s on AB, and also agrees with sB = £ Y^p^B s ° $• (Note that if
so0 — toS on A B for s,t e S, 0,6 G B, then s = so0 and £ = to6 must agree
on AB-)

REMARK. In the next section, hypergroup measure algebras first studied
by Ragozin will be shown to be structure-strong. These examples arise from
the orbit spaces of certain infinite groups of automorphisms. It seems natural
to attempt to generalize the preceding example to infinite groups B, say B an
infinite cartesian product of finite groups. However, difficulties arise, which make
it unclear whether such algebras are structure-strong. For example, let G =
n ~ 0 T = TU and let B = {-1,1}" (so 0 G B is of the form 0((tut2, t3, ...)) =
(0it\,02t2,0ztz,...) where 0iU = U or — U). (Here we identify T with [-IT,IT].)

Then it may be shown that G and B are compact abelian groups, each 0 € B
is a continuous automorphism, and the action (/?, g) —> 0(g): B x GP —> G is
continuous. So GB is a hypergroup (Jewett [9, Theorem 8.3A]). Following the
program of this section, the first goal would be to locate, for / € AMB(G), an
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/ ' € AM(G) such that / ' = / on MB(G). It is unclear if such an / ' is available.
But there is an L-subalgebra £S of M(G) containing MB{G) such that there
exists / ' € AJ3S with / ' = / on MB{G). This algebra is simply the smallest L-
algebra containing MB{G), and may be characterized by 38 = {// € M(G)|/? —>
fj, o /3: B —» M(G) is norm continuous}. ^ is structure-strong (it satisfies
the definition of Taylor [17] of a commutative convolution measure algebra), so
A38 U {0} is a semigroup. The next step of the program of this section would be
to produce a suitable analogue of Lemma 5.5, for MB{G) C 3§'. Then Theorem
6 would follow from Lemma 5.5 using t\38 U {0} being a semigroup. Lemma 5.5
is the source of the difficulty. The sums of Lemma 5.5 turn into vector integrals.
The map /? —> / o /?: B —> A3S C <38* is not known to be measurable. Thus
the integrals are not known to be defined, and the issue of whether fg is norm-
approximable by members of AMB{G) (for / , g € AMg(G)) is still unresolved.

6. Other examples of structure-strong
hypergroup measure algebras

Here two examples will be considered, which were studied by D. Ragozin [11,
12].

Let G be a connected compact simple Lie group, for example, SU(2). Using
the characterization of AZM(G) due to D. Ragozin [11] (where ZM(G) C M(G)
is the subalgebra of central measures on G), it may be shown that ZM(G) is
structure-strong.

Let E be the set of equivalence classes of irreducible unitary representations
of G. Let / be the group of inner automorphisms on G. Let G/ be the space of I-
orbits of G (that is, conjugacy classes). Then ZM(G) and M(G/) are isomorphic
as Banach algebras. Let Z be the center of G. (Note the center of a connected
compact simple Lie group is finite.)

Ragozin showed that AZM{G) = AM(Gi) is given by E U Z. He gave the
explicit formulas: <j> € E produces the multiplicative linear functional on ZM(G)
given by <f>(fi) = l/dj, fG Xtig'1) dn{g) for all fj, e ZM(G), where \<t> is the
representation character of <fr (and <j> has dimension d^,). Also 7 G Zh produces
the multiplicative linear functional on ZM(G) given by i((i) = JG^(g~l)dfj,(g)
for all fj. G ZM(G), where 7 is defined by

(
\ 0

Ragozin shows that if fj, € ZM(G) is continuous, then 7(//) = 0, while if n is
discrete (supported on Z), then (j>{n) — 0.

To consider the product of M(G/)* = ZM(G)*, we use the following lemma
(discussed in Rennison [13, 2.2]).
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LEMMA 6 . 1 . Let H be a locally compact Hausdorff space. Then the product
in Taylor [17, 2.3] (of Sreider generalized functionate) on M(H)* agrees with the
Arens product on M{H)* = C0{H)**.

PROOF. The Arens product on CQ(H)** is given by
(1) (n,p)(r) = JHprdn for all p,r G C0(H), n G C0(H)* = M(H);

(2) [f,l4(p) = f«J*,p)) for all p G C0(H), /x G Co W , f € C0{H)**-
(3) (fg){li) = f([9,fA) for all f,ge C0{H)*\ /x G C0{H)*.

Recall the Sreider product is given by: for / G M(H)*, // G M(H), u G M(H)
with v <C /x, we have f(i>) = fHfpdv, where /^ G L°°(H,fJ.) is given by /
restricted to ^{H, n). Then if / , g G M{H)*, let /g(^) = / H /^g^, dfi.

Now if // G M(//) , / G M(ff)% P G C0(i?), then [/,//](/>) = /((/*,/>» =
fH fupd/x. This is because (//,p) <C /x (consider (1) above). So d[/,/i] = /Md/i.
Then for f,g G Af(/T)*, p G

This lemma enables us to consider the Arens product on ZM(G)* C M(G)*,
instead of the Sreider product on M(Gi)*.

THEOREM 2. / /0,V £ AZM(G) f/ien one o/ </ie following must occur.
(1) <#, ^ € E, m which case 4>%l> is a convex combination of multiplicative linear

functionate from AZM(G)
(2) <j>,ijj G Z A , t'n which case (pip G Z A »a again a multiplicative linear func-

tional from AZM{G)
(3) <p G E, V G Z A (or vice-versa), in which case <prp = 0. 77ms AZM(G)

spans a commutative unital B* -algebra.

PROOF. (1) If <p, rp G E then <prp is given by integration against

which is a convex combination of representation characters (see, for example,
Jewett [9, 8.4 B]).

(2) (fytp G ZA is clear; they are just group characters. So <pip{fj.) = JG <prp~ dfj,
for all /i G ZM(G) is multiplicative linear functional.

(3) We consider ZM(G)* with the Arens product. Now ZM(G) = ZMd{G)®
ZMC(G) where ZMd(G) is the set of discrete central measures and ZMC(G) is the
set of continuous central measures. Suppose <p G E and 7 G ZA. Then <p((i) = 0
if M G ZMd(G) and -/(//) = 0 if // G ZMC[G). Suppose /* G ZMC{G). Then
[7,/i] = 0: [T, A*](r) = 7((/z, r)) = 0 for all r G CQ{G) since (/x, r) is continuous
{(ji,r){p) = fGprdn so (H,T) < /x)- Then <A7(/i) = <p{[i,n}) = 0(0) = 0.
Now consider /x G ZMd(G). The space ZM(G)* = M(Gi)* has a commutative
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product (see proof of previous lemma), so <f>~t = i<f>. Then <jr)(n) = 70(AO =
l([<j>,fi\) = 0 since [<f>,n] = 0 ([0,A»](T) = <K(A*,r» = 0 for all r € ZCo{G) since
(/i, r) < /z is discrete). Thus <j>^ = 0.

Now it is clear that AZM(G) spans a subalgebra of ZM{G)* = M(Gi)*. The
norm-closure of the span will be Banach algebra. In fact, since \n is X* where
ir is the conjugate representation of TT € £ (see Hewitt and Ross [7, volume II,
27.27]), and since 7 € ZA for 7 e Z A , we see this algebra is a £*-algebra. Thus
ZM(G) = M(Gj) is a structure-strong hypergroup measure algebra.

The results of Section 5 effectively deal with hypergroups of measures on
R2 invariant under finite groups of rotations. (Such groups of rotations are
of course finite solvable groups.) Here we show that the hypergroup measure
algebra M{R2)T of measures invariant under the group T of all rotations around
the origin is structure-strong. The difficulty here is that T is not finite; those
techniques do not apply. However, the results of D. Ragozin [12] do apply.

THEOREM 6 . 3 . M{R%.) = M(R2)T is structure-strong.

PROOF. Ragozin showed that A(M(R2)T) = {00} U ( i^ ) A . w n e r e (RT)A i s

the usual set of hypergroup characters, and the point at infinity is the multi-
plicative linear functional n —> /i(0): M{R2)T —• C. The hypergroup characters
on R2-. identified with [0,00) are of the form J(cx) for c > 0, where J is the
Bessel function of order 0. (See Jewett [9, 9.3]). As usual, the characters induce
multiplicative linear functionals by integration.

The product of the hypergroup characters is given by (for a, b > 0),

1 f2"
J(ax)J(bx) = — J(c(t)x)dt

2?r JO

where c(t) = (a2 + b2 — 2abcost)1/2 (see Jewett [9, 9.3]). Since c is continuous
and J G C?o([0,00)), it is clear that the pointwise product of two characters may
be uniformly approximated by sums of characters. Therefore the closure under
the uniform norm of the linear span of (Rj-)A is a Banach algebra. The norm
matches the norm of M{R%.)*. Since the characters are real-valued, the Banach
algebra they span is a B*-algebra, where involution is just complex conjugation,
and the unit is J(0x) = 1.

Note that Hartmann, Henrichs, and Lasser [6], show a more general result
that (GB)A is a hypergroup, where G is a locally compact group and B is a
group of automorphisms of G which contains the inner automorphisms, and is
relatively compact with respect to the Birkhoff topology.

Now we show the following: If /oo(A') = M(0) f° r all A* € M{R2)T is the point
at infinity, and g G {RT)A, then (/oo)(ff) = 0. By Ragozin [12], if /x G M{R2)T

then n — apo + He where fic is a continuous measure, p 0 is the point mass at
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the origin, and a € C. If yt = fic, then /OO(A*) = 0. Also g(apo) = 0. Now we

may use the Arens product as in Theorem 6.2, with the algebra C(R2)T and its

second dual M(R2)T- Then (/OO</)(AO = /oo([ff,A*]) = 0 since easily (as in the

proof of Theorem 6.2), [g,fi] <^ /i is a continuous measure. Also (/oo<7)(apo) =

(<//oo)(apo) = ff([/oo, "Pol) = 0 since [/«,, ap0] < apo is supported on the origin.

Thus foo9 = 0.

Finally, we show that foofoo = Zoo- Now

/oo/ooM = /co([/oo,d) = [/oo,/»]({0»

since for all p € C0{R2)T, [Zoo,/*](/>) = foo({»,p)) = foo{pdfi) = f{0)pdn.

(Consider p which approximates po.)

Thus AM(i2£) spans a commutative unital I?*-algebra, and M{Rj.) is a

structure-strong measure algebra.
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