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KOMLOS LIMITS AND FATOU'S LEMMA 
IN SEVERAL DIMENSIONS 

FRANK H. PAGE, JR. 

ABSTRACT. Using Komlos' Theorem, a sequence decomposition result 
due to Gaposhkin, and two results due to Artstein, we prove a result concern
ing the properties of Komlos limits. We then show that a stronger version of 
Fatou's Lemma in several dimensions can be deduced from Artstein's ver
sion of the Lemma. The version of Fatou's Lemma proved here subsumes the 
most recent version of the Lemma in several dimensions given by Balder. 

1. Introduction. Using Komlos' Theorem [7], a sequence decomposition result 
due to Gaposhkin [4], and two results due to Artstein [1], we prove a result concerning 
the properties of Komlos limits. We then show that a stronger version of Fatou's Lemma 
in several dimensions can be deduced from Artstein's version of the Lemma [1]. The 
version of Fatou's Lemma proved here subsumes the most recent version of the Lemma 
given by Balder [2], as well as the versions given by Schmeidler [8], Hildenbrand and 
Mertens [6], and Hildenbrand [5]. 

2. Preliminaries. Let (Q, Z, /i ) denote a finite measure space, Ll (£1, Z, \x ) = L1 the 
space of all equivalence classes of real-valued integrable functions defined on Q, and 
Z4(Q, Z, fi) = Ll

m the m-fold product of L1. Thus, if/ G Ll
m, then/ = (f\... , / m ) , where 

/'" G L1 for i = 1, . . . , m, and \\f\\ x = JQ \f\ dfi. For {/„}„ and/ in Ll
m, limn JQfn dfi = 

Sçifd/j, means limn jçifl
n dfi = JQ/1 d\i, for each /. Inequalities between vectors should 

be understood as componentwise inequalities. 
We will denote by Ls(fn(uj)) the set of all limit points of {/n(o;)}n, and by co Ls(fn(ufj 

the convex hull of Ls(fn(wj). 
In proving the stronger version of Fatou's Lemma we will use the following general

ization of Komlos' Theorem [7]. 

KOMLOS' THEOREM IN Rm. If {/„}„ c Ll
m, with sup„ ||y*|| i < oo for all i, then there 

is a subsequence {fnk}k and an/A G l)m such that, 
(1) T,\<j<k(\Ik)fnj(u) -^fA(u) a.e. [/x] as k —• oo (i.e., {/„*}* converges a.e. [/i] 

Cesaroto/A), 
(2) any further subsequence extracted from {fnk}k also converges a.e. [fi] Cesàro to 
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We will refer to any subsequence satisfying conclusions (1) and (2) of Komlos' The
orem as a K sequence and we will refer to the corresponding Cesàro limit fA G l)m as 
the K limit. 

3. Results. Our first result concerns the properties of K limits. 

PROPOSITION 1. Let {fn}n CLl
mbea K-sequence with K-limitfA G Ll

m. Then 
(1) fA(uj) G coLs{fn{uj)} a.e. [/i], and 
(2) there exists anf* G Lx

m such thatf*(uj) G Ls^fniuj)} a.e. [/x] and 

Our second result is a stronger version of Fatou's Lemma in several dimensions. 

PROPOSITION 2. Let {fn}n C Lx
m be such that supn ||/,J||i < oo for all i and 

limn jçifn d\x exists. Without loss of generality, assume that {fn}n is a K sequence. 

If for any subsequence {fnk}k of {fn}n, { max (0, — £i</<*:( 1 / k)fnj}k is uniformly in
tegrate, then there exists an/* G Ll

m such that 
(1) f\u) G Ls(fn(Ljj) a.e. [/z], and 
(2) hrdfi <\imn JQfnd^i. 
If { Ei </<*(!/ fyfnj} k is uniformly integrable, then (2) holds with equality. 

REMARK. The most recent version of Fatou's Lemma in several dimensions is due 
to Balder [2]. 

BALDER'S LEMMA. Let {fn}n C Ll
m be such that { max (0, —fn)}n is uniformly inte

grable and limn JQ/„ dfi exists. Then there existsf* G Ll
m such that 

(1) f*(u) G Ls(fn(uj)) a.e. [/x], and 
(2) Jnf*dfi <\imnJnfndijL. 

If{fn}n is uniformly integrable, then (2) holds with equality. 

Recall that if {fn}n is uniformly integrable, then supn ||/,J||i < oo for all /, but the 
converse is not true in general. Moreover, if { max (0, —fn)}n is uniformly integrable, then 
{ max (0, — £i<*<n(l/ n)fk)}n is uniformly integrable. However, the converse is not true 
in general. A similar statement can be made concerning {/„}„ and { £i<*<n(l/ n)fk}n-

4. Proofs. First, we will need the following generalization, to m dimensions, of 
Gaposhkin's [4] sequence decomposition lemma (Lemma C.I). 

GAPOSHKIN'S LEMMA. If{fn}n C Ll
m, with sup„ ||/,;|| i < oo for all i, then there is a 

subsequence {fnk\k such that, for each k, fnk = gk + hk, where {gk}k converges weakly 
[i.e., in cr(Ll

m,L™)] to some g0 G Ll
m, and lim^ hk(u) = 0 a.e. [//]. 

We will also need the following results due to Artstein [1]: 
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ARTSTEIN'S RESULTS, (i) (Theorem A, Fatous Lemma). Let {fn}n C Ll
m be such 

that {fn}n is uniformly integrable and limrt Safn dji exists. Then there exists f* G Ll
m 

such that 
(1) f*(u) G Ls(fH(uj)) a.e. [/x], and 
(2) Snf* d\x = limn JQfn d\x. 

(ii) (Proposition C). Let {gn}n C Ll
m be such that {gn}n is uniformly integrable. If 

{gn}n converges weakly to some g0 G Ll
m, then g°(u) G coLs{gn(u;)} a.e. [/x]. 

PROOF OF PROPOSITION 1. By Gaposhkin's Lemma, we can assume, without loss 
of generality, that {fn}n is such that for each n,fn — gn + hm where {gn}n converges 
weakly to some g0 G Ll

m and limn hn(cj) a.e. [//]. Since {/„}„ is a K sequence with K 
limit / A , {gn}n is also a K sequence with K limit fA. Also, Ls{fn(uj)) = L,s(gn(a;)) 
a.e. [/x]. Applying Artstein's Theorem A to { gn}n, it follows that there exists an/* G Ll

m 

such thatf*(u) G Ls(gn(u)) a.e. [/i], and such that 

fQrdv = 1imfagttdv = JQg°dv. 

Since {#„} converges weakly to g°, { EI<£<«(1/«)#*:}« must also converge weakly 
to g°. Thus, since {£i<*</i(l//*)£*}« converges to / A a.e. [/i],g° = / A a.e. [/x]. So/* 
satisfies (2). 

By Artstein's Proposition C, g°(u) G coLs{gn(u;)} a.e. [/z]. Thus, since 
coLs{gn(u;)} = coL^{/n(o;)} a.e.[/x] and/A = g0 a.e. [/x], /A(o;) G coLs{fn(u)} 
a.e. [/x], proving (1). • 

PROOF OF PROPOSITION 2. Let / A G L^ be the K limit corresponding to the K 
sequence {/„}„. By part (2) of Proposition 1, there exists an /* G Ll

m such that 
f\uj) G Ls(fn(uj)) a.e. [/x] and Jh/*d/z = J Q / A ^ M - NOW let {/„*}* be any subse
quence of {/„}„ such that {max(0, — £i</<*(l/fc)//i/)}* is uniformly integrable. Since 
max (0, —(l/k) Ei</<jk//y(a;)) —» max (O, —fA(uj)) a.e. [/x], as & —• oo we have 

f max(0,-/A)J/x = lip / max(0 , - ( l /* ) £ /»y)rfM-
./12 * ./12 l</<* 

Moreover, 
lim /"/„<//* - l ip /"/nikJ/i = lim(l/fc) £ Lfnjdfi. 

n JH k JH k \<j<k 

We have then 

lim [ fndfj, = l ip [ fnk d[i = lim(l/fc) £ /" /yd/x 
« JH k JH k \<i<k 

= lim inf / [max (0, (1 / *) £ /,,) - max (0, - ( 1 / *) £ /„,)] J/x 
k Jil1 \<j<k \<j<k J 

>liminf jf [max (0,(1/*) T, fm)W 
k Jill l<j<k J 

- lim sup j max (O, -(l/k) £ /«/) M̂ 
A; , / " \<j<k 

> j max (0,/A ) rfM - ^ max (0, - / A ) <//x = / Q / A d» = jjU». 
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Finally, since (1/k)T,\<j<kfnj(w) ~> f(u) a.e. [fi] as k —> oo, it follows that if 
{ Y,\<j<k(\I k)fnj)}k is uniformly integrable, then 

lim \ fnd[i = l ip f fnkdfi = lim(l/fc) J2 Lfnjd^i = f f d\i = If dp. 
n JH k JH k ]<i<k 

m 

REMARKS. In Balder [3], using Chacon's Biting Lemma (a result equivalent to 
Gaposhkin's sequence splitting result), Balder showed that his version of Fatou's Lemma 
(i.e., Balder [2]) could be deduced from Artstein's version of the Lemma (i.e., Artstein 
[1]). Here, using Gaposhkin's sequence splitting result [4] and Komlos' Theorem [7], we 
have shown, in a very direct way, that an even stronger version of Fatou's Lemma can 
be deduced from Artstein's Lemma. 
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