ISOMETRIC REPRESENTATION OF M(G) ON B(H)
by F. GHAHRAMANI
(Received 10 October, 1980)

In a recent paper, E. Stgrmer, among other things, proves the existence of an
isometric isomorphism from the measure algebra M{(G) of a locally compact abelian
group G into BB(L*(G)), ([6], Proposition 4.6). Here we give another proof for this result
which works for non-commutative G as well as commutative G. We also prove that the
algebra L'(G, A), with A the left (or right) Haar measure, is not isometrically isomorphic
with an algebra of operators on a Hilbert space. The proofs of these two results are taken
from the author’s Ph.D. thesis [4], submitted to the University of Edinburgh before
Stgrmer’s paper. The author wishes to thank Dr. A. M. Sinclair for his help and
encouragement.

We adopt the notation of [§], the exception being that for every aeG and
feL'(G, A) we let L,f be the function in L'(G, A) defined by (L,f)(x) = f(ax) for every
xeG.

First we need the following two lemmas.

LemMAa 1. Forn=2 let F\, F,, . .., F, be pairwise disjoint compact subsets of G. Then
there is an open neighbourhood A of e such that for xe F, y € F,, (i#j) the sets xA and yA
are disjoint (i,j=1,2,...,n).

Proof. For each i#j the set B; ;={x"'y:x € F, y € F;} is compact and disjoint from e.
Since there are only finitely many such sets, there is an open neighbourhood U of e such
that UN(|JB; ;)= . The required set is any open neighbourhood A of e such that
AA'c U.

In the lemma to follow, A is the left Haar measure on G, and H = L*(G, A).
Lemma 2. Let w be a positive measure in M(G). Then the map ¢ from LY (G, u) into
BB(H) defined by

WTe by = [ FOLTLg b) duto) (1)
G

(fe LG, n), Te B(H), g, he H), is an isometric isomorphism.

Proof. The continuity of translations ([5], Theorem 20.4) implies that (L, TL.g, h) is
a continous function of t. Moreover, the boundedness of (L,~TL.g, h) implies that for
every Te B(H) and fe L'(G, w) the integral on the right side of (1) exists and defines a
bounded sesquilinear form on H. Since for every t € G, L, and L,-: are isometries we have

L FKL - TLg, k) dis(®)| <IAITI el [l @

Glasgow Math. J. 23 (1982) 119-122.

https://doi.org/10.1017/50017089500004882 Published online by Cambridge University Press


https://doi.org/10.1017/S0017089500004882

120 F. GHAHRAMANI
Thus,

leHTH=ITY A, ©)

Therefore, ¢ is norm decreasing. To prove ¢ is an isometry, we proceed as follows. Let

f= Z CkXFp
k=1

where F, (k=1,2,...,n) are pairwise disjoint compact sets, and xg, is the characteristic
function of F, (k=1,2,...,n). We have

1= X leel wFo).

Let ¢, =|cc|e"® be the polar form of the complex number ¢ (k=1,2,...,n). For the
compact sets F,, F,, ..., F,, we choose the open set A as in lemma 1 with A(A)<co.
Then, g = x4 € L*(G, A) and g#0.

Let M be the linear span of the set {L,g:te |J F}. If te F, and s € F; (i # j), then the
i=1

two sets tA and sA are disjoint. Thus, the functions L,g=x,. and Lg=x,. are
orthogonal. We define the operator S on M as follows. If h= Z A, oL, g with t,
F,(p=1,2,...,n), then

Sh=7) e\, L, g
p.q

Obviously, S is a linear isometry. We extend S to the closure M of M by continuity and
we let T=S@®1 act on M®(M)* = H. Then, T is an isometry, and we have

W()Tg g)= I f(){Li~TL.g, g) dp(1)

]
’uer Q

G L (L~ TLg, g) du(t)

Il
=

G (Ll ) du(o)

=
i
-

ce” u(Fo) I8l

=

I
L=

|ewl w(Fi) gl = [If1 gl (4)

It
=

l
-

Thus, [[¢(f)l = Ifll
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For a general simple function
f= Y cxneL'(G, p),
k=1

where the F, are pairwise disjoint sets, we can, by regularity of the measure u, find
compact sets Fi < F, such that w(F.)— w(F}) is arbitrarily small. If f'=3 ¢, xg, then by
the above paragraph ||[y(f)| =|lfll, and the continuity of  implies ||l (f)l| =|Ifll.

Finally, since simple functions are dense in L'(G, u), the continuity of 4 implies that

Dl =lfYl for every fe LY(G, w).

THeoreM 1. If H=L*G, \), then there exists an isometric isomorphism from the
algebra M(G) into BB(H).

Proof. We define the map 6 from M(G) into BB(H) by
O Te W= [ (L-TLg W du(®  (weM(G), TeB(H), g heH).
G

Obviously, 6 is linear. By the Radon-Nikodym theorem there is a Borel measurable
function k with k(x)=1, (x € G), and du = k d|u|. Thus,

(0 Tg h)= | KOXLoTLg k) d ] 0.
G
Let ¢ be the mapping of LG, |u|) into BB(H) as in Lemma 2. Then,

oG = o =1kl = [ (kG0 d 1] 0 = ol

Thus, 6 is isometric. Given u, v € M(G), we have

p

(6(n)0(v)Tg, h) = | {L-6(»)TLig, h) du(t)

G

= [ (00 TLig Lk du(t)=L | L TLLg By du(s) duto
“G G

- L (Lo~ TLag, ) dv(s) du(r) = L (L TLg, by d(u*v)(x)

G

(0w * V)Tg, k) (g heH, TeB(H)).

Thus, @(p * v)=6(n)6(v) and 6 is an isometric isomorphism from M(G) into BB(H).

In order to prove that M(G) is not isometrically isomorphic with an algebra of
operators on a Hilbert space, it is sufficient to prove the following result.

THEOREM 2. If G has at least two elements, then the algebra L'(G, A) is not isometri-
cally isomorphic with an algebra of operators on a Hilbert space.
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Proof. Suppose that # is an isometric isomorphism from L'(G, A) into B(H). Let K
be the closed linear span of the set {8(f)x:fe L*(G, A), x € H}. Then, since L'(G, A) has a
bounded approximate identity of norm one, and 6 is an isometry, ¢(f)=
0(f)| K,(fe L'(G,A)), is an isometric isomorphism from L'(G,A) into B(K). Thus,
without loss of generality, we can assume that the closed linear span of the set {8(f)x:fe
LY(G, ), x€ H} is equal to H. From this and ||6|| = 1 it follows that 6 is a *-representation
of LY(G, A) on H, ([1] Exercise 69.30), and thus, L'(G, A) is isometrically isomorphic with
a C*-algebra. Since the double centralizer of a C*-algebra is a C*-algebra ([3], Theorem
2.11), and the double centralizer of LG, A) is M(G) [7] this would imply that M(G) is
isometrically isomorphic to a C*-algebra.

But it can easily be verified that the set of Hermitian elements ([2], Definition 1, p.
46) of M(G) is equal to {AS.: A €R}. Since the set of self-adjoint elements of a unital
C*-algebra is equal to the set of Hermitian elements, as defined in Numerical Range
theory ([2], Example 3, p. 47), we would have

M(G)={A8,: A eR}+i{AS, : A eR},
a contradiction.

It should be noted that in the case of infinite-dimensional L'(G, A) a much stronger
statement is possible [8, Corollary]: L'(G, A) is not topologically isomorphic to any
quotient of a subalgebra of a C*-algebra by a closed ideal.
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