
Appendix B

Many faces of two-dimensional supersymmetric
CP(N − 1) model

B.1 O(3) sigma model

Supersymmetric extension of the O(3) sigma model in the form discussed in this
section was suggested in Refs. [7, 237]. We refer the reader to the book [238] for
a pedagogical discussion of the non-supersymmetric O(3) sigma model.

One can construct supersymmetric sigma model in terms of two-dimensional
N = 1 superfields as follows. Let us introduce a triplet of real superfields Na ,

Na(x, θ) = Sa(x)+ θ̄χa(x)+ 1

2
θ̄ θ F a(x), a = 1, 2, 3, (B.1)

where θ is a two-component Majorana (real) spinor (θ̄ = θ γ 0), χa is a two-
component Majorana fermion field and Fa is an auxiliary boson field which will
enter in the Lagrangian with no kinetic term. The superfield Na(x, θ) is subject to
the constraint

Na(x, θ)Na(x, θ) = 1. (B.2)

In components this is equivalent to

SaSa = 1, Saχa = 0, SaF a = 1

2
χ̄aχa . (B.3)

The action of the model takes the form

S = 1

2g2
0

∫
d2x d2θ εαβ

(
DαN

a
)(
DβN

a
)

= 1

g2
0

∫
d2x

[
1

2

(
∂μS

a
)2 + 1

2
χ̄aiγ μ∂μχ

a + 1

8
(χ̄χ)2

]
(B.4)
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where g2
0 is the (bare) coupling constant and

Dα = ∂

∂θ̄α
− i(γ μθ)α ∂μ. (B.5)

This model describes two independent (real) degrees of freedom in the bosonic
and fermionic sectors. The interaction inherent to this model is due to the con-
straints (B.3) and the four-fermion term in (B.4). The model is O(3) symmetric, by
construction. Also by construction it has N = (1, 1) supersymmetry (i.e. one left-
handed real supercharge, and one right-handed). In fact this model has an extended
N = 2 supersymmetry (more exactly, N = (2, 2)). The occurrence of two extra
supercharges (four altogether) is automatic and is explained by the fact that the
target space of the bosonic sector is S2, which is a Kähler manifold. Minimal
N = (1, 1) supersymmetrization of any Kählerian sigma model automatically pro-
duces N = (2, 2) supersymmetry. Further details can be found in the review paper
[156].

B.2 CP(1) sigma model

The same model expressed in terms of unconstrained variables is usually referred
to as the CP(1) model. If the unit vector Sa parametrizes the sphere, one can pass to
unconstrained variables by performing the stereographic projection of the sphere
onto the complex φ plane,

φ = S1 + iS2

1 + S3
. (B.6)

The complex fieldφ replaces two independent components ofSa .The unconstrained
two-component complex fermion field ψ is introduced as follows:

ψ = χ1 + iχ2

1 + S3
− S1 + iS2

(1 + S3)2
χ3. (B.7)

The inverse transformations have the form

S1 = 2(Reφ)

1 + |φ|2 , S2 = 2(Imφ)

1 + |φ|2 , S3 = 1 − |φ|2
1 + |φ|2 (B.8)

and

χ1 = 2(Reψ)

1 + |φ|2 − 2(Reφ)[φ†ψ + H.c.]
(1 + |φ|2)2 ,
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χ2 = 2(Imψ)

1 + |φ|2 − 2(Im φ)[φ†ψ + H.c.]
(1 + |φ|2)2 ,

χ3 = −2
[φ†ψ + H.c.]
(1 + |φ|2)2 . (B.9)

Substituting Eqs. (B.8) and (B.9) in the action (B.4) we get [239]

LCP(1) = G

{
∂μφ

† ∂μφ + iψ̄γ μ∂μψ − 2i

χ
φ†∂μφ ψ̄γ

μψ + 1

χ2
(ψ̄ψ)2

}
(B.10)

where

G = 2

g2
0 χ

2
, χ = 1 + |φ|2. (B.11)

The above Lagrangian can be obtained in terms of N = 2 superfields which
will make its N = (2, 2) supersymmetry explicit. Namely, let us introduce a chiral
superfield

�(xL, θ) = φ(xL)+ √
2 εαβ θ

αψβ(xL)+ εαβ θ
αθβ F (xL), (B.12)

where θ is a two-component complex Grassmann variable, while

x
μ
L = xμ + iθ̄γ μθ . (B.13)

Moreover, �† depends on xμR = xμ − iθ̄γ μθ and θ̄ , a conjugation of (B.12). In
terms of these superfields the Lagrangian of the CP(1) model can be written as

LCP(1) =
∫
d4θ K(�, �†), (B.14)

where K is the Kähler potential,

K = 2

g2
0

ln(1 +�†�). (B.15)

Needless to say, N = 2 supersymmetry is built in here. And what about the target
space symmetry? The U(1) symmetry corresponding to the rotation around the third
axis in the target space is realized linearly,

� → �+ iα ·�, �† → �† − iα ·�†, (B.16)

where α is a real parameter. At the same time, two other symmetry rotations are
realized nonlinearly,

� → β + β∗ ·�2, �† → β∗ + β · (�†)2, (B.17)

with a complex parameter β.
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B.3 Geometric interpretation

Equations (B.14) and (B.15) suggest a geometric interpretation (for a review see
e.g. [240]) for the above formulation of the CP(1) model which, in turn, allows one
to readily generalize it to the case of CP(N − 1) with arbitrary N . Indeed, let us
consider N − 1 complex superfields

�i(xμ + iθ̄γ μθ), �†j̄ (xμ − iθ̄γ μθ),

and the Kähler potential

K = 2

g2
0

ln

⎛
⎝1 +

N−1∑
i, j̄=1

�† j̄ δj̄ i�
i

⎞
⎠. (B.18)

(As we will see momentarily, it corresponds to the so-called round Fubini–Study
metric.) The Kähler potential determines the metric of the target space according
to the formula

Gij̄ = ∂2K(φ, φ†)

∂φi∂φ† j̄
. (B.19)

For CP(N − 1) the Riemann tensor is expressed in terms of the metric (B.19) as
follows:

Rij̄km̄ = −g
2
0

2

(
Gij̄Gkm̄ +Gim̄Gkj̄

)
, (B.20)

while the Ricci tensor

Rij̄ = g2
0

2
N Gij̄ . (B.21)

In components the Lagrangian of the CP(N − 1) model takes the form [241]

L =
∫

d4θ K = Gij̄
[
∂μφ

† j̄ ∂μφ
i + iψ̄ j̄ γ μDμψ

i
]− 1

2
Rij̄kl̄ (ψ̄

j̄ψi)(ψ̄ l̄ψk),

(B.22)

where D is the covariant derivative,

Dμψ
i = ∂μψ

i + �ikl
(
∂μφ

k
)
ψl , (B.23)

and �ikl is the Christoffel symbol.
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If N = 2 the above expressions simplify and we get

G = G11̄ = ∂φ∂φ† K
∣∣
θ=θ̄=0 = 2

g2
0 χ

2
,

� = �1
11 = −2

φ†

χ
, �̄ = �1̄

1̄1̄
= −2

φ

χ
,

R ≡ R11̄ = −G−1R11̄11̄ = 2

χ2
, (B.24)

where we use the notation

χ ≡ 1 + φ φ†. (B.25)

Substituting (B.24) and (B.25) in (B.22) we arrive at the CP(1) Lagrangian (B.10).

B.4 Gauged formulation

Here we will discuss yet another formulation of N = 2 supersymmetric sigma
models with the target space

SU(N)

SU(N − 1)× U(1)
= CP(N − 1), (B.26)

which goes under the name of the gauged formulation [242]. This formulation is
built on an N -plet of complex scalar fields ni where i = 1, 2, ...,N . We impose the
constraint

n
†
i n

i = 1. (B.27)

This leaves us with 2N−1 real bosonic degrees of freedom. To eliminate one extra
degree of freedom we impose a local U(1) invariance ni(x) → eiα(x)ni(x). To this
end we introduce a gauge field Aμ which converts the partial derivative into the
covariant one,

∂μ → ∇μ ≡ ∂μ − i Aμ. (B.28)

The fieldAμ is auxiliary; it enters in the Lagrangian without derivatives. The kinetic
term of the n fields is

L = 2

g2
0

∣∣∇μni∣∣2. (B.29)
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The superpartner to the field ni is an N -plet of complex two-component spinor
fields ξ i ,

ξ i =
{
ξ iR

ξ iL

. (B.30)

The auxiliary fieldAμ has a complex scalar superpartner σ and a two-component
complex spinor superpartner λ; both enter without derivatives. The full N = 2
symmetric Lagrangian is

L = 2

g2
0

{∣∣∇μni∣∣2 + ξ̄i iγ
μ∇μ ξ i + 2|σ |2 |ni |2

+
[
i
√

2 σξ†iR ξ
i
L + i

√
2 n†

i

(
λRξ

i
L − λLξ

i
R

)+ H.c.
]}

. (B.31)

The auxiliary fields can be eliminated by virtue of the equations of motion which
yield the following relations:

n
†
l ξ
l
L = 0, n

†
l ξ
l
R = 0 ;

Aμ = − i
2
n

†
l

↔
∂μ n

l − 1

2
ξ̄lγμξ

l ,

σ = i√
2
ξ

†
lLξ

l
R . (B.32)

Substituting (B.32) in (B.31) we arrive at the final expression for the Lagrangian
of N = 2 sigma model with the target space (B.26),

L = 2

g2
0

{∣∣∂μni∣∣2 + 1

4

(
n

†
i

↔
∂μ n

i
)2

+ ξ̄i iγ
μ

(
∂μ − 1

2
n

†
l

↔
∂μ n

l

)
ξ i

− (
ξ

†
iR ξ

i
R · ξ†lL ξ lL + ξ

†
iR ξ

i
L · ξ†lL ξ lR

)}
, (B.33)

n
†
i n

i = 1, n
†
i ξ

i = 0. (B.34)

For N = 2 there exists a simple local transformation converting the Lagrangian
of the O(3) model discussed in Appendix B.1 into (B.33),

Sa = n
†
i

(
τa
)i
k
nk ,

χa = n
†
i

(
τa
)i
k
ξ k + ξ

†
i

(
τa
)i
k
nk , (B.35)
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where τa are the Pauli matrices. If we use the Fierz identity for the Pauli matrices,

(τ a)ik (τ
a)ĩ
k̃

= −1

2
(τ a)ĩk(τ

a)i
k̃
+ 3

2
δĩk δ

i

k̃
, (B.36)

and substitute Eq. (B.35) in the Lagrangian (B.4) taking account of the constraints
(B.3) we arrive at (B.33). The constraints (B.34) are satisfied automatically.

B.5 Heterotic CP(1)

Here we will outline derivation of the heterotic CP(1) model elaborated in
Ref. [191]. We will start from the general geometric formulation presented in
Appendix B.3, specify it to the CP(1) case using Eq. (B.24) and then introduce
a deformation that breaks N = (2, 2) down to N = (0, 2). As is well known, if we
limit ourselves to the set of fields present in the N = (2, 2) sigma model, such a
deformation does not exist. However, it does exist if we agree to introduce an extra
right-handed fermion ζR [190].

One can obtain the deformed Lagrangian as follows. Introduce the operators

B = {ζR(xμ + iθ̄γ μθ)+ √
2θRF}θ†L,

B† = θL
{
ζ

†
R(x

μ − iθ̄γ μθ)+ √
2θ†RF†}. (B.37)

Since θL and θ†
L enter in Eq. (B.37) explicitly, B and B† are not superfields with

regards to the supertransformations with parameters εL, ε†
L. These supertransfor-

mations are absent in the heterotic model. Only those survive which are associated
with εR , ε†

R . Note that B and B† are superfields with regards to the latter.
It is convenient to introduce a shorthand for the chiral coordinate

x̃μ = xμ + iθ̄γ μθ . (B.38)

Then the transformation laws with the parameters εR , ε†
R are as follows:

δθR = εR , δθ
†
R = ε

†
R , δx̃0 = 2iε†

RθR , δx̃1 = 2iε†
RθR . (B.39)

With respect to such supertransformations, B and B† are superfields. Indeed,

δζR = √
2 F εR , δF = √

2 i(∂LζR)ε
†
R , (B.40)

plus Hermitean conjugate transformations. To convert LCP(1) into Lheterotic we add
to LCP(1) the following terms:

�L =
∫
d4θ
{− 2 B† B + [g2

0

√
2 γ BK + H.c.

]}
, (B.41)

https://doi.org/10.1017/9781009402200.013 Published online by Cambridge University Press

https://doi.org/10.1017/9781009402200.013


Appendix B 241

where γ is generally speaking a complex constant. For simplicity we will assume
γ to be real. Thus, we obviously deal here with a single deformation parameter.

First, let us check that the extra term (B.41) preserves invariance on the tar-
get space. Indeed, the invariance under the U(1) transformation of the superfields
�, �†,

� → iδ �, �† → −iδ �†, (B.42)

is obvious. Two other rotations on the sphere manifest themselves in nonlinear
transformations with a complex parameter β,

� → β + β∗�2, �† → β∗ + β(�†)2. (B.43)

Under these transformations

δK = 2

g2
0

(β∗�+ β �†). (B.44)

It is not difficult to see that

∫
d4θ B δK = 0. (B.45)

In other words, even before performing the component decomposition we are certain
that the term (B.41) is invariant on the target space of the CP(1) model. Needless
to say, it is N = (0, 2) invariant by construction.

As usual, the F term enters without derivatives and can be eliminated by virtue
of equations of motion,

F = −2 γ ∗ χ−2 ψ
†
R ψL, F† = −2 γ χ−2 ψ

†
L ψR . (B.46)

In addition, the F terms of the superfields �, �† also change. If before the
deformation e.g. F = (i/2) � ψ γ 0 ψ , after the deformation

F = i

2
� ψ γ 0 ψ − g2

0 γ ψL ζ
†
R , (B.47)

plus the Hermitian conjugated expression for F †.
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Assembling all these pieces together we get the Lagrangian of the heterotic CP(1)
model,

Lheterotic = ζ
†
R i∂L ζR + [γ ζR R (i ∂Lφ†)ψR + H.c.

]− g2
0|γ |2(ζ†

R ζR
)(
Rψ

†
LψL

)
+G

{
∂μφ

† ∂μφ + i

2

(
ψ

†
L

↔
∂R ψL + ψ

†
R

↔
∂LψR

)

− i

χ

[
ψ

†
LψL

(
φ†

↔
∂R φ

)+ ψ
†
R ψR

(
φ†

↔
∂Lφ

)]

−2(1 − g2
0|γ |2)

χ2
ψ

†
L ψL ψ

†
R ψR

}
, (B.48)

where R stands for the Ricci tensor, and

∂L = ∂

∂t
+ ∂

∂z
, ∂R = ∂

∂t
− ∂

∂z
. (B.49)

Generalization for arbitrary N (i.e. the N = (0, 2) deformed CP(N − 1)model)
is as follows:

Lheterotic = ζ
†
R i∂L ζR + [γ g2

0 ζR Gij̄
(
i ∂Lφ

† j̄ )ψiR + H.c.
]

− g4
0 |γ |2 (ζ†

R ζR
)(
Gij̄ ψ

† j̄
L ψ

i
L

)
+Gij̄

[
∂μφ

† j̄ ∂μφ
i + iψ̄ j̄ γ μDμψ

i
]

− g2
0

2

(
Gij̄ψ

† j̄
R ψiR

)(
Gkm̄ψ

† m̄
L ψkL

)
+ g2

0

2

(
1 − 2g2

0|γ |2)(Gij̄ψ† j̄
R ψiL

)(
Gkm̄ψ

† m̄
L ψkR

)
. (B.50)
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