Appendix B

Many faces of two-dimensional supersymmetric $\mathrm{CP}(N-1)$ model

B. 1 O(3) sigma model

Supersymmetric extension of the $\mathrm{O}(3)$ sigma model in the form discussed in this section was suggested in Refs. [7, 237]. We refer the reader to the book [238] for a pedagogical discussion of the non-supersymmetric $\mathrm{O}(3)$ sigma model.

One can construct supersymmetric sigma model in terms of two-dimensional $\mathcal{N}=1$ superfields as follows. Let us introduce a triplet of real superfields N^{a},

$$
\begin{equation*}
N^{a}(x, \theta)=S^{a}(x)+\bar{\theta} \chi^{a}(x)+\frac{1}{2} \bar{\theta} \theta F^{a}(x), \quad a=1,2,3, \tag{B.1}
\end{equation*}
$$

where θ is a two-component Majorana (real) spinor $\left(\bar{\theta}=\theta \gamma^{0}\right), \chi^{a}$ is a twocomponent Majorana fermion field and F^{a} is an auxiliary boson field which will enter in the Lagrangian with no kinetic term. The superfield $N^{a}(x, \theta)$ is subject to the constraint

$$
\begin{equation*}
N^{a}(x, \theta) N^{a}(x, \theta)=1 . \tag{B.2}
\end{equation*}
$$

In components this is equivalent to

$$
\begin{equation*}
S^{a} S^{a}=1, \quad S^{a} \chi^{a}=0, \quad S^{a} F^{a}=\frac{1}{2} \bar{\chi}^{a} \chi^{a} . \tag{B.3}
\end{equation*}
$$

The action of the model takes the form

$$
\begin{align*}
S & =\frac{1}{2 g_{0}^{2}} \int d^{2} x d^{2} \theta \varepsilon^{\alpha \beta}\left(D_{\alpha} N^{a}\right)\left(D_{\beta} N^{a}\right) \\
& =\frac{1}{g_{0}^{2}} \int d^{2} x\left[\frac{1}{2}\left(\partial_{\mu} S^{a}\right)^{2}+\frac{1}{2} \bar{\chi}^{a} i \gamma^{\mu} \partial_{\mu} \chi^{a}+\frac{1}{8}(\bar{\chi} \chi)^{2}\right] \tag{B.4}
\end{align*}
$$

where g_{0}^{2} is the (bare) coupling constant and

$$
\begin{equation*}
D_{\alpha}=\frac{\partial}{\partial \bar{\theta}_{\alpha}}-i\left(\gamma^{\mu} \theta\right)_{\alpha} \partial_{\mu} \tag{B.5}
\end{equation*}
$$

This model describes two independent (real) degrees of freedom in the bosonic and fermionic sectors. The interaction inherent to this model is due to the constraints (B.3) and the four-fermion term in (B.4). The model is $\mathrm{O}(3)$ symmetric, by construction. Also by construction it has $\mathcal{N}=(1,1)$ supersymmetry (i.e. one lefthanded real supercharge, and one right-handed). In fact this model has an extended $\mathcal{N}=2$ supersymmetry (more exactly, $\mathcal{N}=(2,2)$). The occurrence of two extra supercharges (four altogether) is automatic and is explained by the fact that the target space of the bosonic sector is S^{2}, which is a Kähler manifold. Minimal $\mathcal{N}=(1,1)$ supersymmetrization of any Kählerian sigma model automatically produces $\mathcal{N}=(2,2)$ supersymmetry. Further details can be found in the review paper [156].

B. 2 CP(1) sigma model

The same model expressed in terms of unconstrained variables is usually referred to as the $\mathrm{CP}(1)$ model. If the unit vector S^{a} parametrizes the sphere, one can pass to unconstrained variables by performing the stereographic projection of the sphere onto the complex ϕ plane,

$$
\begin{equation*}
\phi=\frac{S^{1}+i S^{2}}{1+S^{3}} \tag{B.6}
\end{equation*}
$$

The complex field ϕ replaces two independent components of S^{a}. The unconstrained two-component complex fermion field ψ is introduced as follows:

$$
\begin{equation*}
\psi=\frac{\chi^{1}+i \chi^{2}}{1+S^{3}}-\frac{S^{1}+i S^{2}}{\left(1+S^{3}\right)^{2}} \chi^{3} \tag{B.7}
\end{equation*}
$$

The inverse transformations have the form

$$
\begin{equation*}
S^{1}=\frac{2(\operatorname{Re} \phi)}{1+|\phi|^{2}}, \quad S^{2}=\frac{2(\operatorname{Im} \phi)}{1+|\phi|^{2}}, \quad S^{3}=\frac{1-|\phi|^{2}}{1+|\phi|^{2}} \tag{B.8}
\end{equation*}
$$

and

$$
\chi^{1}=\frac{2(\operatorname{Re} \psi)}{1+|\phi|^{2}}-\frac{2(\operatorname{Re} \phi)\left[\phi^{\dagger} \psi+\text { H.c. }\right]}{\left(1+|\phi|^{2}\right)^{2}}
$$

$$
\begin{align*}
\chi^{2} & =\frac{2(\operatorname{Im} \psi)}{1+|\phi|^{2}}-\frac{2(\operatorname{Im} \phi)\left[\phi^{\dagger} \psi+\text { H.c. }\right]}{\left(1+|\phi|^{2}\right)^{2}} \\
\chi^{3} & =-2 \frac{\left[\phi^{\dagger} \psi+\text { H.c. }\right]}{\left(1+|\phi|^{2}\right)^{2}} \tag{B.9}
\end{align*}
$$

Substituting Eqs. (B.8) and (B.9) in the action (B.4) we get [239]

$$
\begin{equation*}
L_{\mathrm{CP}(1)}=G\left\{\partial_{\mu} \phi^{\dagger} \partial^{\mu} \phi+i \bar{\psi} \gamma^{\mu} \partial_{\mu} \psi-\frac{2 i}{\chi} \phi^{\dagger} \partial_{\mu} \phi \bar{\psi} \gamma^{\mu} \psi+\frac{1}{\chi^{2}}(\bar{\psi} \psi)^{2}\right\} \tag{B.10}
\end{equation*}
$$

where

$$
\begin{equation*}
G=\frac{2}{g_{0}^{2} \chi^{2}}, \quad \chi=1+|\phi|^{2} \tag{B.11}
\end{equation*}
$$

The above Lagrangian can be obtained in terms of $\mathcal{N}=2$ superfields which will make its $\mathcal{N}=(2,2)$ supersymmetry explicit. Namely, let us introduce a chiral superfield

$$
\begin{equation*}
\Phi\left(x_{L}, \theta\right)=\phi\left(x_{L}\right)+\sqrt{2} \varepsilon_{\alpha \beta} \theta^{\alpha} \psi^{\beta}\left(x_{L}\right)+\varepsilon_{\alpha \beta} \theta^{\alpha} \theta^{\beta} F\left(x_{L}\right) \tag{B.12}
\end{equation*}
$$

where θ is a two-component complex Grassmann variable, while

$$
\begin{equation*}
x_{L}^{\mu}=x^{\mu}+i \bar{\theta} \gamma^{\mu} \theta \tag{B.13}
\end{equation*}
$$

Moreover, Φ^{\dagger} depends on $x_{R}^{\mu}=x^{\mu}-i \bar{\theta} \gamma^{\mu} \theta$ and $\bar{\theta}$, a conjugation of (B.12). In terms of these superfields the Lagrangian of the $\mathrm{CP}(1)$ model can be written as

$$
\begin{equation*}
L_{\mathrm{CP}(1)}=\int d^{4} \theta K\left(\Phi, \Phi^{\dagger}\right) \tag{B.14}
\end{equation*}
$$

where K is the Kähler potential,

$$
\begin{equation*}
K=\frac{2}{g_{0}^{2}} \ln \left(1+\Phi^{\dagger} \Phi\right) \tag{B.15}
\end{equation*}
$$

Needless to say, $\mathcal{N}=2$ supersymmetry is built in here. And what about the target space symmetry? The $\mathrm{U}(1)$ symmetry corresponding to the rotation around the third axis in the target space is realized linearly,

$$
\begin{equation*}
\Phi \rightarrow \Phi+i \alpha \cdot \Phi, \quad \Phi^{\dagger} \rightarrow \Phi^{\dagger}-i \alpha \cdot \Phi^{\dagger} \tag{B.16}
\end{equation*}
$$

where α is a real parameter. At the same time, two other symmetry rotations are realized nonlinearly,

$$
\begin{equation*}
\Phi \rightarrow \beta+\beta^{*} \cdot \Phi^{2}, \quad \Phi^{\dagger} \rightarrow \beta^{*}+\beta \cdot\left(\Phi^{\dagger}\right)^{2} \tag{B.17}
\end{equation*}
$$

with a complex parameter β.

B. 3 Geometric interpretation

Equations (B.14) and (B.15) suggest a geometric interpretation (for a review see e.g. [240]) for the above formulation of the $\mathrm{CP}(1)$ model which, in turn, allows one to readily generalize it to the case of $\mathrm{CP}(N-1)$ with arbitrary N. Indeed, let us consider $N-1$ complex superfields

$$
\Phi^{i}\left(x^{\mu}+i \bar{\theta} \gamma^{\mu} \theta\right), \quad \Phi^{\dagger \bar{j}}\left(x^{\mu}-i \bar{\theta} \gamma^{\mu} \theta\right)
$$

and the Kähler potential

$$
\begin{equation*}
K=\frac{2}{g_{0}^{2}} \ln \left(1+\sum_{i, \bar{j}=1}^{N-1} \Phi^{\dagger \bar{j}} \delta_{\bar{j} i} \Phi^{i}\right) \tag{B.18}
\end{equation*}
$$

(As we will see momentarily, it corresponds to the so-called round Fubini-Study metric.) The Kähler potential determines the metric of the target space according to the formula

$$
\begin{equation*}
G_{i \bar{j}}=\frac{\partial^{2} K\left(\phi, \phi^{\dagger}\right)}{\partial \phi^{i} \partial \phi^{\dagger \bar{j}}} \tag{B.19}
\end{equation*}
$$

For $\mathrm{CP}(N-1)$ the Riemann tensor is expressed in terms of the metric (B.19) as follows:

$$
\begin{equation*}
R_{i \bar{j} k \bar{m}}=-\frac{g_{0}^{2}}{2}\left(G_{i \bar{j}} G_{k \bar{m}}+G_{i \bar{m}} G_{k \bar{j}}\right), \tag{B.20}
\end{equation*}
$$

while the Ricci tensor

$$
\begin{equation*}
R_{i \bar{j}}=\frac{g_{0}^{2}}{2} N G_{i \bar{j}} \tag{B.21}
\end{equation*}
$$

In components the Lagrangian of the $\mathrm{CP}(N-1)$ model takes the form [241]

$$
\begin{equation*}
L=\int \mathrm{d}^{4} \theta K=G_{i \bar{j}}\left[\partial_{\mu} \phi^{\dagger \bar{j}} \partial_{\mu} \phi^{i}+i \bar{\psi}^{\bar{j}} \gamma^{\mu} D_{\mu} \psi^{i}\right]-\frac{1}{2} R_{i \bar{j} k \bar{l}}\left(\bar{\psi}^{\bar{j}} \psi^{i}\right)\left(\bar{\psi}^{\bar{l}} \psi^{k}\right) \tag{B.22}
\end{equation*}
$$

where D is the covariant derivative,

$$
\begin{equation*}
D_{\mu} \psi^{i}=\partial_{\mu} \psi^{i}+\Gamma_{k l}^{i}\left(\partial_{\mu} \phi^{k}\right) \psi^{l} \tag{B.23}
\end{equation*}
$$

and $\Gamma_{k l}^{i}$ is the Christoffel symbol.

If $N=2$ the above expressions simplify and we get

$$
\begin{align*}
& G=G_{1 \overline{1}}=\left.\partial_{\phi} \partial_{\phi^{\dagger}} K\right|_{\theta=\bar{\theta}=0}=\frac{2}{g_{0}^{2} \chi^{2}}, \\
& \Gamma=\Gamma_{11}^{1}=-2 \frac{\phi^{\dagger}}{\chi}, \quad \bar{\Gamma}=\Gamma_{\overline{1} \overline{1}}^{\overline{1}}=-2 \frac{\phi}{\chi}, \\
& R \equiv R_{1 \overline{1}}=-G^{-1} R_{1 \overline{1} 1 \overline{1}}=\frac{2}{\chi^{2}} \tag{B.24}
\end{align*}
$$

where we use the notation

$$
\begin{equation*}
\chi \equiv 1+\phi \phi^{\dagger} \tag{B.25}
\end{equation*}
$$

Substituting (B.24) and (B.25) in (B.22) we arrive at the CP (1) Lagrangian (B.10).

B. 4 Gauged formulation

Here we will discuss yet another formulation of $\mathcal{N}=2$ supersymmetric sigma models with the target space

$$
\begin{equation*}
\frac{\mathrm{SU}(N)}{\mathrm{SU}(N-1) \times \mathrm{U}(1)}=\mathrm{CP}(N-1) \tag{B.26}
\end{equation*}
$$

which goes under the name of the gauged formulation [242]. This formulation is built on an N-plet of complex scalar fields n^{i} where $i=1,2, \ldots, N$. We impose the constraint

$$
\begin{equation*}
n_{i}^{\dagger} n^{i}=1 \tag{B.27}
\end{equation*}
$$

This leaves us with $2 N-1$ real bosonic degrees of freedom. To eliminate one extra degree of freedom we impose a local $\mathrm{U}(1)$ invariance $n^{i}(x) \rightarrow e^{i \alpha(x)} n^{i}(x)$. To this end we introduce a gauge field A_{μ} which converts the partial derivative into the covariant one,

$$
\begin{equation*}
\partial_{\mu} \rightarrow \nabla_{\mu} \equiv \partial_{\mu}-i A_{\mu} \tag{B.28}
\end{equation*}
$$

The field A_{μ} is auxiliary; it enters in the Lagrangian without derivatives. The kinetic term of the n fields is

$$
\begin{equation*}
L=\frac{2}{g_{0}^{2}}\left|\nabla_{\mu} n^{i}\right|^{2} \tag{B.29}
\end{equation*}
$$

The superpartner to the field n^{i} is an N-plet of complex two-component spinor fields ξ^{i},

$$
\xi^{i}=\left\{\begin{array}{l}
\xi_{R}^{i} \tag{B.30}\\
\xi_{L}^{i}
\end{array}\right.
$$

The auxiliary field A_{μ} has a complex scalar superpartner σ and a two-component complex spinor superpartner λ; both enter without derivatives. The full $\mathcal{N}=2$ symmetric Lagrangian is

$$
\begin{align*}
L=\frac{2}{g_{0}^{2}}\{ & \left|\nabla_{\mu} n^{i}\right|^{2}+\bar{\xi}_{i} i \gamma^{\mu} \nabla_{\mu} \xi^{i}+2|\sigma|^{2}\left|n^{i}\right|^{2} \\
& \left.+\left[i \sqrt{2} \sigma \xi_{i R}^{\dagger} \xi_{L}^{i}+i \sqrt{2} n_{i}^{\dagger}\left(\lambda_{R} \xi_{L}^{i}-\lambda_{L} \xi_{R}^{i}\right)+\text { H.c. }\right]\right\} \tag{B.31}
\end{align*}
$$

The auxiliary fields can be eliminated by virtue of the equations of motion which yield the following relations:

$$
\begin{align*}
& n_{l}^{\dagger} \xi_{L}^{l}=0, \quad n_{l}^{\dagger} \xi_{R}^{l}=0 \\
& A_{\mu}=-\frac{i}{2} n_{l}^{\dagger} \stackrel{\leftrightarrow}{\partial_{\mu}} n^{l}-\frac{1}{2} \bar{\xi}_{l} \gamma_{\mu} \xi^{l} \\
& \sigma=\frac{i}{\sqrt{2}} \xi_{l L}^{\dagger} \xi_{R}^{l} \tag{B.32}
\end{align*}
$$

Substituting (B.32) in (B.31) we arrive at the final expression for the Lagrangian of $\mathcal{N}=2$ sigma model with the target space (B.26),

$$
\begin{align*}
& L=\frac{2}{g_{0}^{2}}\left\{\left|\partial_{\mu} n^{i}\right|^{2}+\frac{1}{4}\left(n_{i}^{\dagger} \stackrel{\leftrightarrow}{\partial_{\mu}} n^{i}\right)^{2}\right. \\
&+\bar{\xi}_{i} i \gamma^{\mu}\left(\partial_{\mu}-\frac{1}{2} n_{l}^{\dagger} \stackrel{\leftrightarrow}{\partial_{\mu}} n^{l}\right) \xi^{i} \\
&\left.-\left(\xi_{i R}^{\dagger} \xi_{R}^{i} \cdot \xi_{l L}^{\dagger} \xi_{L}^{l}+\xi_{i R}^{\dagger} \xi_{L}^{i} \cdot \xi_{l L}^{\dagger} \xi_{R}^{l}\right)\right\} \tag{B.33}\\
& n_{i}^{\dagger} n^{i}=1, \quad n_{i}^{\dagger} \xi^{i}=0 \tag{B.34}
\end{align*}
$$

For $N=2$ there exists a simple local transformation converting the Lagrangian of the $\mathrm{O}(3)$ model discussed in Appendix B. 1 into (B.33),

$$
\begin{align*}
S^{a} & =n_{i}^{\dagger}\left(\tau^{a}\right)_{k}^{i} n^{k} \\
\chi^{a} & =n_{i}^{\dagger}\left(\tau^{a}\right)_{k}^{i} \xi^{k}+\xi_{i}^{\dagger}\left(\tau^{a}\right)_{k}^{i} n^{k} \tag{B.35}
\end{align*}
$$

where τ^{a} are the Pauli matrices. If we use the Fierz identity for the Pauli matrices,

$$
\begin{equation*}
\left(\tau^{a}\right)_{k}^{i}\left(\tau^{a}\right)_{\tilde{k}}^{\tilde{i}}=-\frac{1}{2}\left(\tau^{a}\right)_{k}^{\tilde{i}}\left(\tau^{a}\right)_{\tilde{k}}^{i}+\frac{3}{2} \delta_{k}^{\tilde{i}} \delta_{\tilde{k}}^{i}, \tag{B.36}
\end{equation*}
$$

and substitute Eq. (B.35) in the Lagrangian (B.4) taking account of the constraints (B.3) we arrive at (B.33). The constraints (B.34) are satisfied automatically.

B. 5 Heterotic CP(1)

Here we will outline derivation of the heterotic $\mathrm{CP}(1)$ model elaborated in Ref. [191]. We will start from the general geometric formulation presented in Appendix B.3, specify it to the $\mathrm{CP}(1)$ case using Eq. (B.24) and then introduce a deformation that breaks $\mathcal{N}=(2,2)$ down to $\mathcal{N}=(0,2)$. As is well known, if we limit ourselves to the set of fields present in the $\mathcal{N}=(2,2)$ sigma model, such a deformation does not exist. However, it does exist if we agree to introduce an extra right-handed fermion ζ_{R} [190].

One can obtain the deformed Lagrangian as follows. Introduce the operators

$$
\begin{align*}
\mathcal{B} & =\left\{\zeta_{R}\left(x^{\mu}+i \bar{\theta} \gamma^{\mu} \theta\right)+\sqrt{2} \theta_{R} \mathcal{F}\right\} \theta_{L}^{\dagger} \\
\mathcal{B}^{\dagger} & =\theta_{L}\left\{\zeta_{R}^{\dagger}\left(x^{\mu}-i \bar{\theta} \gamma^{\mu} \theta\right)+\sqrt{2} \theta_{R}^{\dagger} \mathcal{F}^{\dagger}\right\} \tag{B.37}
\end{align*}
$$

Since θ_{L} and θ_{L}^{\dagger} enter in Eq. (B.37) explicitly, \mathcal{B} and \mathcal{B}^{\dagger} are not superfields with regards to the supertransformations with parameters $\epsilon_{L}, \epsilon_{L}^{\dagger}$. These supertransformations are absent in the heterotic model. Only those survive which are associated with $\epsilon_{R}, \epsilon_{R}^{\dagger}$. Note that \mathcal{B} and \mathcal{B}^{\dagger} are superfields with regards to the latter.

It is convenient to introduce a shorthand for the chiral coordinate

$$
\begin{equation*}
\tilde{x}^{\mu}=x^{\mu}+i \bar{\theta} \gamma^{\mu} \theta \tag{B.38}
\end{equation*}
$$

Then the transformation laws with the parameters $\epsilon_{R}, \epsilon_{R}^{\dagger}$ are as follows:

$$
\begin{equation*}
\delta \theta_{R}=\epsilon_{R}, \quad \delta \theta_{R}^{\dagger}=\epsilon_{R}^{\dagger}, \quad \delta \tilde{x}^{0}=2 i \epsilon_{R}^{\dagger} \theta_{R}, \quad \delta \tilde{x}^{1}=2 i \epsilon_{R}^{\dagger} \theta_{R} \tag{B.39}
\end{equation*}
$$

With respect to such supertransformations, \mathcal{B} and \mathcal{B}^{\dagger} are superfields. Indeed,

$$
\begin{equation*}
\delta \zeta_{R}=\sqrt{2} \mathcal{F} \epsilon_{R}, \quad \delta \mathcal{F}=\sqrt{2} i\left(\partial_{L} \zeta_{R}\right) \epsilon_{R}^{\dagger} \tag{B.40}
\end{equation*}
$$

plus Hermitean conjugate transformations. To convert $L_{\mathrm{CP}(1)}$ into $L_{\text {heterotic }}$ we add to $L_{\mathrm{CP}(1)}$ the following terms:

$$
\begin{equation*}
\Delta L=\int d^{4} \theta\left\{-2 \mathcal{B}^{\dagger} \mathcal{B}+\left[g_{0}^{2} \sqrt{2} \gamma \mathcal{B} K+\text { H.c. }\right]\right\} \tag{B.41}
\end{equation*}
$$

where γ is generally speaking a complex constant. For simplicity we will assume γ to be real. Thus, we obviously deal here with a single deformation parameter.

First, let us check that the extra term (B.41) preserves invariance on the target space. Indeed, the invariance under the $\mathrm{U}(1)$ transformation of the superfields Φ, Φ^{\dagger},

$$
\begin{equation*}
\Phi \rightarrow i \delta \Phi, \quad \Phi^{\dagger} \rightarrow-i \delta \Phi^{\dagger} \tag{B.42}
\end{equation*}
$$

is obvious. Two other rotations on the sphere manifest themselves in nonlinear transformations with a complex parameter β,

$$
\begin{equation*}
\Phi \rightarrow \beta+\beta^{*} \Phi^{2}, \quad \Phi^{\dagger} \rightarrow \beta^{*}+\beta\left(\Phi^{\dagger}\right)^{2} \tag{B.43}
\end{equation*}
$$

Under these transformations

$$
\begin{equation*}
\delta K=\frac{2}{g_{0}^{2}}\left(\beta^{*} \Phi+\beta \Phi^{\dagger}\right) \tag{B.44}
\end{equation*}
$$

It is not difficult to see that

$$
\begin{equation*}
\int d^{4} \theta \mathcal{B} \delta K=0 \tag{B.45}
\end{equation*}
$$

In other words, even before performing the component decomposition we are certain that the term (B.41) is invariant on the target space of the $\mathrm{CP}(1)$ model. Needless to say, it is $\mathcal{N}=(0,2)$ invariant by construction.

As usual, the \mathcal{F} term enters without derivatives and can be eliminated by virtue of equations of motion,

$$
\begin{equation*}
\mathcal{F}=-2 \gamma^{*} \chi^{-2} \psi_{R}^{\dagger} \psi_{L}, \quad \mathcal{F}^{\dagger}=-2 \gamma \chi^{-2} \psi_{L}^{\dagger} \psi_{R} \tag{B.46}
\end{equation*}
$$

In addition, the F terms of the superfields Φ, Φ^{\dagger} also change. If before the deformation e.g. $F=(i / 2) \Gamma \psi \gamma^{0} \psi$, after the deformation

$$
\begin{equation*}
F=\frac{i}{2} \Gamma \psi \gamma^{0} \psi-g_{0}^{2} \gamma \psi_{L} \zeta_{R}^{\dagger} \tag{B.47}
\end{equation*}
$$

plus the Hermitian conjugated expression for F^{\dagger}.

Assembling all these pieces together we get the Lagrangian of the heterotic $\mathrm{CP}(1)$ model,

$$
\begin{align*}
& L_{\text {heterotic }}= \zeta_{R}^{\dagger} i \partial_{L} \zeta_{R}+\left[\gamma \zeta_{R} R\left(i \partial_{L} \phi^{\dagger}\right) \psi_{R}+\text { H.c. }\right]-g_{0}^{2}|\gamma|^{2}\left(\zeta_{R}^{\dagger} \zeta_{R}\right)\left(R \psi_{L}^{\dagger} \psi_{L}\right) \\
&+G\left\{\begin{array}{l}
\partial_{\mu} \phi^{\dagger} \partial^{\mu} \phi+\frac{i}{2}\left(\psi_{L}^{\dagger} \overleftrightarrow{\partial_{R}} \psi_{L}+\psi_{R}^{\dagger} \overleftrightarrow{\partial_{L}} \psi_{R}\right) \\
\\
\\
\\
-\frac{i}{\chi}\left[\psi_{L}^{\dagger} \psi_{L}\left(\phi^{\dagger} \overleftrightarrow{\partial_{R}} \phi\right)+\psi_{R}^{\dagger} \psi_{R}\left(\phi^{\dagger} \overleftrightarrow{\partial_{L}} \phi\right)\right] \\
\\
\\
\left.-\frac{2\left(1-g_{0}^{2}|\gamma|^{2}\right)}{\chi^{2}} \psi_{L}^{\dagger} \psi_{L} \psi_{R}^{\dagger} \psi_{R}\right\}
\end{array}\right.
\end{align*}
$$

where R stands for the Ricci tensor, and

$$
\begin{equation*}
\partial_{L}=\frac{\partial}{\partial t}+\frac{\partial}{\partial z}, \quad \partial_{R}=\frac{\partial}{\partial t}-\frac{\partial}{\partial z} \tag{B.49}
\end{equation*}
$$

Generalization for arbitrary N (i.e. the $\mathcal{N}=(0,2)$ deformed $\mathrm{CP}(N-1)$ model) is as follows:

$$
\begin{align*}
L_{\text {heterotic }}= & \zeta_{R}^{\dagger} i \partial_{L} \zeta_{R}+\left[\gamma g_{0}^{2} \zeta_{R} G_{i \bar{j}}\left(i \partial_{L} \phi^{\dagger \bar{j}}\right) \psi_{R}^{i}+\text { H.c. }\right] \\
& -g_{0}^{4}|\gamma|^{2}\left(\zeta_{R}^{\dagger} \zeta_{R}\right)\left(G_{i \bar{j}} \psi_{L}^{\dagger \bar{j}} \psi_{L}^{i}\right) \\
& +G_{i \bar{j}} \bar{j}\left[\partial_{\mu} \phi^{\dagger \bar{j}} \partial_{\mu} \phi^{i}+i \bar{\psi}^{\bar{j}} \gamma^{\mu} D_{\mu} \psi^{i}\right] \\
& -\frac{g_{0}^{2}}{2}\left(G_{i \bar{j}} \psi_{R}^{\dagger \bar{j}} \psi_{R}^{i}\right)\left(G_{k \bar{m}} \psi_{L}^{\dagger \bar{m}} \psi_{L}^{k}\right) \\
& +\frac{g_{0}^{2}}{2}\left(1-2 g_{0}^{2}|\gamma|^{2}\right)\left(G_{i \bar{j}} \psi_{R}^{\dagger \bar{j}} \psi_{L}^{i}\right)\left(G_{k \bar{m}} \psi_{L}^{\dagger \bar{m}} \psi_{R}^{k}\right) . \tag{B.50}
\end{align*}
$$

