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ON DUNFORD-PETTIS OPERATORS 

BY 

E L I A S S A A B 

ABSTRACT. Let X be a complemented subspace of a Banach 
lattice E. It is shown that if every Dunford-Pettis operator from 
L1[0,1] into X is Pettis-representable then X has the Radon-
Nikodym property. 

In [1] Bourgain showed that if every Dunford-Pettis operator from L^O, 1] 
to a Banach space X is Bochner-representable then X has the Radon-
Nikodym property. In this paper we show that if X is complemented in a 
Banach lattice E and if every Dunford-Pettis operator from L^O, 1] into X is 
Pettis-representable then X has the Radon-Nikodym property. 

All the notions used in this paper and not defined can be found in 
([2], [4], [6]). Let E be a Banach space and let T be an operator from L^O, 1] 
into E. 

DEFINITION 1. (i) The operator T is said to be Dunford-Pettis if the set 
{T(1A); A is a measurable subset of [0,1]} is relatively compact in E. 

(ii) The operator T is said to be Bochner- (resp. Pettis) representable if there 
exists g : [ 0 , 1 ] - > E Bochner integrable and essentially bounded (resp. Pettis 
integrable and scalarly essentially bounded) such that for every / in Lx[0,1], 
T(/) = Bochner-JJ/gdA (resp., T(/) = Pettis-JS/gdA). 

It is well known that the Dunford-Pettis operators are precisely those which 
map weakly convergent sequences into norm convergent sequences, it is also 
known that a Pettis representable operator is Dunford-Pettis and that a 
Dunford-Pettis operator is not in general Pettis-representable. 

Bourgain showed in [1] that a Banach space E has the Radon-Nikodym 
property if and only if every Dunford-Pettis operator is Bochner-
representable; he also constructed an operator TiL^O, l ] -> cQ such that T is 
Dunford-Pettis but T is not even Pettis-representable in lœ. 

Because this operator is useful in the sequel we are going to describe it 
quickly. First construct a sequence (An)nS=1 of measurable subsets of [0,1] such 
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that 

(i) limA(An) = 0 
n 

(ii) {lAn}n>i is dense in {0,1} [01] endowed with the product topology. 

It is clear that T: Lt[0,1] -» c0 defined by T(f) = (Unfdk)n^ is Dunford-Pettis 
and by using a non measurable cluster point of the sequence {1A }n >i one can 
show that T is not Pettis-representable in L. 

DEFINITION 2. A Banach space E has the separable complementation 
property if every separable subspace Y of £ is contained in a complemented 
separable subspace Z of E. 

LEMMA 3. Let E be a Banach space having the separable complementation 
property and let F be a subspace of E.IfT: L^O, 1] —» F is Pettis-representable in 
F, then it is Bochner-representable in F. 

Proof. Let Y = the closure of TiL^O, 1]). Let Z be a separable subspace of 
E containing Y and complemented in E by a projection V:E-^ Z. Let g be 
the Pettis derivative of T. The map f —» V(g(f)) from [0,1]—>Z is strongly 
measurable and essentially bounded and hence is Bochner integrable. There­
fore for every / in Lt[0,1] 

T(f) = V(T(/)) = v(pettis- f / g <fc) 

= Pettis-f fV(g) dX = Bochner- [ fV(g(t)) d\. 

This implies that the map t - * V(g(t) takes its values À-almost everywhere in F 
and it is the Bochner derivative of T in F. 

PROPOSITION 4. Let E be a Banach space such that every Dunford-Pettis 
operator from L^O, 1] into E is Pettis-representable, then E does not contain a 
subspace isomorphic to c0. 

Proof. Suppose that c0 is isomorphic to a subspace of E, let S : c0 —» E be 
this isomorphism, the double adjoint S** of S embeds L in E**. Let [ / b e a 
projection from E** to S**(L) and consider the following diagram: 

c0 -£-> E - 2 - * E** - Ï U S**(L). 

Let TiL^O, l ] -> c0 the Dunford-Pettis operator constructed by Bourgain. By 
hypothesis SoT is Pettis-representable in E and hence by the above diagram T 
will be Pettis-representable in L, a contradiction that finishes the proof. 

COROLLARY 5. If a Banach space has the weak-Radon Nikodym property 
then E does not contain any isomorphic copy of c0. 
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The only known proofs of the above Corollary 5 ([4], [5]) rely heavily either 
on a deep result of Fremlin [3] or of Sierpinski [7]. 

The following fact was shown in [4]. We are going to give a slightly different 
proof of it. 

PROPOSITION 6. Let E be an order continuous Banach lattice. Then E has the 
separable complementation property. 

Proof. Let Y be a separable subspace of E. Let (xn)n>1 be a dense subset of 
the positive unit ball of Y. Consider 

n = l Z 

Let F be the closed ideal generated by w, i.e. 

F= U [-nu, nu\. 
n = l 

It is clear that F contains Y. Since E is order continuous, the space F is weakly 
compactly generated and F is complemented in E. Choose Z a separable 
subspace of F which is complemented in F and containing Y. It is clear that Z 
is complemented in E. 

Combining the results of [1] and ([6], p. 36) with Lemma 3, Proposition 4, 
and Proposition 6 we get 

THEOREM 7. Let X be a complemented subspace of a Banach lattice E. If 
every Dunford-Pettis operator from Lx to X is Pettis-representable then X has the 
Radon-Nikodym property. 
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