
RECONSTRUCTION OF TREES 

B E N N E T MANVEL 

Every tree T determines a set of distinct maximal proper subtrees 
Tt = T — vu which are obtained by the deletion of an endpoint of T. In 
this paper we prove that a tree is almost always uniquely determined by this 
set of its subtrees, and point out two interesting consequences of this result. 

In [5], Ulam proposed the following conjecture, which we state in a slightly 
stronger form due to Harary [1]. 

ULAM's CONJECTURE. A graph G with at least three points is uniquely deter­
mined up to isomorphism by the subgraphs Gt = G — vt. 

Kelly [4] proved the conjecture for trees and Harary and Palmer [3] showed 
that not all of the d are needed in that case by proving Corollary 1 below. 
If we remove from the list of subgraphs Gt of a graph G all but one graph 
of each isomorphism type, we obtain a set of Gi which are distinct up to 
isomorphism. The following conjecture involving this set is due to Harary. 
I t seems considerably stronger than Ulam's conjecture, and in fact many 
people would say that it is extremely unlikely. There is, however, no counter­
example with seven or fewer points. 

HARARY's CONJECTURE. A graph G with p ^ 4 points can be reconstructed 
uniquely from its set of non-isomorphic subgraphs Gt = G — vt. 

Note that we know here only what graphs are in the list of subgraphs Gu not 
how many times each occurs there. The following theorem shows that usually 
not even that much information is necessary for reconstructing a tree. The 
maximal proper subtrees of a tree T are just those which result from the deletion 
of an endpoint of T. 

THEOREM 1. A tree T is determined by its set of non-isomorphic maximal proper 
subtrees, except in the two cases illustrated in Figure 1. 

Proof. We call the set of all central points of a tree T its centre. If vt is an 
endpoint of T and the tree Tt = T — vt has the same centre as T, then, 
following Kelly, we call vt a non-essential point or n.-e. point. An endpoint 
whose removal changes the centre of T is naturally called an essential (e.) point, 
and any point at maximal distance from the centre of T is radial. The branches 
of a centred tree are the branches of its central point, rooted at that point, and 
the branches of a bicentred tree are those rooted branches of either of its central 
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points which do not contain the axis joining those two points. A branch is 
radial if it contains a radial point. Any further questions about our terminology 
may be settled by consulting [2]. 

- _ < 

V 
(a) (b) 

FIGURE 1 

We proceed to find the degree sequence of T. If T has a point of degree 2 
adjacent to an endpoint, then the degree sequence of any Tt with a maximal 
number of endpoints can be augmented to that of T by adding a 2. If T has 
no such point, then if we select from the subtrees a tree Tj with a point of 
degree d adjacent to a peripheral endpoint, where d is the smallest degree 
of any point adjacent to such an endpoint of a Tu the degree sequence of T will 
be that of Tj with d replaced by d + 1 and a 1 added. In order to find the degree 
sequence of G, therefore, we need merely decide whether or not T has a point of 
degree 2 adjacent to an endpoint. To do that we note that if some subtree 
has more endpoints than another, then there is such a point, and if all subtrees 
have the same number of endpoints, then either no endpoint is adjacent to a 
point of degree 2 or they all are. The latter possibility holds if and only if in 
every subtree at most one endpoint is not adjacent to a point of degree 2, 
with the exception of the star of Figure 1(a). We may therefore assume, with 
that exception, that we can find the degree sequence of T. 

Since we have the degree sequence, we may assume in what follows that T 
is not a path. Thus T has some n.-e. points, whose deletion results in Tt 

having the same centre as T. We call such a Tiy which is just a Tt with maxi­
mum diameter, an n.-e. Tif and an essential Tt is defined and recognized in an 
analogous way. From any n.-e. Tt the radius and the central or bicentral nature 
of T can be deduced. 

Case 1. T is bicentral. The two components which result when the axis is 
removed from T will be called the halves of T and will be denoted by H± and 
H2. Suppose first that only one half of T contains an n.-e. point of T. This is 
the case if and only if all n.-e. Tt have at least one half which is a path, all 
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(at least one) essential Tt have a radial path as one branch, and, if those two 
conditions hold for a tree T with exactly one essential and one n.-e. Tu then T 
does not have two points of degree 3. 

In such a situation, that centred subtree with more points near its centre 
can be augmented to T by adding a point adjacent to the endpoint of its radial 
path. 

If both halves of T have n.-e. points, we assume without loss of generality 
that | F (Hi) | ^ | F(H2) | . If all pairs of halves of n.-e. Tt have one half just one 
point larger than the other, then |F(Hi) | = \V(H2)\, and Hi and H2 are just 
the larger halves of two pairs, chosen to be different if possible. Otherwise 
|F(Hi) | > |F(H 2 ) | and we can easily determine the two halves from two Tu 

one formed by deletion of an n.-e. point from H\ and the other formed in the 
same way from H2l unless it happens that H2 ~ Hi — v, for some n.-e. point v. 
In that case there will be some confusion about H2, but there will be some Tt 

from an n.-e. point of Hi which will have two isomorphic halves, and those must 
both be H2} and our proof is complete. 

Case 2. T is central. We need to find first whether or not just one branch of T 
contains an n.-e. point. If T has only one n.-e. point, then there is no problem, 
and if there are three or more such points, then they all lie on the same branch 
of T if and only if every n.-e. Ti has all its n.-e. points on one branch. Thus the 
only difficulty occurs when T has exactly two n.-e. points. We first investigate 
that case, using 7\ and T2 for the two subtrees Tt with the same centre as Ty 

and then explain how the number of n.-e. points of T can be found so that we 
know which case we are dealing with. 

Since T has exactly two radial branches if it has exactly two n.-e. points, 
there are only three possibilities. First, if one of T\ and T2 has an n.-e. point on 
a radial branch and the other does not, then it is easy to see that one n.-e. point 
of T is on a radial branch and the other on a non-radial one. Second, if neither 
7\ nor T2 has an n.-e. point on a radial branch, then the two n.-e. points of T 
lie on one or two branches as T has maximum degree 3 or 4, since two n.-e. 
points lying on different branches must be the endpoints of non-radial paths 
leading from the centre of T, which must thus have degree 4. Finally, if both 
T\ and T2 show an n.-e. point on a radial branch, then if there is only one essen­
tial subtree Tu both n.-e. points are on one branch if and only if one of the 
halves of that Tt is a path. If there are two essential subtrees Tu then the two 
n.-e. points are on different branches of T if and only if either 7\ or T2 has 
three branches or both halves of each essential Tt have at least one n.-e. point. 

In order to use these arguments, we must find the number 5 of n.-e. points 
in T. If we let / be the maximum number of n.-e. points in any n.-e. Tu then it is 
clear that s is either /, t + 1, or t + 2. Thus if t is at least 3, 5 is also, and we 
have all the information we need for the above argument. Furthermore, if 
/ is 0, s must be 1 or 2 since we are assuming that we have eliminated paths. I t 
will be 2 if and only if there is exactly one essential Tt and it has two endpoints 
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at distance 2 from each other, with the exception of the last tree in Figure 1. 
I t remains to decide for / = 1 whether 5 is 1, 2, or 3 and for t = 2 whether 5 is 
2, 3, or 4. 

If t is 1, we can generally distinguish 5 = 1 or 3 from 5 = 2 by the degree 
sequence of T, since we usually have in the latter case either two points of 
degree 3 or one of degree 4, which cannot happen if s is 1 or 3. If a tree T with 
only one point of degree 3 and none of degree 4 has two different essential Tu 

then it must have only one n.-e. point since two of its three endpoints are 
essential. If it has only one Tu then its three endpoints are similar, and there­
fore 5 = 3. Finally, if T has exactly one essential and one n.-e. Tu we can have 
either of the two situations shown in Figure 2. 

n.-e. 
centre <\ p centre 

ï \ Q Ï 
e. o Q- o e. Ô -o o e. 

! • 

\P / P 

n.-e. 

(a) (b) 
FIGURE 2 

If P has length at least 2, then (a) and (b) can be distinguished since (a) 
has its n.-e. subtree with a centre of degree 3 and the centre of the n.-e. subtree 
of (b) must be of degree 2. If P has length 1, then, if T has at least seven points, 
Q must have length at least 2, and therefore we can distinguish (a) and (b) 
since the former has an essential Tt with bicentre of degree 3 and the latter 
does not. By examining the eight central trees with less than seven points, 
one can verify that the theorem holds for all such trees except those shown in 
Figure 1. 

Similarly, if t = 2, we have s = 4 if and only if there is no essential Tt. 
Furthermore, we can usually distinguish s = 2 from s = 3 by the degree 
sequence of T, since in the latter case but not the former we may have 
4, 3, 2, . . . , 1 or 3, 3, 3, 2, . . . , 1. The only difficulty occurs when we have 
a tree such as that of Figure 3(a) to which there is attached an n.-e. path at 
one of the points a, b, c (centre), or d. Call these trees Tay Tb, Tc, and Td, 
respectively. They each have three n.-e. points, one essential point, and a 
degree sequence beginning with either a single 4 and no 3 or just two 3s, and 
therefore may be confused with the trees of Figure 3(b) which have only two 
n.-e. points but otherwise seem to have the same properties, since their essen­
tial points are similar. Now Tc and Td can be set apart from the others since 
their unique bicentral subtree has two halves, neither of which is a path, 
however Ta might be confused with T3 or Tb with TV The trees T3 and Ta are 
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FIGURE 3 

distinguished by observing that one has its point of maximum degree at the 
centre of its n.-e. subtrees and the other does not. To distinguish T4 from Tb 

we examine their essential subtrees, and find that in general that of the former 
cannot have two radial points on the same branch while that of the latter must. 
The only exception is when the two n.-e. points of T4 are similar, in which case 
JH4 will be distinguished by having only one n.-e. Ti, while Tb has two. Thus in 
every case we can find the number of n.-e. points of T. 

Now if only one branch of T has an n.-e. point, we proceed in two cases as 
follows. All n.-e. points of T lie on a non-radial branch if and only if in all 
essential Tt one bicentre has degree 2 and the other has degree 3. In that case T 
is clearly obtained from any such Ti by adding vt adjacent to the end of a 
radial path leading from the bicentre of degree 3. In the other case, T has just 
two branches, both radial, and all n.-e. points lie on one of them. To reconstruct 
T in this case we select that essential tree Tk which has a point of degree 3 or 
more as close as possible to a bicentre. Then Tk may be augmented to T by 
adding vk adjacent to the endpoint of the unique (radial) path leading from a 
bicentre of degree 2. 

If several branches of T have n.-e. points, then every branch of T will appear 
as a branch in some central Tt. Select a largest branch B containing an n.-e. 
point v. Then if Tt is a central subtree containing a minimum number of 
branches isomorphic to B and a maximum number isomorphic to B — v, 
T can be obtained from Tt by replacing one branch B — v by B. Thus T can 
be reconstructed in every case, and the theorem is proved. 

Since the pairs of trees shown in Figure 1 do not have common sets of Tu 

the following result is immediate. 

COROLLARY 1. A tree T can be reconstructed uniquely from its set of non-
isom orphie sub forests Tt = T — vt. 

n.-e. (\ a b c d 
S N< N" •i' 4* 

P 0 - - O O- — o e , 

n.-e. d 
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Our proof may be shortened considerably if the multiplicities of the Tt 

are given, and is then a new proof of the following result, due to Harary and 
Palmer [3]. 

COROLLARY 2. Any tree T can be reconstructed from its list of maximal proper 
subtrees. 
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