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Abstract

We investigate natural dualities for classes of simple graphs. For example, we give a natural duality for
the class consisting of all n-colourable graphs and show that, for all n ≥ 3, there is no natural duality
for the class consisting of all freely n-colourable graphs. We also prove that there exist arbitrarily long
finite chains of 3-colourable graphs that alternate between being dualizable and nondualizable.
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1. Introduction

The dualizability problem for algebras has been studied over the past 30 years [6, 8,
11, 14, 21, 22]. It was realized in recent years that much of the general theory of
natural dualities for algebras works for more general types of structures (see [7, 13]).
In particular, we can consider the dualizability problem for relational structures.

One of the earliest examples of a natural duality for a class of relational structures
is Banaschewski’s duality for ordered sets [2]. Banaschewski showed that the category
of ordered sets is dually equivalent to the category of Boolean topological distributive
lattices. More recently, natural dualities have been found for the classes of quasi-
ordered sets, equivalence-relationed sets, and reflexive, symmetric graphs [17]. This
paper aims to broaden the known examples of dualizable relational structures, and
give examples of nondualizable relational structures. We focus on the dualizability
of graphs (that is, sets with a symmetric binary relation). More specifically, most of
this paper concerns the dualizability of simple graphs (that is, sets with a symmetric,
anti-reflexive binary relation).
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378 S. M. Johansen [2]

FIGURE 1. The graph O′3.

We use techniques introduced by Clark et al. [5] to obtain a duality for the class
consisting of all n-colourable graphs (Theorem 3.4). In contrast, we prove that,
for all n ≥ 3, the class consisting of all freely n-colourable graphs is nondualizable
(Corollary 3.8). We then show that every finite bipartite graph is dualizable
(Corollary 4.3).

Answering the dualizability problem for 3-colourable graphs seems to be more
complicated than the bipartite case. We give a complete characterization of
dualizability for 3-colourable graphs that contain a 3-cycle by showing that such a
graph is dualizable if and only if the graph O′3 depicted in Figure 1 is an induced
subgraph (Theorem 5.2). To illustrate the difficulty of the dualizability problem for 3-
colourable graphs in general, we construct arbitrarily long finite chains of 3-colourable
graphs, under the induced subgraph order, that alternate between being dualizable and
nondualizable (Theorem 5.5).

Each graph is naturally associated with an algebra; see Section 6. The dualizability
problem for these graph algebras has been solved by Davey et al. [8] using graph-
theoretic techniques. We prove that if a finite graph algebra is dualizable, then the
corresponding graph is also dualizable (Theorem 6.4). We show that the converse of
this statement does not hold by proving that the 4-element path is a dualizable graph
with a nondualizable associated graph algebra.

2. Preliminaries

In this section, we summarize the background theory and prove a useful lemma.
A relational structure M := 〈M; R〉 consists of an underlying set M and a set R of

finitary relations on M . We refer to M as a graph if R consists of a single symmetric
binary relation, and we refer to M as a simple graph if R consists of a single symmetric,
anti-reflexive binary relation. Note that if M is a graph, then by a subgraph of M we
mean an induced subgraph.

We now give the background theory on natural dualities that will be required here
(see [4, 7] or [10]). Let M= 〈M; R〉 be a finite relational structure. Suppose that
M
∼
= 〈M; G, S, T 〉 is a topological structure on the same underlying set, where G is

a set of finitary total operations on M , S is a set of finitary relations on M and T is the
discrete topology on M . We allow the operations in G to be nullary but the relations
in S have positive arities. We say that M

∼
is an alter ego of M if, for each n ≥ 0, every

n-ary operation in G is a homomorphism from Mn to M.
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[3] Dualizability of graphs 379

Let M
∼

be an alter ego of M. The relational structure M generates the class
A= ISP(M) consisting of all isomorphic copies of substructures of powers of M. The
alter ego M

∼
generates the topological class X = IScP(M∼) consisting of all isomorphic

copies of topologically closed substructures of powers of M
∼

. (In both cases, we take
nonempty substructures and powers over nonempty index sets. This is the setting used
in [10].) A natural duality gives a dual category equivalence between A and a full
subcategory of X . It provides a means of representing each object in A as a structure
arising from a special set of morphisms in X . We now give the technical definition of
a natural duality.

Let A ∈A and let A(A,M) be the set of all homomorphisms from A to M. The
dual of A is the topologically closed substructure D(A) of M

∼
A with underlying set

A(A,M). Suppose that α : D(A)→M
∼

is a morphism. We say that α is an evaluation
map if there exists some a ∈ A such that α(ϕ)= ϕ(a), for all ϕ ∈A(A,M). If,
for each A ∈A, every morphism α : D(A)→M

∼
is an evaluation, then we say that

M
∼

dualizes M. (In this case, each A ∈A is isomorphic to its double dual—
the substructure of MD(A) formed by the set of all morphisms from D(A) to M

∼
.)

A finite structure M is dualizable if there exists an alter ego that dualizes M, and
is nondualizable if no alter ego dualizes M.

Independence of the generator is a fundamental theorem in duality theory. The
proof given by Davey and Willard [12] for algebras can be generalized to structures
that can have total operations, partial operations and relations in the type (see also
[23]). We state the theorem for relational structures, as this is all we need.

THEOREM 2.1 (Independence of the generator). Let M and N be finite relational
structures. If ISP(M)= ISP(N), then M is dualizable if and only if N is dualizable.

The duality compactness theorem [4, Theorem 2.2.11] (see also [7, 13]) is a very
useful tool for proving dualizability. It gives a sufficient condition for a duality to
lift from the finite level to the infinite level. We state a specific case of the duality
compactness theorem suited to our needs.

THEOREM 2.2 (Duality compactness). Let M be a finite relational structure and let
A := ISP(M). Let M

∼
be an alter ego of M with only finitely many operations and

relations in its type. If, for each finite A ∈A, every morphism α : D(A)→M
∼

is an
evaluation, then M

∼
dualizes M.

We will prove that, for all n ≥ 3, the complete simple graph Kn and the cycle graph
On are nondualizable (Lemmas 3.7 and 5.3). We will use the following special case
of the nondualizability lemma for relational structures (see [4, Theorem 10.5.1] and
[9, Lemma 3.4.1]).

LEMMA 2.3 (Nondualizability). Let M be a finite relational structure. Assume that
there is a substructure A of MS , for some set S, and an infinite subset A0 of A such
that the following hold.
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380 S. M. Johansen [4]

(i) For each homomorphism x : A→M, the equivalence relation ker(x�A0
) has a

unique nontrivial block.
(ii) The set A does not contain the element g of M S defined by g(s)= πs(as), where

as is any element of the unique nontrivial block of ker(πs�A0
).

Then M is nondualizable.

We require some background material from Clark et al. [5]. We remark that the
definitions of gst-functions and gst-elements given in Definition 2.5 are stronger than
those given in [5]. (The string ‘gst’ is not an abbreviation, but comes from the symbols
used in [5, Lemma 18].) Also, we state [5, Theorem 19] for relational structures in
Theorem 2.6. It is an easy exercise to check that the proof of [5, Theorem 19] for
algebras can be adapted for relational structures. (In fact, we can allow M to have both
total operations and relations in its type.)

DEFINITION 2.4. Let M be a finite relational structure and let g :M2
→M be a

homomorphism. We say that s ∈ M is a strong idempotent of M and that g is a strong
idempotent function for s if g−1(s)= {(s, s)}.

DEFINITION 2.5. Let t ∈ M . If there exist g :M2
→M and s ∈ M satisfying

g(s, v)= s⇐⇒ v = t,

then we refer to g as a gst-function for t and to s as a gst-element for t .

Given a relational structure M, we denote by End(M) the set of endomorphisms
of M. Also, for n ∈ N, we denote the set of all n-ary relations on M by Rn .

THEOREM 2.6. Let M be a finite relational structure, let S be a set of strong
idempotents of M and let G be a collection of homomorphisms from M2 to M. Assume
that G includes a strong idempotent function for each s ∈ S. Assume also that, for each
t ∈ M \ S, there is a gst-function for t in G and an associated gst-element for t in
S ∩ { f (t) | f ∈ End(M)}. Then M is dualized by M

∼
:= 〈M; G ∪ End(M), R|S|, T 〉.

The following key lemma will be used to prove a number of our dualizability
results. If A= 〈A; r〉 is a simple graph and x ∈ A, then we denote by NA(x) the
neighbourhood of x in A, that is,

NA(x) := {y ∈ A | (x, y) ∈ r}.

LEMMA 2.7. Let M= 〈M; r〉 be a finite simple graph. Assume that there exist
A≤M and distinct x, y ∈ A with NA(x)⊆ NA(y). Assume also that there exists a
homomorphism ϕ :M→ A with ϕ−1(x)= {x}. Then x is a strong idempotent of M.
Furthermore, x is a gst-element for each z ∈ M \ {x}.

PROOF. Let z ∈ M . Let gz : M2
→ M be the map defined by

gz(u, v)=

{
ϕ(u) if u 6= x or (u, v)= (x, z),

y otherwise.
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[5] Dualizability of graphs 381

We want to prove that gz is a homomorphism. Let (s, t), (u, v) ∈ r . We will show
that (gz(s, u), gz(t, v)) ∈ r .

We know that gz(s, u) ∈ {ϕ(s), y} and gz(t, v) ∈ {ϕ(t), y}. Suppose that gz(s, u)=
ϕ(s) and gz(t, v)= ϕ(t). Then (gz(s, u), gz(t, v)) ∈ r since ϕ is a homomorphism.
Suppose now that gz(s, u) 6= ϕ(s). Therefore, gz(s, u)= y and y 6= ϕ(s). Then s = x .
So t 6= x , since (s, t) ∈ r and r is anti-reflexive. Therefore, gz(t, v)= ϕ(t). Using the
fact that ϕ is a homomorphism with ϕ(x)= x ,

(s, t) ∈ r

H⇒ (ϕ(s), ϕ(t)) ∈ r

H⇒ (x, ϕ(t)) ∈ r

H⇒ (y, ϕ(t)) ∈ r since NA(x)⊆ NA(y)

H⇒ (gz(s, u), gz(t, v)) ∈ r.

The case gz(t, v) 6= ϕ(t) follows by symmetry. Therefore, gz is a homomorphism.
Consider the homomorphism gx :M2

→M. Suppose that gx (u, v)= x . Then
ϕ(u)= x . Using the fact that ϕ−1(x)= {x}, it follows that (u, v)= (x, x). Therefore,
x is a strong idempotent of M. Now let z ∈ M \ {x}. If v ∈ M , then

gz(x, v)= x⇐⇒ v = z,

so x is a gst-element for z. 2

3. Graph colourings

In this section, we will give a natural duality for the class consisting of all
n-colourable graphs. As our finite generator for the class of all n-colourable graphs,
we use the following graph due to Wheeler [25].

DEFINITION 3.1. Let n ∈ N and let 0n := {di, j | i ∈ {1, . . . , n} and j ∈ {1, 2}}. Let
0n = 〈0n; γn 〉, where γn is a symmetric, binary relation on 0n defined in the following
way. Up to symmetry, (di, j , dr,s) ∈ γn if and only if:

(i) j = s = 1 and i 6= r ; or
(ii) j = 1, s = 2 and i 6= r ; or
(iii) j = s = 2, i 6= r, i 6= 1 and r 6= 1.

THEOREM 3.2 (See [25]). Let n ∈ N. Then ISP(0n) is the class of all n-colourable
graphs.

REMARK 3.3. It is shown by Nešetřil and Pultr [19] that the complete simple graph
on n + 2 vertices with three particular edges removed also generates the ISP-class of
all n-colourable graphs. We could use this generator to prove that there is a natural
duality for the class of n-colourable graphs, however, the generator due to Wheeler
leads to a simpler proof.

We will prove that 0n is dualizable, for all n ∈ N, by using Lemma 2.7 and
Theorem 2.6.
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THEOREM 3.4. There is a natural duality for the class consisting of all n-colourable
graphs, for all n ∈ N.

PROOF. We will prove that, for every i ∈ {1, . . . , n}:

(i) di,2 is a strong idempotent of 0n;
(ii) di,2 is a gst-element for di,1; and
(iii) di,2 ∈ { f (di,1) | f ∈ End(0n)}.

Let i ∈ {1, . . . , n}. If dr,s ∈ 0n then

(di,2, dr,s) ∈ γnH⇒ i 6= r H⇒ (di,1, dr,s) ∈ γn,

so N0n (di,2)⊆ N0n (di,1). Therefore, (i) and (ii) hold by Lemma 2.7. To prove (iii), let
f : 0n→ 0n be defined by

f (dr,s)=

{
dr,1 if r 6= i ,

dr,2 if r = i .

Suppose that (dr,s, dt,u) ∈ γn. Then r 6= t , so r 6= i or t 6= i . Hence,

( f (dr,s), f (dt,u)) ∈ {(dr,1, dt,1), (dr,1, dt,2), (dr,2, dt,1)} ⊆ γn.

Therefore, f is an endomorphism of 0n with f (di,1)= di,2. It follows from
Theorem 2.6 that 0n is dualizable. 2

DEFINITION 3.5. For each n ∈ N, let Kn = 〈Kn; δn〉 be the complete simple graph on
the set Kn = {1, . . . , n}. Thus, NKn (i)= {1, . . . , n} \ {i}, for all i ∈ {1, . . . , n}.

A simple graph A= 〈A; r〉 is freely n-colourable if it is n-colourable and, for every
u, v ∈ A with u 6= v and (u, v) /∈ r , there exist homomorphisms ϕ1, ϕ2 : A→Kn
such that ϕ1(u)= ϕ1(v) and ϕ2(u) 6= ϕ2(v). Thus, an n-colourable graph is freely
n-colourable if, for every pair of distinct elements that are not connected by an edge,
there is an n-colouring that gives the elements the same colour and an n-colouring that
gives the elements different colours. (Freely n-colourable graphs have been studied in
a different, though related context by Trotta [24].)

LEMMA 3.6. For each n ∈ N, the class ISP(Kn) consists of all freely n-colourable
graphs.

PROOF. Let A= 〈A; r〉 be freely n-colourable. Let x, y ∈ A with x 6= y. Suppose that
(x, y) ∈ r . Since A is n-colourable, there exists a homomorphism ϕ : A→Kn with
ϕ(x) 6= ϕ(y). Suppose instead that (x, y) /∈ r . Since A is freely n-colourable, there
is a homomorphism ϕ : A→Kn with ϕ(x) 6= ϕ(y). Now let x, y ∈ A with (x, y) /∈ r .
There is a homomorphism ϕ : A→Kn with ϕ(x)= ϕ(y) so (ϕ(x), ϕ(y)) /∈ δn . There-
fore, A ∈ ISP(Kn).

Let A ∈ ISP(Kn). Then A is n-colourable. Let x, y ∈ A. If x 6= y, then there exists
a homomorphism ϕ : A→Kn with ϕ(x) 6= ϕ(y). If (x, y) /∈ r , then there exists a
homomorphism ϕ : A→Kn with (ϕ(x), ϕ(y)) /∈ δn , so ϕ(x)= ϕ(y). It follows that A
is freely n-colourable. 2
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[7] Dualizability of graphs 383

The following technical lemma will show that Kn is nondualizable, for each n ≥ 3,
and will also be used in Section 5.

LEMMA 3.7. Let M= 〈M; r〉 be a finite simple graph and let m ∈ N be such that Km
embeds into M but Km+1 does not embed into M. Assume that m ≥ 3. Let K∗m+1 be
the complete graph Km+1 with one edge removed. If K∗m+1 does not embed into M,
then M is nondualizable.

PROOF. Assume K∗m+1 does not embed into M. We will use Lemma 2.3 (non-
dualizability). We can assume that M = {1, . . . , p}, for some p ≥ m ≥ 3. We can
also assume that δm ⊆ rM.

Suppose that u, v ∈ M and F ⊆ N. We define uvF ∈ MN in the following way:

uvF (w)=

{
v if w ∈ F ,

u if w /∈ F ,

where w ∈ N. If F = {i} or F = {i, j}, then we write uvi and uvvi j instead of uv
{i} and

uv
{i, j}, respectively. If F =∅, then we write û instead of uv∅.

Let A0 := {31
i | i ∈ N} and A := MN

\ {3̂}. Let x : A→M be a homomorphism.
Assume that i, j, k, l ∈ N are distinct with x(31

i )= x(31
j ) and x(31

k)= x(31
l ). We aim

to prove that x(31
i )= x(31

k).
Since we have assumed that δm ⊆ rM, we have (31

i , 122
ik ), (3

1
j , 211

ik ), (1
22
ik , 211

ik ) ∈ rA.
Hence,

(x(31
i ), x(122

ik )), (x(3
1
j ), x(211

ik )), (x(1
22
ik ), x(211

ik )) ∈ rM. (3.1)

Suppose that m = 3 and let X := {x(31
i ), x(122

ik ), x(211
ik )}. Then by (3.1) and the fact

that x(31
i )= x(31

j ), it follows that X∼=K3. Similarly, if Y := {x(31
k), x(122

ik ), x(211
ik )},

then Y∼=K3. If x(31
i ) 6= x(31

k), then the subgraph formed by X ∪ Y is an isomorphic
copy of Km+1 or K∗m+1, which is a contradiction. Therefore, x(31

i )= x(31
k), as

required.
Now suppose that m ≥ 4. For all s ∈ {4, . . . , m} and all t ∈ {4, . . . , m} \ {s}, we

have

(31
i , ŝ), (122

ik , ŝ), (211
ik , ŝ), (ŝ, t̂ ) ∈ rA

H⇒ (x(31
i ), x(ŝ)), (x(122

ik ), x(ŝ)), (x(211
ik ), x(ŝ)), (x(ŝ), x(t̂)) ∈ rM. (3.2)

Let X := {x(31
i ), x(122

ik ), x(211
ik ), x(4̂), . . . , x(m̂)}. Then X∼=Km by (3.1) and (3.2).

Similarly, if we let Y := {x(31
k), x(122

ik ), x(211
ik ), x(4̂), . . . , x(m̂)}, then Y∼=Km . If

x(31
i ) 6= x(31

k), then the subgraph formed by X ∪ Y is an isomorphic copy of Km+1 or
K∗m+1, which is a contradiction. Thus, x(31

i )= x(31
k).

We have shown that ker(x�A0
) has a unique block of size greater than 1. The

element given by part (ii) of Lemma 2.3 (nondualizability) is g = 3̂ /∈ A, so M is
nondualizable. 2

https://doi.org/10.1017/S1446788711001029 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788711001029


384 S. M. Johansen [8]

FIGURE 2. Caicedo’s list of bipartite graphs.

Using Lemmas 3.6 and 3.7 (with M=Kn and m = n), and Theorem 2.1
(independence of the generator), we have the following corollary.

COROLLARY 3.8. For all n ≥ 3, there is no natural duality for the class of all freely
n-colourable graphs.

4. Bipartite graphs

We will prove that every finite bipartite graph is dualizable. Let 1, 2, 3, 4 be the
simple graphs depicted in Figure 2. It is shown by Caicedo [3] that, if M is a finite
bipartite graph, then

ISP(M)= ISP(M′),

for some M′ ∈ {1, 2, 3, 4, 1 ∪̇ 1}. By Theorem 2.1 (independence of the generator), it
therefore suffices to show that the graphs 1, 2, 3, 4 and 1 ∪̇ 1 are dualizable.

It is trivial that 1 is dualizable. Banaschewski’s duality for sets [1] (see also [4])
tells us that 1 ∪̇ 1 is dualizable. The fact that 4 is dualizable follows from Theorem 3.4,
since 4∼= 02 so ISP(4) is the class of all bipartite graphs. It remains to prove that 2
and 3 are dualizable.

It is shown in [16] that if M= 〈M; graph( f )〉, for some finite set M and some unary
operation f on M , then M is dualizable. Let ′ be the unary operation on {1, 2} with
1′ = 2 and 2′ = 1. Since 2= 〈{1, 2}; graph(′)〉, it follows that 2 is dualizable. We will
give a direct proof of this fact.

LEMMA 4.1. The graph 2 is dualized by the alter ego 2
∼
= 〈{1, 2}; R3, T 〉, where R3

consists of all ternary relations on {1, 2}.

PROOF. We will use Theorem 2.2 (duality compactness). Let A≤ 2n , for some n ∈ N,
and let α : D(A)→ 2

∼
be a morphism. We want to show that α is an evaluation map.

Let ϕ : A→ 2 be a homomorphism. We can extend the unary operation ′ pointwise
to {1, 2}n . Let

B1 := {a ∈ A | a′ ∈ A and ϕ(a)= α(ϕ)}, B2 := {a ∈ A | a′ ∈ A and ϕ(a)= α(ϕ)′},

C1 := {a ∈ A | a′ /∈ A and ϕ(a)= α(ϕ)}, C2 := {a ∈ A | a′ /∈ A and ϕ(a)= α(ϕ)′}.

Every map ψ from B1 ∪ C1 ∪ C2 to {1, 2} extends to a homomorphism ψ+ from A
to 2 with ψ+(a)= ψ(a′)′, for a ∈ B2.

Consider the unary relation ϕ(A) on {1, 2}. Clearly, ϕ ∈ ϕ(A) in D(A), so
α(ϕ) ∈ ϕ(A) since α preserves all relations on {1, 2} of arity at most 3. Thus,
we can enumerate the elements of B1 ∪ C1 as a1, . . . , am , for some m ∈ N. For
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each i ∈ {0, . . . , m}, let ψi : A→ 2 be the unique homomorphism determined by
ψi (C2)= {α(ϕ)

′
} and

ψi (a j )=

{
α(ϕ)′ if j ≤ i ,

α(ϕ) if j > i .

Define the binary relation r := {1, 2}2 \ {(α(ϕ), α(ϕ))}. Then (ϕ, ψm) ∈ r in D(A),
so α(ψm)= α(ϕ)

′. Let k :=min{i ∈ {1, . . . , m} | α(ψi )= α(ϕ)
′
}. If k ≥ 2 then

α(ψk−1)= α(ϕ) by the definition of k as the minimum. If k = 1 then ψk−1 = ϕ so
α(ψk−1)= α(ϕ). We will show that α(ξ)= ξ(ak), for all homomorphisms ξ : A→ 2.

Let ξ : A→ 2. Define a ternary relation s on {1, 2} by

s := {(x, y, y) | x, y ∈ {1, 2}} ∪ {(ξ(ak), α(ϕ), α(ϕ)
′)} ∪ {(ξ(ak)

′, α(ϕ)′, α(ϕ))}.

It then follows that

(ξ, ψk−1, ψk) ∈ s in D(A),

H⇒ α(ξ)= ξ(ak),

since α preserves all ternary relations on {1, 2}. We have therefore shown that α is
given by evaluation at ak . By the duality compactness theorem, we can conclude that
2 is dualizable. 2

It remains to prove that 3 is dualizable. We will use Lemma 2.7 and Theorem 2.6.

LEMMA 4.2. The graph 3 is dualizable.

PROOF. Observe that N3(1)= {2} = N3(3). By Lemma 2.7, the elements 1 and 3
are strong idempotents of 3 and are gst-elements for 2. Let ψ : 3→ 3 be the
homomorphism defined by ψ(1)= 2= ψ(3) and ψ(2)= 1. Then ψ ∈ End(3) so
1 ∈ { f (2) | f ∈ End(3)}. By Theorem 2.6, the graph 3 is dualizable. 2

COROLLARY 4.3. Every finite bipartite graph is dualizable.

5. Graphs containing odd cycles

We will give a complete characterization of dualizable 3-colourable graphs
containing a 3-cycle. Within this class, we will show that dualizability is dependent
upon the existence of a certain subgraph. We will also show that there exist arbitrarily
long finite chains of 3-colourable graphs, under the subgraph order, that are alternately
dualizable and nondualizable. This is similar to the situation for algebras; it is known
that there exist infinite chains of unary algebras, under the subalgebra order, that are
alternately dualizable and nondualizable [20].

Let M= 〈M; ∼〉 be a simple graph and let n ∈ N. By a cycle of length n in M we
mean a collection of n distinct elements a1, . . . , an ∈ M with

a1 ∼ a2 ∼ · · · ∼ an ∼ a1.
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FIGURE 3. The cycle graph On and the graph O′n .

FIGURE 4. The graph O′3.

If n ∈ N with n ≥ 3, then we let On = 〈{1, . . . , n}; θn〉 be the n-element cycle
graph, as given in Figure 3. Let O′n = 〈{1, . . . , n, a}; θ ′n〉 be obtained from On by
adding an extra element a, an edge between 1 and a, and an edge between n − 1 and a
(see Figure 3). Thus,

θ ′n = θn ∪ {(1, a), (a, 1), (n − 1, a), (a, n − 1)}.

The graph O′3 will be particularly important in our characterization of dualizability
(see Figure 4).

Let C be a class of relational structures. We say that a finite structure M ∈C is
inherently dualizable within C if every finite member of C that has M as a substructure
is dualizable.

LEMMA 5.1. The graph O′3 is inherently dualizable within the class of 3-colourable
graphs.

PROOF. Let M be a finite 3-colourable graph with O′3 ≤M. We will prove that, for all
z ∈ M , there exists a homomorphism ψz :M→O′3 with ψ−1

z (a)= {z}.
Let z ∈ M . Since M is 3-colourable, there exists a homomorphism from M to O3.

Therefore, there exists a homomorphism ϕz :M→O3 with ϕz(z)= 3. Define ψz :

M→O ′3 by ψz�M\{z}=ϕz�M\{z} and ψz(z)=a. Since NO′3
(a)= NO′3

(3), the map ψz

is a homomorphism. We now observe that ψ−1
z (a)= {z}. In particular, ψ−1

a (a)= {a}.
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Applying Lemma 2.7 with A=O′3, x = a and y = 3, we see that a is a strong
idempotent of M and a is a gst-element for each z ∈ M \ {a}. The map ψz is an
endomorphism of M with ψz(z)= a, for each z ∈ M \ {a}. Thus, M is dualizable by
Theorem 2.6. 2

THEOREM 5.2. Let M be a finite 3-colourable graph containing a cycle of length 3.
Then M is dualizable if and only if O′3 embeds into M.

PROOF. Assume that M contains a subgraph isomorphic to O′3. Then M is dualizable
by Lemma 5.1. Assume that M does not contain a subgraph isomorphic to O′3. We
observe that O3 =K3 and O′3

∼=K∗4. Since M contains a cycle of length 3, we know
that K3 embeds into M. Also, K4 does not embed into M since M is 3-colourable. By
assumption, K∗4 does not embed into M. So M is nondualizable by Lemma 3.7. 2

Note that any graph that is not bipartite must contain an odd cycle.

LEMMA 5.3. Assume that M= 〈M; ∼〉 is a finite 3-colourable graph that is not
bipartite and does not contain a cycle of length 3. Let p be the length of the shortest
odd cycle in M, so p ≥ 5. Assume that if X, Y≤M with X∼=Op ∼= Y, then X = Y or
X ∩ Y =∅. Then M is nondualizable.

PROOF. We will use Lemma 2.3 (nondualizability) and the notation introduced in the
proof of Lemma 3.7.

We can assume that Op ≤M. Let A0 := {13
i | i ∈ N} and let A := ON

p \ {1̂}.
Let x : A→M be a homomorphism. Assume that i, j, k, l ∈ N are distinct with
x(13

i )= x(13
j ) and x(13

k)= x(13
l ). Suppose that x(13

i ) 6= x(13
k). We will arrive at a

contradiction by using the following claims, which are straightforward to prove.

Claim 1. If B≤ A with B∼=Op, then x(B)∼=Op.

Claim 2. Suppose that C≤M with C∼=Op. If x ∼ y ∼ z and x, z ∈ C are distinct,
then y ∈ C .

Let

B1 := {13
i , 2̂, 31

i , . . . , p4
i }, B2 := {13

j , 2̂, 31
j , . . . , p4

j },

B3 := {13
k, 2̂, 31

k, . . . , p4
k }, B4 := {13

l , 2̂, 31
l , . . . , p4

l }.

For each m ∈ {1, 2, 3, 4}, let Bm be the substructure of A formed by the set Bm and let
x(Bm) be the substructure of M formed by the set x(Bm). Then using Claim 1 and the
fact that x(2̂) ∈ x(B1) ∩ · · · ∩ x(B4),

B1 ∼= B2 ∼= B3 ∼= B4 ∼=Op

H⇒ x(B1)∼= x(B2)∼= x(B3)∼= x(B4)∼=Op

H⇒ x(B1)= x(B2)= x(B3)= x(B4).
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We can assume, without loss of generality, that x(Bm)=Op, for all m∈{1, 2, 3, 4}.
Since 13

i ∼ 2̂∼ 13
k and x(13

i ) 6= x(13
k), we can further assume that x(13

i )= 1, x(2̂)= 2
and x(13

k)=3. Then since 13
i ∼ 2̂∼ 31

i , we have x(31
i )= 3. Similarly, we can show

that x(31
j )= 3 and x(31

k)= x(31
l )= 1.

Now, 31
l ∼ 422

l j ∼ 31
j so 1= x(31

l )∼ x(422
l j )∼ x(31

j )= 3. By Claim 2, we have

x(422
l j ) ∈ Op so x(422

l j )= 2. We now let B5 := {2
4p
l j , 31

j , 422
l j , . . . , 15 p−1

l j }. Then B5

is an isomorphic copy of Op in A, so x(B5)∼=Op by Claim 1. Since x(31
j ) ∈

x(B5) ∩ Op, we must have x(B5)= Op. Using the fact that x(31
j )= 3 and x(422

l j )= 2,

it follows that x(24p
l j )= 4. Observe now that 13

i ∼ 24p
i j ∼ 31

j implies that 1= x(13
i )∼

x(24p
i j )∼ x(31

j )= 3. By Claim 2, we have x(24p
i j ) ∈ Op so x(24p

i j )= 2. Using a

similar argument and the fact that 2= x(24p
i j )∼ x(31 p−1

k j )∼ x(24p
l j )= 4, we have

x(31 p−1
k j )= 3.

Let B6 = {13
k, 2p

j , 31 p−1
k j , . . . , p42

k j }. Then B6 ∼=Op so x(B6)∼=Op by Claim 1.

But this contradicts that x(13
k)= 3= x(31 p−1

k j ). Hence, we can conclude that x(13
i )=

x(13
k) so part (i) of Lemma 2.3 (nondualizability) holds. The element given by part (ii)

of Lemma 2.3 is g = 1̂ /∈ A, so M is nondualizable. 2

We now show that we can construct arbitrarily long finite chains of 3-colourable
graphs, under the subgraph order, that alternate between being dualizable and
nondualizable. We continue to use the notation On to denote the cycle graph with
n-elements, where n ≥ 3. We will now label the elements of On as {1n, . . . , nn} and
label the element of O′n added to On as an .

LEMMA 5.4. If j and k are odd with 3≤ j ≤ k, then O :=O′j ∪̇O′j+2 ∪̇ · · · ∪̇O′k is
dualizable.

PROOF. Let n ∈ { j, j + 2, . . . , k}. Since NO(nn)= NO(an), it follows from
Lemma 2.7 that nn and an are strong idempotents of O, and both are gst-elements
for the remaining elements in O .

Let x ∈ O ′n \ {nn, an}. Let ϕx : O→ O be defined by ϕx�O ′i
= idO ′i

, if i 6= n, and
ϕx�O ′n

is any endomorphism of O′n that sends x to nn . Then ϕx is an endomorphism
of O sending x to the strong idempotent nn , so O is dualizable by Theorem 2.6. 2

THEOREM 5.5. Let n ∈ N with 3≤ n. There exist 3-colourable graphs A2, A3, . . . ,

An such that An ≤ An−1 ≤ · · · ≤ A3 ≤ A2, and Ai is dualizable if and only if i is even.

PROOF. Note that, for all odd i ∈ N, the only odd length cycles contained in O′i have
length i , and Oi and O′i are 3-colourable. Let n ∈ N with n ≥ 3. We can assume,
without loss of generality, that n is odd. Set An :=On . Let i ∈ N with i < n. Then we
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define Ai by

Ai :=

{
O′n ∪̇O′n−2 ∪̇ · · · ∪̇O′i+2 ∪̇Oi if i is odd,

O′n ∪̇O′n−2 ∪̇ · · · ∪̇O′i+1 if i is even.

It is clear from this definition that each Ai is the disjoint union of 3-colourable
graphs and is therefore 3-colourable. Also, Ai+1 ≤ Ai , for all i ∈ {2, . . . , n − 1}. It
remains to prove that Ai is dualizable if and only if i is even.

Let i ∈ N with 2≤ i ≤ n. Assume that i is odd. Then

Ai =O′n ∪̇O′n−2 ∪̇ · · · ∪̇O′i+2 ∪̇Oi

if i < n, and Ai =Oi if i = n. The shortest odd length cycle in Ai has length i ,
and there is only one such cycle (namely Oi ). If i > 3 then Ai is nondualizable by
Lemma 5.3. If i = 3 then Ai is nondualizable by Theorem 5.2. Assume instead that i
is even. Then Ai =O′n ∪̇O′n−2 ∪̇ · · · ∪̇O′i+1 so Ai is dualizable by Lemma 5.4. 2

REMARK 5.6. In the proof of Theorem 5.5, we constructed chains of graphs that
alternated between being dualizable and nondualizable by adding vertices and edges.
By starting with a bigger underlying set, we can modify this proof to obtain alternating
chains of graphs by only adding edges. Clearly, only finite chains are possible here.

6. Graphs and graph algebras

In this section, we will prove that if a finite graph algebra is dualizable, then the
corresponding graph is also dualizable.

Let M= 〈M; r〉 be a graph (so r is a binary relation that is symmetric but not
necessarily anti-reflexive). We let A(M)= 〈A(M); ·〉 be the corresponding graph
algebra, where A(M)= M ∪ {0} and we insist that 0 /∈ M . The operation · is a binary
operation defined in the following way: if u, v ∈A(M), then

u · v =

{
u if u, v ∈ M and (u, v) ∈ r ,

0 otherwise.

For example, consider the path 4 that we met in Figure 2. The graph algebra A(4)
has universe {0, 1, 2, 3, 4} and · is given by the table in Figure 5.

The dualizability of graph algebras has been studied by Davey et al. [8] and
Lampe et al. [18]. A complete characterization of dualizable graph algebras is given
in [8] (see Theorem 6.1).

Let M be a graph. We say that M is complete if every pair of elements of M is
joined by an edge and every element has a loop. We say that M is bipartite complete
if M can be partitioned into two nonempty sets such that any two elements belonging
to different sets are joined by an edge but no elements belonging to the same set are
joined by an edge. We say that M is a loose vertex if M consists of a single element
and no edges.
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FIGURE 5. The graph 4 and its graph algebra.

THEOREM 6.1 (See [8, Theorem 1]). Let M be a finite graph. The graph algebra
A(M) is dualizable if and only if each connected component of M is either complete,
bipartite complete, or a loose vertex.

We will use this characterization of dualizability for graph algebras to prove that if
M is a finite graph and the graph algebra A(M) is dualizable, then M is also dualizable.
(We note that the reverse implication does not hold. To see this, consider the graph 4.
We saw in Section 4 that 4 is dualizable, however, the corresponding graph algebra
A(4) is nondualizable by Theorem 6.1.)

We will use the following theorem, which is the analogue of [9, Theorem 5.1.10] for
relational structures. This theorem provides conditions under which the disjoint union
of two relational structures is dualizable. Most of the proof of [9, Theorem 5.1.10] still
works for relational structures. We will only need to make some minor changes. Note
that given a relational type R, we let 1R denote the complete one-element structure
of type R, that is, a one-element structure such that every relation in R is nonempty.
(Recall that if M is a finite relational structure of type R, then 1R may not be contained
in ISP(M) since we take powers over nonempty index sets.)

THEOREM 6.2. Let M and N be finite relational structures of type R, such that
N ∈ ISP(M) ∪ {1R}. If M is dualizable, then M ∪̇ N is dualizable.

PROOF. We will assume that M ∩ N =∅. Let B := ISP(M ∪ N). Let B ∈B and let
β :B(B,M ∪ N)→ M ∪ N be a continuous map that preserves every finitary relation
on M ∪ N . We will prove that β is given by evaluation. It will then follow that M ∪ N
is dualized by the discretely topologized structure on M ∪ N that has every finitary
relation on M ∪ N in its type. We consider three cases.

Case 1. β is constant and N∼= 1R . It follows from Case 1 of [9, Theorem 5.1.10] that
β is an evaluation map.

Case 2. β is constant and N� 1R . Let m denote the value of β on B(B,M ∪ N). We
will show that m ∈ M . It then follows from Case 2 of [9, Theorem 5.1.10] that β is an
evaluation map.

Since N� 1R , we know that N ∈ ISP(M). Therefore, there is a homomorphism
from N to M. It follows that there exists some x ∈B(B,M ∪ N) with x(B)⊆ M .
Now, β preserves the unary relation M , so m = β(x) ∈ M .
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Case 3. β is not constant. The proof of Case 3 from [9, Theorem 5.1.10] shows that β
is given by evaluation.

We can therefore conclude that M ∪ N is dualizable. 2

COROLLARY 6.3. Let M be a finite relational structure of type R. If M is dualizable
then M ∪̇ 1R is dualizable.

THEOREM 6.4. Let M be a finite graph. If the graph algebra A(M) is dualizable,
then M is dualizable.

PROOF. Let M be a finite graph and assume that A(M) is dualizable. By Theorem 6.1,
each connected component of M is either complete, bipartite complete, or a loose
vertex. If M contains a complete connected component with at least two elements, then
M is dualizable by [15, Lemma 2.4]. We can therefore assume that each connected
component of M is either a single looped vertex, bipartite complete, or a loose vertex.
Let A be the union of the connected components of M that are looped vertices and
let B be the union of the connected components of M that are bipartite complete or
loose vertices. Suppose that B 6=∅. Then B is bipartite and therefore dualizable, by
Corollary 4.3. It follows from Corollary 6.3 that M= A ∪ B is dualizable. Suppose
instead that B =∅. Then M is the disjoint union of looped vertices. If |M | = 1 then it
is trivial that M is dualizable. If |M |> 1 then it follows from Corollary 6.3 that M is
dualizable. 2

REMARK 6.5. In fact, if each connected component of M is either a single looped
vertex, bipartite complete, or a loose vertex, then ISP(M) is one of only eight possible
classes.

References
[1] B. Banaschewski, ‘Projective covers in categories of topological spaces and topological algebras’,

in: General Topology and its Relations to Modern Analysis and Algebra III (Proc. Conf., Kanpur,
1968) (Academia, Prague, 1971), pp. 63–91.

[2] B. Banaschewski, ‘Remarks on dual adjointness’, in: Nordwestdeutsches Kategorienseminar
(Bremen, 1976), Math.-Arbeitspapiere, 7, Teil A: Math. Forschungspapiere (Universität Bremen,
Bremen, 1976), pp. 3–10.

[3] X. Caicedo, ‘Finitely axiomatisable quasivarieties of graphs’, Algebra Universalis 34 (1995),
314–321.

[4] D. M. Clark and B. A. Davey, Natural Dualities for the Working Algebraist (Cambridge University
Press, Cambridge, 1998).

[5] D. M. Clark, B. A. Davey and J. G. Pitkethly, ‘Binary homomorphisms and natural dualities’,
J. Pure Appl. Algebra 169 (2002), 1–28.

[6] D. M. Clark, P. M. Idziak, L. R. Sabourin, C. Szabó and R. Willard, ‘Natural dualities for
quasivarieties generated by a finite commutative ring’, Algebra Universalis 46 (2001), 285–320.

[7] B. A. Davey, ‘Natural dualities for structures’, Acta Univ. M. Belii Ser. Math. 13 (2006), 3–28.
[8] B. A. Davey, P. M. Idziak, W. A. Lampe and G. F. McNulty, ‘Dualizability and graph algebras’,

Discrete Math. 214 (2000), 145–172.
[9] B. A. Davey and J. G. Pitkethly, Dualisability: Unary Algebras and Beyond (Springer, Berlin,

2005).

https://doi.org/10.1017/S1446788711001029 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788711001029


392 S. M. Johansen [16]

[10] B. A. Davey, J. G. Pitkethly and R. Willard, ‘The lattice of alter egos’, submitted.
[11] B. A. Davey and H. Werner, ‘Dualities and equivalences for varieties of algebras’, in:

Contributions to Lattice Theory, Colloquia Mathematica Societatis János Bolyai, 33 (North-
Holland, Amsterdam, 1983), pp. 101–275.

[12] B. A. Davey and R. Willard, ‘The dualisability of a quasi-variety is independent of the generating
algebra’, Algebra Universalis 45 (2001), 103–106.

[13] D. Hofmann, ‘A generalization of the duality compactness theorem’, J. Pure Appl. Algebra 171
(2002), 205–217.

[14] M. Jackson, ‘Dualisability of finite semigroups’, Internat. J. Algebra Comput. 13 (2003), 481–497.
[15] S. M. Johansen, ‘Dualisability of relational structures’, Houston J. Math., in press.
[16] S. M. Johansen, ‘Natural dualities: operations and their graphs’, submitted.
[17] S. M. Johansen, ‘Natural dualities for three classes of relational structures’, Algebra Universalis

63 (2010), 149–170.
[18] W. A. Lampe, G. F. McNulty and R. Willard, ‘Full duality among graph algebras and flat graph

algebras’, Algebra Universalis 45 (2001), 311–334.
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