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Abstract: We study the general version of the inverse problem for planar 
trajectories and for autonomous dynamical systems possessing three inte
grals, i.e., for a given three-parametric family of curves f(x,y,a,b)=c 
we find the potential V(.x,y) for which these curves are orbits of a unit 
mass. All possible cases, depending on the preassigned function f, are 
classified and in each case the necessary and sufficient conditions for 
the.existence of a solution are established. Among the examples is the 
case of the Keplerian conic sections which is studied in detail. 

1. INTRODUCTION 
During the last few years there appeared a number of papers dealing 

with the following aspect of the inverse problem: A family of plane curves 
(depending on one or two parameters) is given in an inertial frame in 
Cartesian coordinates and required is the potential of a conservative 
dynamical system with two degrees of freedom (autonomous or not) for which 
all members of the given family are actual orbits. 

For monoparametric families f(x,y)=c and for autonomous systems the 
answer to the question whether such a potential does exist is, in general, 
affirmativei the potential V=V(x,y) is given by Szebehely's linear par
tial differential equation of the first order in V (Shebehely, 1974). 
This equation is in fact associated with a certain dependence of the total 
energy E on the function f(xi,y) and in examples this dependence E=E(f) 
has to be given in advance (Broucke, 1979, Broucke and Lass, 1977). Thus, 
in its general solution, there appear two arbitrary functions (Moln\r, 1981). 
One also finds in the literature applications, generalizations and modi
fications of Szebehely's equation. Thus, this equation was generalized 
by Bozis (.1983) in order to include velocity dependent potentials and by 
Erdi (.1982) to study three dimensional orbits. A modification of the same 
equation was presented by Szebehely and Broucke (1981) to account for non-
inertial frames. A modification by Morrison (1976) uses the energy con
stant as the parameter of the family. Szebehely's equation was written in 
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polar coordinates and an application was given recently to a problem of 
Galactic Dynamics by Szebehely, Lundberg and McGahee (1980). 

For preassigned twos-parametric families of curves f(x,y,b)=c it is 
intuitevely expected that the picture regarding the existence of solutions 
changes. In fact potentials which give rise to such families do or do 
not exist depending on the function f(x,y,b)(Lass, 1972). Concrete cri
teria for this case were given recently by Bozis (1982) . 

In the present paper we face the following problem: Given a three-
parametric family of planar curves f(x,y,a,b)=c in Cartesian coordinates 
x,y is there an autonomous dynamical system for which these curves are 
actual orbits of a unit mass? No assumption is made in advance for the 
dependence of the total energy E on the three parameters a,b and c. 
However, it is understood that when the problem admits a solution V=V(x,y), 
the total energy E=T+V is constant along each orbit, i.e., eventually 
E=E(a,b,c). 

The motivation for studying this problem is that the totality of the 
orbits of a two-dimensional autonomous dynamical system possessing three 
integrals of motion generally is a threes-parametric family of planar curves. 
In this sense this appear to be the most general version of the inverse 
problem of this sort. 

Since we now demand that a larger family of orbits results from a 
single potential, we expect more conditions to be necessary, and eventually 
necessary and sufficient, so that this problem admits a solution and, in 
fact, this is exactly what happens. At a first stage we find a set of 
necessary conditions for the case at hand to have a chance for an affirm
ative answer. This set also serves to classify each case at hand. Eventu
ally we establish necessary and sufficient conditions for the problem to 
admit a solution. 

2. ANALYSIS 

We consider a threes-parametric family of planar curves expressed in 
the form 

fCx,y,a,b) = c (1) 

in the Cartesian x,y plane. We introduce the notation 

Y=fy/fx , r=YYx_^y 

x=r-1(-rx+Y-
1ry) , y=AYt3Y-

1r 

where the functions y,T,X and y can be derived in a straightforward 
manner from any given f(x,y,a,b) and the subscripts denote partial dif
ferentiations. The function y vanishes or diverges identically when 
the family (1) represents the monoparametric families of straight lines 
which are parallel to the x or the y axis; and of course this is not 
the case here. Also TtO, because T=0 represents in fact a two-para
metric family of straight lines. Obviously, the functions y,T,A and y 
depend on the parameters a and b as well. In fact Ya^° and Yb^° 

(2) 

(3) 
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because otherwise the family (1) would essentially depend on at most two 
parameters. The above assumptions serve to guarantee that the family (1) 
is a genuine three-parametric family of planar curves. The force com
ponents X=X(x,y) and Y=Y(x,y), inasmuch as they exist, which are de
rived from a potential V=V(x,y) and give rise to the family of orbits 
(1), satisfy the linear system of partial differential equations (Bozis 
1982 b) 

X,. (4) 

and 

-Xx+(l-Y
2)Y_1Xy+Yy = AX+yY (5) 

We demand that the potential , therefore and the force components, 
are independent of the parameters a,b and c; this expresses the fact that 
the free parameters of the family (1) enumerate the totality of the orbits 
admitted by a single potential V(x,y). We seek, therefore, solutions of 
the system of equations (4) and (5) which satisfy the conditions 

X. b a Yb=0 (6) 

The analysis which follows is heavily based on and very much facilitated 
by this requirement. 

First we look for necessary conditions on the function y - which 
are, in effect, conditions on the function f - for the system of equa
tions 00 and (.5) to satisfy the conditions (6). By differentiating 
equation (5) with respect to a and b we obtain that 

X = £X+mY and Xy = LX+MY (7) 

where 

£ = 
(1+Y >Y; 

Aa a L = 
(l+Y2)Yb

 b 
(8) 

(1+Y )Y 
2. V a 

M = 
(l+Y2)Yb

 b 
(9) 

Then by differentiating equations (7) with respect to a and b we fur
ther obtain that 

£aX+maY = 0 £bX+mbY 0 
(10) 

LaX+M Y = 0 a a LbX+MbY 0 

Finally, by subtracting the two equations (7) we obtain 

U-L)X+(m-M)Y = 0 . (11) 
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Since we disregard as trivial the solutions for which one of the 
force components vanishes, we demand that the linear homogeneous system 
of the algebraic equations (10) and (11) admits non-trivial solutions. 
This system has solutions different from the solution X = Y = 0 if and 
only if the determinant of any two of these five equations equa]s;to zero. 
In view of the comments which follow, we shall express this requirements 
in the form 

_ I - L _ ^a _ lh _ La _ Jjb_ . . 
P m - M " ma mb ~ Ma Mfa ~ 

Comments: (i) The common ratio p must be different from zero and from 
infinity} otherwise one of the equations (10) and (11) would imply 
that either X or Y vanishes identically. 

(ii) If some of the ratios (12) are indeterminate of the form 
0/0, these are simply ignored; in fact the corresponding equations 
(10) and (J.1) are satisfied identically and give no additional in
formation. 

We next consider two cases, depending on whether the ratio p (of 
equation 12) is defined or it is indeterminate. 

Case I: The ratio p is defined. 
Since p must be equal, from equations (10) and (11), to -Y/X, it 

must also be independent of the parameters a and b. We obtain, there
fore, the conditions 

pa = 0 and pb = 0 , (13) 

whiehjj however, are immediate consequences of equations (12). In this 
case all equations (10) and (11) reduce to the single equation 

pX+Y = 0 (14) 

which must be combined with one of the two equations (7), say 

£X+mY = X . (15) 

Note that, in view of equations (11) and (15), the second of equations (7) 
is also satisfied. _We have to satisfy, therefore, the system of equations 
(4),(5),(14) and (15). Depending on the form of the system of equations 
(14) and (15), we distinguish two subcases: 
Subcase la: The determinant 6=pm - £ is different from zero 

We have, in this case, that 

X=-6"1Xy , Y=p6_1Xy # (16) 

By combining now equations (4),(5),(14) and (15) we readily obtain that 

Xx = nX and X = -6X, (17) 

where 

n = ( Y 2 - 1 ) Y ~ 1 6 + P 6 - P V - A + U P . (18) 
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Provided that the integrability condition 

6x+ny = 0 (19) 

of the system of equations (17) is satisfied, they can be solved and 
determine X uniquely, up to a multiplicative constant; the second of 
equations (16) then can be used to determine Y algebraically. The force 
components so obtained satisfy equation (4) and therefore they arise from 
a potential. The solutions are acceptable provided that they are inde
pendent of the parameters a and b of the family of orbits. This is 
satisfied provided that 

6a = 6b = na = lb = 0. (20) 

However, it is straightforward to show that the conditions (20) are imme
diate consequences of the conditions (12) and (13) and therefore they are 
not additional necessary conditions. Note that in this case we also have 
that p#£/m^L/M/p. The final conclusion is that in the subcase la the 
necessary and sufficient conditions are the conditions (12) and (19). 
Whenever these conditions are satisfied, the force components are deter
mined uniquely up to a constant factor. 
Subcase lb: The determinant 6=pm-£ equals to zero 

We have, in this case, that 

P=£/m=L/M (21) 

as well. It is seen from, equations (4),(14) and (15) that Xy=Yx= 0 and 
therefore the force components are of the form 

X=X(x) and Y=Y(y) ; (22) 

the corresponding potential is separable. The equations that have to be 
satisfied reduce in this case to the equations 

-X +YV = AX+yY and pX+Y=0 . (23) 
x y 

By differentiating the first of these equations with respect to a and 
b we obtain that 

AaX+uaY = 0 =; AbXtubY (24) 

from which we obtain the necessary conditions 

p = Xa/ya =
 Ab/pb (25) 

which however are satisfied by virtue of the equations (8),(9),(12) and 
(21). The two equations (23) now give that 

XX+6X =0 (26) 

where 
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9 = A-up+py . (27) 

Equation (.26) determines uniquely, up to a multiplicative 'constant, an 
acceptable solution of our problem provided that 

ey = 0 (28) 

and 

9a = 8b = 0 . (29) 

The conditions C29) are immediate consequences of the conditions (25) 
while equation C28) gives an additional independent necessary condition. 
Then Y is determined algebraically from the second equation (23) and 
the resulting solution is acceptable, provided that Yx=0 which, since 
Y=-pX, leads to the additional and independent necessary condition 

px = p 9 . (30) 

The final conclusion then is in the subcase lb that the necessary and 
sufficient conditions are given by equations (12) , (21) ,(28) and (30) and 
that, whenever these conditions are satisfied, the force components are 
determined uniquely, up to a constant factor. 

Case II: The ratio p is indeterminate 
Since all the ratios of equations (12) are of the form 0/0, the 

equations (.10) and (11) are satisfied and therefore they can be omitted. 
Vie are left with equations (4),(5) and one, say the first, of equations 
(7). These are written as follows 

-Xx+Yy = {X+(.Y
2-l)7"1Jl}X+{p+(T

2-l)Y"1m}Y , 

X = £X+mY , (31) 

Xy = YX 

The coefficients of X and Y in the right hand sides of the first two 
of equations (31) are independent of the parameters a and b. Therefore, 
all the solutions of the above system are independent of a and b and, 
as such, they are acceptable solutions of our problem. The necessary and 
sufficient conditions, therefore, in this case are 

£-L=m-M=£a=£k=ma=mb=0 . (32) 

The example (35) of the next section shows that generally the force com
ponents are not uniquely determined in this case. 

3. EXAMPLES 

(3A): As an example for the subcase la of the analysis of the pre
vious section we consider the (planar) Kepler problem: We assume that a 
system admits as orbits all the members of the three-parametric family of 
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ellipses in the same plane and with common one of their focal points, but 
with arbitrary eccentricity, magnitude, and orientation of their major 
axes. 

To describe this family we choose a Cartesian coordinate system 
whose origin coincides with the common focal point. The family then is 
described by the equation 

f=(x2+y2){l+e cos(e-S0)} = const. , (33) 

where e and %Q are the two parameters and tan3=y/x. From the ex
pression (33) we obtain that 

Y=(sinS+a)/(cosS+b) , (34) 

where, here and henceforth, we shall consider, instead of e and %Q , 
the a = e sindQ and b = e COSSQ as the two free parameters of the 
family. To simplify the computations, we introduce the notation 

tano)=(bsin§-acos\>)/(l+asind+bcosd) (35) 

in which y simplifies to 

Y=tan(S-u>) . (36) 

Note that the parameters a and b appear in y only through the com
bination a). Then we obtain that 

Y+ x/y = cosu)/sin$cos(§-w) , (37) 

-1/2 _± 

r=r(x2+y2) cos2w cos~2(S-w)(cosd+b) . (38) 

In order to obtain the last expression we have used equation (A.4) of 
the appendix and that 

§x-u)x=-sin§cosu) cos (S-w)(x
2+y ) (cosS+b) # (39) 

From the first of equations (3) we obtain,after a lengthy calculation, 
that 

1/2 
X=3{sin($-w)-bsinu)}/(x2+y2) (cos$+b) sin(d-co) , (40) 

and a similar expression for u. 
Because it is very complicated to evaluate all the quantities which 

appear in the ratios (12), we follow an indirect approach to establish 
the validity of the necessary and sufficient conditions (12),(13) and (19) 

It turns out that the combination 

xA+yu=yX(Y+xy~1)+3yrY~1=~3sin2nb/sin(2$-2w) (41) 

is very simple and it depends on the parameters a and b only through 
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u>. Hence from equations (36) and (4-1) we immediately obtain that 

(xA+yy) = -6sin2% sin_2(2S-2a))w-
,a ^ ^ ^ „ ^ , ,^„ ^ , ~ a 

Y2(l+Y2)r"1=sin2(S-a)) , -y2( 1+y2 )"1Y:1=sin2(2d-2aj)( 4w= )
- 1 

a. a. 

(U2) 

and therefore that 

xl+ym=- T2(xX+yy)., = 3 s i n 2 d # ( 4 3 ) 

(iV)Ya 
Obviously, we similarly obtain that 

xL+yM = - j sin2d . (44) 

Hence x£+ym=xL+yM which implies that 

P m-M 
SL-L __ y (45) 

Since the right hand sides of equations (43) and (44) are independent 
of the parameters a and b we also have that 

x£ +ym =xJL+ym,=xL +yM =xL,+yM,= 0 (46) 

which, combined with equation (45), implies the validity of the conditions 
(12) and (13). 

Finally for p=-y/x we readily obtain that 

6=-(x£+ym)/x = 3y/(x2+y2) (47) 

and 

ni(y2-2x2)/x(x2+y2) (48) 

from which the last condition (19) is also verified. For these expression 
for 6 and n, equations (17) and (14) are readily integrated and give 

X=kx(x2+y2)"3/2 , Y=ky(x2+y2)~3/2 , k a constant, (49) 

i.e., the Newtonian force. It should be noted that we have here derived 
Newton's force law by using only the first of the three laws of Kepler's 
and the weaker assumption that the motion is conservative, not central 
as stated by Kepler's second law. 

(3B). As an example of a three parametric family of curves which 
arise from a separable potential we consider the family 

f=b \/ax̂ -l - a\/by2-l = c . r(50) 

For this family we readily obtain that 

Y=-yx-1(ax2-l)1/2(by2-i)"1/2, r=Ax-1(by2-l)"1 (51) 

https://doi.org/10.1017/S0252921100097232 Published online by Cambridge University Press

https://doi.org/10.1017/S0252921100097232


THE PLANAR INVERSE PROBLEM FOR AUTONOMOUS SYSTEMS 361 

where 

A=y2x-2-(ax2-l)1/2(by2-l)_1/2 (52) 

and, after a long calculation, that 

JL 2yf_ 2x 3bx 1 ,-y2-x2A _ x2 •, 

X x3A ACy2-x2A) \Aax2-l)(.by2^l) ** x2 y2-x2A 

.(53) 

What turns out to be very simple is the combination 

y3A+x3y=(y3+x3Y)A+3x3TY"1=3(y1+-x1+)(xy)"1 . (54) 

Therefore this family satisfies the relationships 

a/ya= b/ub= - x / 3 (55) 

In addition we readily obtain that 

y3£+x3m=0=y3L+x3M (56) 

and therefore all the ratios (.12) are equal to p = -x / 3 and the con
ditions (.12),(.13) and C21) are satisfied. Moreover, we obtain that 0=3/x 

which checks the validity of the final conditions (28) and (30). The 
family (50) represents the totality of orbits of the autonomous conserv
ative system with potential 

U = k(x~2+y ), 

where k is a constant. 

(3T). For the case II we present a two^parametric worth of examples, 
characterized by the two arbitrary constants p and q which are distinct 
from the parameters a,b and c of the family of orbits. 

The three-parametric family of curves is 

f(x,y,a,b) =y+J {pg3-3qg2-3pg+q}_1dg = c , (58) 

where g=g(x,y,a,b) is any two-parametric family of solutions of the equa
tion 

3 2 
ggx-gy= Pg -3qg "3pg+q . (59) 

We shall give the presentation in three steps. 
(i) First we show that the family (58) satisfies the conditions (32). 

By using equations (58) and (59) we readily obtain that the function 
Y=fy/fx of the present family equals to the solution g of equation 
(59) i.e., that Y=g- Therefore, P=pg^-3qg -3pg+q from which we can 
readily obtain that 
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\=r.y" J&y - - 3 g " 1 ( p g r 2 q g - p ) , 
( 60 ) 

p=3r Y
_ 1 - d I 7dy = -3g _ 1 (qg 2 +2pg-q) . 

It is the fact that A and u depend on the parameters a and b only 
implicitly, through the function g, which makes the evaluation of 
£,L,m and M rather simple. In fact we obtain that 

£=L=3p , m=M=3q (61) 

and therefore the necessary and sufficient conditions (32) are satisfied. 

(ii) Second we determine the corresponding potential for a given 
choice of p and q. The force components satisfy the linear system 
of equations 

Xx-Yy+6qX-6pY= 0 , (62) 

Xy=3pX+3qY , (63) 

Xy = Yx . (64) 

By taking the x derivative of eq. (.62) and using equation (64) to elim
inate Y we obtain a second order linear partial differential equation in 
X with constant coefficients which generally is of the irreducible type. 
Therefore its solutions are of the form 

X = e3Ax+3By (65) 

for suitably chosen constants A and B. Equation (63) then gives that 

Y = (B-p)q"1e3Ax+3By (66) 

while equations (62) and (64) give two algebraic equations in A and B 
which, after some manipulations, become 

A3-3(p2+q2)A+2q(p2+q2) =0, B=pA(A-q)~1 . (67) 

It turns out that the first of equations (67) has three different real 
roots when pq f 0, and obviously, to any of these roots there corre
sponds an acceptable solution of our problem. We conclude, therefore, 
that in this case the force components are not determined uniquely from 
the three-parametric family of curves. In fact, since the equations 
(62)-(64) are linear, we can also consider arbitrary superpositions of 
solutions; thus for a given choice of p and q (with pq^O) we can con
struct a two-parametric family of force components which accept the three 
parametric family of orbits (58), where we have not counted the arbitrary 
overall multiplication factor as a free parameter. The corresponding 
potential is 

https://doi.org/10.1017/S0252921100097232 Published online by Cambridge University Press

https://doi.org/10.1017/S0252921100097232


THE PLANAR INVERSE PROBLEM FOR AUTONOMOUS SYSTEMS 363 

V = "(.3A)^-e3Ax+3By . (68) 

(iii) Third, we describe how the family (58) was obtained. The con
dition J?,=L demands that ^a/y - ^h/y^ which is satisfied when A=A(y)-
This last condition is satisfied when Y-V{y), which also guarantees 
that m=M. In this case we obtain that 

£=L = ̂ i - , m = M = Y
2'r-3Yr+3r 5 ( 6 9 ) 

1+y 1+Y2 

where the dots denote differentiations with respect to y. The only way 
for % and m to be independent of a and b is that the two expressions 
in (69) are constants, say 3p and 3q respectively. By solving the re
sulting equations we obtain that T=py • 3qY ~3py+q. The family described 
by equations C58) and (59) is obtained by reconstructing f from a given 

r. 
(3A). Finally as an example of a three parametric family of curves 

which does not arise from any autonomous conservative system we consider 
the family of all possible circles (with arbitrary center and radius) in 
the plane 

f=f(x,y,a,b) = (xr,a)2+(y-b)2 = c . C ( 70) 

For this family we easily obtain that 

Y= ,= * £ , r ^ - - ^ , A = - ^ , P= * (7i) 
x-a ' , N3 ' x-a ' y-b 

(x-a) 
and therefore 

A = . 3 C ^ b ) . ) m = 0 j L = Qj M=_i(>pO_. . (72) 

Obviously some of the ratios (12) become infinite, so no solution to 
our problem exists 

4, INVARIANCE PROPERTIES OF THE THEORY 

The analysis of the present paper and the necessary and sufficient 
conditions {12), (.19), (.21), (28), (30) and (32) at which we arrive on 
section 2, depend explicitly on the parameters a and b of the family 
of orbits Cl), However, it is intuitively expected that one should have 
the freedom to reparametrize the original family in an arbitrary manner, 
say, 

a=aCa,b) and b = t>(a,b) (73) 

and that this reparametrization will not alter the classification and the 
conclusions of the analysis of section 2. The freedom in the choice of 
the parameters of the family (1) represents the gauge freedom of the pro-
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blem considered in this paper. We now show that the above mentioned con
ditions are indeed gauge invariant, 

It is straightforward to see that under the change of gauge (73) 
the functions f, y, X and y remain invariant while t, L, n and M change 
according to 

I = £-U~L)Yb ba/Ya i L=L+U-L)Ya
 ai>/rk 

(74) 

m=mr-(m-M)Yb b S / Y a ' M=MtCm-M)ya
 at>/Yb 

from which we r e a d i l y obta in t h a t 

P - - til - JT~ - P • ( 7 5 ) 
m-M HITM 

Hence the condition Cl3) implies that "p^ = p̂ , = 0 which means that it 
is a gauge invariant condition. Then by using equations (12) and (74-) 
we can easily show that 

,* M r* H 

£s/m§= ££/m£= L5/Mg = L£/M£ = p = p , (76) 

which establishes the gauge invariance of the condition (12). Next we 
easily see that 

6=pm-£=pm-£=6 (77) 

which, among others, shows the gauge invariance of the classification of 
section 2 and of condition (.21), Finally, equations (75) and (77) imply 
that ri=T) and 8=8 which establish the gauge invariance of the conditions 
(.19),(.28),(30) and (.32), Q.E.D. 

The original definitions, given by equation (3), of the two basic 
quantities X and u seem unrelated. However, the subsequent analysis 
is completely symmetrical in X and y. Here we establish the existence 
of a simple relationship between X and u which explains the symmetrical 
form of the theory in X and p. Precisely we shall show that under the 
change of coordinates 

2 
where e =1, the quantities X and u transform according to 

X= - y , p= -eA . (79) 

(For e=+l the transformation (78) represents the interchange of the x 
and y axis, while for e=-l it represents a rotation in the x-y plane 
by 90° degrees). 

The proof is straightforward. For the same family of curves f=f= 
=constant we obtain that 

Y = fy/f- = EY" 1 (80) 
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and therefore that 

Hy^y = r>"3 • (81) 

By using equations (80) and C81) and performing the required differenti
ations we obtain that 

A=r-1(-rv+Y-1r-) = -p (82) 
x y 

and 

y=AY+3Y_1r=-eA, (83) 

Q.E.D 

5. DISCUSSION 

Newton's law of gravitation is derived in the literature on the 
assumptions that (i) the orbits are ellipses with common focal point 
(Kepler's first law) and (ii) the arealvelocity is constant (Kepler's 
second law). As a byproduct of the present analysis we have derived 
Newton's law by using only the first law and the assumption that the 
forces are conservative, which is weaker than being central . 

A possible generalization of the analysis of this paper, on which 
we are presently working, refers to non-conservative dynamical systems. 
In the corresponding analysis we no longer have equation (4-), while equa
tion C5) is slightly modified. Since the majority of the necessary and 
sufficient conditions derived in section 2 arises from the successive 
differentiations of equation (5) with respect to the parameters a and 
b, we expect that the lack of information which results from the omission 
of equation (M) will be easily substituted from the Information arising 
from the remaining equations. 

Currently there is a lot of interest in the precise determination 
of the gravitational field of the earth from the observed motions of 
artificial satellites (Szebehely 1980), The theory developed in the pre
sent paper -might be modified to account for such trajectories. Some pre
paratory numerical work would of course be necessary to fit into the the
ory, 

APPENDIX 

The evaluation of the basic quantities A and u of the theory of 
the present paper for a typical three-parametric family of planar curves 

f(x,y,a,b) = c (A.l) 

is rather lengthy. We here obtain some useful general expressions for 
them with the additional assumption that the function f of equation 
(A.l) is homogeneous in x and y of degree n. When n=0 equation 
(A.l) represents straight lines passing through the origin and this is 
rather uninteresting. When n=0 the degree of homogeneity is irrelevant 
since it can be altered by raising eq. (A.l) to a suitable power. It is 
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expected therefore that n will not appear explicitly in the expressions 
for A and u, 

In fact it can be argued that any three-parametric family of curves 
can be put in the form (A.l) with f homogeneous. Indeed, by expressing 
the equation of the family of curves in polar coordinates and solving it 
for "r" one can always write it in the form 

r=cg(S,a,b) (A.2) 

where one of the_ constants Cc) is made to determine the scaling of r. 
Since r = Vx^+y2 and d=tanr"̂ -(y/x) are homogeneous of degree one and 
zero respectively, the family CA.2) is of the form (A.l) with f homo
geneous of degree one. It should be pointed out, however, that the use 
of the homogeneous form of a given family of curves is not always the 
most convenient computationally. For instance, in the Example (3B) it 
was found more convenient to consider the non-homogeneous presentation 
C50) of the family of curves. 

For a homogeneous f one can use Euler's theorem (stating that 
xfx+yf„ = nf) to simplify some of the computations. Moreover in this 
case the function Y=^y/fx i-s homogeneous of zero degree and therefore 
it can be viewed as a function of the single independent variable z=y/x. 
Hence 

Yx^zyx"1 , Yy = YX
_1 , (A.3) 

where the dot denotes differentiation with respect to z. By expressing 
all the partial derivatives in terms of ordinary derivatives of Y it 
is straightforward to obtain that 

r=YYx"Yy=( Y
+xVvl)YX

=^ CYZ+1)YX_1 (A.4) 

and then that 

A=CXY)~1{(YZ+1).YY"1+ZY+2Y} (A. 5) 

and 

P=X~1{(YZ+1)(YY'"1-3YY~1)+5SY+2Y} • (A.6) 

Equations: (A.5) and (A.6) imply the useful relation 

xA+yy = CYZ+1)Y~1{(YZ+1)YY-1-2ZY+2Y} . (A.7) 
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