ON FINITE GROUPS OF THE FORM ABA
DANIEL GORENSTEIN

Introduction. The class of finite groups G of the form 4BA, where 4 and
B are subgroups of G, is of interest since it includes the finite doubly transitive
groups, which admit such a representation with 4 the subgroup fixing a letter
and B of order 2. It is natural to ask for conditions on 4 and B which will
imply the solvability of G. It is known that a group of the form 4B is solvable
if 4 and B are nilpotent. However, no such general result can be expected for
ABA-groups, since the simple groups PSL(2,2") admit such a representation
with 4 cyclic of order 2" 4+ 1 and B elementary abelian of order 2*. Thus G
need not be solvable even if 4 and B are abelian.

In (3) Herstein and the author have shown that G is solvable if 4 and B
are cyclic of relatively prime orders; and in (2) we have shown that G is
solvable if 4 and B are cyclic and 4 possesses a normal complement in G.
The present paper is devoted to a proof of the following result:

TuEOREM A. If G = ABA, where A and B are cyclic subgroups of G, and if
A 1is 1ts own normalizer in G, then G is solvable.

If Gy is a subgroup of G containing 4, then it is easy to see that G = ABy4
with By € B. Furthermore a homomorphic image G of G is of the form ABA,
and it can be shown that N(4) = A if N(4) = A. Thusit is natural to attempt
to prove Theorem A by induction on the order of G. In order to carry out the
inductive argument, one must first determine the structure of all solvable
groups which satisfy the hypotheses of Theorem A; and the bulk of the paper
(Part I) is taken up with this problem. Our main result is the following:

THEOREM B. Let G = ABA, where A and B are cyclic subgroups of G and
N(A) = A, and assume that G is solvable. Then G = AT, where T = [G,G], and
T is the direct product of three A-invariant subgroups T, Ts, T3, which satisfy
the following conditions:

(I) Ty is a 2-group; if Th # 1, then A N\ Ty # 1;

(II) T2 = MQ where M <| Ts and Q is a g-group, q a prime, either M is a
2-group and q =7 or M is abelian of type (m,m), (m,6) = 1, and q¢ = 3; if
Ty # 1,then A N Ty # 1;

(II1) T is nilpotent of class L or 2 and A N T3 = 1.

The proof of Theorem B relies heavily upon the properties of regular ¢-
groups which were developed in (2) and especially upon the structure of
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regular ¢-groups of prime power order. These properties are listed in § 1. In
addition to this, we need bounds for the order of automorphisms of certain
non-abelian p-groups, which include the extra-special p-groups as defined by
Hall and Higman in (7). These bounds will be determined in §§ 1 and 2. In
the course of the proof of Theorem B we shall also obtain much more precise
information concerning the structure of the ‘‘exceptional” groups 77, 7.

The proof of Theorem A from Theorem B utilizes the transfer of G into
certain A4-invariant p-Sylow subgroups P of G, where plo(4). Using Theorem
B and our induction assumption, we are able to show by means of the Hall-
Wielandt theorem that the p-Sylow subgroup of A is mapped isomorphically
in the transfer of G into P. This argument works very smoothly if G possesses
no subgroups of the form 7% or 7', but requires considerable modification if
such subgroups are present.

Throughout the paper we shall write simply G = ABA, provided G is an
ABA-group in which 4,B are cyclic and A4 is its own normalizer.

In a subsequent paper we hope to treat the class of groups of the form
ABA, where A and B are cyclic, but 4 is not necessarily its own normalizer.

PART I

THE STRUCTURE OF SOLVABLE .4 BA-GROUPS

1. ¢-groups of prime power order. We recall from (2) that a group 7°
is called a ¢-group if T possesses an automorphism ¢ such that every element of
T can be expressed in the form ¢%(gp"(g)9>"(g) ... D7(g)) (we denote this
expression by ¢*([g]7)) for some fixed element g in 7" and some fixed integer 7,
for suitable choice of integers 7 and j. g is called a ¢-generator of T, and » the
¢-index of T.* If ¢ leaves only the identity element of 7 fixed, T is called a
regular ¢-group. In particular, if ¢” = 1, every element of 7 is of the form
¢%(g7). In this case we say that T is of ¢-index 0.

In Theorem 10 of (2), we showed that T is a ¢-group if and only if the holo-
morph G of T and ¢ is of the form ABA, where a generator a of A induces by
conjugation the automorphism ¢ of 7"and where B is generated by the element
ga=". It is clear that T will be a regular ¢-group if and only if N(4) = A4.
Throughout the paper if G = ABA, we shall denote by ¢ the automorphism
of G induced by conjugation by a generator a of 4. Thus if an ABA-group G
possesses a normal A-complement 7', then 7 is a regular ¢-group. The principal
result of (2, Theorem 9) asserts that a regular ¢-group 7 is nilpotent of class
1or 2.

In Theorems 6 and 8 of (2), we have determined the structure of a regular
¢-group of prime power order rather precisely. As we shall make repeated use
of this structure, we shall restate these results here. The following properties

*In (2) we have used the terms index and generator of P under ¢; ¢-index and ¢-generator

seem preferable, since they avoid possible confusion with the customary use of these terms
in the theory of groups.
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of a regular ¢-group of prime power order are either explicitly contained in
Theorems 6 and 8 of (2) or are easily derived from them.

If P is a regular ¢-group of order p" and ¢-index r, P contains a normal*
subgroup F invariant under ¢ such that

(1a) F is either elementary abelian, cyclic of order p¢, or of type (p¢, p°).
F = 1if and only if P is elementary abelian, ¢ has order relatively prime to p
and ¢" leaves only the identity element of P fixed.

(1b) ¢ acts irreducibly on F; = Q,(F).

(1c) P = P/F is elementary abelian, the image & of ¢ on P has order rela-
tively prime to p and ¢" is without non-trivial fixed elements.

(1d) if £ = order of ¢ on Fy and rs = ¢-index of Fy, then k|rs. Thus F; is
of ¢-index 0.

(1e) If Pis abelian, P = H X K, where H, K are invariant under ¢, H D F,
¢ has order kp° on H for some ¢ and order relatively prime to p on K.

We shall call F the ¢-nucleus of P.

The preceding results depend crucially upon the following inequalities:

(1f) If ¢ has order & and ¢" is without non-trivial fixed elements on P,
then h%/r > o(P); if P is of ¢-index 0, and g is a ¢-generator of P of order s,
then is > o(P).

In § 1 we shall establish several further properties of regular ¢-groups of
prime power order, which we shall need for our subsequent work. In (2) we
conjectured that if P has ¢-index r and ¢” leaves only the identity element of
P fixed, then P is in fact abelian. We shall include a proof of this conjecture
when P has odd prime power order. The proof depends upon the following
lemma, which is due to John Thompson.

LEmMA 1.1. Let P be a p-group whose centre C and factor group P = P/C
are both elementary abelian of the same order p*. Suppose G has an automorphism
& which acts irreducibly on C and whose image & on P acts irreducibly on P.
Assume further that ¢ and ¢, regarded as linear transformations, have the same
characteristic polynomials on C and P. Then the order of & is less that p"1.

Proof. The associated Lie ring L of P is the Cartesian sum of two additive
groups L; and L,, with L; = P and L, =2 C. Regarding L as a vector space
over the prime field %, with p elements, ¢ and ¢ induce linear transformations
of L;and Lsrespectively, which we denote by the same letters. If [x, y] denotes
the Lie product in L, it follows from the definition of L that for any two
elements x, y in L,

1) [x¢, yo] = [x, ¥]o.
*Theorem 8 of (2) asserts actually that F is in the centre of P. There is, however, an error
in the proof. A correct proof, when p is an odd prime, will be given below in Lemma 1.5. It

will also be shown that P is of class < 2 even when p = 2, although in this case F need not
be in the centre of P. This will complete the proof of Theorem 9 of (2).
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It follows from (1) that the elements of the form [x, y], x, ¥ in L; generate
a subspace of L, invariant under ¢. Since ¢ acts irreducibly on L, and P is
non-abelian, the elements [x, ¥] span Lo.

Let K, be the algebraic closure of K, and let L* = L*, @ L*; be the
corresponding Lie ring over Kj. Since the characteristic polynomial of ¢ on

L, is irreducible, its characteristic roots are of the form «, o?, o?*, . .., &®" ',
for some element « of K} of order %k, where & = order of ¢. Since ¢ is com-
pletely reducible over K, L*; has a basis x, X1, . . . , X,—1 such that

(2) X = oPxy, 1=01,2,...,n—1.

Using (1) and (2) we see that
[xOy xl]d) = [qug, xld_’] = [CUC(), apixi] = a1+zﬂ'[x0’ xl]

If [x0, x;] = O for all 7, dim Z(L*) > =, where Z(L*) denotes the centre of L*.
But then dim Z(L) > #u, contrary to the fact that o(C) = p". Hence
[x¢, x;] 5 0 for some 7. Since ¢ has the same characteristic roots as ¢, we
conclude that a'*?" = o?’ for some j and hence

(3) 14 pi=pi(mod k) with0 < i =n—-1,0=j =< n—1

which is clearly impossible if 2 > p"~L. Since ¢ acts irreducibly on P, (&, p) = 1,
so that in fact & < p" L )

We also require some additional properties of ¢-groups which we shall need
later in the paper as well as in the present section.

LEMMA 1.2. Let P be an elementary abelian regular ¢-group of order p" and of
¢-index v, and assume P = Py X Ps, where P; # 1 and P; is invariant under
6,1 =1,2. If ¢ has order k; on P, then ky # ks. Furthermore, if ¢" leaves only
the identity element of P, fixed, then ki { k.

Proof. Assume k1 | k2 and ¢ leaves only the identity element of P; fixed.
Thus ¢ has order k; on P, and we may assume 7|ks. Let x = x1x» with x; € P,
i = 1,2 be a ¢-generator of P of ¢-index ». Now [x.]] = 1if and only if &/
divides j. Since [x]! = [x1])[xs], 2 = [x1],2/” must be a ¢-generator of P;.
Since ¢" leaves only the identity element of P; fixed and k| ks, 2 = 1 and
hence P; = 1, a contradiction.

If k1 = ks, we need only show that ¢” has no non-trivial fixed elements on
Pi. In the contrary case, ¢” leaves some subgroup F; #% 1 of P; fixed. If
Fy, = Pi, r = k; and ¢7 is the identity on P whence every element of P is of
the form ¢#(x7). But this implies that ¢ acts irreducibly on P, which is not the
case. On the other hand, if Fy C Py, set P = P/F, = P, X P,. Since P is
elementary abelian, F; is the ¢-nucleus of P, so that by (1c¢) ¢” leaves only the
identity element of P fixed, and we reach a contradiction as in the preceding
paragraph.

LemMA 1.3. Let P be a regular ¢-group of order p™, p a prime, and let F be the
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o-nucleus of P. Then P = HK, where H,K are ¢-invariant subgroups of P
satisfying the following conditions:

(a) H and K commaute elementwise;

(b) HD Fand HN K = Q(F),

(c) if ¢ has order ky on Q1(F), then ¢ has order kip® on H for some e;
(d) the image of ¢** on K/Q(F) leaves only the identity fixed;

(e) either H = F or K 1is elementary abelian.

Proof. We first show that (e) is a consequence of the remaining conditions.
Set F; = @;(F). Since K = K/F, is elementary abelian, it follows from (d),
if K is abelian, that K is elementary abelian. Suppose K is non-abelian, and
let & be the order of ¢ on K. Let x, y € K be such that [x, y] = 2 # 1. Applying
¢%, it follows at once that ¢*(z) = z. Since z € F; and ¢ acts irreducibly on F,
we conclude that k, | &.

Assume now that (e) is false, in which case H D F and K is non-abelian.
Then P = P/F = H X K, where & leaves each factor invariant, has order
kyon H, and kon K. If P is of ¢-index 7, ¢" leaves only the identity element of
P fixed. But then by Lemma 1.2, k; 4 k, a contradiction.

Now let P = P/F,. If FF =1, then P is elementary abelian, ¢ has order
prime to p on P, and ¢” leaves only the identity element of P fixed. It follows
therefore from Lemma 1.2 that P = H X K, where each factor is ¢-invariant,
either H = 1 or ¢ has order k, on H, and " leaves only the identity element
of K fixed. If H, K are the inverse images of H, K respectively, then ¢ has
order & = kip® on H and H M K = Fy. But then ¢" leaves only the identity
element of K fixed, and it follows that the elements y~1¢"(y), y € K, include a
set of coset representatives of Fiin K. If y € K, x € H, then yxy! = &' € H.
Applying ¢" to this relation, we readily conclude that y~1¢"(y) centralizes H
for all yin K. Since F; € Z(P), it follows at once that H, K commute element-
wise. Thus the lemma holds if F = 1.

If F s 1, then by induction P = HK, where H,K satisfy the conditions of
the lemma. Hence, if H denotes the inverse image of H in P, then ¢ has order
kip® on H. Let K; be the inverse image of K in P. Then K; N\ F = Q.(F). If
K, C P, it follows again by induction that K; = Q:(F)K, where Q:(F) N\ K =
F; and K is ¢-invariant. Thus P = HK, and H /N K = F;. Since ¢* leaves
only the identity element of K/F; fixed, it follows as in the preceding case
that H and K commute elementwise.

Suppose finally that K; = P. Then again as in the case I/ = 1, it follows
that F C Z(P). But then cl(P) <2 and [P, P] C F.. Thus P = P/F, =
F % K, where each factor is ¢-invariant. The lemma now follows with H = F
and K the inverse image of K.

LEMMA 1.4. Under the assumptions of the preceding lemma, if p is odd and F
is abelian on at most two generators, then H is abelian.

Proof. By induction H = H/F, is abelian. If A is cyclic, H is clearly abelian.
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If A is of type (p™, p™) then [H, H] is cyclic and contained in Fy. But in this
case o(F;) = p?, and since ¢ acts irreducibly on H, it follows that [H, H| = 1.
Hence H is abelian. Thus H = FF X Hy, H, # 1. If '} = Q,(F), then § either
has order k; or kyp on F1H,. Since H, # 1, ¢ cannot have order %, on FH, by
Lemma 1.2. For the same reason o(H;) = o(fy). In particular, it follows that
& has the same characteristic polynomial on H = H/F as ¢ has on F;.

If H is non-abelian, we consider the Lie ring L associated with IH; L is
represented as the direct sum of two additive groups L1, L, with L; =2 F; and
L, = H. It follows now as in Lemma 1.1 that

(4) 1+ p'= p’ (mod i)

with 0 £ 4,7 = n — 1, where o(F;) = p". We note that in this case 7 = 0 is
possible. The only solution of this congruence is # = 2,72 = 0, j = 1, whence
ki = p — 2. But ky|p? — 1 and hence k; = 3. On the other hand, F; has ¢-index
0 and hence kip = 3p > o(F1) = p?, which is impossible unless p = 2.

LeEmMmA 1.5. If P is a regular ¢-group of order p™, then cl(P) < 2. Furthermore
if p is odd, the ¢p-nucleus F of P is contained in Z(P).

Proof. If F is elementary abelian, cl(P) < 2 since then F C Z(P) and P/F
is elementary abelian. Hence we may assume that / is abelian on at most
two generators. If p is odd, it follows at once from the preceding two lemmas
that F € Z(P). Since P/F is elementary abelian, cl(P) < 2. On the other
hand, if p = 2, write P = HK, where H, K satisfy the conditions of Lemma
1.3. Since H, K commute elementwise, it suffices to prove cl(fl) < 2. Now
¢ has order 3-2¢ on H for some e, and hence ¢, = ¢*¢ is an automorphism of
H of order 3 leaving only the identity element fixed. But then a result of
Neumann (8) implies that cl(H) < 2.

LEMMA 1.6. Let P be a regular ¢-group of order p™ with ¢-nucleus F. If P
contains a ¢-invariant abelian subgroup P, such that P, N\ F =1, then
P, C Z(P).

Proof. Write P = HK, where H, K satisfy the conditions of Lemma 1.3.
It follows as in the proof of Lemma 1.4 that H contains no ¢-invariant sub-
groups disjoint from F and hence P; & K. Without loss we may assume
K = P. In particular, F = Q,(F). We can decompose P = P/ F into the direct
product of minimal @-invariant subgroups P ¢ = 1,2, ..., t. The lemma
follows at once by induction if ¢ > 2. If ¢ = 1, then P = FP, is abelian; so
we may assume that ¢t = 2 and that the inverse image of P, = F X P;. Let
h; be the order of & on P, and k; the order of ¢ on F. By Lemma 1.2 hy £ hs;
and by the same lemma %1 ¢ k1. Hence there exists an integer w not divisible
by k; such that ¢; = ¢ acts trivially on the inverse image P, of Py in P. Now
if x;, € P;, 1 = 1,2, then [x1, xs] = 2 € F. Applying ¢; to this relation, we
conclude that P, centralizes all elements of P; of the form x,~'¢;(x;). Since
¢ acts irreducibly on P; and ¢, is not trivial on P;, P, centralizes P» and hence
P, C Z(P).
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THEOREM 1. Let P be a regular ¢-group of order p*, p odd, and of ¢-index r,
and assume that ¢” leaves only the identity element of P fixed. Then P is abelian.

Proof. Let F be the ¢-nucleus of P, and assume first that F is elementary
abelian, in which case F C Z(P). By (1b), ¢ acts irreducibly on F and by
(1d) k| rs, where & is the order of ¢ on F and rs is the ¢-index of F. Thus every
element of F is of the form ¢'(x?). If the elements x/, 0 < j < p—1liein d
distinct orbits of ¢, then clearly d|p — 1. Since each of these orbits contains
k elements, it follows, if o(F) = p™, that

(5) k= (pm—1)/d, and d|p — 1.

Let P, be the minimal @-invariant subgroups of P = P/F,i =1,2,...,1t,
and let P; be the inverse image of P, in P. Denote by k; the order of ¢ on P..
Suppose first that some P; is elementary abelian and that the order %; of ¢
on P, is relatively prime to p. Then P; = F X K;, where K, is ¢-invariant.
By Lemma 1.6 K;C Z(P). By induction P/K; is abelian and hence
[P, Pl € FN\ K; = 1. Thus P is abelian. On the other hand, if P; is elemen-
tary abelian and p | k; or if P, is abelian, but not elementary abelian, it is
easy to see that k; = k. Hence we may suppose that for each ¢ either P; is
non-abelian or k; = k.

If some P, say Pi, were non-abelian, then for suitable xy, x» in Py, [x1, x2] =
z #% 1 in F. Applying ¢*: to this relation we conclude readily that ¢*1(z) = 2
and hence that k| k. It follows that for any abelian P; k;| ki1, and this is
impossible by Lemma 1.2. Thus either all P; are non-abelian or all P; are
abelian. In the latter case we must have ¢t = 1, since otherwise k; = k, = &,
contrary to Lemma 1.2. Thus we may suppose that all P; are non-abelian.
Furthermore, it follows as in Lemma 1.2 that ¢ must have order & on P,
for some 7, say ¢ = 1.

Let o(P;) = p” and let §1, §s, . . . , §» be a basis for P; such that

@) =G, 1=1,2,...,n—1
and
& (o) = §1952% . . . Gu

Regarding ¢ as a linear transformation, its characteristic polynomial f(X) is

given by
(6) T(X> = X" — C,LX”_I —_ ... CQX — (1.
Choose representative y; of 7; such that ¢(y1) = ¥y, 2=1,2,...,n — 1

and ¢(v,) = 2o¥151y2% . . . V,°n, 20 € F.
Now ¢*1(y1) = zy1, where z 3 1 in F since ¢ has order k;p on P,. Applying
¢! to this equation we find that

(7 *1(y1) = ¢ (2)y, 1=1,2, ..., n

In particular, for 4 = %, and using (7), we obtain
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¢"(2)9"(y1) = ¢"(¢"1(y1)) = ¢"1(¢"(y1)
= ¢"1(20y1°92% . . W) = 296(3%) . .. ¢" ()" (1),
whence
(8) ¢"(2) = 299 (z%) . . . ¢"71(z).

If f(X) denotes the characteristic polynomial of ¢ on F, it follows from (6)
and (8) and the irreducibility of ¢ on F that f(X) | f(X). But @ acts irreducibly
on P; and so f(X) is irreducible over the integers mod p. It follows at once
that f(X) = f(X) and that m = # and k& = k;. Lemma 1.1. now implies that
k < p™1 in contradiction to (5).

Suppose finally that F is not elementary abelian. Then P = HK, where
H, K satisfy the conditions of Lemma 1.3. If P is non-abelian, then K must
be non-abelian by Lemma 1.4 since p is odd, and it follows as in the first
part of the proof that the order k of ¢ on F, divides the order of ¢ on K =
K/F.. Butif P = P/F,, ¢ leaves only the identity element of Q,(F) fixed,
& has order & on Q,(F), and Q,(F) centralizes K. This contradicts Lemma 1.2.

We remark that the assumption p # 2 was used only in the case F abelian
of type (p¢, p9, e > 1. Thus Theorem 1 holds without restriction on p if F'is
elementary abelian.

We conclude this section with one further result on ¢-groups which we shall
need.

LEMMA 1.7. Let P be an elementary abelian ¢-group of order p**, and assume
¢ has order p" + 1. Then p = 2and n = 1.

Proof. Our conditions imply that ¢ acts irreducibly on P. Let g be a ¢-gene-
rator of P of ¢-index r, and suppose first that 2 + », where 2 = p"* + 1. We
may assume 7 | k. Since ¢ is irreducible on P, ¢ leaves only the identity element
of P fixed, and hence [g]2/” = 1. Since P is a ¢-group, this implies 2%/r > o(P),
whence

9) "+ 1)2 > rp¥.
(9) implies that » = 1 if p is odd and that » = 2 if p = 2. But % is odd if

p = 2 and since r | &, we conclude that » = 1 for all p. Suppose first that p is
odd. Then for s > k/2 we have [g]s = [g]'[¢°(g)p* ! (g) ... 8" '(g)]~" whence

(10) lglf = ¢" (g1

" is an automorphism of P of order 2 without non-trivial fixed elements, and
hence ¢#(x) = x~! for all x in P. It follows at once from (10) that [gls =
o2 ([g]"—*), and consequently the elements [g]{ lie in at most 3/ distinct
orbits. Thus 24-% > o(P), and consequently (p" + 1)2 > 2p>", which is
impossible.

If p =2, it follows as in (10), since g=! = g, that [g]$ = ¢°([g]*~). The
non-identity elements of P thus lie in at most (2 — 1) = 2*~! orbits, and
consequently (2" 4 1)27—! = 22 — 1, which implies n = 1.

https://doi.org/10.4153/CJM-1962-015-9 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1962-015-9

ON FINITE GROUPS OF THE FORM ABA 203

On the other hand, if 2|7, P is of ¢-index 0, whence (p* + 1)p > p**,
which implies # = 1. However, if p is odd, $"/2(g) = g~!and hence the elements
¢'(g?) liein at most 1 + %(p — 1) orbits, and we obtain the stronger inequality
;" + D + 1) > p?, which is impossible.

2. Some preliminary lemmas. We begin with several lemmas.

LeEmmaA 2.1. If a group G admits an automorphism ¢ which leaves a normal
abelian subgroup H of G elementwise fixed and is such that the image of ¢ on
G/H 1is without non-trivial fixed elements, then H C Z(G).

Proof. If x € G, z € H, we have
an xzx~ ' =2, 3 € H.

Applying ¢ yields ¢(x)zp(x~!) = 5/, which together with (11) implies
x~ ¢ (x) € C(H) for all x in G. Since H is abelian, x~'¢(x)y € C(H) for all
xin G, all yin H.

If g € G, its image § in G = G/H is of the form &¢(%), # € G, since ¢
leaves only the identity element of G fixed. Thus g = x~'¢(x)y for suitable
elements x in G, vy in H. Thus H C Z(G), as asserted.

LemMa 2.2, If G is assumed to be abelian in Lemma 2.1, then G contains a
subgroup K invariant under ¢ such that G = H X K.

Proof. Let 6(x) = x~'¢(x). Since G is abelian, 6 is an endomorphism of G,
whence by Fitting’s lemma, G = H; X K where 6 is nilpotent on H; and an
automorphism on K. Since 6(x) = 1if x € H, H C H,. If § denotes the image
of 8on G = G/H = H, X K, our hypotheses imply that 4 is an automorphism
on G. Since § is nilpotent on My, necessarily H; = 1 and hence H; = I1. Since
o(x) = x0(x), x € K implies ¢(x) € K, whence K is invariant under ¢.

LEMMA 2.3. Let A be a cyclic subgroup of a group G such that N(A) = A and
for any subgroup Aq of A, A9y C Z(N(Ao)). Assume further than G contains a
normal subgroup H such that A N\ H C Z(H). Then if G = G/H and A denotes
the image of A in G, we have N(A) = A.

Proof. Let 4 = (a) be of order_ hyand let 4 NYH = (a”) with 7| A If x is
a representative in G of £ in N (4), then we have

(12) xax~! = a*z for some integer A and some z in H.
Since H < G, x~'2x = v, v in H, and hence
(13) a~xa = a*xy.

Let K = AH. Since A4 is Abelian, A M H is in the centre of K. Set K’ =
K/A M Handlet A" = (a'), H', y' be the residues of A4, H, y in K'. Clearly
Ne (A = 4", H]QK', K =A4A"H', and A’ H' = 1. If ¢’ denotes the
automorphism of H’ induced by conjugation by a’, ¢’ leaves only the identity
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element of H’ fixed. Hence there exists an element ¢ in H’ such that ¢'(¢) =
y'=1¢', If t is a representative of ¢’ in H, we conclude that

(14) a~ta = y~ta™ for some integer d.
We now obtain from (13) and (14)
a~xta = (a~xa) (@ ta) = (a*'xy) (y~ta"™),
whence
(15) (xt)~a* (xt) = a7

By hypothesis (@) lies in the centre of its normalizer, and consequently
(15) implies A= 1 (mod 7). Thus a®' € 4 N H.

On the other hand, as in the derivation of (14) there is an element ¢; in
H such that a % = a’%z ! for some integer ¢. Thus a 'tixa =
(@ tia) (@ 'xa) = (a"*tz7') (@ 'xz). Since by hypothesis A N H C Z(H)
and a* ' € A M H, it lollows that fixax=%,7! = ¢, Hencetyx € N(4) = .1,
whence x € A. Thus N(4) = A4, as asserted.

If ANH =1,r =0 and (15) implies that xt ¢ N(4), giving # € A and
N(A) = A at once. We thus have the following corollary.

COROLLARY. Let A be a cyclic subgroup of a group G such that N(A) = -1.
If G contains a normal subgroup H such that 4 M H =1 and G = G/H, then
N(A) = A, where A denotes the image of A 1 G.

We shall also need some properties of automorphisms of an extra-special
p-group P, as defined by Hall and Higman in (7). In their paper the only
automorphisms ¢ of P which are considered are of order a power of a prime
g # p and the holomorph of P and ¢ is represented on a vector space V over
the field with ¢ elements. Many of their results can be carried through if ¢
has arbitrary order prime to p and if the representations of the holomorph of
¢ and P are taken in the complex numbers. In particular, the following lemma
holds:

LEMMA 2.4. Let P be an extra-special p-group of order p™ and assume that P
admits an automorphism ¢ of order k prime to p which acts trivially on Z(P) and
such that the image & of  on P = P/Z(P) acts irreducibly. Then k < p%“”—“ + 1.

We shall need one other similar result.

LeMMA 2.5. Let P be an extra-special p-group of order p™ and assume that P
admits an automorphism ¢ of order k prime to p which acts trivially on Z(P) and
assume that P = P, X P, that ¢ leaves P, invariant and acts irreducibly on P,
and that @ has the same minimal polynomial on P,i=1,2.Thenk < p’%(’"—l”—l—l.

Proof. We proceed as in Lemma 1.1 and consider the Lie ring L = L; @ L,
associated with P over the field K, with p elements and its extension L* =
L*, ® L*; over the algebraic closure Kj of K,. Now L.2=Z P, and since
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has the same characteristic polynomial on P, and P, it follows as in
Lemma 1.1 that we can find a basis x1, . . . , x2" of Ls such that

xb = ax; and X = o Xpps, i=1,2,..., n,
where n = $(m — 1) and « is a primitive kth root of unity in Kj.
Now for some x4, x;, [x4 x;] = 2 3 0in L;; and it follows that
29 = PPy
where a, b, denote the residues of 7, j (mod 7). Since ¢ acts trivially on Ly,

b
aﬂ"—H? =1 .

Thus k| (1 + p°), where ¢ £ » — 1, and the lemma follows.

3. Applications to ABA-groups. We shall now apply the results of the
preceding sections to obtain our first structure theorem for 4 BA-groups. We
begin with the following lemma:

Lemma 3.1. Let G = ABA and assume G = AP, where P < G, o(P) = p™,
p=25A4ANP=2Z(P)and o(ANP) = p. Then G = A.

Proof. Set G = G/A NP = ABA = AP so that P<{Gand A N\P = 1.
Since clearly N(A) = A, P is a regular ¢-group where & is the image of ¢ on
P and we may assume P # 1. Let F be the ¢-nucleus of P.

Assume first that // = 1, in which case P is the direct product of minimal
¢-invariant subgroups P,i=1,2,...,t on each of which & has order k;
prime to p. By Lemma 1.2, &y + k;, ¢ > 1. Let P, be the inverse image of
P, in P, and assume ¢t > 1. It follows by induction that Z(P;) D4 NP
and hence that each P;is abelian. If x; € Pyand x; € Py, 7 > 1, then [x1, x4]
=3z¢€ A4 NP. Now ¢; = ¢*% acts trivially on P, and hence if we apply ¢,
to this relation, we readily conclude that x;'¢:1(x;) € C(x;). Since xi, x;
are arbitrary, and k; t k;, it follows that P; centralizes P; for all 7. Thus
P, C Z(P), a contradiction. Hence ¢ = 1.

Let 4 = A’A,, where 4’ has order k prime to p. We may assume that no
non-trivial subgroup of A4’ is normal in G, since otherwise the lemma follows
by induction. Hence £ = k;. Now P is an extra-special p-group, 4’ centralizes
Z(P), and A’ acts irreducibly on P. It follows therefore from Lemma 2.4 that

(16) k=pr+1,

where n = 1 (m — 1).

If » = @-index of P, " leaves only the identity element of P fixed, and
hence k2/r > p?*. Since k| (p?* — 1), it follows therefore from (16) that
k = p* 4+ 1. But then by Lemma 1.7, p = 2, contrary to hypothesis.

The same argument applies if P is elementary and the order k of ¢ on P
is prime to p, but F 5 1. In this case we conclude that P = F. Since & acts
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irreducibly on F, we again obtain (16). Since F is of @-index 0, kp > p*,
which together with (16) implies # = 2 and & = p + 1. This yields a contra-
diction as above.

In the general case, let F be the inverse image of F in P. Since F C Z(P)
and o(Z(P)) = p,08(F) C Z(P), whence B(F) = A4 M P, and it follows
that F¥ is elementary abelian. Furthermore, we may assume that the image
$ of gon P = P/F acts irreducibly on P; otherwise the lemma follows readily
by induction. Also F is abelian by induction.

The case P elementary abelian and ¢ of order prime to p has already been
considered: hence if £, = order of ¢ on F and %k, = order of ¢ on P, we must
have k| k. Furthermore, the order % of ¢ on F is either ky or kip. If x € F
and y € P, then yxy~! € F and consequently ¢"(yxy=!) = yxy~!. But then
y~ig¢"(y) € C(x) for all y in P. If k; < ks, the elements 7~1¢"(7) generate P
and hence x € Z(P), a contradiction. We conclude that &, = k..

Since ¢’ leaves only the identity element of P fixed, r + ks and therefore
&" leaves only the identity element of P fixed. Hence by Theorem 1 P is
abelian. But then 0Y(P) C Z(P), whence P is elementary abelian. Thus P
is an extra-special group and & has order k;p on P. But then A4’ P satisfies the
conditions of Lemma 2.5, and hence

amn k1 S p"' + 1, where p" = o(F).
On the other hand, since F is of ¢-index 0, we must have (p* — 1)/(p — 1)|ky,
W'thh together with (17) implies that either # = 1 and &y = 2 or = 2 and

=p + 1. If n = 2, Lemma 1.7 shows that p = 2, contrary to assumption.

If n = 1, ¢ has order 2 on P and o(P) = p. Since ¢’ leaves only the identity

element of P fixed, we may assume 7 = 1. If ¥ is a ¢-generator of P, then every

element of P must be of the form $*([#]7). But the only elements of this

form are 1, ¥, ! since ¢ has order 2. Thus p = 3, contrary to assumption.
We shall now prove the following theorem.

THEOREM 2. Let G = ABA and assume that G contains a normal subgroup P
of order p™, p = 5, such that G = AP. Then the commutator subgroup of G s
a unique normal complement of A in G.

Proof. The proof will be by induction on o(G). Let P; be a minimal subgroup
of the centre of P normal in G. Thus either Py C 4 or P, N4 =1. If G
= G/P, = ABA = AP, N(A) = A by the corollary of Lemma 2.3 in case
Py M A = 1. The same conclusion clearly holds if P; C 4. Hence by induc-
tion G = AP* where P* <{ G, P* "A = 1,and P* = [G,Gl.If P, N4 =1,
the inverse image P* of P* is a normal complement for 4 in G. Clearly
P* D [G, G]. On the other hand, if x € P*, axa='x~! = ¢(x)x~'. Since N(4)
= A, ¢ leaves only the identity element of P* fixed, and hence the elements
¢ (x)x~! exhaust P*. Thus P* = [G, G].

We may therefore suppose that P; C 4 and that P contains no subgroup
# 1 which is normal in G and disjoint from 4. In this case we have G = 4 P¥*,
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with P* < G, 4 N P* = P, cyclic of order p, and P; € Z(P*). It follows
from Lemma 2.2 that Z(P*) = P; X P, where P3/\ A =1 and P, is invariant
under 4, whence normal in G. Thus Py, = 1 and P; = Z(P*). The hypothesis
of Lemma 3.1 is satisfied so that G = 4, and the theorem is proved.

4. ABA-groups associated with the primes p = 2 and 3. To complete
the description of A BA-groups G of the form AP with P <] G,and N(4) = 4,
we consider finally the case in which P is a 2-group or 3-group. We begin with
the following lemma.

LEMMA 4.1. Let G = ABA = AP, where P is a 2-group normal in G. Then P
contains at most one A-invariant abelian subgroup of type (2, 2). Furthermore
any subgroup of A which is normal in G is in the centre of G.

Proof. 1f K is an A-invariant abelian subgroup of type (2, 2), no proper
subgroup of K can be invariant under A4, for otherwise we clearly have
N(A4) D A. Hence if P; denotes a minimal A4-invariant subgroup of Z(P),
either Py YK =1 or P, =K. Let G =G/P,=AP. If P,C 4, N(4)
= A; if P, A, the minimality of P; implies that P; M A4 = 1 so that
N(4) = A4 by the corollary of Lemma 2.3. Hence by induction P contains at
most one A-invariant abelian subgroup of type (2, 2). The lemma follows
at once unless P itself is of type (2,2). But in this case P cannot contain
another such subgroup K for then P1K = P; X K would be a regular ¢-group
on which ¢ has order 3, and this is impossible by Lemma 1.2.

Let 49 <] G, A¢g C A. Let L be a maximal A-invariant normal subgroup
of P. We may assume that AL C AP, since otherwise 4, is in the centre of
G by induction on o(P). In any case 4, is in the centre of AL by induction.
If G =G/L = AP, repeated application of Lemma 2.3 shows that N(A4)
= 4 and hence that the image ¢ of ¢ leaves only the identity element of P
fixed. Since 4o € Z(L), it follows as in the proof of Lemma 2.1 that x~1¢(x)
centralizes 4, for all x € P. But there exist a set of coset representatives of
L in P of the form x~1¢(x). Thus 4, C Z(G).

Our main result for p = 2 is the following:

THEOREM 3. Let G = ABA = AP, where P is a 2-group normal in G. Then
either A has a normal complement in G or P contains two subgroups T, T
normal in G such that

(@) G = A(T1 X Ty,

(b) A does not possess a normal complement in AT1;

(c) A N\ Te =1, Ty contains no A-invariant abelian subgroup of type (2, 2),
and furthermore Ts contains every A-invariant subgroup of P which is disjoint
from A and which contains no A-invariant abelian subgroup of type (2, 2);

(d) 6]o(4).

Proof. The proof will be made by induction on o(P). We add to our induction
hypotheses the following assertion:
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() Thw = QQ, where 0,0 < G, ¢ has order 3-2° on Q, 4 NQ =1,
and if Q' # 1, the order of ¢ on Q' is divisible by 3, but is not of the form 3-2°.

We note first of all that (b) and (e) imply (d). In fact 4 N 7T £ 1 by (b),
whence 2| 0(4), and it {ollows at once from (e) that 3 | o(4).

Let P, be a minimal A-invariant subgroup of the centre of P and set G
= G/P, = AP. As in the preceding lemma, N(A) = A. We distinguish two
cases.

Case 1. P contains no subgroup normal in G disjoint from 4. Thus P, C 4.
Suppose first that A has a normal complement P* in G. We may suppose
P* = P, since otherwise the theorem follows by induction. Now P is a regular
@-group. Let F be its ¢-nucleus and write P = HK, where H, K satisfy the
conditions of Lemma 1.3. Suppose first that F is elementary abelian and
o(F) = 2" > 4. Let F be the inverse image of F in P. If Fis non-abelian, F is
an extra-special group. Since ¢ acts irreducibly on F, it follows as in the proof
of Lemma 3.1 that ¢ has order ¢ = 28 + 1 on F, whence n = 2 by Lemma 1.7.
Thus Fis abelian. Let I, K be the inverse image of 1, K in P. It follows now
as in Lemma 1.3 that F is in the centre of K. Since P contains no 4-invariant
normal subgroups disjoint from 4, K C P and hence F C H.

Now & has order 2%k on H, and hence ¢ has the same characteristic poly-
nomial on F as ¢ has on H = H/F. By the remark following Theorem 1,
H must be elementary abelian. But H is non-abelian; otherwise F C Z(P).
Hence H is extra-special, and we may apply Lemma 2.5 as in the proof of
Lemma 3.1 to conclude that ¢ has order 2 = 28 4+ 1 on F. Thus n = 2 by
Lemma 1.7, a contradiction.

On the other hand, if F = 1, essentially the same arg: . shows that no
minimal @-invariant subgroup of P has order greater th .. It follows there-
fore from Lemma 1.2 that either P = 1 or o(P) = 4. In the first case, G = A4
and the theorem is obvious. In the second case, P must be a quaternion group
and the theorem follows with 7y = Q = P, and 7> = 1.

We may therefore assume that F % 1 is abelian of type (2¢ 29). Let I,
= Q,(F) and let F, be the inverse image of Fy in H. If F; € Z(II), then again
as in Lemma 1.3, F; © Z(P), a contradiction. Thus 4 M H C [H, H] and 4
does not possess a normal complement in AH. If we set H = (Q, then ¢ has
order 3-2° on Q for some s.

Suppose K contains a minimal @-invariant abelian subgroup K; disjoint
from F,. Since o(K,) > 4, it follows as above that the inverse image K,
of K, is abelian. But then K; C Z(P), a contradiction. Thus F; = Q,(K).
If K = F,, the theorem follows with 77 = H, T» = 1; so assume K D Fy.
Then K is non-abelian. If K C P, it follows by induction from (e) that Q’
= [AK, AK] is disjoint from /. Hence the theorem holds with 77 = P,
T2 = 1

Assume finally that K = P, in which case F = I/} and F is a quaternion
group. If x € F,y € P, then [x,y] = 3 € 4 M F. Applying ¢° to this relation,
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we find that F centralizes all elements of P of the form y~l¢%(y), y € P.
Since these form a set of coset representatives of F in P, we conclude that
Q = FK,, where K; = C(F) "YP< P and K; YF=A4 N F. But then
K is abelian, a contradiction.

Case 2. P, A = 1. If A has a normal complement in G, A obviously
has one in G. Hence we may assume by induction that G = A (T, X T.),
where T, T satisfy the conditions of the theorem. Let H;, H, be the inverse
images of Ty, T»in P.

Assume first that o(P;) # 4 and hence that H, contains no A4-invariant
abelian subgroup of type (2,2). If T, # 1, it follows by induction that H,
= T1 X Py, where T is invariant under 4 and again as in Lemma 1.3 T}
and H, commute elementwise. Thus G = A (T; X Hs). Clearly T satisfies
(b) and (e) and H, contains every A4-invariant subgroup of P disjoint from
A and contains no A-invariant subgroup of type (2, 2). The theorem follows.

On the other hand, if T, = 1, we may assume 7T; = P. Hence P = QQ’,
where Q, Q' satisfy (e). Let Qy, Q1 be the inverse images of Q,Q’ in P. Let K
be a minimal A-invariant subgroup of Q and K its inverse image in P. Either
K C A or K is abelian of type (2,2). In the first case it follows from the
minimality of P; that K = P; X L, where L is 4-invariant (in fact, L C 4).
In the second case, K is abelian and the same conclusion follows since o (P;) 5 4.
Now if ¥y € Q;and z € L, we have

(18) yzy~t = 2'x, where ' € L,x € P,.

Applying ¢™ to (18), where m = 3-2° = order of ¢ on @, we conclude
readily that ¢™(x) =-x and hence that x = 1, since ¢ does not have order 3
on P; and no proper;subgroup of P, is A-invariant. Thus L <] 4Q;. If A),
= AQ,/L and P; denotes the image of P; in AQ;, we conclude by induction
if 4 does not have a normal complement in AQ; and from Lemma 1.3 if 4
has a normal complement in AQ; that Q; = P, X Q, where ( is invariant under
A. It follows at once that Q; = P; X Q, where Q is A-invariant.

Now Q, is a regular ¢-group. If F is the ¢-nucleus of Q,, the minimality
of P, implies that either Py C F or P, M F = 1. In the first case we must
have Py = F since o(Py) # 4. But then Q)//P, = Q' is elementary abelian
and ¢ has odd order on §’. Since é does not have order 3 on &', we conclude
that @' contains a minimal A-invariant subgroup K such that o(K) > 4.
Since K (Z T, this contradicts (c), and hence P; M F = 1. But then Lemma
1.3 implies that Qi = P; X Q. Finally, if x € Q, ¥’ € @/, we have

(19) [x,x'] =2 € Py

By (e) ¢ has order m’-2° on T;, where m' = order of ¢ on Q'. Applying
¢™2% to (19), we see that ¢™ (z) = 2. But it follows from Lemma 1.2 applied
to Q,'/F that the order of ¢ on P; does not divide m’, and hence z = 1. We
conclude that G = A (71 X P;) where 77 = QQ’ and the theorem follows.
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Suppose finally that o(P;) = 4. Now H, is a regular ¢-group. Let F: be its
¢-nucleus. If P; C F,, then F, is abelian of type (2¢, 2°); and since T's contains
no A-invariant abelian subgroup of type (2,2), Py = F,. In this case T, is
elementary abelian and ¢ has odd order on T,. If K, denotes the maximal
elementary abelian A-invariant subgroup of H,, ¢ has odd order on K, since
otherwise Ts would contain an A-invariant abelian subgroup of type (2, 2).
Hence Ky = P; X T where Ty is A-invariant and lies in Z(I1,) by Lemma
1.6. It follows at once from the structure of H, that H, = K; X 1> where
K, is A-invariant and every 4-invariant subgroup of K; contains P;. Further-
more, Ts contains no A-invariant abelian subgroup of type (2, 2). On the
other hand, if P; M Fy = 1, this same conclusion holds with K; = P,.

Set Ty = H1K sothat G = A(T17T%) and Ty M T, = 1. It is clear from the
construction of 7% that 7, satisfies (c). Furthermore, 7 = QQ’, where
Q'/P, = Q'K,. Clearly Q, Q' satisfy (e). Finally it follows as in Lemma 1.3
that 7'y and 7T commute elementwise, and the theorem {ollows.

In Part 1T we shall need one additional property of 77:

LevMa 4.2, Let G = ABA = AT, where T < G, o(T") = 2" and ¢ has order
3-2% on T. Let H be an elementary abelian subgroup of T with o(II) > 2 if
Z(T) C 4 and o(H) =2 if Z(T) C A; and assume that H centralizes B.
Then either H & Z(T) or Z(T) € A and H C Z(T)B.

Proof. The proof is by induction on o(G). We may clearly assume that 7 is
a 2-Sylow subgroup of G and that o(4) = 3-0(4 N T). Let P be a minimal
A-invariant subgroup of Z(7") and suppose first that P M 4 = 1. We may
assume 7" is non-abelian and H & P. In particular, 7" (4 N T)P. Let
B = (b), where b = va", ¥y € T. In order to carry out the induction we shall
also allow the possibility o(H) = 2 when Z(T) 4, but B C T. Observe that
if HNP =1, [HN P, B] = 1 implies a” acts trivially on P, whence 3|7
and B C T.

Let G = G/P = ABA = AT. Then by induction H C @, where Q < G,
ANQ < Q, and o(Q/A N Q) = 4. Let Q be the inverse image of Q in 7.
Suppose first that H C (4 N Q)P. If o(H) > 2, HN P # 1, whence 3| r;
if o(H) = 2, then 3|7 by assumption. But then if awx € H, where (a;) =
Q(4A M Q) and x € P, it follows that [a;, 8] = 1, whence a; € Z(G) and
H C Z(T). Hence we may assume that H SZ_ A4 NQ)r.

If Q = (AN Q) X F, where F is A-invariant, it follows as above that ¢”
acts trivially on F. Thus F is of ¢-index 0 and hence of type (4,4). This
implies Q is non-abelian; otherwise H C (4 M Q)P. Hence by induction
Q = T.1f Qis non-abelian, ( is the central product of A N @ and a quaternion
group F, and by induction Q = 7. Now if B C Q and o(B) > 4, it follows
in either case that C(B) N Q C (4 M Q)PB. Since H is elementary, this
yields H € (4 M Q)P, which is not the case. On the other hand, if 0o(B) = 2,
P C A(HA = A, a contradiction. Thus 3| o(B). This forces C(B) N Q to
lie in a conjugate of 4 M Q and hence in (4 M Q)P, which is not the case.
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Assume now that Z(T) C 4. If 3| 0o(B), C(B) N T lies in a conjugate of
A M T. Since A is cyclic, this implies H C Z(7T)B. We may therefore assume
B C T. The lemma follows at once by induction if Z(T) C A; so suppose
the contrary. Then by the first part of the proof, H € Q = @,(Z(T)) and
Q = (AQ) X F,where Fis A-invariant. Let F, Q be the inverse images of
F,Q in T. Suppose F is a quaternion group. Since 4 F = AB,4 with B; C B,
C(B) Y Q = (4 M Q)B; and the lemma follows. On the other hand, il F is
abelian, then H C F. If B centralizes F, then so does ¢%(B) for all 7. But
then F C Z(T), which is not the case. We conclude that C(B) N\ F =
(4 N\ F)B; C H, thus completing the proof.

For p = 3, we have the following result.

THEOREM 4. Let G = ABA = AP, where P is a 3-group normal in G. Then
either A has a normal complement in G or G contains two normal 3-subgroups
Tl, T2 such that

(@) G = A(T1 X T);

(b) A N\NTyC Z(Th), T1/Z(T1) is elementary abelian of order 9, T contains
a maximal subgroup T, invariant under A which is the direct product of A M T
and a cyclic group;

(c) T 1s elementary abelian and contains no A-invariant subgroups of order 3;

(d) T does not contain a 3-Sylow subgroup of A.

Proof. The proof is entirely analogous to that of Theorem 3. We shall
use the same notation. If P; C 4 and G possesses a normal A-complement, it
follows from the proof of Lemma 3.1 that G possesses a normal A-complement
unless P contains an elementary abelian subgroup H; of order 9 on which &
has order 6. If P = HK, this can only occur if F is cyclic, H D F, and H;
= Q;(H). But then by Lemma 1.3, K is elementary abelian and contains no
¢-invariant subgroups of order 3. Its inverse image in P possesses a normal
P, complement K which centralizes the inverse image H of H. If I has a
normal Pi-complement, then G has a normal 4-complement. Otherwise the
second possibility of the theorem holds with 737 = H, T9 = K. The final
condition of the theorem follows from the fact that ¢ has order 6 on Q;(H).

If P=T,X T, then P = T1 X Ts, where T is the inverse image of T,
and 7T is the normal P;-complement contained in the inverse image of Ts.
We have only to verify (b). Now 4 N 7T, <] T, and T; admits an auto-
morphism ¢; of order 2 which fixes 4 M T and is such that the image ¢
of ¢y on Ty = T1/A N Ty leaves only the identity element of T fixed. This
implies that T, is abelian. Furthermore by Lemma 2.1, 4 N\ T, C Z(TY).
Thus cl(7;) = 2 and (b) follows at once.

Suppose next that Py M 4 = 1. If G has a normal A-complement, then
so does G. Hence we may assume P satisfies the second alternative of the
theorem. If o(P;) > 3, the theorem follows as in Case 2 of Theorem 3; while
if o(P,) = 3, it follows for the same reason that G = A(7; X 71.), where
¢ has order 2-3% on T4y, T satisfies (b), and 7, satisfies (c). Again it remains
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to verify (b). If Q,(4 M Ty) < T4, it follows by induction and the argument
of the preceding case that T satisfies (b).

In the contrary case we must have 4 N Ty = Q,(4 N Ty). Let Z be the
inverse image of Z(T,) in Ty. If Z is abelian, then [T, T4] is cyclic and A-
invariant. Since 4 N T T, [T, T1] N A4 = 1; and it follows at once
that 4 M T, has a normal complement in 7T';, which is not the case. Hence
P, = [Z,Z]. Thus there exists x in Z, y in A M T, such that [x,y] = 2 # 1
in Pi. On the other hand, by the structure of 7, we can choose x so that
% = % for some #; in T;. But then if x;is a representative of Z; in 77y, [x1, y)
= g, € Pj;and it follows that [x, y] = 1, a contradiction.

5. Some special results on linear groups. Lemma 3.1 of (2) was the
principal tool in the proof that a solvable regular ¢-group is nilpotent (2,
Theorem 1). In analysing the structure of 4BA-groups, we shall need some
slight extensions of this result. For our present purposes, it will be more con-
venient to rephrase this lemma in terms of groups of linear transformations:

LemuMa 5.1. Let L = AQ be a linear group acting irreducibly on an m-dimen-
stonal vector space P over a field with p elements, where A = (¢) is cyclic, Q 1s
an elementary abelian q-group for some prime q #= p, and Q is a minimal normal
subgroup of L. Assume further that Q does not have the unit representation as an
absolutely irreducible constituent. Then if d denotes the order of ¢ on Q and h
its order on P, we have d | m and b | d(p™'* — 1).

Remark. 1f G denotes the holomorph of L and P, the final condition of the
lemma is simply the statement that no element # 1 of P lies in Z(PQ).
The minimality of Q in turn implies that PQ has a trivial centre.

We shall need a special case of this result:

LemMA 5.2. Under the hypotheses of Lemma 5.1, if the subspace Po of P left
elementwise fixed by ¢ is one-dimensional, then d = m = h.

Proof. 1f we take Py as the minimal subspace W of P in the proof of Lemma
3.1 of (2), we conclude at once that ¢¢ is the identity on P. Furthermore, the
same lemma shows that over the algebraic closure Kj of the ground field,
the corresponding vector space P* can be decomposed into the direct sum
of subspace Pf, P35, ..., P}, each of dimension d, each invariant under ¢,
and such that the matrix ®; of ¢ on P% with respect to a suitable basis assumes
the form

010 ...0
0010...0

(20) $, = Vb EKEi=1,2...,t
00 o1
5,0 ...0

Since ¢* = 1 on P, b, = 1 for all 4, and hence we may assume that the P¥
are actually subspaces of P. Now 1 is a characteristic root of each &;, and
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hence ¢ leaves fixed some non-zero vector of each P¥, ¢+ =1,2,...,¢ But
by hypothesis the subspace left elementwise by ¢ is 1-dimensional. Thus
t=1,andd = m = h.

From Lemma 5.1 we can derive a slight extension of Theorem 1 of (2).

LEmMMA 5.3. Let G = ABA = AT, where T'<| G. Assume T = MQ where
MG ANTCM,Q isa qgroup and if G = G/M = AQ, that Q is a
minimal normal subgroup of G and N(A) = A. Assume further that Z(M)
contains a p-subgroup P, p #= q, such that A NP =1 and P is a minimal
normal subgroup of G. Then PQ is nilpotent.

Proof. C(Q) M\ P is invariant under A since P C Z(M), and hence
C(QN\PJG. In view of the minimality of P, we may assume
C(Q) NP =1.1f PQis A-invariant, PQ is a regular ¢-group and hence is
nilpotent by Theorem 1 of (2). If PQ is not A-invariant, the proof of Theorem
1 of (2) goes through without essential change.

In fact, @ may be regarded as a group of linear transformations on P and
as such satisfies the hypotheses of Lemma 5.1. Furthermore ¢ has order d > 1
on @ since A NQ =1 and N(A) = A. In view of Lemmas 4.1 and 4.2 of
(2), it suffices to show that d divides the ¢-index r; of P. By the proof of
Theorem 10 of (2), T contains an element g such that the elements ¢*([g]/)
include a set of coset representatives of 4 M 7T in 7. If ¢ is the least integer
such that [g]? € (4 M M)P, ry may clearly be taken as a multiple of rz.
On the other hand, [§]¢! = 1 and since Q is abelian, 3"(j) = §, whence d | rt.
Thus d | 71

We shall also need a slight variation of this result.

LemMa 5.4. Lemma 5.3 holds under the alternative assumption that Q isa
quaternion group and A does not centralize Q).

Proof. Clearly C(Z(Q)) NP G. If C(Z(Q) NP =P, P is in the
centre of M* = Z(Q)M, and the conclusion follows at once {rom the preceding
lemma with M* playing the role of M. In the contrary case, Q and hence Q
is represented faithfully on P.

If A = (a), @ is in the centre of G. Hence if P; denotes a minimal subgroup
of P invariant under ¢*, P can be written as the direct product of subgroups
P 1=1,2,...,n, of the same order p?, each invariant under ¢*, and on
each of which ¢* has the same minimal polynomial. In particular, if 2 denotes
the order of ¢ on P, we have
(21) h|3(pt—1).

If w =1, P, = P, and ¢® acts irreducibly on P. If P is extended to a vector
space P* over the algebraic closure of the field with p elements, it follows
that ¢? is represented in P* by a diagonal matrix with distinct characteristic
roots. On the other hand, since A M @ is not in the kernel of the representation
of G on P, at least one of the absolutely irreducible constituents, say, x, of
G in P* has degree >1. (In fact, it is easy to see that they are all of the same
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degree.) Since a* is in the centre of G, @* is represented by a scalar matrix in
the representation x. It follows at once that ¢3* is represented in P* by a
diagonal matrix whose characteristic roots are not all distinct. This is a contra-
diction, and hence n > 1.

Now the order d of ¢ on @ is either 3 or 6, and it follows as in Lemma 5.3
that the ¢-index 7, of P is a multiple of 3. Since one of the inequalities
h* > rio(P) or hp > o(P) must hold and o(P) = p™, it follows at once from
(21) that n = 2, whence n = 2.

Let g = g1g2 be a ¢-generator P, where g, € P, ¢ =1,2. If g € Py, say
g € Py, the elements ¢*'([g]? ) are all in P, since P; is invariant under ¢*
and 3| 7;. Hence there are at most 3(p' — 1) elements different from 1 of
the form ¢'([g]7)) in P, and consequently

(22) B(pt — 1) Z p* — 1,

and this is impossible since p # 2.

We may therefore assume that g, % 1, g» # 1. To reach a contradiction,
we shall show that (22) holds. It clearly suffices to prove that there are at
most p'— 1 distinct elements different from 1 of the form ¢*([g]/)
= ¢ ([g2]2)¢% ([ga1:,). Suppose ¢*'([g1]2,) = ¢ ([gi]7) for some i, ], b, m.
Since ¢* acts irreducibly on Pi, P» with the same minimal polynomial, the
corresponding relation with g; replaced by g, must hold, and we conclude at

once that there are at most p* — 1 elements of the required form.

6. Exceptional 4BA4-groups of types I, II, and III. We have seen in
§4 that there exist ABA-groups G with N(4) = 4 in which 4 does not have
a normal complement. In this section we shall determine two further classes
of ABA-groups which have this property. We begin with the following lemma.

LemMA 6.1. Let G = ABA = AT, where T'<\ G. Assume that T = MQ,
where M is nilpotent and normal in G, Q is a q-group for some prime g, and if

G =G/M = AQ, then N(A) = A. Then if L C M is normal in G and G
= G/L = ABA, we have N(4d) = A.

Proof. The proof is by induction on o(G). It clearly suffices to prove the
lemma under the assumption that L is a minimal subgroup of M normal in G.
Since this implies that L is abelian, the lemma will follow at once from Lemma
2.3 if we can show that every subgroup of 4 lies in the centre of its normalizer.

Let A9 C A4 and Go = N(4y). If Go C G, we may assume by induction
that 4¢ € Z(G,). Thus we need only consider the case in which 4, < G.
Let P be a p-Sylow subgroup of M. Since M is nilpotent, P < G. If p = 5,
it follows from Theorem 2 that G, = AP = AP* where P*< G, and
A M P* = 1. The hypotheses of Lemma 2.1 are satisfied if we take 4, for H
and A.P* for G. Thus 49 C Z(4,P*) and hence 4y C Z(G,). On the other
hand, if p = 2 or 3, Lemma 4.1 and Theorem 4 imply that A, C Z(G,).
Thus 40 C Z(AM).
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It follows that G = AQ acts as a group of automorphisms of 4,. Since
N(A) = A, we can again apply Lemma 2.1 to conclude that the elements of
Q induce the identity automorphism of 4, Thus Q centralizes 4o, and 4,
C Z(G).

The preceding argument can easily be adapted to give the following
corollary:

COROLLARY. Let G = ABA, and assume A contains a subgroup A, which is
normal in G such that G = G/ A, satisfies the hypotheses of the preceding lemma.
Then A is in the centre of G.

Remark. The lemma also obviously holds if Q C 4.

TueOREM 5. Let G = ABA = AT, where T G. Assume that T = MQ,
where M # 1 is nilpotent and normal in G, Q is a g-group for some prime q,
Z(T) =1, A NT C M, and no normal subgroup of T lies properly between
M and T. Then either

(@) M is a 2-group of order 2%, o(4A M M) = 2% and o(Q) = 7, or

(b) M 1is an abelian group of type (t,t), where 24t, 34t o(d NM) = ¢
and o(Q) = 3.

Furthermore, if ¢ denotes the image of ¢ on G = G/M = AQ, then

(c) ¢ has order 3-2° on T and & has order 3 on Q in case (a); and ¢ has order
2t on T and ¢ has order 2 on () in case (b); in either caseQ does not have g-index 0.

(d) There exists a g-Sylow subgroup Q* of T such that ¢(Q*) = uQ*u1,
u € A N M, and no qg-Sylow subgroup of 1" is A-invariant.

(e) In case (a) Q1(Z(M)) has order 8.

(f) For any proper subgroup L of M normal in G, G/L satisfies the hypotheses
of the theorem.

Proof. Since M is nilpotent and Z(7T") = 1, (o(M), q) = 1. If P is a minimal
subgroup of Z(M) normal in G, then P is elementary abelian of order p™ for
some prime p. Furthermore 4 M P # 1, for otherwise by Lemma 5.3 PQ
is nilpotent which is not the case. Also P 4, for by Lemma 6.1 N(4) = A
and then Lemma 2.1 forces Q to centralize P. Thus m > 1. Since P C Z (M),
G can be regarded as a group of linear transformations on P; and since .1 M P
is cyclic, the hypotheses of Lemma 5.2 are satisfied. Hence if ¢ has order 4
on P and ¢ has order d on Q, d = m = h.

By Lemma 2.2, P = (4 M P) X Py where P, is a regular ¢-group of order
p™ 1. Since ¢ has order m on Py, mp > p™ ! if Py is of ¢-index 0. The only
solutions of this inequality are m = 2 or m = 3 and p # 2. On the other
hand, if Py is of ¢-index 7y # 0 and if ¢ acts irreducibly on P, then

(23) m? > rop™ 1,

which implies p = 2, m £ 6 or p = 3, m = 2. An even stronger inequality
holds if ¢ does not act irreducibly on P,.
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It follows readily from the proof of Lemma 5.2 that f(X) = X" ! + Xm2
4+ ...+ X + 1 is the characteristic polynomial of ¢ on P,. Hence if p = 2
and m is even, 1 is a characteristic root of ¢ on P,. Since this leads at once to
the contradiction N(4) D A, the cases p = 2, m = 2,4, or 6 are excluded.
Lemma 1.7 shows that p = 2, m = 5 is also impossible. Thus p = 2, m = 3
or m = 2, and hence o(P) = 8 or p% If o(P) = p?, then p # 2, for otheriwse
¢ leaves the generator of P, fixed. In particular, it follows that (m,p) =1
in all cases.

Since N(A) = A by the preceding lemma, @ is a regular &-group. Our
hypotheses imply that @ acts irreducibly on @, and hence one of the inequalities
dg > o(Q) or d* > o(Q) necessarily holds. Since m = d = 2 or 3, we conclude
that 0(Q) = g except possibly in the case d = 3, ¢ = 2. But p = 2 if m = 3,
whence p = ¢, a contradiction. Thus o(Q) = g.

We next establish (f). We may assume P C M, since otherwise (f) holds
trivially. If G = G/P = AT = AM(), it clearly suffices to show that G
satisfies the conditions of the theorem. Since N(A) = A by the preceding
lemma, we need only show that Z(T) = 1; so assume the contrary. Let K
be a minimal 4-invariant subgroup of Z(T) M M and let K be the inverse
image of K in G. We may clearly assume K is a p-group, for otherwise

Z(T) # 1.
Now if (y) = Q and x € K, we have
(24) [x,y] = 2,2 € P.

Since z € Z(M), [x",y] = 1. Butx? € P C Z(M), and hence x* = 1.

Consider first the case p = 2. Then clearly K is elementary abelian. If the
order of ¢ on K is odd, then the holomorph of Q and ¢ is completely reducible
on K, so that K = P X H where H is invariant under Q and ¢. Clearly Q
centralizes I{. To obtain a contradiction, we need only show that I is in the
centre of M. Since M is nilpotent, it suffices to show that I is in the centre
of the 2-Sylow subgroup S of M.

Since S contains at most one A-invariant abelian subgroup of type (2, 2),
H is not of type (2, 2) and ¢ does not have order 3 on H. Furthermore H M A4
= 1, since 4 M P # 1. Now by Theorem 3, A4S = A4(S; X S2), where Sy, S,
satisfy the conditions of Theorem 3. Our conditions imply that H C S..
Since S, is a regular ¢-group and H is a ¢-invariant abelian subgroup of Sy,
H C Z(S;) and hence H C Z(S; X S2). Now S = (4 MNS)S1Ss and it
follows from the minimality of K that 4 M .S centralizes H. Thus H C Z(S),
a contradiction.

If ¢ has even order on K, K must be of type (2, 2). By the proof of Theorem
3, .S contains such a normal subgroup K only if 4.5 has a normal 4-complement.
But then if S were non-abelian, Py, = [s, s] M P would be Q-invariant, which
is not the case. Thus S is abelian, and we conclude that Z(7T) # 1, a contra-
diction. Thus (f) holds if p = 2.

Suppose then that p # 2. If x1, x2 € K, it follows readily from (24) that
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[[x1, x2], ¥] = 1. Since [xi, x2] € P, we conclude that K is abelian, and, as
above, K is elementary abelian. The balance of the proof now parallels the
case p = 2. Thus (f) holds in all cases.

We next prove that 7" contains a ¢-Sylow subgroup Q* satisfying (d). By
induction T possesses such a g-Sylow subgroup and hence for some ¢-Sylow
subgroup Q, of 7" we have ¢(Q:) = vQw™!, where v € (4 M M)P. Since ¢
has order m on P and (m, p) = 1, it {ollows that (4 N\ M)P = (4 N\ M) X P,.
If v = uvy, where u € 4 M M and vy € Py, there exists an element w in P,
such that w¢(w™!) = v,, whence ¢WQ1w™") = ¢(w)uveQwo u1¢(w™1)
= uwQ,w 'u~!. The subgroup Q* = wQ,w~! thus has the required property.
Without loss of generality we may assume Q* = Q.

This result will now be used to establish (a) and (b). Consider first the case
P = M. Since o(Q) = g, Q acts regularly on P. If p = 2, o(P) = 8, and we
must have ¢ = 7. Suppose then that o(P) = p% Now AT is an ABA-group
so that there exists a fixed element g in 7" and an integer 7 such that the
elements ¢*([g]?) include a set of coset representatives of 4/ P in T. Write
g = xy, where x € P and (y) = Q. Since d = 2, ¢(y) = uy~'u~!, where
w € AN P by (d). If d 1 r, '([g]?) is of the form w or wy*!, w € P, for all
1, j; and this gives immediately ¢ = 3. On the other hand, if d | r, [g]? € P if
and only if ¢ | j. But now since ¢ has order 2 on the abelian group P,

(25)  [gl? = (xy) (wayu") Qeueyu=) . .. (eu®=lyu=("=D)

= u= (xuy) (D,

Since y acts regularly on P, (xuy)? = 1, and hence [g]? = »~% Thus AN P
itself is the only coset of AM P in P which is of the required form. Thus
g = 3, as asserted. Since p # g, ¢ = 3 implies p # 3. The remaining conditions
of (a) and (b) have been established above in the case P = M. Furthermore,
we have shown, when d = 2, that d 1 » and hence that Q does not have
¢-index 0. The argument applies equally well if d = 3 and ¢ = 7.

Assume next that P C M. By induction M is either a 2-group of order
286=0 o(A N M) =2t and ¢ = 7 or M is abelian of type (¢, ¢), 2 4 ¢,
3¢ ¢t,0AN M =1t and ¢ = 3. In the first case o(P) = 8, M has order
23 o(4 M M) = 2% In the second case o(P) = p2with p # 2,3, 0(M) = #2,
where ¢t = pt’ and o(4 M M) = t. Furthermore, [M, M] is cyclic, normal in
G, and contained in P. But P is a minimal normal subgroup of G and is of
type (p, p). Thus [P, P] = 1 and M is abelian. To prove M is in fact of type
(t, t), we need only show that the p-Sylow subgroup of M is of type (p°, p°),
and this follows at once from the fact that 4 is cyclic.

It follows for the same reason that 2,(Z(M)) = Pin case (a). Thus (e) holds.

To prove (c) let & be the order of ¢ on 7" and set t = 2% in case (a). Then in
both cases (a) and (b), it follows from (d) that % | m¢. On the other hand, we
clearly have m | k and (m, ) = 1. Now o(4) = mte, for some integer e. If
kE < mt, it follows at once that y = ¢*¢(y) = a¢**ya="¢, and hence that Q
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centralizes a*°. But clearly a*¢ 2 1 and lies in 4 M M, a contradiction. Thus
= mt. Since the final assertion of (¢) has already been established, (c) holds.
The same argument shows that no ¢-Sylow subgroup of 7" is invariant under
A, thus completing all parts of the theorem.

Theorems 3, 4, and 5 will serve to motivate the definitions of excepiional
ABA-groups which we shall now make. In view of what is to follow, it will
be necessary to include a slightly larger class of groups than those satisfying
the conditions of these theorems.

DEFINITION. Let G = ABA4 = AT, where T'<] G. Then G will be called
an exceptional ABA-group

(a) of type I if T is a 2-group and G satisfies the hypotheses of Theorem 3
with T = T1 #= 1;

(b) of type II if T'= MQ, M is a 2-group normal in G, Q is a 7-group,
ANT C M, C(MYNQ = Qo is cyclic, G = G/Qy = AT satisfies the hypo-
theses of Theorem 5;

() of type III if T'= MQ, M is abelian of type (¢, ¢), (¢,3) =1, Qis a
3-group; if Qo = C(M)N Q, then G = G/Qy = AT satisfies the hypotheses of
Theorem 5; either AN T C M and Q, is cyclic or G = G/M = AQ, satisfies
the hypotheses of Theorem 4 with Q = T'.

Furthermore if Qg is cyclic and disjoint from 4, we require the following
additional conditions in (b) and (¢): if ¢ = G/M = AQ, then ¢ has order
m-g*on@Q, wherem = 3if ¢ = 7and m = 2if ¢ = 3, and Q is not of @-index 0.

Remarks. For exceptional groups of type 111, we shall also allow the possi-
bility that M = 1 and G satisfies the conditions of Theorem 4 with Q = 7.
The complexity of the definition of exceptional groups of types 1l and I1I
arises from the need for 7" to be A-invariant. The problem is that the image
Qo of Qq does not possess an A-invariant complement in Q. If § = HK, where
I, K satisfy the conditions of Lemma 1.3, our requirements force @ = /1 and
I DF, where F is the @¢-nucleus of Q. Lemma 6.3 will give further clari-
fication of this point.

We shall also call an 4-invariant subgroup 7" of an ABA-group G an excep-
tional subgroup of G (of type I, II, or II1) if G* = AT = 4AB*4 is an excep-
tional AB*A4-group (of type I, II, or I11).

We next prove

LeMMmA 6.2. Let G = ABA = AT, where T <| G. Assume that T = MQ,
where M is nilpotent and normal in G, Q is a q-group for some prime q, (o (M), q)
=1, and ANT C M. Let Qi, Q2 be two disjoint subgroups of Q such that
MQ; <] G,1 = 1,2. Then either Q. or Q- centralizes M.

Proof. Let S1 be a minimal subgroup of Q, such that MS; < G. If S; central-
izes M, MS: = M X S; and since o(M) is prime to ¢, S1 <{G. f G' = G/S, =
AT = A'MQ, N(A") = A’ since AMS; = 1, and the lemma follows at
once by induction. We may thus suppose that S; does not centralize M.
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Let L be a maximal subgroup of M normal in G such that LS; = L X S;
and set G = G/L = AT = AMQ, S; denoting the image of S; in Q. If Pis a
minimal subgroup of M normal in G, it follows from the maximality of L and
the nilpotency of M, that S; does not centralize 2. But then by the first part
of the proof of Theorem 5,0(S;) = ¢, and if @ = G/M = AQ, é has order m
on the image S; of Sy in Q, where m = 3if ¢ = 7and m = 2if ¢ = 3.

If S, is a minimal subgroup of Qs such that MS; <] G and S; its image in Q,
we may similarly assume that 0(Ss) = ¢ and that ¢ has order m on S.. But
S1S: = 81 X 8. must be a regular ¢-group, which is impossible by Lemma 1.2
since ¢ has the same order on each factor. This contradiction establishes the
lemma.

LEMMA 6.3. Let G = ABA = AT, where T <| G. Assume that T = MQ where
M is nilpotent and normal in G, Q is a g-group for some prime q, A N T C M,
and M N\ Z(T) = 1. Then T = T* X Q*, where T* us an exceptional sub-
group of type II or I1I, Q* C Q, and Q* < G.

Proof. We may suppose M = 1 since otherwise the lemma holds trivially
with 7% = 1. Our conditions imply that M has order prime to g. Let now S
be a minimal subgroup of Z(Q) such that MS <] G. We distinguish two cases.

Case 1. For any minimal subgroup P of M, normal in G, PN\ C(S) = 1, and
only the identity element of Q centralizes M.

It follows as in the proof of Theorem 5 that o(P) = p™, where m = 3,
g=Tif p=2and m =2, ¢ =3 if p # 2, that o(4N P) = p, and that
0(S) = ¢. Furthermore, as in the proof of (f) of Theorem 5, MM\ Z(MS) = 1.
The minimality of .S implies that Z(MS) = 1. Hence T* = MS is an excep-
tional subgroup of type II or I11.

If S; C Q is such that SN.S; = 1 and MS: < G, then MS; = M X S; by
Lemma 6.2. Our present assumption implies that the image S of S in G =
G/M = AQ is the unique minimal subgroup of @, normal in G.

Since @ is represented faithfully on P and o(P) = 8 or p?, Q must be abelian
and hence cyclic. If T* is of type II, 0(Q) = 7, or else Q;(Q) centralizes M.
If 7* is of type III, the argument in Theorem 5 which showed that ¢ = 3
can be repeated to show that o(Q) = 3. Thus S = Q, and the lemma follows
with T = T*,

Case 2. Either S centralizes some minimal subgroup of M normal in G or
C(MYN Q = 1.

Now C(M)NT < G. Since (o(M), q) = 1,Qy = C(M)N Q is characteristic
in C(M)M T and hence is also normal in G. Thus if Q, # 1, Q contains a sub-
group # 1 which centralizes M and is normal in G. We shall show that the
same assertion holds if .S centralizes P. We may clearly assume C(M)MN Q = 1.

Let L be a maximal subgroup of M normal in G which is centralized by S
and assume L C M. Set G’ = G/L = A'T" = A'M'(Q’, S’ denoting the image of
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Sin Q. If P'is any minimal subgroup of M’ normal in G/, then C(P’) N\ S’ = 1.
IfQy = C(M')MN Q" and Qydenotes the inverse image of Q' in Q, SN Q,’ =1
and it follows from Lemma 6.2 that Q, centralizes M. Thus Qy = 1 and con-
sequently Qo' = 1. It follows now by Case 1 applied to G’ that Q' = S’ and
hence that LN Z(T") # 1, contrary to hypothesis. Thus L = M and S central-
izes M.

It remains therefore to prove the lemma under the assumption that S
centralizes M. Let G = G/S = AT = AM(Q. Since A NS =1, N(4) = 4.
Since M has order prime to g, M N Z(T) # 1 implies M N Z(T) # 1. Thus
MN Z(T) = 1, and it follows by induction that T = 7* X (", where T*
is an exceptional subgroup of type I or I1I, 0" C Q0 and 0"  G.

If 7% = MQ' with Q' C Q, and if (/, Q"' are the inverse images of Q’, 0" in
T, then ' Q" = S and Q" centralizes M. To complete the proof, we must
show that one of the following two possibilities necessarily holds:

(a) Q' = Q1 X Sand MQ, < G;

(b) Q" = Q2 XS, Q< G, and MQ' is an exceptional subgroup. In the
first case the lemma will follow with 7% = MQ, and Q* = Q"; and in the
second case with 7* = MQ" and Q* = Q..

Now Q is a regular g-group and hence has the form Q = AK, where H, K
satisfy the conditions of Lemma 1.3. Suppose first that Q' C . Since Q' does
not have g-index 0, Q' Z F, where F is the @-nucleus of Q. But then Q' =
H D F; and it follows from Lemma 1.3 that K is abelian and hence that
0 = Q' X Q,, where Q. is g-invariant. Thus (b) holds.

Suppose then that Q" Z H. 1f Q' = Q'/8 has order greater than g, it follows
from the structure of Q' that Q' = H X S and that 7 D F. But then Q" C K
and Q = H X Q"; and (a) holds. Finally if 0(Q") = ¢, we must have Q' =
S X @, where Q, is @-invariant; otherwise o(S) = ¢, ¢ has order mg on (',
wherem = 3ifqg = Tandm = 2if ¢ = 3,andQ’ = H, contrary to assumption.

7. Some properties of exceptional .1B.l-groups. To help illuminate
the discussion we shall give an example of an exceptional 4B/A-group G of
type IIT and of order 6p Thus G = AT = AMQ, where M is abelian of type
(p, p), 0(Q) = 3, and o(4) = 2p. If (x1, x») is a basis for M, (y) = Q, and
(a) = A, we may assume, in view of Theorem 5, that
(26) ¥y = a? ¢(x2) = axa~! = x3'and ¢(y) = xfy~lar*
for some integer k. First of all, we must have & = 3(p 4+ 1) since otherwise
v centralizes A M M.

Furthermore

(27) yxy~l = x5S, yxey! = xlx

{or suitable integers «, 8, v, 0.
Applying ¢ to (27) gives

(28) y oy = xwf, vy larly = xixgl
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From (27) and (28) together we deduce that

(29) a=4¢dand o — By = 1.

The condition that v induce an automorphism of M of order 3 gives in
addition
(30) a=3@p—1).

Conversely conditions (26)—(30) with & = 3(p + 1) are sufficient to define
a group G of the form AT = AMQ such that <] G, Z(T) = 1,and N(4) =
A. Furthermore, the elements [y]?7 are in the coset (4 M M)x5%7 of AN M,
while the elements [y]?*! are in the coset (4 /M M)x;#*/y. It follows that the
elements ¢*([y]{) include a set of coset representatives of A/ M in T. Thus
G is in fact an ABA-group with B = (ya). Exceptional 4 BA4-groups of type
IT can be similarly constructed.

We shall now determine a few of the properties of 4B.l-groups which
contain exceptional subgroups of types II or III.

LemMmA 7.1. Let G be an ABA-group containing an exceptional subgroup
T # 1 of type II or III. Then 2| 0(4), 2| 0(B), 6 |0(G), and if By denotes
the 2-Sylow subgroup of B, B»  A.

Proof. By assumption G* = AT = AB*4, B* C B, is an exceptional
AB*A-group. It clearly suffices to prove the lemma for G*, and hence without
loss of generality we may assume G* = G. If T"= MQ with M # 1, we may
also assume that Q, = 1, and that no proper subgroup of M is normal in G,
for otherwise the lemma follows by induction on o(G).

Thus M is elementary abelian of order p™, where m = 3if p = 2and m = 2
if p ## 2. Furthermore o(Q) = ¢, where correspondingly ¢ = 7 or 3. In either
case 2| o(4), 6]0(G) by Theorem 5. If p =2, (a®) <{ G and by induction
we may assume o(4) = 6. Thus o(G) = 168. Since G is an 4 BA-group, there
must exist an element y in 7 and an integer 7 such that the elements ¢*([y]/)
include a set of coset representatives of A/ M in 7. By Theorem 5, we may
take » = 1, and hence the element & = ya will be a generator of B. Now 4% =
(va)® = y¢ (y)p®(y)a?, so that by thestructureof 7', b2 € M. If b*€ AN M, the set
ABA will contain less than 168 distinct elements. Thus o(B) = 6 and B, 4.

Similarly, if 7" is of type III and M # 1, we may assume o(G) = 6p2,
o(4) = 2p. Again we have B = (b), where b = (ya) for some element y in T,
and 2 = (ya)? = yo(¥)a® € M. Thus d* = 1. Since o* = (B*~Yband b*~! € M
since p is odd, " € A would imply that & € 4 M and the set ABA would be
contained in 4 M, which is not the case. Hence 0 (B) = 2p and B, = (8*) ¢ A.

Suppose finally that M = 1 and 7 is an exceptional 3-group. Then by
Theorem 4, G = G/Z(T) = AT = ABA, where T is an elementary abelian
#-group of order 9 on which @ has order 6. Again we may assume o(A) = 6.
Now B = (b), where b=ga, y¢ T. Thus b*=1. If b*c A, then
G e AN T =1, which is not the case. Thus 2|o(B) and B, 4, com-
pleting the proof.
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TurorEM 6. An ABA-group G cannot contain exceptional subgroups of both
type I and II1.

Proof. Suppose G contains an exceptional subgroup 7'y of type Il and an
exceptional subgroup T's of type III with T°; # 1,2 = 1,2. Then G; = AT; =
AB;A, B; C B, is an exceptional 4B ;4-group of type Il if 2 = 1 and of type
III of ¢ = 2. If B denotes the 2-Sylow subgroup of B, it follows from the
preceding lemma that B} Z 4, ¢ =1, 2. Since B is cyclic, this implies
B¥ M\ Bf A and hence that GiN\ Gy Z A. We shall derive a contradiction
by showing that, in fact, Gi"\ Gy = A.

By Theorem 5 and the definition of exceptional subgroups, ¢ has order
3.287% on T for some s and k. Hence if p # 2, 3, 7, the p-Sylow subgroup 4,
of A is normal in G; and is the p-Sylow subgroup of Gi. Now M, is abelian
of type (¢, t), where 2 & ¢, 3 & £. Let S, be the p-Sylow subgroup of M, for
some prime p | t. If p % 7, it follows at once that S, N\ G, C 4,.

Suppose that p = 7 and S,NG, Z 4,. S, = (4,MN M) X L,, where L,
is cyclic, invariant under 4, and the order of ¢ on L, is 2. Our assumptions
imply that L,MN Gy # 1. On the other hand, if H; = C(M1)MN\ Qy, A,H, is
the unique maximal A-invariant p-group in Gi. Since L,MN G, is A-invariant
we must have L,MN Gy C 4,H;. But by the structure of G, ¢ has order 3.7¢
on H; and hence on 4,H,, contrary to the fact that ¢ has order 2 on L,N G,.
Thus S,N\ G C 4, if p = 7, and we conclude that M-\ G, C 4.

If M, 5~ 1,set Hy = C(Ms) M Qq; whileif M, = 1, set Hy = Z(Q5). In either
case H, is A-invariant and hence so is Hy M G;. But, by the structure of T4,
Asis the only A-invariant 3-Sylow subgroup of 771; and hence Hy M Gy C A43;.
Thus M.H. NG, C A.

Suppose finally that x € ToMN Gy, x § M2H,. Now T2\ G, is A-invariant and
contains A /M M.H,. But by the structure of 7%, any A-invariant subgroup of
T, which contains x and 4 /M MsH, necessarily contains a subgroup of M.H,
which properly contains 4 M M.H,. In particular, this must be true of 72N Gy,
contrary to the fact that M.H.MN\ Gy = AN M:H,. Thus 72N Gy C 4. Since
Gy = ATy, G2\ Gy = A, and the theorem is proved.

We shall also need an analogous result for 4BA-groups which contain
exceptional subgroups of types I and III.

LemMmA 7.2. If G = ABA contains exceptional subgroups T1, Ts of types I
and I11 respectively, then Z(T1) C A and a 3-Sylow subgroup of Ts has order 3.

Proof. If Gy = AT, = AB1A and G, = AT, = AB»,4, it follows as in
Theorem 6 that G/ Gs = A. Furthermore, by Lemma 7.1 the 2-Sylow sub-
group Bj of B, does not lie in 4.

Now 77 = QQ’, where Q, Q' satisfy condition (e) of Theorem 3. If Gy = AQ
= AByA, By = (bo), where by = ya’, y € Q. If k is the least integer such that
[¥]t = 1, then b¢* € A. Furthermore, since ¢ has order 3-2° on Q, k = 3-2™
or 2™ according as 3 4 r or 3| r. Now the 2-Sylow subgroup Bj of B, must
lie in A; otherwise By M B} Z 4 and GiN\ Gy, D A. It follows that b¢® € A.
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If K is a maximal 4-invariant normal subgroup of Q, we may assume without
loss that AK C AQ, for otherwise we can replace Q by K in Theorem 3. It
follows that AK = A(bo*)4 = 4, and hence that K C 4. Since Q/K is
elementary of order 4, ©;(K) is a quaternion group and Z(Q) C 4. Now
AN Q =1landil Q' # 1, the proof of Theorem 3 shows that Q M Q' contains
an abelian subgroup of type (2, 2). Since Q contains no such A-invariant
subgroup, Q' = 1 and Z(71) C 4 as asserted.

The preceding argument shows that the 3-Sylow subgroup of Bi( = By)
does not lie in A. This forces the 3-Sylow subgroup of B, to lie in 4,
otherwise G1 N Gy D A. If Ty = M:Qs, we consider Go = Ga/M2(4 N Q,)
= AB,A = AQ,. Q. is a regular @-group and & has order 2.3° on
Q.. If By = (bs), where by = §,a™, 72 € Qo, it follows as above that by € A.
But then [§]?, = 1, and hence 0(Qs) = 3, forcing 4 N Q: = 1 and 0(Q,) = 3.

8. Strongly factorizable 4BA-groups. We shall call an 4ABA-group G
strongly factorizable if G = AT, where T = Ty X Ty X T3, each T'; is normal
in G; and if Ty £ 1, then T is an exceptional subgroup of type I, if 72 # 1,
then 7', is an exceptional subgroup of type II or I1I, and AN T3 = 1.

A number of consequences of this definition follow immediately from our
previous results. First of all, T is a regular ¢-group and hence is nilpotent of
class = 2. Furthermore since 4 is cyclic, 7'y # 1 implies that either T is of
type Il or Ty = 1.

The definition also implies that G is solvable and that 7" = [G, G]. Finally,
if G = ABA = AM, where M is nilpotent and normal in G, it follows from
Theorems 2, 3, and 4 that G is in fact strongly factorizable.

Theorem B is an immediate corollary of the following theorem, which has
been our main objective in Part I.

TueOREM B'. If G = ABA and G 1is solvable, then G is strongly factorizable
The proof will be broken up into a sequence of lemmas.

LeEmMA 8.1. If G = ABA 1is strongly factorizable, then so is every subgroup
of G containing A and every homomorphic image of G.

Proof. If G’ is a subgroup of G containing 4, G’ = AT',where T = G' N\ T,
T"<Q G. Clearly T' =Ty X Ty X T5', where T/ C T, i =1, 2, 3, and
ANTy =1. If Te = MQ, Q contains a maximal subgroup Qo which is
A-invariant such that MQ, is nilpotent and [T2: MQ,] = ¢. It tollows from
Theorem 5 and the definition of exceptional subgroups of type II and III
that either 7% = Tsor Ty’ C MQ,. In the latter case 4 T’ possesses a normal
2-complement. Similarly either 7' is an exceptional subgroup of type I or
AT, possesses a normal 2-complement. It follows at once that G’ is strongly
factorizable.

If G = A’B’A’ is a homomorphic image of G, we need only show that
N(A") = A’, for the remaining parts of the definition of strong {actorizability
follow as above. Now M* = T; X MQy X T3 is nilpotent and [T: M*] = q.
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If @ =G/M* =40, N(A) = 4, so that the hypotheses of Lemma 6.1 are
satisfied. Hence if G’ = G/Land L C M, N(4") = A".If{ L C T,but L ¢ M*,
then necessarily 75 C L.

Since G’ = G/M/L/M, it follows readily that N(4’) = A’. If L C A, this
conclusion is obvious. Since L = (AN L)(T'M L), N(4") = A’ in all cases.

LEMMA 8.2. Let G = ABA = AT, T < G, T = PQ, P a p-group normal in
G, Q a g-group with q # p, and assume that G contains no normal subgroups
which lie properly between P and T. Then G 1is strongly factorizable.

Proof. The proof is by induction on o(G). If @ = G/P = A, G = AP and
G is strongly factorizable. The lemma also holds, as remarked above, if T is
nilpotent; and it follows from Theorem 5 if Z(7") = 1. Hence we may assume
that none of these conditions prevail.

Let P; be a minimal subgroup of Z(7), normal in G. Since 7" is not nil-
potent, P, C P. If G = G/Py, N(A) = A4 by Lemma 6.1, and hence by
induction G = AT, where T = T, X T, X T satisfies the required con-
ditions.

If 7 is nilpotent, then so is 7. We must therefore have T, = M(, with
M # 1. In particular, this implies 7; = 1; otherwise p = 2 and T, if of
type 11, which is not possible for strongly factorizable groups, as pointed out
above.

If T3 # 1, it follows by induction that the inverse image H, of T, is of the
form Py X 1%, where T is an exceptional subgroup of type II or I11. Further-
more if Hy is the inverse image of T3 in G, H; <] G and I13Q = H; X Q. If
Ty = MQ, we have, for any x in M and any z in Hj, [x,2] = &', &’ € P..
Conjugating this relation by vy in Q, it follows that [x, ¥] commutes with z.
But vy acts regularly on M if y # 1, and hence MH; = M X H;. Thus
G = A(Ty X H3). Since p # 3, the lemma now follows from Theorems 2 and
3. We may thus assume that 75 = 1 and hence that G = AH.,.

Now by the minimality of Py either Py C A or Py A = 1. Assume first that
Py C A.Let K = Q;(M) and let K be its inverse image in H,. By Theorem 5
K is elementary abelian of order 8 of p* and A N K # 1. But this implies
P, C L C K, where L is Q-invariant, contrary to the fact that Q leaves no
proper subgroup 5 1 of K invariant. Thus Py N\ 4 = 1.

Suppose first that M is a 2-group. Since o(A M K) = 2 we must have
K = Q,(K), otherwise we reach a contradiction as above. A similar argument
shows K is abelian, whence K = (4 M K) X K;, where K, is A-invariant.
Suppose K; were not of the form P; X L, where L is A-invariant. Then
o(Py) = 4,0(K;) = 16 and ¢ has order 6 on K;. But the image K; of Kyin M
is a regular @-group, and by the structure of T, its ¢-index is a multiple
of 3. Therefore K, is of ¢-index 0 and ¢ acts irreducibly on Q;(K;) = K, a
contradiction. Thus K; = P; X L, where L is A-invariant. Furthermore, by
Lemma 1.2 Py contains no 4-invariant subgroups of type (2, 2). Hence if M’
denotes the inverse image of M in G, Theorem 3 implies that M’ = Py X M,
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where M is A-invariant. Now Q;(M) = (AN K)L and Q,(M) is clearly
Q-invariant. Thus Q;(M) < G, and it follows at once by induction applied to
G/ (M) that H, = P; X MQ. Hence the lemma holds if 7, is of type II.

Essentially the same argument applies if T, is of type III, provided we
can prove that K is abelian. Since [K, K| is cyclic and ;(K) = K, this will
necessarily be the case unless o(P;) = p and K = (AN K)K,;, where
AMK; = 1, K; is elementary abelian of order p?, and ¢ has order 2p on K.
But this leads to a contradiction since again K; is of ¢-index 0.

LemMma 83. Let G = ABA = AT, T G, T = PQ, P a p-group normal in
G, Q a g-group with ¢ #= p and ANT C P. Then G 1s strongly factorizable.

Proof. Let G = G/P = AQ, let @, be a minimal subgroup of the centre of
Q) invariant under A, and let Q, be its inverse image in Q. We may assume
Q1 C Q since otherwise the lemma follows from the preceding lemma.

If 01 G, weset G =G/Q,=AT. Since ANQ, =1, N(A) = 4 by the
corollary of Lemma 2.3. Hence by induction G is strongly factorizable, whence
G = A(Ty X Ty X T3) where the subgroups T'; satisfy the required con-
ditions. Let H; be the inverse image of T.,i=1,2, 3, and let P; be the
p-Sylow subgroup of H1H;. Since Q; is normal in PQ;, Q; is in the centre of
H,H;, and it follows at once that H[; is nilpotent. Thus H,H; = P, X S,
where S is the ¢-Sylow subgroup of H,H;.

We may assume Ty # 1 since otherwise the lemma follows immediately.
Now the group H.,S satisfies the hypotheses of Lemma 6.3 and consequently
H,S = T2 X Q', where T, is an exceptional subgroup of type Il or III,
Q' C S,and Q' is A-invariant. Our conditions also imply that P75 = P; X T,
and it follows at once that G is strongly factorizable.

We may therefore assume that Q; €I G. By induction G, = 4 PQ; is strongly
factorizable, and hence G; = A (77 X T2 X T3) where the subgroups 7°; have
the appropriate properties. If 7% = 1, Q; is in the centre of the nilpotent
group 71175 Since Q, is a ¢-Sylow subgroup of 71T, it is A-invariant and hence
normal in G, contrary to assumption. Thus 75 # 1.

Now 77 ## 1 implies p = 2. But this is impossible since then 7'» would be
of type Il. Thus 7 = 1. Furthermore T2 = MQ;, and o(Q;) = ¢ by the
minimality of Q;. Furthermore P = (AN P)MTs. If x € T3 and y € Q, the
normality of P implies yxy=! = 2x’', 2 € (AN P)M, x' € T3 Conjugating
this relation by v, # 1 in Q; we conclude immediately that y; and z commute.
But M is A-invariant and AN M # 1. Since 4 is cyclic, it follows if z # 1
that z? € M for some integer 7z, with z* # 1. But this is a contradiction since
T has a trivial centre. Thus z = 1 and hence 73 < G.

HTy=1,P= ANPM. If ANP D AN M, it follows readily from the
structure of M that Q, normalizes 4 M M, which is not the case. Thus
ANP =ANM. If T3 1, we can obtain the same conclusion by con-
sidering G/ T3, since AN T3 = 1. Thus P = M X T5.
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Finally, if 2 € M, and y € Q, we have yzy~! = 2'x, 2’ € M, x € T5. Conju-
gating this relation by y; # 1in Q,, we readily obtain y[z, y1]y~! = [2/, ¥1]. Since
Q1 acts regularly on M, it follows that M <] Q, and hence by Lemma 6.3
MQ = MQ: X Q' where each factor is A-invariant. Thus G = A (MQ: X Q'T3),
and since AN Q'T3; = 1, G is strongly factorizable.

Levva 8.4. Let G = ABA and assume that G_ co_ntains a normal subgroup
P of prime power order such that G = G/P = ABA, is an exceptional ABA-
group. Then G 1is strongly factorizable.

Proof The proof will be made by induction on o(G). Let o(P) = p™ and
G = AT, where T is an exceptional subgroup. We first consider the case in
which no proper subgroup of P is normal in G.

Assume K <] G, where K is a g-group. If G = G/K = ABA, we first show
that N(A) = A. By the minimality of P, either K D P or KNP = 1. If
K D P, G is a homomorphic image of G, whence N(4) = 4 by Lemma 8.1.
If KN\ P = 1and P denotes the image of P in G, G/ P is a homomorphic image
of G and hence N(A) C AP. But KP is nilpotent and hence G, = AKP is
strongly factorizable. If Gy = Go/K, it follows that Ng,(A) = A, whence
N(4) = 4, as asserted.

Let H be the inverse image of T in G. We distinguish three cases.

Case 1. T of type I. We may assume p # 2 since otherwise the lemma follows
immediately from Theorem 3. Thus H = PQ, where Q is a 2-Sylow subgroup
of H. We may assume Q contains the inverse image of A M 7. (Since 4 N H
need not be contained in P, the lemma is not a consequence of the preceding
lemma.) We may assume C(P)M\ Q = 1, otherwise the lemma follows by
induction or from the preceding lemma by considering G/C(P)N Q. Let K
be a maximal subgroup of 7 normal in G. Then AK = AK;, where K, is
A-invariant and either AN K; = 1 or K, is an exceptional subgroup. If K,
denotes the inverse image of K; in Q it follows either from the preceding
lemma or by induction that PK; = P X K,, whence K; = 1 and K C 4.
Thus Q = (AN Q)Q;, where AﬂQ = Z(Q) and @, is a quaternion group.
Without loss we may assume Q = Q. Since A M Q centralizes 4 M P and
AN Q C Z(Q), the minimal nature of P implies that AN P = 1. But then
the conditions of Lemma 5.4 are satisfied, and hence PQ is nilpotent.

Case 2. T = MQ is of type II. We assume p # 2, otherwise the lemma
follows from Lemma 6.3. If M denotes a 2-Sylow subgroup of the inverse
image of M in G, Go = APM is strongly factorizable by induction. Hence

= A(P X M), where M = (AN M)M,. Since C(P)"\ M < G, it follows
from the structure of T that M = M. If G = G/M = AP(, PJ is nilpotent
by Lemma 6.3, and the lemma follows at once.

Case 3. T = MQ is of type I11. M is abelian of type (¢, £) with (¢, 6) = 1;
and @ is a 3-group. Assume first that M # 1. If p ¢ ¢, it follows as in case 2
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that the inverse image of AM in G has the form G, = A (P X M), where
M < G, except possibly if p = 2 and 7| ¢. In this case, it may happen that
Go = A(Ty X M), where T is an exceptlional subgroup of type II. But then
the 7-Sylow subgroup S, of C(P)M G, has index 7 in a 7-Sylow subgroup .S
of Goand is normal in G. It follows that [SN\ M: 8o\ M] = 7TandSeN M < T,
contrary to the structure of 7. Thus Gy = A (P X M), where M < G. By
induction G = G/M = APQ is strongly factorizable. By the minimal nature
of P, either PQ is nilpotent or PQ is an exceptional subgroup of type III.
In either case the lemma follows at once.

If plt, p =2, 3. In this case Gy = 4 (Py X M), where Py, My <] G and
Pyis a p-group containing P. If M, # 1, the lemma follows easily by induction;
hence we may assume M, = 1 and hence that M is a p-group. Furthermore
we may assume that AM@Q 5 1; otherwise the lemma follows from the pre-
ceding one. Thus G = A P,Q, where Q is a 3-group of class 2 and AN Q # 1.
We may also assume Z(Q) does not centralize Py; otherwise the lemma follows
by induction. Now [Py, Po] is cyclic, and hence either Py is abelian or [Py, Py] =
P has order p. But in this case Z(Q) centralizes P and consequently P,. Thus
P, is abelian. It follows now exactly as in the proof of Lemma 8.2 that P, =
P X Py, where P;is normal in G and AM P = 1. The lemma follows at once
by induction by considering G/P;.

There remains the case M = 1. Thus G = APQ, cl(Q) = 2,and AN Q # 1.
As in case 1 we may assume C(P)M\Q = 1. Since ANQ € Z(Q) and AN Q
centralizes 4N P, it {ollows from the minimality of P that AM P = 1. Hence
if K, K, and K, are as in case 1, we must have K; = 1 and K C 4. But by
the structure of @, a maximal A-invariant subgroup of Q does not lie in A.

This completes the induction when no proper subgroup of P is normal
in G.

Case 4. P is not a minimal normal subgroup of G. Let P, be a minimal sub-
group of Z(P) normal in G. If G = G/Py = ABA, G is strongly factorizable
by induction. Thus G = A(Ty X T2 X T5), the subgroups T'; having the
required properties. Let H; be the inverse image of T.inG,i = 1,2, 3. Under
the hypotheses of the lemma, if 74 5 1 and T, 5 1, then p # 2.

Assume first that T 5 1. Then H,H; is a p-group and Py is in its centre.
Py must therefore be a minimal normal subgroup of 4 H», and it follows from
Case 2 or 3 that AH, is strongly factorizable.

If AH, = A(Py X T2) where 7T, is an exceptional subgroup, then
G = A(T.H,H;) and H.H; commutes elementwise with all elements of 7% of
order prime to p. The lemma follows immediately if p ¥ o(7%). Let Ts = MQ,
and suppose next that Q is a p-group, in which case p = 3or 7and H,H; = H;.
If M 5 1, the lemma follows by considering G/M; while if M = 1, it follows
from Theorem 4. Assume next that p | o(M). If p = 2, MH H; is a 2-group,
AN Q = 1, and Lemma 6.3 applies. If p # 2, we may assume M is a p-group,
or else the lemma follows by induction. Since p # 2, 3, 4 possesses a normal
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complement P* in A H;, which is normal in G, and centralized by Q. Further-
more M = (AN M) X M*, where M* is A-invariant. Thus P*M* is a
regular ¢-group, whence by Lemma 1.6, P*M* = P* X M*. Since C(P*) G,
we must have P¥*M = P* X M, and the lemma follows.

On the other hand, if AH, # A (P, X T:), H, is necessarily an exceptional
subgroup and H.H; = H;. Thus G = AHH;, H:\ Hy = Py, and H; com-
mutes with all elements of Hs of order prime to p.

If H, = MQ, Py & M. As above, we may assume M is a p-group and p # 2
If AN Q = 1, the preceding lemma applies; so assume AM Q # 1. It follows
now as in case 3 that C(MH;)M Q 5 1, and the lemma follows by induction.

Finally,if Ty = 1,G = AHH;. If p = 2, HyH;is a 2-group and G is strongly
factorizable. If p # 2, it follows readily that AH, = A (P, X T1), where T
is an exceptional 2-group and 7' centralizes I{;. Again G is strongly factoriz-
able, and the lemma is proved.

With the aid of the preceding lemmas we shall now establish Theorem B’.
The proof will be by induction on o(G). Let P be a minimal normal subgroup
of G. If 4y C A and Gy = N(Av), Go/ Ay is strongly factorizable by induction.
It follows at once from the corollary of Lemma 6.1 that 49 € Z(Gy). Since P is
an abelian p-group, Lemma 2.3 now yields V(1) = 4, where G = G/P = ABA.
Thus by induction G is strongly factorizable so that G=A(T, X T, X Ty,
where the subgroups T'; satisfy the required conditions. Let H; be the inverse
image of 7;in G, 72 = 1, 2, 3.

We shall distinguish three cases.

Case 1. P C A. By Lemma 2.1, P C Z(H;), whence H; is nilpotent.
If p # 2, Lemma 8.4 implies I, is nilpotent, while if p =2, P C Z(Il,)
since o(P) = 2. Thus H,Hj; is nilpotent and it follows from T hcorcms 2 and 3
that AH,Hy; = A(T7 X T9 X 1T3) is strongly factorizable. If 7% # 1, then
p = 3 and T’ is an exceptional 3-group of type III. Furthermore, by Lemma
8.4, either Hy = P, Hy = P X 1], where T is an exceptional subgroup of
type IT or 111, or p = 3 and Hy, = T is an exceptional subgroup of type I111.

If T # 1, then by Theorem 6, either H, = P or T is of type I11. But in
the latter case, it follows that a homomorphic image G of G contains two
¢-invariant subgroups of order 3, each disjoint from 4 ; and this is impossible
by Lemma 1.2. Thus I, = P and G is strongly factorizable. We may therefore
assume 75 = 1 and H, # P.

Suppose 71773 is not a p-group and let S be an »-Sylow subgroup of 775,
r#p. If x €S, vy € Hy, we have [x,v] = 2 € P. Since P centralizes S and
H,, [x7, y] = 1 and it follows that S centralizes .. But then we conclude that
G is strongly factorizable by considering G/S and applying induction. Hence
we may assume 717 is a p-group, in which case the theorem follows from
Lemma 8.4.

Case 2. A M P = 1. This time Lemma 8.4 gives Hy = P or Hy = P X T,
where T’ is an exceptional subgroup of types 11 or 111. Furthermore H,H; is
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nilpotent and AHH; = A(T; X T3) is strongly factorizable. It follows as in
the preceding paragraph that G is strongly factorizable.

Case 3. P Z A, A NP 1. We may suppose that no minimal normal
subgroup of G lies in A or is disjoint from 4.

Assume first that 75 % 1. Then G’ = AH,H; is strongly factorizable by
induction. Suppose G’ contained a normal subgroup L of order prime to p
such that 4 M L = 1. Then L centralizes P and the image L of L in G centra-
lizes T,, whence L centralizes H,. Thus L < G, contrary to assumption.
Suppose next that G’ contains an exceptional subgroup 77 of type 1I or III.
By Lemma 8.4 and Theorem 6, H» also contains an exceptional subgroup of
the same type; and this leads to a contradiction as in case 1. We conclude that
G’ has the form A(T, X T3), where T is a p-group. If p =2 or T, = 1,
PT\T;is a p-group and the theorem follows from Lemma 8.4. In the remaining
case AH,T; is strongly factorizable by induction, and the theorem follows
at once.

Assume finally that 75 = 1. If p # 2, then Lemma 8.4 implies that I,
= P X T,, where either 7', = 1 or T’ is exceptional of type I. Furthermore,
it follows as in case 1 that I1; centralizes 7T°;. This forces 7' = 1, otherwise G
contains a minimal normal subgroup which lies in 4 or is disjoint from A.
Let Q be a ¢-Sylow subgroup of T with ¢ # 3 or p and suppose Q # 1. By
Lemma 8.4 the inverse image of Q in G is nilpotent and again G contains a
minimal normal subgroup which lies in 4 or is disjoint from 1. Thus o(7)
= p%3?and the theorem follows from Lemma 8.3 if p # 3 and from Theorem 4
if p=3.

On the other hand, if p = 2, it follows as in the preceding paragraph that
o(T3) = 2¢7% In this case Lemma 8.3 and Theorem 3 show that G is strongly
factorizable. This completes the proof of Theorem B'.

Theorem B’ has the following corollary.

COROLLARY. Let G = AB:l be a non-strongly factorizable ABA-group of
lowest possible order. Then G does not possess a non-trivial normal subgroup of
prime power order.

PART 1II
THE SOLVABILITY OF .4 B.1-GROUPS

Having determined the structure of solvable 4B.{-groups, we turn now
to the proof of Theorem 4. In view of Theorem B’, this is equivalent to show-
ing that every ABA-group is strongly factorizable. Throughout Part 1I G will
denote an A BA-group of least order which is not strongly factorizable. Hence
all proper subgroups and homomorphic images of G which are themselves
ABA-groups will be strongly factorizable. Furthermore, by the corollary of
Theorem B’, G contains no non-trivial normal subgroups of prime power order.
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9. ABA-groups which possess a normal A-complement. Let G = ABA
and let p be a prime dividing 0(4). We shall call p non-exceptional if

(a) G contains an A-invariant p-Sylow subgroup P*;

(b) If 4, is a p-Sylow subgroup of 4, then P* = A4,P, where P <| P* and
A, "W P* =1;

(c) N(X) possesses a normal 4,-complement for every A-invariant normal
subgroup X # 1 of P*.

Otherwise we call p exceptional.

THEOREM 7. If p is non-exceptional, then G contains a normal subgroup K,
such that G = 4,K,, 4, YK, = 1.

Proof. Let P*, P be as above. If p is odd, it will suffice by the Hall-Wielandt
theorem (6, Theorem 14.4.2) to find a weakly closed subgroup P, of P* such
that either Py C Z,_1(P*) or P, is abelian, since N(P,) possesses a normal
A,-complement.

Now P is a regular ¢-group. Let F be its ¢-nucleus and set AP = AP/F.
We know that P is elementary abelian and ¢ has order prime to p on P.
Hence A, centralizes P and P* = P*/Fis abelian. In particular, P* is abelian
if F =1, and we may take P, = P*. If F is elementary abelian, cl(P*) < 2
and we again may take P, = P*. If F is cyclic or abelian on two generators,
we write P = HK, where H, K satisfy the conditions of Lemma 1.3. It follows
readily that K and () lie in Z,(P*) and hence Q;(P) C Z»(P*). Further-
more by the structure of H, Q:(4,) € Z.(P*); thus Q,(P*) C Z.(P*) and
we may take Py = Q,(P*).

This argument breaks down for p = 2. In this case we can apply the Hall-
Wielandt theorem only if Py is a weakly closed subgroup of Z(P*). We shall
show in fact that either F; is a weakly closed subbroup of P* or
0 (P*) C Z(P*).

Suppose Fi* C P*. Since x = a'b’a’ for suitable 7, s, j and P* is A-invariant,
F.* C P*. Since Fis A-invariant, it suffices to prove that F;*° = F,. Suppose
first that for some gz in Fy,

31 b3zb—* = a7,

where (a1) = Q:(d,) and 2’ € P.

Now AP = AB,4 with B, = (b,) € B. Thus b, = ya’, for some y in P
and some integer 7, so that P is of ¢-index r and v is a ¢-generator of P. Con-
sider first the case that ¢ leaves only the identity element of F; fixed and let

k be the order of ¢” on F;. Conjugating (31) by 4, for< =10,1,...,k — 1,
we obtain
(32) b3 (2)b~* = a3,
where 2/ € P, 1=0,1,...,k — 1.

Multiplying these relations together for + = 0,1,...,% — 1, we obtain
1 = a,*z*, where z* € P. But this is impossible since % is prime to p and
A NP =1.
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On the other hand, if ¢” is the identity on Fy, b, = ya™ centralizes z and
consequently also a;2’. Since @” leaves only the identity element of P = P/F
fixed, 2’ € F, and hence a,5’ € Z(4.F) by Lemma 4.2. Thus b, centralizes 2’
and consequently also a;. We conclude that a; centralizes the ¢-generator
y of P and hence lies in Z(P*). Now P = HK. If H D F, ¢ has order k on
H = H/F and &' leaves only the identity element of H fixed. But since ¢’
acts trivially on Fi, k|7 and ¢" acts trivially on H, a contradiction. Thus
H = F. But then it follows that Q,(P*) = (¢.)2:(K) C Z(P*) and we may
take Py = Q,(P%*).

Therefore we may assume that F;*" C P. Hence for any z in F;, we have
(33) bozb—° = g,
where 2’ € Q,(P).

If ¢" leaves only the identity element of F; fixed, then it follows as in the
preceding case that [2']* = 1, where k is the order of ¢ on Fy. If P = P/H
= K, it follows from (d) of Lemma 1.3 that ¢* leaves only the identity
element of K fixed and hence the same is true of ¢*". But [2']: = 1, and this
implies that (') = #’. Thus 2 = 1 and 2’ € Q:(H).

We may assume that Z’ ¢ F; since otherwise F;*° = F; and F; is weakly
closed in P*. But then ©;(H) is elementary abelian and ¢ has order 2% on
Q1 (H). Let k' be the order of ¢" on K = K/F; and set 3 = [y]¥. Then »’
is a ¢-generator of H of ¢-index ' = rk’. Furthermore, &’ is not a multiple
of k and hence ¢™ leaves only the identity element of F; and consequently of
F fixed. We first prove that 7’ is odd.

If we set ky = k/(¢', k), then y, = [y']** is a ¢-generator of F. Suppose
2|7/, and assume first that F = Fy. Then H is abelian and ¢ has order 2k
on H. Thus ¢"(y1) = ¢"([y']%) = " (¥'¢" (¥') ... ¢"* =V (y)) = y1, con-
trary to the fact that ¢” leaves only the identity element of F; fixed. If
F C Fi, we obtain the same contradiction by considering H/G,(F). Thus
7" is odd, as asserted.

Now b,* = y'a™. Hence if we conjugate (33) by &,’ = 5,"%, we see that
b, centralizes b°zb—° and hence centralizes z’. Suppose first that F = F;.
Since b," = y,a™*, we conclude that ¢:(z') = 2, where ¢ = ¢"'**. Since
k| r'k1, ¢1 acts trivially on Fy. Since the subgroup of H left elementwise fixed
by ¢; is invariant under ¢, it follows, if 3’ ¢ F, that ¢, acts trivially on H.
Since 7'k; is odd, we conclude that ¢ has order k on H, contrary to the fact
that ¢ has order 2k on H. On the other hand, if ¥ D Fi, we obtain the same
contradiction by considering H/G!(F).

Suppose finally that ¢ is the identity on F;. Then as above H = F and
Q,(P) = Q,(K) C Z(P). But then conjugating (33) by b,, we conclude that
¢"(z) = 2. Since ' € K and ¢’ leaves only the identity element of K fixed,
g’ € Fi; and it follows that F; is weakly closed in P*,

LemMA 9.1. If p | o(4), but p £ o(T) for any exceptional subgroup T of G,
then p is non-exceptional.
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Proof. Let P* be a maximal 4-invariant p-subgroup of G containing A,.
Since G contains no normal p-subgroups, N(P*) C G and hence NV (P*) is
strongly factorizable. Thus N(P*) = AT* = A(T} X Ty X T5). By our
hypothesis a p-Sylow subgroup P of 7™ necessarily lies in the nilpotent group
Ty, which is disjoint from 4. By the maximality of P*, we must have P*
= A,P. Thus P* is a p-Sylow subgroup of N (P*) and hence of G. Furthermore,
P is A-invariant, normal in P* and 4, " P = 1.

Finally if X # 1 is any A-invariant normal subgroup of P*, then .V(X) is
strongly factorizable and hence N(X) = AT', 7" N(X) and 4, N T" = 1.
Since 4 is abelian, N (X) possesses a normal .1,-complement. Thus P is non-
exceptional, as asserted.

THEOREM 8. Let G = ABA, and assume that every prime dividing o(.1) is
non-exceptional. Then [G, G| is @ normal complement of A in G and is nilpotent
of class 1 or 2. In particular, G is solvable. Furthermore the hypotheses are
satisfied if 2 4 0(4) or 61 0(G).

Proof. 1t follows readily from the preceding lemma that the assumptions
of the theorem are satisfied if and only if G contains no exceptional subgroups.
In particular, Theorem 3 and Lemma 7.1 show that this is the case if 2 ¥ o(.1)

or 6 1 o(G).
If G is solvable, Theorem B’ implies that G = A7, 7T <{ G,and 4 N1 = 1.
Since N(4) = A4, we must have 7" = [G, G]|; and since T is a regular ¢-group,

it is nilpotent of class 1 or 2.

Let then G be a non-solvable AB.-group of least order satisfying the
conditions of the theorem. By Theorem 7, G = .1,K,, where K, <] G and
4, YK, =1.1f

T'= N K,
plo(a)
then 7<] G, G = AT, and A4 M 7T = 1. Thus 7 is a regular ¢-group, whence
T and G are solvable, a contradiction.

10. Proof of Theorem A. In view of Theorem 8, G must contain an
exceptional subgroup 7. Suppose 7" = MQ if of type II or IIl with M = 1.
Let M; be a minimal normal subgroup of A7 and set G* = N(M,). Then
we have

LemMa 10.1. G* contains a q-Sylow subgroup Q* such that N(Q*) C G*.
In particular, Q* is a g-Sylow subgroup of G.

Proof. By Theorem 5 we may assume ¢(Q) = uQu~!, where u € .1 M M.
Thus if o(4 N M) =t, ¢*(Q) = Q and since (¢, ¢) = 1, Q is invariant under
the g-Sylow subgroup 4, of A. Since G* is strongly factorizable, G* = A T*,
where 7% < G* and T* = I'F X T X Ty. Clearly T C T, and without
loss we may assume 7" = 7. If Q" denotes a ¢-Sylow subgroup of T3, Q’ is
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A-invariant and Q* = 4,0Q’ is a ¢-Sylow subgroup of G*. Let Qg = C(M) N Q.
Then if y € Q M Qo, we have

(34) ¢(y) = yczl» -4 € MQOy

andc=2ilg=7,¢c=1il¢g = 3.

If now x ¢ N(Q*), we can write x = a%%’. Since ¢(Q*) C MQ*
b*a’Q*a—7b—* C MQ*. In particular, 5°%¢?(y))6— ¢ MQ* for all d. By (34) we
can choose d so that ¢/(v%) = vz, 2 € MQ,, and hence

(35) biyzb— € MO*.

Now AM, = AB,A, where B; = (b1) C B, b; = va” for some v in M, and
some integer 7. By the structure of 7', m divides r, where m = 3 if ¢ = 7
and m = 2 if ¢ = 3. Furthermore, ¢ has order m on M; and M, C Z(M).
By our minimal choice of M, M, is an elementary abelian p-group for some
prime p and hence b/ = (va”)” = v’a’ = a™. Since G contains no normal
subgroups of prime power order, 4 M B =1 and consequently a™ = 1.
We conclude that a” € 4 M M; and hence that b, € M, C Z(M).

It follows now from (35) that [b1, 8°(yz)*6—°] = b°[by, ¥!]b~° € MQ* for all 1.
But Q acts irreducibly on M; and hence b6°Mb~* C MQ*. Thus xM;x~!
C MQ*. But M, contains all elements of order p in MQ*; therefore xM x™!
= M, and x € G*. Thus N(Q*) C G*, as asserted. Since Q* is a ¢-Sylow
subgroup of N(Q*), Q* is a ¢-Sylow subgroup of G.

From this lemma we can derive the following extension of Theorem 7.

LemMa 10.2. If G contains an exceptional subgroup T = MQ of types II
or 111 such that A N\ T C M, then G contains a normal subgroup K, such that
G=A4,K,and 4, YK, = 1.

Proof. Let Q* be as in Lemma 10.1 and let AQ* = AMQ*/M. Then Q*
= A,0Q" and QQ’ is a regular g-group. If cl(Q*) £ 2, then cl(Q*) < 2. Since
N(Q*) C G* and ¢ is prime to o (M), N (Q*) contains a normal A ,-complement,
and hence by the Hall-Wielandt theorem, so does G.

But now by the proof of Theorem 7, either cl(Q*) = 2 or 2:(0*) C Z5(Q*);
and hence we may assume that Q;(0*) C Z:(0*). If Q:(Q*) centralizes M,
then ©:(Q*) is A-invariant and it follows that G’ = N(Q,(Q%)) is strongly
factorizable and contains 7. If G' = AT, where T" = Ty X TY X T3, we
must have 7"C 7T and hence G’ possesses a normal A ,complement. Again
the lemma follows from the Hall-Wielandt theorem.

On the other hand, the proof of Lemma 10.1 applies equally well to any
subgroup of Q* which does not centralize M. Hence in the remaining case,
N(2:(0*) C G* and the lemma follows as above.

LeMmMA 10.3. G does not contain an exceptional subgroup of type 11.

Proof. Suppose G contains an exceptional subgroup 7" = MQ of type II.
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Then by Theorem 6, G does not contain an exceptional subgroup of type I1I,
and hence no exceptional subgroup of G has order divisible by 3. But 3 | 0(4)
by Theorem 5 and hence 3 is non-exceptional by Lemma 9.1. Thus by Theorem
7, we have G = 43K3, where K3 <] Gand 43 YKy = 1.Since A T C M,
the preceding lemma implies that G = A4;K;, where K; <] Gand 4; N\ K; = 1.
If L =K;NK; then L G and A34d: YL = 1.

Let M,, G*, and Q* be as in Lemma 10.1, and let 4* be the subgroup of .1
generated by the elements of order prime to 3 and 7. Then G* = A T*, where
T* = [G* G*], and Q* = 4:(Q X Q'). Now QQ’ is a 7-Sylow subgroup of L
and since N(QQ') C G*, N(QQ') N\NL C A*T*. But ¢ has order 3.7° on
Q = MQ/M; hence A* centralizes Q and .1*7™* possesses a normal Q-comple-
ment. Since cl(QQ') = 2, we conclude that L = QH, where H <] L and
QNH-=1.

Now clearly ¢(x) € H for any element x of I of order prime to 7. Since
Q' is a 7-Sylow subgroup of H, ¢(x) € H if x € Q'. If x is any 7-element of
H, then x = ux'u=', ¥’ € Q" and u € . But then ¢(x) = ¢ (u)dp(x" ) (u™),
where ¢(x") € Q. Since ¢(u) € L and H < L, it follows that ¢(x) € II.
We conclude that I7 is A-invariant. Since .1;Q’ is a 7-Sylow subgroup of A H
and 4,Q" C Q*, AH C G, and consequently H is solvable by induction. Thus
L and consequently G is solvable, a contradiction.

LeMMA 10.4. G does not contain an exceptional subgroup of type I11.

Proof. Suppose G contains an exceptional subgroup 7" = MQ of type III.
Assume first that 2 is exceptional. Since G does not contain an exceptional
subgroup of type 11, it must then contain an exceptional subgroup 7% of type I.
We may therefore apply Lemma 7.2. First of all, this yields 4 N 7" = A4 M M,
and hence by Lemma 10.2, G = A;K;, where K;y<|{ G and A3 N Ky =1
Secondly we have ©,(7) € 4. Now it is easy to see that G possesses an
A-invariant 2-Sylow subgroup R containing 77, and hence by Theorem 3
Q,(4:) € Z(R). In the next lemma we shall show that this forces Q;(A1.) to
be weakly closed in R, so assume this. Now G’ = N (Q;(R)) is strongly {actori-
zable. It follows at once that G’ M K; possesses a normal 4,7 ;-complement.
But then by the Hall-Wielandt theorem applied to K3, we have Ky = (/1.74)H,
where H <] K3 and 4.77 N H = 1. As in the preceding lemma, H is
A-invariant and AH C G. Thus H and hence G is solvable, a contradiction.

Hence 2 is non-exceptional. Therefore by Theorem 7, G = .1.K,, where
Ks<] G and A, M Ky = 1. Suppose next that M = 1. If 0* = 4,(Q X Q')
and G* are as in Lemma 10.1, Q* is a 3-Sylow subgroup of G. If 4 N\ T
= A N M, Lemma 10.2 yields G = 4;K;, K3 <]{G and A3 N\ Ky = 1. Let
L = K; N\ K;. Since ¢ has order 2-3% on ) = MQ/Q, it follows as in the
preceding lemma that L = QH, where H < L, H is A-invariant, and AH C G;
again we reach a contradiction.

On the other hand, if 4 N Q # 1, it follows from Theorem 4 that
Q:(Q*) € Z,(Q*). But then the Hall-Wielandt theorem gives Ko = (4:0)H,
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where H <] K,. Once again H is A-invariant and AH C G, which leads to a
contradiction.

Finally, if M = 1, G contains an A-invariant 3-Sylow subgroup Q* con-
taining Q, which by Theorem 4 has the form 43(Q X Q'), where (' is abelian
and A4-invariant. Since N (2:(Q*)) is strongly factorizable, we reach a contra-
diction as in the preceding case.

Finally we prove

LeMMA 10.5. G does not contain an exceptional subgroup of type I.

Proof. Suppose G contains an exceptional subgroup 7' of type I. We may
assume that a 2-Sylow subgroup R of G has the form A,(7; X 1%), where
T1, T satisfy the conditions of Theorem 3. By the preceding lemma, 3 is
non-exceptional and hence G = A3K;, K3 <] G, A; M K = 1. It will suffice
to show that Z(R) contains a weakly closed subgroup, for then we shall reach
a contradiction as in the first part of the proof of Lemma 10.4.

Now AR = AB,4 with B, = (b,) € B. Thus b, = ya" with y in R.
Let 77 = QQ’, where (Q,Q" satisfy the conditions of Theorem 3 and let
Zi = Q(Z(Q)). Then Z, C Z(R) and Z, = (4 N Z,) X Fi, where F; is
A-invariant of order 1 or 4. Suppose first that F; # 1 and ¢ is the identity
on Fi. If Zy = Z% C R for some s, it follows as in Theorem 7 that Z;/ C Q
and [Z/, B,] = 1. But then Z,' = Z; by Lemma 4.2, and this implies that
Z, is weakly closed in R.

Suppose next that Fy # 1, ¢” leaves only the identity element of F; fixed,

and Fy = F" C R. Again as in Theorem 7 we have Fy' C Q and
(36) Fo7(Ne*(2) = 1,2 € F/.
We shall prove by induction on o(Q) that (36) forces I\’ = Fy, from which
it will follow that F; is weakly closed in R. By induction we may assume that
Fi' C Qi, where Q1 <] AQ, and (4 M Qy)F; is normal and of index 4 in Q.
Set AQy/Fy = AQ,. If @, is the central product of A M @y and a quaternion
group, it is casy to see that (36) forces F'y’ = 1. Hence we may assume
Q. = (A N Q) X F is elementary, where F is A-invariant and o(F) = 4.
Let F be the inverse image of F in Q.; Since Q does not possess a normal
A-complement, F is of ¢-index 0 and hence abelian of type (4, 4). But clearly
(36) implies Fy' C F, whence F,’ = F,.

Suppose finally that Z; C 4 and Z is not weakly closed in R. Then for some
s, Z) = Z% C Rand Z\ # Z,. Asin the first case, Z,' € Q and [Z/, B,] = 1.
Lemma 4.2 now implies that Z,’" C Z;B’, where B € BN Q and o(B’) = 2.
Since B is abelian, it follows that b° normalizes H = Z.B’ and that 5% central-
izes H. Thus b* € C*(H), where C*(H) denotes the extended centralizer of
Hin G. But C*(H) € C(Z,) and hence Z,’ = Z;, a contradiction. The lemma
is proved.

Lemmas 10.3, 10.4, and 10.5 show that G contains no exceptional subgroups.
But then every prime dividing o(4) is non-exceptional, and Theorem 8 shows
that G must be solvable. This completes the proof of Theorem 4.
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