ON FINITE GROUPS OF THE FORM ABA

DANIEL GORENSTEIN

Introduction. The class of finite groups G of the form $A B A$, where A and B are subgroups of G, is of interest since it includes the finite doubly transitive groups, which admit such a representation with A the subgroup fixing a letter and B of order 2. It is natural to ask for conditions on A and B which will imply the solvability of G. It is known that a group of the form $A B$ is solvable if A and B are nilpotent. However, no such general result can be expected for $A B A$-groups, since the simple groups $\operatorname{PSL}\left(2,2^{n}\right)$ admit such a representation with A cyclic of order $2^{n}+1$ and B elementary abelian of order 2^{n}. Thus G need not be solvable even if A and B are abelian.

In (3) Herstein and the author have shown that G is solvable if A and B are cyclic of relatively prime orders; and in (2) we have shown that G is solvable if A and B are cyclic and A possesses a normal complement in G. The present paper is devoted to a proof of the following result:

Theorem A. If $G=A B A$, where A and B are cyclic subgroups of G, and if A is its own normalizer in G, then G is solvable.

If G_{0} is a subgroup of G containing A, then it is easy to see that $G=A B_{0} A$ with $B_{0} \subseteq B$. Furthermore a homomorphic image \bar{G} of G is of the form $\bar{A} \bar{B} \bar{A}$, and it can be shown that $N(\bar{A})=\bar{A}$ if $N(A)=A$. Thus it is natural to attempt to prove Theorem A by induction on the order of G. In order to carry out the inductive argument, one must first determine the structure of all solvable groups which satisfy the hypotheses of Theorem A; and the bulk of the paper (Part I) is taken up with this problem. Our main result is the following:

Theorem B. Let $G=A B A$, where A and B are cyclic subgroups of G and $N(A)=A$, and assume that G is solvable. Then $G=A T$, where $T=[G, G]$, and T is the direct product of three A-invariant subgroups T_{1}, T_{2}, T_{3}, which satisfy the following conditions:
(I) T_{1} is a 2-group; if $T_{1} \neq 1$, then $A \cap T_{1} \neq 1$;
(II) $T_{2}=M Q$ where $M \triangleleft T_{2}$ and Q is a q-group, q a prime, either M is a 2 -group and $q=7$ or M is abelian of type $(m, m),(m, 6)=1$, and $q=3$; if $T_{2} \neq 1$, then $A \cap T_{2} \neq 1$;
(III) T_{3} is nilpotent of class 1 or 2 and $A \cap T_{3}=1$.

The proof of Theorem B relies heavily upon the properties of regular ϕ groups which were developed in (2) and especially upon the structure of

[^0]regular ϕ-groups of prime power order. These properties are listed in § 1. In addition to this, we need bounds for the order of automorphisms of certain non-abelian p-groups, which include the extra-special p-groups as defined by Hall and Higman in (7). These bounds will be determined in §§ 1 and 2. In the course of the proof of Theorem B we shall also obtain much more precise information concerning the structure of the "exceptional" groups T_{1}, T_{2}.

The proof of Theorem A from Theorem B utilizes the transfer of G into certain A-invariant p-Sylow subgroups P of G, where $p \mid \mathrm{o}(A)$. Using Theorem B and our induction assumption, we are able to show by means of the HallWielandt theorem that the p-Sylow subgroup of A is mapped isomorphically in the transfer of G into P. This argument works very smoothly if G possesses no subgroups of the form T_{1} or T_{2}, but requires considerable modification if such subgroups are present.

Throughout the paper we shall write simply $G=A B A$, provided G is an $A B A$-group in which A, B are cyclic and A is its own normalizer.

In a subsequent paper we hope to treat the class of groups of the form $A B A$, where A and B are cyclic, but A is not necessarily its own normalizer.

PART I

The Structure of Solvable $A B A$-groups

1. ϕ-groups of prime power order. We recall from (2) that a group T is called a ϕ-group if T possesses an automorphism ϕ such that every element of T can be expressed in the form $\phi^{i}\left(g \phi^{r}(g) \phi^{2 r}(g) \ldots \phi^{(j-1) r}(g)\right.$) (we denote this expression by $\phi^{i}\left([g]_{r}^{j}\right)$) for some fixed element g in T and some fixed integer r, for suitable choice of integers i and j. g is called a ϕ-generator of T, and r the ϕ-index of T.* If ϕ leaves only the identity element of T fixed, T is called a regular ϕ-group. In particular, if $\phi^{r}=1$, every element of T is of the form $\phi^{i}\left(g^{j}\right)$. In this case we say that T is of ϕ-index 0 .

In Theorem 10 of (2), we showed that T is a ϕ-group if and only if the holomorph G of T and ϕ is of the form $A B A$, where a generator a of A induces by conjugation the automorphism ϕ of T and where B is generated by the element $g a^{-r}$. It is clear that T will be a regular ϕ-group if and only if $N(A)=A$. Throughout the paper if $G=A B A$, we shall denote by ϕ the automorphism of G induced by conjugation by a generator a of A. Thus if an $A B A$-group G possesses a normal A-complement T, then T is a regular ϕ-group. The principal result of (2, Theorem 9) asserts that a regular ϕ-group T is nilpotent of class 1 or 2 .

In Theorems 6 and 8 of (2), we have determined the structure of a regular ϕ-group of prime power order rather precisely. As we shall make repeated use of this structure, we shall restate these results here. The following properties

[^1]of a regular ϕ-group of prime power order are either explicitly contained in Theorems 6 and 8 of (2) or are easily derived from them.

If P is a regular ϕ-group of order p^{n} and ϕ-index r, P contains a normal* subgroup F invariant under ϕ such that
(1a) F is either elementary abelian, cyclic of order p^{e}, or of type $\left(p^{e}, p^{e}\right)$. $F=1$ if and only if P is elementary abelian, ϕ has order relatively prime to p and ϕ^{r} leaves only the identity element of P fixed.
(1b) ϕ acts irreducibly on $F_{1}=\Omega_{1}(F)$.
(1c) $\bar{P}=P / F$ is elementary abelian, the image $\bar{\phi}$ of ϕ on \bar{P} has order relatively prime to p and $\bar{\phi}^{r}$ is without non-trivial fixed elements.
(1d) if $k=$ order of ϕ on F_{1} and $r s=\phi$-index of F_{1}, then $k \mid r s$. Thus F_{1} is of ϕ-index 0 .
(1e) If P is abelian, $P=H \times K$, where H, K are invariant under $\phi, H \supseteq F$, ϕ has order $k p^{c}$ on H for some c and order relatively prime to p on K.

We shall call F the ϕ-nucleus of P.
The preceding results depend crucially upon the following inequalities:
(1f) If ϕ has order h and ϕ^{r} is without non-trivial fixed elements on P, then $h^{2} / r>\mathrm{o}(P)$; if P is of ϕ-index 0 , and g is a ϕ-generator of P of order s, then $h s>\mathrm{o}(P)$.

In § 1 we shall establish several further properties of regular ϕ-groups of prime power order, which we shall need for our subsequent work. In (2) we conjectured that if P has ϕ-index r and ϕ^{r} leaves only the identity element of P fixed, then P is in fact abelian. We shall include a proof of this conjecture when P has odd prime power order. The proof depends upon the following lemma, which is due to John Thompson.

Lemma 1.1. Let P be a p-group whose centre C and factor group $\bar{P}=P / C$ are both elementary abelian of the same order p^{n}. Suppose G has an automorphism ϕ which acts irreducibly on C and whose image $\bar{\phi}$ on \bar{P} acts irreducibly on \bar{P}. Assume further that ϕ and $\bar{\phi}$, regarded as linear transformations, have the same characteristic polynomials on C and \bar{P}. Then the order of $\bar{\phi}$ is less that p^{n-1}.

Proof. The associated Lie ring L of P is the Cartesian sum of two additive groups L_{1} and L_{2}, with $L_{1} \cong \bar{P}$ and $L_{2} \cong C$. Regarding L as a vector space over the prime field k_{p} with p elements, $\bar{\phi}$ and ϕ induce linear transformations of L_{1} and L_{2} respectively, which we denote by the same letters. If $[x, y]$ denotes the Lie product in L, it follows from the definition of L that for any two elements x, y in L_{1}

$$
\begin{equation*}
[x \bar{\phi}, y \bar{\phi}]=[x, y] \phi \tag{1}
\end{equation*}
$$

[^2]It follows from (1) that the elements of the form $[x, y], x, y$ in L_{1} generate a subspace of L_{2} invariant under ϕ. Since ϕ acts irreducibly on L_{2} and P is non-abelian, the elements $[x, y]$ span L_{2}.

Let K_{p}^{*} be the algebraic closure of K_{p} and let $L^{*}=L^{*}{ }_{1} \oplus L^{*}{ }_{2}$ be the corresponding Lie ring over K_{p}^{*}. Since the characteristic polynomial of $\bar{\phi}$ on L_{1} is irreducible, its characteristic roots are of the form $\alpha, \alpha^{p}, \alpha^{p^{2}}, \ldots, \alpha^{p n-1}$, for some element α of K_{p}^{*} of order k, where $k=$ order of $\bar{\phi}$. Since $\bar{\phi}$ is completely reducible over $K_{p}^{*}, L^{*}{ }_{1}$ has a basis $x_{0}, x_{1}, \ldots, x_{n-1}$ such that

$$
\begin{equation*}
x_{i} \bar{\phi}=\alpha^{p i} x_{i}, \quad i=0,1,2, \ldots, n-1 \tag{2}
\end{equation*}
$$

Using (1) and (2) we see that

$$
\left[x_{0}, x_{i}\right] \phi=\left[x_{0} \bar{\phi}, x_{i} \bar{\phi}\right]=\left[\alpha x_{0}, \alpha^{p^{i}} x_{i}\right]=\alpha^{1+p^{i}}\left[x_{0}, x_{i}\right] .
$$

If $\left[x_{0}, x_{i}\right]=0$ for all i, $\operatorname{dim} Z\left(L^{*}\right)>n$, where $Z\left(L^{*}\right)$ denotes the centre of L^{*}. But then $\operatorname{dim} Z(L)>n$, contrary to the fact that $\mathrm{o}(C)=p^{n}$. Hence $\left[x_{0}, x_{i}\right] \neq 0$ for some i. Since ϕ has the same characteristic roots as $\bar{\phi}$, we conclude that $\alpha^{1+p^{i}}=\alpha^{p j}$ for some j and hence

$$
\begin{equation*}
1+p^{i} \equiv p^{j}(\bmod k) \text { with } 0<i \leqq n-1,0 \leqq j \leqq n-1 \tag{3}
\end{equation*}
$$

which is clearly impossible if $k>p^{n-1}$. Since $\bar{\phi}$ acts irreducibly on $\bar{P},(k, p)=1$, so that in fact $k<p^{n-1}$.

We also require some additional properties of ϕ-groups which we shall need later in the paper as well as in the present section.

Lemma 1.2. Let P be an elementary abelian regular ϕ-group of order p^{n} and of ϕ-index r, and assume $P=P_{1} \times P_{2}$, where $P_{i} \neq 1$ and P_{i} is invariant under $\phi, i=1$, 2. If ϕ has order k_{i} on P_{i}, then $k_{1} \neq k_{2}$. Furthermore, if ϕ^{r} leaves only the identity element of P_{1} fixed, then $k_{1} \nmid k_{2}$.

Proof. Assume $k_{1} \mid k_{2}$ and ϕ^{r} leaves only the identity element of P_{1} fixed. Thus ϕ has order k_{2} on P, and we may assume $r \mid k_{2}$. Let $x=x_{1} x_{2}$ with $x_{i} \in P_{i}$, $i=1,2$ be a ϕ-generator of P of ϕ-index r. Now $\left[x_{2}\right]_{r}^{j}=1$ if and only if k_{2} / r divides j. Since $[x]_{r}^{j}=\left[x_{1}\right]_{r}^{j}\left[x_{2}\right]_{r}^{j}, z=\left[x_{1}\right]_{r}^{k_{2} / r}$ must be a ϕ-generator of P_{1}. Since ϕ^{r} leaves only the identity element of P_{1} fixed and $k_{1} \mid k_{2}, z=1$ and hence $P_{1}=1$, a contradiction.

If $k_{1}=k_{2}$, we need only show that ϕ^{r} has no non-trivial fixed elements on P_{1}. In the contrary case, ϕ^{r} leaves some subgroup $F_{1} \neq 1$ of P_{1} fixed. If $F_{1}=P_{1}, r=k_{1}$ and ϕ^{r} is the identity on P whence every element of P is of the form $\phi^{i}\left(x^{j}\right)$. But this implies that ϕ acts irreducibly on P, which is not the case. On the other hand, if $F_{1} \subset P_{1}$, set $\bar{P}=P / F_{1}=\bar{P}_{1} \times \bar{P}_{2}$. Since P is elementary abelian, F_{1} is the ϕ-nucleus of P, so that by (1c) $\bar{\phi}^{r}$ leaves only the identity element of \bar{P} fixed, and we reach a contradiction as in the preceding paragraph.

Lemma 1.3. Let P be a regular ϕ-group of order p^{m}, p a prime, and let F be the
ϕ-nucleus of P. Then $P=H K$, where H, K are ϕ-invariant subgroups of P satisfying the following conditions:
(a) H and K commute elementwise;
(b) $H \supseteq F$ and $H \cap K=\Omega_{1}(F)$;
(c) if ϕ has order k_{1} on $\Omega_{1}(F)$, then ϕ has order $k_{1} p^{e}$ on H for some e;
(d) the image of $\phi^{k_{1}}$ on $K / \Omega_{1}(F)$ leaves only the identity fixed;
(e) either $H=F$ or K is elementary abelian.

Proof. We first show that (e) is a consequence of the remaining conditions. Set $F_{1}=\Omega_{1}(F)$. Since $\widetilde{K}=K / F_{1}$ is elementary abelian, it follows from (d), if K is abelian, that K is elementary abelian. Suppose K is non-abelian, and let k be the order of $\tilde{\phi}$ on \tilde{K}. Let $x, y \in K$ be such that $[x, y]=z \neq 1$. Applying ϕ^{k}, it follows at once that $\phi^{k}(z)=z$. Since $z \in F_{1}$ and ϕ acts irreducibly on F_{1}, we conclude that $k_{1} \mid k$.

Assume now that (e) is false, in which case $H \supset F$ and K is non-abelian. Then $\bar{P}=P / F=\bar{H} \times \bar{K}$, where $\bar{\phi}$ leaves each factor invariant, has order k_{1} on \bar{H}, and k on \bar{K}. If P is of ϕ-index $r, \bar{\phi}^{r}$ leaves only the identity element of \bar{P} fixed. But then by Lemma 1.2, $k_{1} \nmid k$, a contradiction.

Now let $\widetilde{P}=P / F_{1}$. If $\widetilde{F}=1$, then \widetilde{P} is elementary abelian, $\tilde{\phi}$ has order prime to p on \widetilde{P}, and $\tilde{\phi}^{r}$ leaves only the identity element of \widetilde{P} fixed. It follows therefore from Lemma 1.2 that $\widetilde{P}=\widetilde{H} \times \widetilde{K}$, where each factor is $\tilde{\phi}$-invariant, either $\tilde{H}=1$ or $\tilde{\phi}$ has order k_{1} on \tilde{H}, and $\tilde{\phi}^{k_{1}}$ leaves only the identity element of \widetilde{K} fixed. If H, K are the inverse images of $\widetilde{H}, \widetilde{K}$ respectively, then ϕ has order $h=k_{1} p^{e}$ on H and $H \cap K=F_{1}$. But then $\tilde{\phi}^{h}$ leaves only the identity element of \widetilde{K} fixed, and it follows that the elements $y^{-1} \phi^{h}(y), y \in K$, include a set of coset representatives of F_{1} in K. If $y \in K, x \in H$, then $y x y^{-1}=x^{\prime} \in H$. Applying ϕ^{h} to this relation, we readily conclude that $y^{-1} \phi^{h}(y)$ centralizes H for all y in K. Since $F_{1} \subseteq Z(P)$, it follows at once that H, K commute elementwise. Thus the lemma holds if $F=1$.

If $\widetilde{F} \neq 1$, then by induction $\widetilde{P}=\widetilde{H} \widetilde{K}$, where $\widetilde{H}, \widetilde{K}$ satisfy the conditions of the lemma. Hence, if H denotes the inverse image of \tilde{H} in P, then ϕ has order $k_{1} p^{e}$ on H. Let K_{1} be the inverse image of K in P. Then $K_{1} \cap F=\Omega_{2}(F)$. If $K_{1} \subset P$, it follows again by induction that $K_{1}=\Omega_{2}(F) K$, where $\Omega_{2}(F) \cap K=$ F_{1} and K is ϕ-invariant. Thus $P=H K$, and $H \cap K=F_{1}$. Since $\tilde{\phi}^{k_{1}}$ leaves only the identity element of K / F_{1} fixed, it follows as in the preceding case that H and K commute elementwise.

Suppose finally that $K_{1}=P$. Then again as in the case $\widetilde{F}=1$, it follows that $F \subseteq Z(P)$. But then $\mathrm{cl}(P) \leqslant 2$ and $[P, P] \subseteq F_{1}$. Thus $\widetilde{P}=P / F_{1}=$ $\widetilde{F} \times \widetilde{K}$, where each factor is $\tilde{\phi}$-invariant. The lemma now follows with $H=F$ and K the inverse image of \widetilde{K}.

Lemma 1.4. Under the assumptions of the preceding lemma, if p is odd and F is abelian on at most two generators, then H is abelian.

Proof. By induction $\tilde{H}=H / F_{1}$ is abelian. If \tilde{H} is cyclic, H is clearly abelian.

If \tilde{H} is of type $\left(p^{m}, p^{m}\right)$ then $[H, H]$ is cyclic and contained in F_{1}. But in this case $\mathrm{o}\left(F_{1}\right)=p^{2}$, and since ϕ acts irreducibly on H, it follows that $[H, H]=1$. Hence H is abelian. Thus $\widetilde{H}=\widetilde{F} \times \widetilde{H}_{1}, \widetilde{H}_{1} \neq 1$. If $\widetilde{F}_{1}=\Omega_{1}(\widetilde{F})$, then $\tilde{\phi}$ either has order k_{1} or $k_{1} p$ on $\widetilde{F}_{1} \widetilde{H}_{1}$. Since $\widetilde{H}_{1} \neq 1, \tilde{\phi}$ cannot have order k_{1} on \widetilde{F}_{1} by Lemma 1.2. For the same reason $o\left(\widetilde{H}_{1}\right)=o\left(\widetilde{F}_{1}\right)$. In particular, it follows that $\bar{\phi}$ has the same characteristic polynomial on $\bar{H}=H / F$ as ϕ has on F_{1}.

If H is non-abelian, we consider the Lie ring L associated with $H ; L$ is represented as the direct sum of two additive groups L_{1}, L_{2} with $L_{1} \cong F_{1}$ and $L_{2} \cong \tilde{H}$. It follows now as in Lemma 1.1 that

$$
\begin{equation*}
1+p^{i} \equiv p^{j}\left(\bmod k_{1}\right) \tag{4}
\end{equation*}
$$

with $0 \leqq i, j \leqq n-1$, where $o\left(F_{1}\right)=p^{n}$. We note that in this case $i=0$ is possible. The only solution of this congruence is $n=2, i=0, j=1$, whence $k_{1}=p-2$. But $k_{1} \mid p^{2}-1$ and hence $k_{1}=3$. On the other hand, F_{1} has ϕ-index 0 and hence $k_{1} p=3 p>o\left(F_{1}\right)=p^{2}$, which is impossible unless $p=2$.

Lemma 1.5. If P is a regular ϕ-group of order p^{m}, then $\mathrm{cl}(P) \leqq 2$. Furthermore if p is odd, the ϕ-nucleus F of P is contained in $Z(P)$.

Proof. If F is elementary abelian, $\mathrm{cl}(P) \leqq 2$ since then $F \subseteq Z(P)$ and P / F is elementary abelian. Hence we may assume that F is abelian on at most two generators. If p is odd, it follows at once from the preceding two lemmas that $F \subseteq Z(P)$. Since P / F is elementary abelian, $\mathrm{cl}(P) \leqq 2$. On the other hand, if $p=2$, write $P=H K$, where H, K satisfy the conditions of Lemma 1.3. Since H, K commute elementwise, it suffices to prove $\operatorname{cl}(H) \leqq 2$. Now ϕ has order $3 \cdot 2^{e}$ on H for some e, and hence $\phi_{1}=\phi^{2 e}$ is an automorphism of H of order 3 leaving only the identity element fixed. But then a result of Neumann (8) implies that $\mathrm{cl}(H) \leqq 2$.

Lemma 1.6. Let P be a regular ϕ-group of order p^{m} with ϕ-nucleus F. If P contains a α-invariant abelian subgroup P_{1} such that $P_{1} \cap F=1$, then $P_{1} \subseteq Z(P)$.

Proof. Write $P=H K$, where H, K satisfy the conditions of Lemma 1.3. It follows as in the proof of Lemma 1.4 that H contains no ϕ-invariant subgroups disjoint from F and hence $P_{1} \subseteq K$. Without loss we may assume $K=P$. In particular, $F=\Omega_{1}(F)$. We can decompose $\bar{P}=P / F$ into the direct product of minimal $\bar{\phi}$-invariant subgroups $\bar{P}_{i}, i=1,2, \ldots, t$. The lemma follows at once by induction if $t>2$. If $t=1$, then $P=F P_{1}$ is abelian; so we may assume that $t=2$ and that the inverse image of $\bar{P}_{1}=F \times P_{1}$. Let h_{i} be the order of $\bar{\phi}$ on \bar{P}_{i} and k_{1} the order of ϕ on F. By Lemma $1.2 h_{1} \nmid h_{2}$; and by the same lemma $h_{1} \nmid k_{1}$. Hence there exists an integer w not divisible by k_{1} such that $\phi_{1}=\phi^{w}$ acts trivially on the inverse image P_{2} of \bar{P}_{2} in P. Now if $x_{i} \in P_{i}, i=1,2$, then $\left[x_{1}, x_{2}\right]=z \in F$. Applying ϕ_{1} to this relation, we conclude that P_{2} centralizes all elements of P_{1} of the form $x_{1}{ }^{-1} \phi_{1}\left(x_{1}\right)$. Since ϕ acts irreducibly on P_{1} and ϕ_{1} is not trivial on P_{1}, P_{1} centralizes P_{2} and hence $P_{1} \subseteq Z(P)$.

Theorem 1. Let P be a regular ϕ-group of order p^{n}, p odd, and of ϕ-index r, and assume that ϕ^{r} leaves only the identity element of P fixed. Then P is abelian.

Proof. Let F be the ϕ-nucleus of P, and assume first that F is elementary abelian, in which case $F \subseteq Z(P)$. By (1b), ϕ acts irreducibly on F and by (1d) $k \mid r s$, where k is the order of ϕ on F and $r s$ is the ϕ-index of F. Thus every element of F is of the form $\phi^{i}\left(x^{j}\right)$. If the elements $x^{j}, 0<j \leqq p-1$ lie in d distinct orbits of ϕ, then clearly $d \mid p-1$. Since each of these orbits contains k elements, it follows, if $o(F)=p^{m}$, that

$$
\begin{equation*}
k=\left(p^{m}-1\right) / d, \text { and } d \mid p-1 \tag{5}
\end{equation*}
$$

Let \bar{P}_{i} be the minimal $\bar{\phi}$-invariant subgroups of $\bar{P}=P / F, i=1,2, \ldots, t$, and let P_{i} be the inverse image of \bar{P}_{i} in P. Denote by k_{i} the order of $\bar{\phi}$ on \bar{P}_{i}. Suppose first that some P_{i} is elementary abelian and that the order h_{i} of ϕ on P_{i} is relatively prime to p. Then $P_{i}=F \times K_{i}$, where K_{i} is ϕ-invariant. By Lemma $1.6 K_{i} \subseteq Z(P)$. By induction P / K_{i} is abelian and hence $[P, P] \subseteq F \cap K_{i}=1$. Thus P is abelian. On the other hand, if P_{i} is elementary abelian and $p \mid h_{i}$ or if P_{i} is abelian, but not elementary abelian, it is easy to see that $k_{i}=k$. Hence we may suppose that for each i either P_{i} is non-abelian or $k_{i}=k$.

If some P_{i}, say P_{1}, were non-abelian, then for suitable x_{1}, x_{2} in $P_{1},\left[x_{1}, x_{2}\right]=$ $z \neq 1$ in F. Applying $\phi^{k_{1}}$ to this relation we conclude readily that $\phi^{k_{1}}(z)=z$ and hence that $k \mid k_{1}$. It follows that for any abelian $P_{i} k_{i} \mid k_{1}$, and this is impossible by Lemma 1.2. Thus either all P_{i} are non-abelian or all P_{i} are abelian. In the latter case we must have $t=1$, since otherwise $k_{1}=k_{2}=k$, contrary to Lemma 1.2. Thus we may suppose that all P_{i} are non-abelian. Furthermore, it follows as in Lemma 1.2 that ϕ must have order $k_{i} \phi$ on P_{i} for some i, say $i=1$.

Let $o\left(\bar{P}_{1}\right)=p^{n}$ and let $\bar{y}_{1}, \bar{y}_{2}, \ldots, \bar{y}_{n}$ be a basis for \bar{P}_{1} such that

$$
\bar{\phi}\left(\bar{y}_{i}\right)=\bar{y}_{i+1}, i=1,2, \ldots, n-1
$$

and

$$
\bar{\phi}\left(\bar{y}_{n}\right)=\bar{y}_{1}{ }_{1} \bar{y}_{2} \bar{c}_{2} \ldots \bar{y}_{n}^{c_{n}} .
$$

Regarding $\bar{\phi}$ as a linear transformation, its characteristic polynomial $\bar{f}(X)$ is given by

$$
\begin{equation*}
\bar{f}(X)=X^{n}-c_{n} X^{n-1}-\ldots-c_{2} X-c_{1} . \tag{6}
\end{equation*}
$$

Choose representative y_{i} of \bar{y}_{i} such that $\phi\left(y_{1}\right)=y_{i+1}, i=1,2, \ldots, n-1$ and $\phi\left(y_{n}\right)=z_{0} y_{1}{ }^{c}{ }_{1} y_{2}{ }_{2}{ }_{2} \ldots y_{n}{ }^{c_{n}}, z_{0} \in F$.

Now $\phi^{k_{1}}\left(y_{1}\right)=z y_{1}$, where $z \neq 1$ in F since ϕ has order $k_{1} p$ on P_{1}. Applying ϕ^{i} to this equation we find that

$$
\begin{equation*}
\phi^{k}\left(y_{1}\right)=\phi^{i-1}(z) y_{i} \quad i=1,2, \ldots, n . \tag{7}
\end{equation*}
$$

In particular, for $i=n$, and using (7), we obtain

$$
\begin{aligned}
& \phi^{n}(z) \phi^{n}\left(y_{1}\right)=\phi^{n}\left(\phi^{k_{1}}\left(y_{1}\right)\right)=\phi^{k}{ }_{1}\left(\phi^{n}\left(y_{1}\right)\right) \\
&=\phi^{k_{1}}\left(z_{0} y_{1}{ }_{1} y_{1} y_{2}^{c_{2}} \ldots y_{n} c_{n}\right)=z^{c}{ }_{1} \phi\left(z^{c_{2}}\right) \ldots \phi^{n-1}\left(z^{c_{n}}\right) \phi^{n}\left(y_{1}\right),
\end{aligned}
$$

whence

$$
\begin{equation*}
\phi^{n}(z)=z^{c_{1}} \phi\left(z^{c_{2}}\right) \ldots \phi^{n-1}\left(z^{c_{n}}\right) \tag{8}
\end{equation*}
$$

If $f(X)$ denotes the characteristic polynomial of ϕ on F, it follows from (6) and (8) and the irreducibility of ϕ on F that $f(X) \mid \bar{f}(X)$. But $\bar{\phi}$ acts irreducibly on \bar{P}_{1} and so $\bar{f}(X)$ is irreducible over the integers $\bmod p$. It follows at once that $f(X)=\bar{f}(X)$ and that $m=n$ and $k=k_{1}$. Lemma 1.1. now implies that $k<p^{n-1}$ in contradiction to (5).

Suppose finally that F is not elementary abelian. Then $P=H K$, where H, K satisfy the conditions of Lemma 1.3. If P is non-abelian, then K must be non-abelian by Lemma 1.4 since p is odd, and it follows as in the first part of the proof that the order k of ϕ on F_{1} divides the order of $\tilde{\phi}$ on $\widetilde{K}=$ K / F_{1}. But if $\widetilde{P}=P / F_{1}, \tilde{\phi}^{r}$ leaves only the identity element of $\Omega_{1}(\widetilde{F})$ fixed, $\tilde{\phi}$ has order k on $\Omega_{1}(\widetilde{F})$, and $\Omega_{1}(\widetilde{F})$ centralizes \widetilde{K}. This contradicts Lemma 1.2.

We remark that the assumption $p \neq 2$ was used only in the case F abelian of type $\left(p^{e}, p^{e}\right), e>1$. Thus Theorem 1 holds without restriction on p if F is elementary abelian.

We conclude this section with one further result on ϕ-groups which we shall need.

Lemma 1.7. Let P be an elementary abelian ϕ-group of order $p^{2 n}$, and assume ϕ has order $p^{n}+1$. Then $p=2$ and $n=1$.

Proof. Our conditions imply that ϕ acts irreducibly on P. Let g be a ϕ-generator of P of ϕ-index r, and suppose first that $h \nmid r$, where $h=p^{n}+1$. We may assume $r \mid h$. Since ϕ is irreducible on P, ϕ^{r} leaves only the identity element of P fixed, and hence $[g]_{r}^{h / r}=1$. Since P is a ϕ-group, this implies $h^{2} / r>o(P)$, whence

$$
\begin{equation*}
\left(p^{n}+1\right)^{2}>r p^{2 n} . \tag{9}
\end{equation*}
$$

(9) implies that $r=1$ if p is odd and that $r \leqq 2$ if $p=2$. But h is odd if $p=2$ and since $r \mid h$, we conclude that $r=1$ for all p. Suppose first that p is odd. Then for $s>h / 2$ we have $[g]_{1}^{s}=[g]_{1}^{h}\left[\phi^{s}(g) \phi^{s+1}(g) \ldots \phi^{h-1}(g)\right]^{-1}$ whence

$$
\begin{equation*}
[g]_{1}^{s}=\phi^{s}\left(\left[g^{-1}\right]_{1}^{h-s}\right) . \tag{10}
\end{equation*}
$$

$\phi^{\frac{1}{2} h}$ is an automorphism of P of order 2 without non-trivial fixed elements, and hence $\phi^{\frac{1}{2} h}(x)=x^{-1}$ for all x in P. It follows at once from (10) that $[g]_{1}^{s}=$ $\phi^{s+h / 2}\left([g]_{1}^{h-s}\right)$, and consequently the elements $[g]_{1}^{j}$ lie in at most $\frac{1}{2} h$ distinct orbits. Thus $\frac{1}{2} h \cdot h>o(P)$, and consequently $\left(p^{n}+1\right)^{2}>2 p^{2 n}$, which is impossible.

If $p=2$, it follows as in (10), since $g^{-1}=g$, that $[g]_{1}^{s}=\phi^{s}\left([g]_{1}^{h-s}\right)$. The non-identity elements of P thus lie in at most $\frac{1}{2}(h-1)=2^{n-1}$ orbits, and consequently $\left(2^{n}+1\right) 2^{n-1} \geqq 2^{2 n}-1$, which implies $n=1$.

On the other hand, if $h \mid r, P$ is of ϕ-index 0 , whence $\left(p^{n}+1\right) p>p^{2 n}$, which implies $n=1$. However, if p is odd, $\phi^{h / 2}(g)=g^{-1}$ and hence the elements $\phi^{i}\left(g^{j}\right)$ lie in at most $1+\frac{1}{2}(p-1)$ orbits, and we obtain the stronger inequality $\frac{1}{2}\left(p^{n}+1\right)(p+1)>p^{2 n}$, which is impossible.
2. Some preliminary lemmas. We begin with several lemmas.

Lemma 2.1. If a group G admits an automorphism ϕ which leaves a normal abelian subgroup H of G elementwise fixed and is such that the image of ϕ on G / H is without non-trivial fixed elements, then $H \subseteq Z(G)$.

Proof. If $x \in G, z \in H$, we have

$$
\begin{equation*}
x z x^{-1}=z^{\prime}, z^{\prime} \in H . \tag{11}
\end{equation*}
$$

Applying ϕ yields $\phi(x) z \phi\left(x^{-1}\right)=z^{\prime}$, which together with (11) implies $x^{-1} \phi(x) \in C(H)$ for all x in G. Since H is abelian, $x^{-1} \phi(x) y \in C(H)$ for all x in G, all y in H.

If $g \in G$, its image \bar{g} in $\bar{G}=G / H$ is of the form $\bar{x}^{-1} \bar{\phi}(\bar{x}), \bar{x} \in \bar{G}$, since $\bar{\phi}$ leaves only the identity element of \bar{G} fixed. Thus $g=x^{-1} \phi(x) y$ for suitable elements x in G, y in H. Thus $H \subseteq Z(G)$, as asserted.

Lemma 2.2. If G is assumed to be abelian in Lemma 2.1, then G contains a subgroup K invariant under ϕ such that $G=H \times K$.

Proof. Let $\theta(x)=x^{-1} \phi(x)$. Since G is abelian, θ is an endomorphism of G, whence by Fitting's lemma, $G=H_{1} \times K$ where θ is nilpotent on H_{1} and an automorphism on K. Since $\theta(x)=1$ if $x \in H, H \subseteq H_{1}$. If $\bar{\theta}$ denotes the image of θ on $\bar{G}=G / H=\bar{H}_{1} \times \bar{K}$, our hypotheses imply that $\bar{\theta}$ is an automorphism on \bar{G}. Since $\bar{\theta}$ is nilpotent on \bar{H}_{1}, necessarily $\bar{H}_{1}=1$ and hence $H_{1}=H$. Since $\phi(x)=x \theta(x), x \in K$ implies $\phi(x) \in K$, whence K is invariant under ϕ.

Lemma 2.3. Let A be a cyclic subgroup of a group G such that $N(A)=A$ and for any subgroup A_{0} of $A, A_{0} \subseteq Z\left(N\left(A_{0}\right)\right)$. Assume further than G contains a normal subgroup H such that $A \cap H \subseteq Z(H)$. Then if $\bar{G}=G / H$ and \bar{A} denotes the image of A in \bar{G}, we have $N(\bar{A})=\bar{A}$.

Proof. Let $A=(a)$ be of order h, and let $A \cap H=\left(a^{r}\right)$ with $r \mid h$. If x is a representative in G of \bar{x} in $N(\bar{A})$, then we have

$$
\begin{equation*}
x a x^{-1}=a^{\lambda} z \text { for some integer } \lambda \text { and some } z \text { in } H . \tag{12}
\end{equation*}
$$

Since $H \triangleleft G, x^{-1} z x=y, y$ in H, and hence

$$
\begin{equation*}
a^{-1} x a=a^{\lambda-1} x y . \tag{13}
\end{equation*}
$$

Let $K=A H$. Since A is Abelian, $A \cap H$ is in the centre of K. Set $K^{\prime}=$ $K / A \cap H$ and let $A^{\prime}=\left(a^{\prime}\right), H^{\prime}, y^{\prime}$ be the residues of A, H, y in K^{\prime}. Clearly $N_{R^{\prime}}\left(A^{\prime}\right)=A^{\prime}, H^{\prime} \triangleleft K^{\prime}, K^{\prime}=A^{\prime} H^{\prime}$, and $A^{\prime} \cap H^{\prime}=1$. If ϕ^{\prime} denotes the automorphism of H^{\prime} induced by conjugation by $a^{\prime}, \phi^{\prime}$ leaves only the identity
element of H^{\prime} fixed. Hence there exists an element t^{\prime} in H^{\prime} such that $\phi^{\prime}\left(t^{\prime}\right)=$ $y^{\prime-1} t^{\prime}$. If t is a representative of t^{\prime} in H, we conclude that

$$
\begin{equation*}
a^{-1} t a=y^{-1} t a^{r d} \text { for some integer } d . \tag{14}
\end{equation*}
$$

We now obtain from (13) and (14)

$$
a^{-1} x t a=\left(a^{-1} x a\right)\left(a^{-1} t a\right)=\left(a^{\lambda-1} x y\right)\left(y^{-1} t a^{\tau d}\right),
$$

whence

$$
\begin{equation*}
(x t)^{-1} a^{\lambda}(x t)=a^{1-r d} . \tag{15}
\end{equation*}
$$

By hypothesis (a^{λ}) lies in the centre of its normalizer, and consequently (15) implies $\lambda \equiv 1(\bmod r)$. Thus $a^{\lambda-1} \in A \cap H$.

On the other hand, as in the derivation of (14) there is an element t_{1} in H such that $a^{-1} t_{1} a=a^{r c} t_{1} z^{-1}$ for some integer c. Thus $a^{-1} t_{1} x a=$ $\left(a^{-1} t_{1} a\right)\left(a^{-1} x a\right)=\left(a^{\gamma c} t_{1} z^{-1}\right)\left(a^{\lambda-1} x z\right)$. Since by hypothesis $A \cap H \subseteq Z(H)$ and $a^{\lambda-1} \in A \cap H$, it follows that $t_{1} x a x^{-1} t_{1}{ }^{-1}=a^{r c+\lambda}$. Hence $t_{1} x \in N(A)=A$, whence $x \in A$. Thus $N(A)=A$, as asserted.

If $A \cap H=1, r=0$ and (15) implies that $x t \in N(A)$, giving $\bar{x} \in \bar{A}$ and $N(\bar{A})=\bar{A}$ at once. We thus have the following corollary.

Corollary. Let A be a cyclic subgroup of a group G such that $N(A)=A$. If G contains a normal subgroup H such that $A \cap H=1$ and $\bar{G}=G / H$, then $N(\bar{A})=\bar{A}$, where \bar{A} denotes the image of A in \bar{G}.

We shall also need some properties of automorphisms of an extra-special p-group P, as defined by Hall and Higman in (7). In their paper the only automorphisms ϕ of P which are considered are of order a power of a prime $q \neq p$ and the holomorph of P and ϕ is represented on a vector space V over the field with q elements. Many of their results can be carried through if ϕ has arbitrary order prime to p and if the representations of the holomorph of ϕ and P are taken in the complex numbers. In particular, the following lemma holds:

Lemma 2.4. Let P be an extra-special p-group of order p^{m} and assume that P admits an automorphism ϕ of order k prime to p which acts trivially on $Z(P)$ and such that the image $\bar{\phi}$ of ϕ on $\bar{P}=P / Z(P)$ acts irreducibly. Then $k \leqq p^{\frac{1}{2}(m-1)}+1$.

We shall need one other similar result.
Lemma 2.5. Let P be an extra-special p-group of order p^{m} and assume that P admits an automorphism ϕ of order k prime to p which acts trivially on $Z(P)$ and assume that $\bar{P}=\bar{P}_{1} \times \bar{P}_{2}$, that $\bar{\phi}$ leaves \bar{P}_{i} invariant and acts irreducibly on \bar{P}_{i} and that $\bar{\phi}$ has the same minimal polynomial on $\bar{P}_{i}, i=1,2$. Then $k \leqq p^{\frac{1}{2}(m-3)}+1$.

Proof. We proceed as in Lemma 1.1 and consider the Lie ring $L=L_{1} \oplus L_{2}$ associated with P over the field K_{p} with p elements and its extension $L^{*}=$ $L^{*}{ }_{1} \oplus L^{*}{ }_{2}$ over the algebraic closure K_{p}^{*} of K_{p}. Now $L_{2} \cong \bar{P}$, and since $\bar{\phi}$
has the same characteristic polynomial on \bar{P}_{1} and \bar{P}_{2}, it follows as in Lemma 1.1 that we can find a basis $x_{1}, \ldots, x_{2}{ }^{n}$ of L_{2} such that

$$
x_{i} \bar{\phi}=\alpha^{p i} x_{i} \text { and } x_{n+i} \bar{\phi}=\alpha^{p i} x_{n+i}, \quad i=1,2, \ldots, n,
$$

where $n=\frac{1}{2}(m-1)$ and α is a primitive k th root of unity in K_{p}^{*}.
Now for some $x_{i}, x_{j},\left[x_{i}, x_{j}\right]=z \neq 0$ in L_{1}; and it follows that

$$
z \phi=\alpha^{p a+p^{b}} z
$$

where a, b, denote the residues of $i, j(\bmod n)$. Since ϕ acts trivially on L_{1},

$$
\alpha^{p a+p^{b}}=1 .
$$

Thus $k \mid\left(1+p^{c}\right)$, where $c \leqq n-1$, and the lemma follows.
3. Applications to $A B A$-groups. We shall now apply the results of the preceding sections to obtain our first structure theorem for $A B A$-groups. We begin with the following lemma:
Lemma 3.1. Let $G=A B A$ and assume $G=A P$, where $P \triangleleft G$,o $(P)=p^{m}$, $p \geqq 5, A \cap P=Z(P)$ and $o(A \cap P)=p$. Then $G=A$.

Proof. Set $\bar{G}=G / A \cap P=\bar{A} \bar{B} \bar{A}=\bar{A} \bar{P}$ so that $\bar{P} \triangleleft \bar{G}$ and $\bar{A} \cap \bar{P}=1$. Since clearly $N(\bar{A})=\bar{A}, \bar{P}$ is a regular $\bar{\phi}$-group where $\bar{\phi}$ is the image of ϕ on \bar{P} and we may assume $\bar{P} \neq 1$. Let \bar{F} be the $\bar{\phi}$-nucleus of \bar{P}.

Assume first that $\bar{F}=1$, in which case \bar{P} is the direct product of minimal $\bar{\phi}$-invariant subgroups $\bar{P}_{i}, i=1,2, \ldots, t$, on each of which $\bar{\phi}$ has order k_{i} prime to p. By Lemma $1.2, k_{1} \nmid k_{i}, i>1$. Let P_{1} be the inverse image of \bar{P}_{i} in P, and assume $t>1$. It follows by induction that $Z\left(P_{i}\right) \supset A \cap P$ and hence that each P_{i} is abelian. If $x_{1} \in P_{1}$ and $x_{i} \in P_{i}, i>1$, then [x_{1}, x_{i}] $=z \in A \cap P$. Now $\phi_{1}=\phi^{p k_{i}}$ acts trivially on P_{i}, and hence if we apply ϕ_{1} to this relation, we readily conclude that $x_{1}^{-1} \phi_{1}\left(x_{1}\right) \in C\left(x_{i}\right)$. Since x_{1}, x_{i} are arbitrary, and $k_{1} \nmid k_{i}$, it follows that P_{1} centralizes P_{i} for all i. Thus $P_{1} \subseteq Z(P)$, a contradiction. Hence $t=1$.

Let $A=A^{\prime} A_{p}$, where A^{\prime} has order k prime to p. We may assume that no non-trivial subgroup of A^{\prime} is normal in G, since otherwise the lemma follows by induction. Hence $k=k_{1}$. Now P is an extra-special p-group, A^{\prime} centralizes $Z(P)$, and \bar{A}^{\prime} acts irreducibly on \bar{P}. It follows therefore from Lemma 2.4 that

$$
\begin{equation*}
k \leqq p^{n}+1 \tag{16}
\end{equation*}
$$

where $n=\frac{1}{2}(m-1)$.
If $r=\bar{\phi}$-index of $\bar{P}, \bar{\phi}^{r}$ leaves only the identity element of \bar{P} fixed, and hence $k^{2} / r>p^{2 n}$. Since $k \mid\left(p^{2 n}-1\right)$, it follows therefore from (16) that $k=p^{n}+1$. But then by Lemma $1.7, p=2$, contrary to hypothesis.

The same argument applies if \bar{P} is elementary and the order k of $\bar{\phi}$ on \bar{P} is prime to p, but $\bar{F} \neq 1$. In this case we conclude that $\bar{P}=\bar{F}$. Since $\bar{\phi}$ acts
irreducibly on \bar{F}, we again obtain (16). Since \bar{F} is of $\bar{\phi}$-index $0, k p>p^{2 n}$, which together with (16) implies $n=2$ and $k=p+1$. This yields a contradiction as above.

In the general case, let F be the inverse image of \bar{F} in P. Since $\bar{F} \subseteq Z(\bar{P})$ and $o(Z(P))=p, \mho^{1}(F) \subseteq Z(P)$, whence $\mho^{1}(F)=A \cap P$, and it follows that \bar{F} is elementary abelian. Furthermore, we may assume that the image $\tilde{\phi}$ of $\bar{\phi}$ on $\widetilde{P}=\bar{P} / \bar{F}$ acts irreducibly on P; otherwise the lemma follows readily by induction. Also F is abelian by induction.

The case \bar{P} elementary abelian and $\bar{\phi}$ of order prime to p has already been considered; hence if $k_{1}=$ order of $\bar{\phi}$ on \bar{F} and $k_{2}=$ order of $\tilde{\phi}$ on \widetilde{P}, we must have $k_{1} \mid k_{2}$. Furthermore, the order h of ϕ on F is either k_{1} or $k_{1} p$. If $x \in F$ and $y \in P$, then $y x y^{-1} \in F$ and consequently $\phi^{h}\left(y x y^{-1}\right)=y x y^{-1}$. But then $y^{-1} \phi^{h}(y) \in C(x)$ for all y in P. If $k_{1}<k_{2}$, the elements $\tilde{y}^{-1} \phi^{h}(\tilde{y})$ generate \widetilde{P} and hence $x \in Z(P)$, a contradiction. We conclude that $k_{1}=k_{2}$.

Since $\tilde{\phi}^{r}$ leaves only the identity element of \widetilde{P} fixed, $r \nsucc k_{2}$ and therefore $\bar{\phi}^{r}$ leaves only the identity element of \bar{P} fixed. Hence by Theorem $1 \bar{P}$ is abelian. But then $\mho^{1}(P) \subseteq Z(P)$, whence \bar{P} is elementary abelian. Thus P is an extra-special group and $\bar{\phi}$ has order $k_{1} p$ on \bar{P}. But then $A^{\prime} P$ satisfies the conditions of Lemma 2.5, and hence

$$
\begin{equation*}
k_{1} \leqq p^{n-1}+1, \text { where } p^{n}=\mathrm{o}(\bar{F}) \tag{17}
\end{equation*}
$$

On the other hand, since \bar{F} is of $\bar{\phi}$-index 0 , we must have $\left(p^{n}-1\right) /(p-1) \mid k_{1}$, which together with (17) implies that either $n=1$ and $k_{1}=2$ or $n=2$ and $k_{1}=p+1$. If $n=2$, Lemma 1.7 shows that $p=2$, contrary to assumption. If $n=1, \tilde{\phi}$ has order 2 on \widetilde{P} and $o(\widetilde{P})=p$. Since $\tilde{\phi}^{r}$ leaves only the identity element of \widetilde{P} fixed, we may assume $r=1$. If \tilde{y} is a $\tilde{\phi}$-generator of \widetilde{P}, then every element of \widetilde{P} must be of the form $\tilde{\phi}^{i}\left([\tilde{y}]_{1}^{j}\right)$. But the only elements of this form are $1, \tilde{y}, \tilde{y}^{-1}$ since $\tilde{\phi}$ has order 2 . Thus $p=3$, contrary to assumption.

We shall now prove the following theorem.
Theorem 2. Let $G=A B A$ and assume that G contains a normal subgroup P of order $p^{m}, p \geqq 5$, such that $G=A P$. Then the commutator subgroup of G is a unique normal complement of A in G.

Proof. The proof will be by induction on o (G). Let P_{1} be a minimal subgroup of the centre of P normal in G. Thus either $P_{1} \subset A$ or $P_{1} \cap A=1$. If \bar{G} $=G / P_{1}=\bar{A} \bar{B} \bar{A}=\bar{A} \bar{P}, N(\bar{A})=\bar{A}$ by the corollary of Lemma 2.3 in case $P_{1} \cap A=1$. The same conclusion clearly holds if $P_{1} \subset A$. Hence by induction $\bar{G}=\bar{A} \bar{P}^{*}$, where $\bar{P}^{*} \triangleleft \bar{G}, \bar{P}^{*} \cap \bar{A}=1$, and $\bar{P}^{*}=[\bar{G}, \bar{G}]$. If $P_{1} \cap A=1$, the inverse image P^{*} of \bar{P}^{*} is a normal complement for A in G. Clearly $P^{*} \supseteq[G, G]$. On the other hand, if $x \in P^{*}, a x a^{-1} x^{-1}=\phi(x) x^{-1}$. Since $N(A)$ $=A, \phi$ leaves only the identity element of P^{*} fixed, and hence the elements $\phi(x) x^{-1}$ exhaust P^{*}. Thus $P^{*}=[G, G]$.

We may therefore suppose that $P_{1} \subset A$ and that P contains no subgroup $\neq 1$ which is normal in G and disjoint from A. In this case we have $G=A P^{*}$,
with $P^{*} \triangleleft G, A \cap P^{*}=P_{1}$ cyclic of order p, and $P_{1} \subseteq Z\left(P^{*}\right)$. It follows from Lemma 2.2 that $Z\left(P^{*}\right)=P_{1} \times P_{2}$ where $P_{2} \cap A=1$ and P_{2} is invariant under A, whence normal in G. Thus $P_{2}=1$ and $P_{1}=Z\left(P^{*}\right)$. The hypothesis of Lemma 3.1 is satisfied so that $G=A$, and the theorem is proved.
4. $A B A$-groups associated with the primes $p=2$ and 3 . To complete the description of $A B A$-groups G of the form $A P$ with $P \triangleleft G$, and $N(A)=A$, we consider finally the case in which P is a 2 -group or 3 -group. We begin with the following lemma.

Lemma 4.1. Let $G=A B A=A P$, where P is a 2-group normal in G. Then P contains at most one A-invariant abelian subgroup of type (2,2). Furthermore any subgroup of A which is normal in G is in the centre of G.

Proof. If K is an A-invariant abelian subgroup of type (2,2), no proper subgroup of K can be invariant under A, for otherwise we clearly have $N(A) \supset A$. Hence if P_{1} denotes a minimal A-invariant subgroup of $Z(P)$, either $P_{1} \cap K=1$ or $P_{1}=K$. Let $\bar{G}=G / P_{1}=\bar{A} \bar{P}$. If $P_{1} \subset A, N(\bar{A})$ $=\bar{A}$; if $P_{1} \not \subset A$, the minimality of P_{1} implies that $P_{1} \cap A=1$ so that $N(\bar{A})=\bar{A}$ by the corollary of Lemma 2.3. Hence by induction \bar{P} contains at most one \bar{A}-invariant abelian subgroup of type $(2,2)$. The lemma follows at once unless P_{1} itself is of type $(2,2)$. But in this case P cannot contain another such subgroup K for then $P_{1} K=P_{1} \times K$ would be a regular ϕ-group on which ϕ has order 3, and this is impossible by Lemma 1.2.

Let $A_{0} \triangleleft G, A_{0} \subseteq A$. Let L be a maximal A-invariant normal subgroup of P. We may assume that $A L \subset A P$, since otherwise A_{0} is in the centre of G by induction on o (P). In any case A_{0} is in the centre of $A L$ by induction. If $\widetilde{G}=G / L=\widetilde{A} \widetilde{P}$, repeated application of Lemma 2.3 shows that $N(\widetilde{A})$ $=\widetilde{A}$ and hence that the image $\tilde{\phi}$ of ϕ leaves only the identity element of \widetilde{P} fixed. Since $A_{0} \subseteq Z(L)$, it follows as in the proof of Lemma 2.1 that $x^{-1} \phi(x)$ centralizes A_{0} for all $x \in P$. But there exist a set of coset representatives of L in P of the form $x^{-1} \phi(x)$. Thus $A_{0} \subseteq Z(G)$.

Our main result for $p=2$ is the following:
Theorem 3. Let $G=A B A=A P$, where P is a 2-group normal in G. Then either A has a normal complement in G or P contains two subgroups T_{1}, T_{2} normal in G such that
(a) $G=A\left(T_{1} \times T_{2}\right)$;
(b) A does not possess a normal complement in $A T_{1}$;
(c) $A \cap T_{2}=1, T_{2}$ contains no A-invariant abelian subgroup of type (2,2), and furthermore T_{2} contains every A-invariant subgroup of P which is disjoint from A and which contains no A-invariant abelian subgroup of type (2,2);
(d) $6 \mid o(A)$.

Proof. The proof will be made by induction on o (P). We add to our induction hypotheses the following assertion:
(e) $T_{1}=Q Q^{\prime}$, where $Q, Q^{\prime} \triangleleft G, \phi$ has order $3 \cdot 2^{s}$ on $Q, A \cap Q^{\prime}=1$, and if $Q^{\prime} \neq 1$, the order of ϕ on Q^{\prime} is divisible by 3 , but is not of the form $3 \cdot 2^{s}$.

We note first of all that (b) and (e) imply (d). In fact $A \cap T_{1} \neq 1$ by (b), whence $2 \mid \mathrm{o}(A)$, and it follows at once from (e) that $3 \mid \mathrm{o}(A)$.

Let P_{1} be a minimal A-invariant subgroup of the centre of P and set \bar{G} $=G / P_{1}=\bar{A} \bar{P}$. As in the preceding lemma, $N(\bar{A})=\bar{A}$. We distinguish two cases.

Case 1. P contains no subgroup normal in G disjoint from A. Thus $P_{1} \subset A$. Suppose first that \bar{A} has a normal complement \bar{P}^{*} in \bar{G}. We may suppose $\bar{P}^{*}=\bar{P}$, since otherwise the theorem follows by induction. Now \bar{P} is a regular $\bar{\phi}$-group. Let \bar{F} be its $\bar{\phi}$-nucleus and write $\bar{P}=\bar{H} \bar{K}$, where \bar{H}, \bar{K} satisfy the conditions of Lemma 1.3. Suppose first that \bar{F} is elementary abelian and $\mathrm{o}(\bar{F})=2^{n}>4$. Let F be the inverse image of \bar{F} in P. If F is non-abelian, F is an extra-special group. Since $\bar{\phi}$ acts irreducibly on \bar{F}, it follows as in the proof of Lemma 3.1 that $\bar{\phi}$ has order $k=2^{\frac{1}{2} n}+1$ on \bar{F}, whence $n=2$ by Lemma 1.7 . Thus F is abelian. Let H, K be the inverse image of \bar{H}, \bar{K} in P. It follows now as in Lemma 1.3 that F is in the centre of K. Since P contains no A-invariant normal subgroups disjoint from $A, K \subset P$ and hence $\bar{F} \subset \bar{H}$.

Now $\bar{\phi}$ has order $2 k$ on \bar{H}, and hence $\bar{\phi}$ has the same characteristic polynomial on \bar{F} as $\tilde{\phi}$ has on $\tilde{H}=\bar{H} / \bar{F}$. By the remark following Theorem 1, \bar{H} must be elementary abelian. But H is non-abelian; otherwise $F \subseteq Z(P)$. Hence H is extra-special, and we may apply Lemma 2.5 as in the proof of Lemma 3.1 to conclude that $\bar{\phi}$ has order $k=2^{\frac{1}{2} n}+1$ on F. Thus $n=2$ by Lemma 1.7, a contradiction.

On the other hand, if $\bar{F}=1$, essentially the same arg. shows that no minimal $\bar{\phi}$-invariant subgroup of \bar{P} has order greater th .. It follows therefore from Lemma 1.2 that either $\bar{P}=1$ or o $(\bar{P})=4$. In the first case, $G=A$ and the theorem is obvious. In the second case, P must be a quaternion group and the theorem follows with $T_{1}=Q=P$, and $T_{2}=1$.

We may therefore assume that $\bar{F} \neq 1$ is abelian of type $\left(2^{e}, 2^{e}\right)$. Let \bar{F}_{1} $=\Omega_{1}(\bar{F})$ and let F_{1} be the inverse image of \bar{F}_{1} in H. If $F_{1} \subseteq Z(H)$, then again as in Lemma 1.3, $F_{1} \subseteq Z(P)$, a contradiction. Thus $A \cap H \subseteq[H, H]$ and A does not possess a normal complement in $A H$. If we set $H=Q$, then ϕ has order $3 \cdot 2^{s}$ on Q for some s.

Suppose \bar{K} contains a minimal $\bar{\phi}$-invariant abelian subgroup \bar{K}_{1} disjoint from \bar{F}_{1}. Since $o\left(\bar{K}_{1}\right)>4$, it follows as above that the inverse image K_{1} of \bar{K}_{1} is abelian. But then $K_{1} \subseteq Z(P)$, a contradiction. Thus $\bar{F}_{1}=\Omega_{1}(\bar{K})$. If $\bar{K}=\bar{F}_{1}$, the theorem follows with $T_{1}=H, T_{2}=1$; so assume $\bar{K} \supset \bar{F}_{1}$. Then \bar{K} is non-abelian. If $K \subset P$, it follows by induction from (e) that Q^{\prime} $=[A K, A K]$ is disjoint from A. Hence the theorem holds with $T_{1}=P$, $T_{2}=1$.

Assume finally that $K=P$, in which case $\bar{F}=\bar{F}_{1}$ and F is a quaternion group. If $x \in F, y \in P$, then $[x, y]=z \in A \cap F$. Applying ϕ^{6} to this relation,
we find that F centralizes all elements of P of the form $y^{-1} \phi^{6}(y), y \in P$. Since these form a set of coset representatives of F in P, we conclude that $Q=F K_{1}$, where $K_{1}=C(F) \cap P \triangleleft P$ and $K_{1} \cap F=A \cap F$. But then K is abelian, a contradiction.

Case 2. $P_{1} \cap A=1$. If \bar{A} has a normal complement in \bar{G}, A obviously has one in G. Hence we may assume by induction that $\bar{G}=\bar{A}\left(\bar{T}_{1} \times \bar{T}_{2}\right)$, where \bar{T}_{1}, \bar{T}_{2} satisfy the conditions of the theorem. Let H_{1}, H_{2} be the inverse images of \bar{T}_{1}, \bar{T}_{2} in P.

Assume first that $\mathrm{o}\left(P_{1}\right) \neq 4$ and hence that H_{2} contains no A-invariant abelian subgroup of type $(2,2)$. If $\bar{T}_{2} \neq 1$, it follows by induction that H_{1} $=T_{1} \times P_{1}$, where T_{1} is invariant under A and again as in Lemma $1.3 T_{1}$ and H_{2} commute elementwise. Thus $G=A\left(T_{1} \times H_{2}\right)$. Clearly T_{1} satisfies (b) and (e) and H_{2} contains every A-invariant subgroup of P disjoint from A and contains no A-invariant subgroup of type (2,2). The theorem follows.

On the other hand, if $\bar{T}_{2}=1$, we may assume $\bar{T}_{1}=\bar{P}$. Hence $\bar{P}=\bar{Q} \bar{Q}^{\prime}$, where $\bar{Q}, \bar{Q}^{\prime}$ satisfy (e). Let $Q_{1}, Q_{1}{ }^{\prime}$ be the inverse images of $\bar{Q}, \bar{Q}^{\prime}$ in P. Let \bar{K} be a minimal \bar{A}-invariant subgroup of \bar{Q} and K its inverse image in P. Either $\bar{K} \subset \bar{A}$ or \bar{K} is abelian of type $(2,2)$. In the first case it follows from the minimality of P_{1} that $K=P_{1} \times L$, where L is A-invariant (in fact, $L \subset A$). In the second case, K is abelian and the same conclusion follows since o $\left(P_{1}\right) \neq 4$. Now if $y \in Q_{1}$ and $z \in L$, we have

$$
\begin{equation*}
y z y^{-1}=z^{\prime} x, \text { where } z^{\prime} \in L, x \in P_{1} . \tag{18}
\end{equation*}
$$

Applying ϕ^{m} to (18), where $m=3 \cdot 2^{s}=$ order of $\bar{\phi}$ on \bar{Q}, we conclude readily that $\phi^{m}(x)=x$ and hence that $x=1$, since ϕ does not have order 3 on P_{1} and no proper subgroup of P_{1} is A-invariant. Thus $L \triangleleft A Q_{1}$. If $\widetilde{A} \widetilde{Q}_{1}$ $=A Q_{1} / L$ and \widetilde{P}_{1} denotes the image of P_{1} in $\widetilde{A} \widetilde{Q}_{1}$, we conclude by induction if \widetilde{A} does not have a normal complement in $\widetilde{A} \widetilde{Q}_{1}$ and from Lemma 1.3 if \widetilde{A} has a normal complement in $\widetilde{A} \widetilde{Q}_{1}$ that $\widetilde{Q}_{1}=\widetilde{P}_{1} \times \widetilde{Q}$, where \widetilde{Q} is invariant under \widetilde{A}. It follows at once that $Q_{1}=P_{1} \times Q$, where Q is A-invariant.

Now $Q_{1}{ }^{\prime}$ is a regular ϕ-group. If F is the ϕ-nucleus of $Q_{1}{ }^{\prime}$, the minimality of P_{1} implies that either $P_{1} \subset F$ or $P_{1} \cap F=1$. In the first case we must have $P_{1}=F$ since $o\left(P_{1}\right) \neq 4$. But then $Q_{1}{ }^{\prime} / P_{1}=\bar{Q}^{\prime}$ is elementary abelian and $\bar{\phi}$ has odd order on \bar{Q}^{\prime}. Since $\bar{\phi}$ does not have order 3 on $\bar{\phi}^{\prime}$, we conclude that \bar{Q}^{\prime} contains a minimal \bar{A}-invariant subgroup \bar{K} such that o $(\bar{K})>4$. Since $\bar{K} \not \subset \bar{T}_{2}$, this contradicts (c), and hence $P_{1} \cap F=1$. But then Lemma 1.3 implies that $Q_{1}{ }^{\prime}=P_{1} \times Q^{\prime}$. Finally, if $x \in Q, x^{\prime} \in Q^{\prime}$, we have

$$
\begin{equation*}
\left[x, x^{\prime}\right]=z \in P_{1} . \tag{19}
\end{equation*}
$$

By (e) $\bar{\phi}$ has order $m^{\prime} \cdot 2^{s}$ on \bar{T}_{1}, where $m^{\prime}=$ order of $\bar{\phi}$ on \bar{Q}^{\prime}. Applying $\phi^{m^{\prime} 2 s}$ to (19), we see that $\phi^{m^{\prime}}(z)=z$. But it follows from Lemma 1.2 applied to $Q_{1}{ }^{\prime} / F$ that the order of ϕ on P_{1} does not divide m^{\prime}, and hence $z=1$. We conclude that $G=A\left(T_{1} \times P_{1}\right)$ where $T_{1}=Q Q^{\prime}$ and the theorem follows.

Suppose finally that o $\left(P_{1}\right)=4$. Now H_{2} is a regular ϕ-group. Let F_{2} be its ϕ-nucleus. If $P_{1} \subseteq F_{2}$, then F_{2} is abelian of type ($2^{c}, 2^{c}$); and since \bar{T}_{2} contains no \bar{A}-invariant abelian subgroup of type $(2,2), P_{1}=F_{2}$. In this case \bar{T}_{2} is elementary abelian and $\bar{\phi}$ has odd order on \bar{T}_{2}. If K_{2} denotes the maximal elementary abelian A-invariant subgroup of H_{2}, ϕ has odd order on K_{2}, since otherwise \bar{T}_{2} would contain an \bar{A}-invariant abelian subgroup of type (2, 2). Hence $K_{2}=P_{1} \times T_{2}$ where T_{2} is A-invariant and lies in $Z\left(H_{2}\right)$ by Lemma 1.6. It follows at once from the structure of H_{2} that $H_{2}=K_{1} \times T_{2}$ where K_{1} is A-invariant and every A-invariant subgroup of K_{1} contains P_{1}. Furthermore, T_{2} contains no A-invariant abelian subgroup of type $(2,2)$. On the other hand, if $P_{1} \cap F_{2}=1$, this same conclusion holds with $K_{1}=P_{1}$.

Set $T_{1}=H_{1} K_{1}$ so that $G=A\left(T_{1} T_{2}\right)$ and $T_{1} \cap T_{2}=1$. It is clear from the construction of T_{2} that T_{2} satisfies (c). Furthermore, $T_{1}=Q Q^{\prime}$, where $Q^{\prime} / P_{1}=\bar{Q}^{\prime} \bar{K}_{1}$. Clearly Q, Q^{\prime} satisfy (e). Finally it follows as in Lemma 1.3 that T_{1} and T_{2} commute elementwise, and the theorem follows.

In Part II we shall need one additional property of T_{1} :
Lemma 4.2. Let $G=A B A=A T$, where $T \triangleleft G, o(T)=2^{n}$ and ϕ has order $3 \cdot 2^{s}$ on T. Let H be an elementary abelian subgroup of T with $\mathrm{o}(H)>2$ if $Z(T) \subseteq A$ and $\mathrm{o}(H)=2$ if $Z(T) \subset A$; and assume that H centralizes B. Then either $H \subseteq Z(T)$ or $Z(T) \subseteq A$ and $H \subseteq Z(T) B$.

Proof. The proof is by induction on o (G). We may clearly assume that T is a 2-Sylow subgroup of G and that $o(A)=3 \cdot \mathrm{o}(A \cap T)$. Let P be a minimal A-invariant subgroup of $Z(T)$ and suppose first that $P \cap A=1$. We may assume T is non-abelian and $H \not \subset P$. In particular, $T \neq(A \cap T) P$. Let $B=(b)$, where $b=y a^{r}, y \in T$. In order to carry out the induction we shall also allow the possibility o $(H)=2$ when $Z(T) \not \subset A$, but $B \subset T$. Observe that if $H \cap \mathrm{P} \neq 1,[H \cap P, B]=1$ implies a^{r} acts trivially on P, whence $3 \mid r$ and $B \subseteq T$.

Let $\bar{G}=G / P=\overline{A B A}=\overline{A T}$. Then by induction $\bar{H} \subseteq \bar{Q}$, where $\bar{Q} \triangleleft \bar{G}$, $\bar{A} \cap \bar{Q} \triangleleft \bar{Q}$, and $o(\bar{Q} / \bar{A} \cap \bar{Q})=4$. Let Q be the inverse image of \bar{Q} in T. Suppose first that $H \subseteq(A \cap Q) P$. If o $(H)>2, \mathrm{H} \cap P \neq 1$, whence $3 \mid r$; if $\mathrm{o}(H)=2$, then $3 \mid r$ by assumption. But then if $a_{1} x \in H$, where $\left(a_{1}\right)=$ $\Omega_{1}(A \cap Q)$ and $x \in P$, it follows that $\left[a_{1}, b\right]=1$, whence $a_{1} \in Z(G)$ and $H \subseteq Z(T)$. Hence we may assume that $H \not \subset(A \cap Q) P$.

If $\bar{Q}=(\bar{A} \cap \bar{Q}) \times \bar{F}$, where \bar{F} is \bar{A}-invariant, it follows as above that ϕ^{r} acts trivially on \bar{F}. Thus F is of ϕ-index 0 and hence of type (4,4). This implies Q is non-abelian; otherwise $H \subseteq(A \cap Q) P$. Hence by induction $Q=T$. If \bar{Q} is non-abelian, \bar{Q} is the central product of $\bar{A} \cap \bar{Q}$ and a quaternion group \bar{F}, and by induction $Q=T$. Now if $B \subset Q$ and $o(B)>4$, it follows in either case that $C(B) \cap Q \subseteq(A \cap Q) P B$. Since H is elementary, this yields $H \subseteq(A \cap Q) P$, which is not the case. On the other hand, if o $(B)=2$, $P \subset A\left(b^{2}\right) A=A$, a contradiction. Thus $3 \mid \mathrm{o}(B)$. This forces $\mathrm{C}(B) \cap Q$ to lie in a conjugate of $A \cap Q$ and hence in $(A \cap Q) P$, which is not the case.

Assume now that $Z(T) \subset A$. If $3 \mid \mathrm{o}(B), C(B) \cap T$ lies in a conjugate of $A \cap T$. Since A is cyclic, this implies $H \subseteq Z(T) B$. We may therefore assume $B \subset T$. The lemma follows at once by induction if $Z(\bar{T}) \subset \bar{A}$; so suppose the contrary. Then by the first part of the proof, $\bar{H} \subseteq \bar{Q}=\Omega_{1}(Z(\bar{T}))$ and $\bar{Q}=(\bar{A} \bar{Q}) \times \bar{F}$, where \bar{F} is \bar{A}-invariant. Let F, Q be the inverse images of \bar{F}, \bar{Q} in T. Suppose F is a quaternion group. Since $A F=A B_{1} A$ with $B_{1} \subseteq B$, $C(B) \cap Q=(A \cap Q) B_{1}$ and the lemma follows. On the other hand, if F is abelian, then $H \subseteq F$. If B centralizes F, then so does $\phi^{i}(B)$ for all i. But then $F \subseteq Z(T)$, which is not the case. We conclude that $C(B) \cap F=$ $(A \cap F) B_{1} \subseteq H$, thus completing the proof.

For $p=3$, we have the following result.
Theorem 4. Let $G=A B A=A P$, where P is a 3-group normal in G. Then either A has a normal complement in G or G contains two normal 3-subgroups T_{1}, T_{2} such that
(a) $G=A\left(T_{1} \times T_{2}\right)$;
(b) $A \cap T_{1} \subseteq Z\left(T_{1}\right), T_{1} / Z\left(T_{1}\right)$ is elementary abelian of order $9, T_{1}$ contains a maximal subgroup T_{0} invariant under A which is the direct product of $A \cap T_{1}$ and a cyclic group;
(c) T_{2} is elementary abelian and contains no A-invariant subgroups of order 3 ;
(d) T_{1} does not contain a 3-Sylow subgroup of A.

Proof. The proof is entirely analogous to that of Theorem 3. We shall use the same notation. If $P_{1} \subset A$ and \bar{G} possesses a normal \bar{A}-complement, it follows from the proof of Lemma 3.1 that G possesses a normal A-complement unless \bar{P} contains an elementary abelian subgroup \bar{H}_{1} of order 9 on which $\bar{\phi}$ has order 6 . If $\bar{P}=\bar{H} \bar{K}$, this can only occur if \bar{F} is cyclic, $\bar{H} \supset \bar{F}$, and \bar{H}_{1} $=\Omega_{1}(\bar{H})$. But then by Lemma 1.3, \bar{K} is elementary abelian and contains no $\bar{\phi}$-invariant subgroups of order 3. Its inverse image in P possesses a normal P_{1} complement K which centralizes the inverse image H of \bar{H}. If H has a normal P_{1}-complement, then G has a normal A-complement. Otherwise the second possibility of the theorem holds with $T_{1}=H, T_{2}=K$. The final condition of the theorem follows from the fact that $\bar{\phi}$ has order 6 on $\Omega_{1}(\bar{H})$.

If $\bar{P}=\bar{T}_{1} \times \bar{T}_{2}$, then $P=T_{1} \times T_{2}$, where T_{1} is the inverse image of \bar{T}_{1} and T_{2} is the normal P_{1}-complement contained in the inverse image of \bar{T}_{2}. We have only to verify (b). Now $A \cap T_{1} \triangleleft T_{1}$ and T_{1} admits an automorphism ϕ_{1} of order 2 which fixes $A \cap T_{1}$ and is such that the image $\tilde{\phi}_{1}$ of ϕ_{1} on $\widetilde{T}_{1}=T_{1} / A \cap T_{1}$ leaves only the identity element of \widetilde{T}_{1} fixed. This implies that \widetilde{T}_{1} is abelian. Furthermore by Lemma 2.1, $A \cap T_{1} \subseteq Z\left(T_{1}\right)$. Thus $\operatorname{cl}\left(T_{1}\right)=2$ and (b) follows at once.

Suppose next that $P_{1} \cap A=1$. If \bar{G} has a normal \bar{A}-complement, then so does G. Hence we may assume \bar{P} satisfies the second alternative of the theorem. If $o\left(P_{1}\right)>3$, the theorem follows as in Case 2 of Theorem 3; while if $\mathrm{o}\left(P_{1}\right)=3$, it follows for the same reason that $G=A\left(T_{1} \times T_{2}\right)$, where ϕ has order $2 \cdot 3^{s}$ on T_{1}, \bar{T}_{1} satisfies (b), and T_{2} satisfies (c). Again it remains
to verify (b). If $\Omega_{1}\left(A \cap T_{1}\right) \triangleleft T_{1}$, it follows by induction and the argument of the preceding case that T_{1} satisfies (b).

In the contrary case we must have $A \cap T_{1}=\Omega_{1}\left(A \cap T_{1}\right)$. Let Z be the inverse image of $Z\left(\bar{T}_{1}\right)$ in T_{1}. If Z is abelian, then [T_{1}, T_{1}] is cyclic and A invariant. Since $A \cap T_{1} \nVdash T_{1},\left[T_{1}, T_{1}\right] \cap A=1$; and it follows at once that $A \cap T_{1}$ has a normal complement in T_{1}, which is not the case. Hence $P_{1}=[Z, Z]$. Thus there exists x in Z, y in $A \cap T_{1}$ such that $[x, y]=z \neq 1$ in P_{1}. On the other hand, by the structure of \bar{T}_{1}, we can choose x so that $\bar{x}=\bar{x}_{1}{ }^{3}$ for some \bar{x}_{1} in \bar{T}_{1}. But then if x_{1} is a representative of \bar{x}_{1} in $T_{1},\left[x_{1}, y\right]$ $=z_{1} \in P_{1}$; and it follows that $[x, y]=1$, a contradiction.
5. Some special results on linear groups. Lemma 3.1 of (2) was the principal tool in the proof that a solvable regular ϕ-group is nilpotent (2, Theorem 1). In analysing the structure of $A B A$-groups, we shall need some slight extensions of this result. For our present purposes, it will be more convenient to rephrase this lemma in terms of groups of linear transformations:

Lemma 5.1. Let $L=A Q$ be a linear group acting irreducibly on an m-dimensional vector space P over a field with p elements, where $A=(\phi)$ is cyclic, Q is an elementary abelian q-group for some prime $q \neq p$, and Q is a minimal normal subgroup of L. Assume further that Q does not have the unit representation as an absolutely irreducible constituent. Then if d denotes the order of ϕ on Q and h its order on P, we have $d \mid m$ and $h \mid d\left(p^{m / d}-1\right)$.

Remark. If G denotes the holomorph of L and P, the final condition of the lemma is simply the statement that no element $\neq 1$ of P lies in $Z(P Q)$. The minimality of Q in turn implies that $P Q$ has a trivial centre.

We shall need a special case of this result:
Lemma 5.2. Under the hypotheses of Lemma 5.1, if the subspace P_{0} of P left elementwise fixed by ϕ is one-dimensional, then $d=m=h$.

Proof. If we take P_{0} as the minimal subspace W of P in the proof of Lemma 3.1 of (2), we conclude at once that ϕ^{d} is the identity on P. Furthermore, the same lemma shows that over the algebraic closure K_{p}^{*} of the ground field, the corresponding vector space P^{*} can be decomposed into the direct sum of subspace $P_{1}^{*}, P_{2}^{*}, \ldots, P_{i}^{*}$, each of dimension d, each invariant under ϕ, and such that the matrix Φ_{i} of ϕ on P_{i}^{*} with respect to a suitable basis assumes the form

$$
\Phi_{i}=\left(\begin{array}{ccccc}
0 & 1 & 0 & \ldots & 0 \tag{20}\\
0 & 0 & 1 & 0 & \ldots \\
& & & 0 \\
0 & 0 & & \ldots & 1 \\
b_{i} & 0 & & \ldots & 0
\end{array}\right), b_{i} \in K_{p}^{*}, i=1,2, \ldots, t
$$

Since $\phi^{d}=1$ on $P, b_{i}=1$ for all i, and hence we may assume that the P_{i}^{*} are actually subspaces of P. Now 1 is a characteristic root of each Φ_{i}, and
hence ϕ leaves fixed some non-zero vector of each $P_{i}^{*}, i=1,2, \ldots, t$. But by hypothesis the subspace left elementwise by ϕ is 1 -dimensional. Thus $t=1$, and $d=m=h$.

From Lemma 5.1 we can derive a slight extension of Theorem 1 of (2).
Lemma 5.3. Let $G=A B A=A T$, where $T \triangleleft G$. Assume $T=M Q$ where $M \triangleleft G, A \cap T \subset M, Q$ is a q-group and if $\bar{G}=G / M=\bar{A} \bar{Q}$, that \bar{Q} is a minimal normal subgroup of \bar{G} and $N(\bar{A})=\bar{A}$. Assume further that $Z(M)$ contains a p-subgroup $P, p \neq q$, such that $A \cap P=1$ and P is a minimal normal subgroup of G. Then $P Q$ is nilpotent.

Proof. $C(Q) \cap P$ is invariant under A since $P \subseteq Z(M)$, and hence $C(Q) \cap P \triangleleft G$. In view of the minimality of P, we may assume $C(Q) \cap P=1$. If $P Q$ is A-invariant, $P Q$ is a regular ϕ-group and hence is nilpotent by Theorem 1 of (2). If $P Q$ is not A-invariant, the proof of Theorem 1 of (2) goes through without essential change.

In fact, \bar{G} may be regarded as a group of linear transformations on P and as such satisfies the hypotheses of Lemma 5.1. Furthermore $\bar{\phi}$ has order $d>1$ on \bar{Q} since $\bar{A} \cap \bar{Q}=1$ and $N(\bar{A})=\bar{A}$. In view of Lemmas 4.1 and 4.2 of (2), it suffices to show that d divides the ϕ-index r_{1} of P. By the proof of Theorem 10 of (2), T contains an element g such that the elements $\phi^{i}\left([g]_{r}^{j}\right)$ include a set of coset representatives of $A \cap T$ in T. If t is the least integer such that $[g]_{T}^{t} \in(A \cap M) P, r_{1}$ may clearly be taken as a multiple of $r t$. On the other hand, $[\bar{g}]_{r}^{t}=1$ and since \bar{Q} is abelian, $\bar{\phi}^{r t}(\bar{g})=\bar{g}$, whence $d \mid r t$. Thus $d \mid r_{1}$.

We shall also need a slight variation of this result.
Lemma 5.4. Lemma 5.3 holds under the alternative assumption that \bar{Q} is a quaternion group and \bar{A} does not centralize \bar{Q}.

Proof. Clearly $C(Z(Q)) \cap P \triangleleft G$. If $C(Z(Q)) \cap P=P, P$ is in the centre of $M^{*}=Z(Q) M$, and the conclusion follows at once from the preceding lemma with M^{*} playing the role of M. In the contrary case, Q and hence \bar{Q} is represented faithfully on P.

If $\bar{A}=(\bar{a}), \bar{a}^{3}$ is in the centre of \bar{G}. Hence if P_{1} denotes a minimal subgroup of P invariant under ϕ^{3}, P can be written as the direct product of subgroups $P_{i}, i=1,2, \ldots, n$, of the same order p^{i}, each invariant under ϕ^{3}, and on each of which ϕ^{3} has the same minimal polynomial. In particular, if h denotes the order of ϕ on P, we have

$$
\begin{equation*}
h \mid 3\left(p^{t}-1\right) . \tag{21}
\end{equation*}
$$

If $n=1, P_{1}=P$, and ϕ^{3} acts irreducibly on P. If P is extended to a vector space P^{*} over the algebraic closure of the field with p elements, it follows that ϕ^{3} is represented in P^{*} by a diagonal matrix with distinct characteristic roots. On the other hand, since $\bar{A} \cap \bar{Q}$ is not in the kernel of the representation of \bar{G} on P, at least one of the absolutely irreducible constituents, say, χ, of \bar{G} in P^{*} has degree >1. (In fact, it is easy to see that they are all of the same
degree.) Since \bar{a}^{3} is in the centre of \bar{G}, \bar{a}^{3} is represented by a scalar matrix in the representation χ. It follows at once that ϕ^{3} is represented in P^{*} by a diagonal matrix whose characteristic roots are not all distinct. This is a contradiction, and hence $n>1$.

Now the order d of $\bar{\phi}$ on \bar{Q} is either 3 or 6 , and it follows as in Lemma 5.3 that the ϕ-index r_{1} of P is a multiple of 3 . Since one of the inequalities $h^{2}>r_{1} \mathrm{O}(P)$ or $h p>\mathrm{o}(P)$ must hold and o $(P)=p^{t n}$, it follows at once from (21) that $n \leqq 2$, whence $n=2$.

Let $g=g_{1} g_{2}$ be a ϕ-generator P, where $g_{i} \in P_{i}, i=1,2$. If $g \in P_{i}$, say $g \in P_{1}$, the elements $\phi^{3 i}\left([g]_{r_{1}}^{j}\right)$ are all in P_{1} since P_{1} is invariant under ϕ^{3} and $3 \mid r_{1}$. Hence there are at most $3\left(p^{t}-1\right)$ elements different from 1 of the form $\phi^{i}\left([g]_{r_{1}}^{j}\right)$ in P, and consequently

$$
\begin{equation*}
3\left(p^{t}-1\right) \geqq p^{2 t}-1, \tag{22}
\end{equation*}
$$

and this is impossible since $p \neq 2$.
We may therefore assume that $g_{1} \neq 1, g_{2} \neq 1$. To reach a contradiction, we shall show that (22) holds. It clearly suffices to prove that there are at most $p^{t}-1$ distinct elements different from 1 of the form $\phi^{3 i}\left([g]_{r_{1}}^{j}\right)$ $=\phi^{3 i}\left(\left[g_{1}\right]_{r_{1}}^{j}\right) \phi^{3 i}\left(\left[g_{2}\right]_{r_{2}}^{j}\right)$. Suppose $\phi^{3 i}\left(\left[g_{1}\right]_{r_{1}}^{j}\right)=\phi^{3 k}\left(\left[g_{1}\right]_{r_{1}}^{m}\right)$ for some i, j, k, m. Since ϕ^{3} acts irreducibly on P_{1}, P_{2} with the same minimal polynomial, the corresponding relation with g_{1} replaced by g_{2} must hold, and we conclude at once that there are at most $p^{t}-1$ elements of the required form.
6. Exceptional $A B A$-groups of types I, II, and III. We have seen in $\S 4$ that there exist $A B A$-groups G with $N(A)=A$ in which A does not have a normal complement. In this section we shall determine two further classes of $A B A$-groups which have this property. We begin with the following lemma.

Lemma 6.1. Let $G=A B A=A T$, where $T \triangleleft G$. Assume that $T=M Q$, where M is nilpotent and normal in G, Q is a q-group for some prime q, and if $\bar{G}=G / M=\bar{A} \bar{Q}$, then $N(\bar{A})=\bar{A}$. Then if $L \subset M$ is normal in G and \widetilde{G} $=G / L=\widetilde{A} \widetilde{B} \widetilde{A}$, we have $N(\widetilde{A})=\widetilde{A}$.

Proof. The proof is by induction on o (G). It clearly suffices to prove the lemma under the assumption that L is a minimal subgroup of M normal in G. Since this implies that L is abelian, the lemma will follow at once from Lemma 2.3 if we can show that every subgroup of A lies in the centre of its normalizer.

Let $A_{0} \subset A$ and $G_{0}=N\left(A_{0}\right)$. If $G_{0} \subset G$, we may assume by induction that $A_{0} \subseteq Z\left(G_{0}\right)$. Thus we need only consider the case in which $A_{0} \triangleleft G$. Let P be a p-Sylow subgroup of M. Since M is nilpotent, $P \triangleleft G$. If $p \geqq 5$, it follows from Theorem 2 that $G_{p}=A P=A P^{*}$, where $P^{*} \triangleleft G_{p}$ and $A \cap P^{*}=1$. The hypotheses of Lemma 2.1 are satisfied if we take A_{0} for H and $A_{0} P^{*}$ for G. Thus $A_{0} \subseteq Z\left(A_{0} P^{*}\right)$ and hence $A_{0} \subseteq Z\left(G_{p}\right)$. On the other hand, if $p=2$ or 3 , Lemma 4.1 and Theorem 4 imply that $A_{0} \subseteq Z\left(G_{p}\right)$. Thus $A_{0} \subseteq Z(A M)$.

It follows that $\bar{G}=\bar{A} \bar{Q}$ acts as a group of automorphisms of A_{0}. Since $N(\bar{A})=\bar{A}$, we can again apply Lemma 2.1 to conclude that the elements of \bar{Q} induce the identity automorphism of A_{0}. Thus Q centralizes A_{0}, and A_{0} $\subseteq Z(G)$.

The preceding argument can easily be adapted to give the following corollary:

Corollary. Let $G=A B A$, and assume A contains a subgroup A_{0} which is normal in G such that $\bar{G}=G / A_{0}$ satisfies the hypotheses of the preceding lemma. Then A_{0} is in the centre of G.

Remark. The lemma also obviously holds if $Q \subset A$.
Theorem 5. Let $G=A B A=A T$, where $T \triangleleft G$. Assume that $T=M Q$, where $M \neq 1$ is nilpotent and normal in G, Q is a q-group for some prime q, $Z(T)=1, A \cap T \subset M$, and no normal subgroup of T lies properly between M and T. Then either
(a) M is a 2-group of order $2^{3 s}$, $\mathrm{o}(A \cap M)=2^{s}$ and $\mathrm{o}(Q)=7$; or
(b) M is an abelian group of type (t, t), where $2 \nmid t, 3 \nmid t, \circ(A \cap M)=t$ and $\mathrm{o}(Q)=3$.

Furthermore, if $\bar{\phi}$ denotes the image of ϕ on $\bar{G}=G / M=\bar{A} \bar{Q}$, then
(c) ϕ has order $3 \cdot 2^{s}$ on T and $\bar{\phi}$ has order 3 on \bar{Q} in case (a); and ϕ has order 2 t on T and $\bar{\phi}$ has order 2 on \bar{Q} in case (b); in either case \bar{Q} does not have $\bar{\phi}$-index 0 .
(d) There exists a q-Sylow subgroup Q^{*} of T such that $\phi\left(Q^{*}\right)=u Q^{*} u^{-1}$, $u \in A \cap M$, and no q-Sylow subgroup of T is A-invariant.
(e) In case (a) $\Omega_{1}(Z(M))$ has order 8.
(f) For any proper subgroup L of M normal in $G, G / L$ satisfies the hypotheses of the theorem.

Proof. Since M is nilpotent and $Z(T)=1,(o(M), q)=1$. If P is a minimal subgroup of $Z(M)$ normal in G, then P is elementary abelian of order p^{m} for some prime p. Furthermore $A \cap P \neq 1$, for otherwise by Lemma 5.3 $P Q$ is nilpotent which is not the case. Also $P \not \subset A$, for by Lemma $6.1 N(\bar{A})=\bar{A}$ and then Lemma 2.1 forces Q to centralize P. Thus $m>1$. Since $P \subseteq Z(M)$, \bar{G} can be regarded as a group of linear transformations on P; and since $A \cap P$ is cyclic, the hypotheses of Lemma 5.2 are satisfied. Hence if ϕ has order h on P and $\bar{\phi}$ has order d on $\bar{Q}, d=m=h$.

By Lemma 2.2, $P=(A \cap P) \times P_{0}$ where P_{0} is a regular ϕ-group of order p^{m-1}. Since ϕ has order m on $P_{0}, m p>p^{m-1}$ if P_{0} is of ϕ-index 0 . The only solutions of this inequality are $m=2$ or $m=3$ and $p \neq 2$. On the other hand, if P_{0} is of ϕ-index $r_{0} \neq 0$ and if ϕ acts irreducibly on P_{0}, then

$$
\begin{equation*}
m^{2}>r_{0} p^{m-1} \tag{23}
\end{equation*}
$$

which implies $p=2, m \leqq 6$ or $p=3, m=2$. An even stronger inequality holds if ϕ does not act irreducibly on P_{0}.

It follows readily from the proof of Lemma 5.2 that $f(X)=X^{m-1}+X^{m-2}$ $+\ldots+X+1$ is the characteristic polynomial of ϕ on P_{0}. Hence if $p=2$ and m is even, 1 is a characteristic root of ϕ on P_{0}. Since this leads at once to the contradiction $N(A) \supset A$, the cases $p=2, m=2,4$, or 6 are excluded. Lemma 1.7 shows that $p=2, m=5$ is also impossible. Thus $p=2, m=3$ or $m=2$, and hence $\mathrm{o}(P)=8$ or p^{2}. If o $(P)=p^{2}$, then $p \neq 2$, for otheriwse ϕ leaves the generator of P_{0} fixed. In particular, it follows that $(m, p)=1$ in all cases.

Since $N(\bar{A})=\bar{A}$ by the preceding lemma, \bar{Q} is a regular $\bar{\phi}$-group. Our hypotheses imply that $\bar{\phi}$ acts irreducibly on \bar{Q}, and hence one of the inequalities $d q>\mathrm{o}(\bar{Q})$ or $d^{2}>\mathrm{o}(\bar{Q})$ necessarily holds. Since $m=d=2$ or 3 , we conclude that $\mathrm{o}(\bar{Q})=q$ except possibly in the case $d=3, q=2$. But $p=2$ if $m=3$, whence $p=q$, a contradiction. Thus $\mathrm{o}(Q)=q$.

We next establish (f). We may assume $P \subset M$, since otherwise (f) holds trivially. If $\widetilde{G}=G / P=\widetilde{A} \widetilde{T}=\widetilde{A} \widetilde{M} \widetilde{Q}$, it clearly suffices to show that \widetilde{G} satisfies the conditions of the theorem. Since $N(\widetilde{A})=\widetilde{A}$ by the preceding lemma, we need only show that $Z(\widetilde{T})=1$; so assume the contrary. Let \widetilde{K} be a minimal \widetilde{A}-invariant subgroup of $Z(\tilde{T}) \cap \tilde{M}$ and let K be the inverse image of \widetilde{K} in G. We may clearly assume K is a p-group, for otherwise $Z(T) \neq 1$.

Now if $(y)=Q$ and $x \in K$, we have

$$
\begin{equation*}
[x, y]=z, z \in P \tag{24}
\end{equation*}
$$

Since $z \in Z(M),\left[x^{p}, y\right]=1$. But $x^{p} \in P \subseteq Z(M)$, and hence $x^{p}=1$.
Consider first the case $p=2$. Then clearly K is elementary abelian. If the order of ϕ on K is odd, then the holomorph of Q and ϕ is completely reducible on K, so that $K=P \times H$ where H is invariant under Q and ϕ. Clearly Q centralizes H. To obtain a contradiction, we need only show that H is in the centre of M. Since M is nilpotent, it suffices to show that H is in the centre of the 2 -Sylow subgroup S of M.

Since S contains at most one A-invariant abelian subgroup of type (2, 2), H is not of type $(2,2)$ and ϕ does not have order 3 on H. Furthermore $H \cap A$ $=1$, since $A \cap P \neq 1$. Now by Theorem $3, A S=A\left(S_{1} \times S_{2}\right)$, where S_{1}, S_{2} satisfy the conditions of Theorem 3 . Our conditions imply that $H \subset S_{2}$. Since S_{2} is a regular ϕ-group and H is a ϕ-invariant abelian subgroup of S_{2}, $H \subseteq Z\left(S_{2}\right)$ and hence $H \subseteq Z\left(S_{1} \times S_{2}\right)$. Now $S=(A \cap \mathrm{~S}) S_{1} S_{2}$ and it follows from the minimality of K that $A \cap S$ centralizes H. Thus $H \subseteq Z(S)$, a contradiction.

If ϕ has even order on K, \bar{K} must be of type (2,2). By the proof of Theorem $3, S$ contains such a normal subgroup K only if $A S$ has a normal A-complement. But then if S were non-abelian, $P_{0}=[s, s] \cap P$ would be Q-invariant, which is not the case. Thus S is abelian, and we conclude that $Z(T) \neq 1$, a contradiction. Thus (f) holds if $p=2$.

Suppose then that $p \neq 2$. If $x_{1}, x_{2} \in K$, it follows readily from (24) that
$\left[\left[x_{1}, x_{2}\right], y\right]=1$. Since $\left[x_{1}, x_{2}\right] \in P$, we conclude that K is abelian, and, as above, K is elementary abelian. The balance of the proof now parallels the case $p=2$. Thus (f) holds in all cases.

We next prove that T contains a q-Sylow subgroup Q^{*} satisfying (d). By induction \tilde{T} possesses such a q-Sylow subgroup and hence for some q-Sylow subgroup Q_{1} of T we have $\phi\left(Q_{1}\right)=v Q_{1} v^{-1}$, where $v \in(A \cap M) P$. Since ϕ has order m on P and $(m, p)=1$, it follows that $(A \cap M) P=(A \cap M) \times P_{0}$. If $v=u v_{0}$, where $u \in A \cap M$ and $v_{0} \in P_{0}$, there exists an element w in P_{0} such that $w \phi\left(w^{-1}\right)=v_{0}$, whence $\phi\left(w Q_{1} w^{-1}\right)=\phi(w) u v_{0} Q_{1} v_{0}^{-1} u^{-1} \phi\left(w^{-1}\right)$ $=u w Q_{1} w^{-1} u^{-1}$. The subgroup $Q^{*}=w Q_{1} w^{-1}$ thus has the required property. Without loss of generality we may assume $Q^{*}=Q$.

This result will now be used to establish (a) and (b). Consider first the case $P=M$. Since o $(Q)=q, Q$ acts regularly on P. If $p=2, o(P)=8$, and we must have $q=7$. Suppose then that $\mathrm{o}(P)=p^{2}$. Now $A T$ is an $A B A$-group so that there exists a fixed element g in T and an integer r such that the elements $\phi^{i}\left([g]_{\tau}^{j}\right)$ include a set of coset representatives of $A \cap P$ in T. Write $g=x y$, where $x \in P$ and $(y)=Q$. Since $d=2, \phi(y)=u y^{-1} u^{-1}$, where $u \in A \cap P$ by (d). If $d \nmid r, \phi^{i}\left([g]_{\tau}^{j}\right)$ is of the form w or $w y^{ \pm 1}, w \in P$, for all i, j; and this gives immediately $q=3$. On the other hand, if $d \mid r,[g]_{r}^{j} \in P$ if and only if $q \mid j$. But now since ϕ has order 2 on the abelian group P,

$$
\begin{array}{r}
{[g]_{\tau}^{q}=(x y)\left(x u y u^{-1}\right)\left(x u^{2} y u^{-2}\right)} \tag{25}\\
=u^{-1}\left(x u y u^{q-1} y u^{-(q-1)}\right) \\
u^{-(q-1)}
\end{array}
$$

Since y acts regularly on $P,(x u y)^{q}=1$, and hence $[g]_{T}^{q}=u^{-q}$. Thus $A \cap P$ itself is the only coset of $A \cap P$ in P which is of the required form. Thus $q=3$, as asserted. Since $p \neq q, q=3$ implies $p \neq 3$. The remaining conditions of (a) and (b) have been established above in the case $P=M$. Furthermore, we have shown, when $d=2$, that $d \nmid r$ and hence that \bar{Q} does not have $\bar{\phi}$-index 0 . The argument applies equally well if $d=3$ and $q=7$.

Assume next that $P \subset M$. By induction \tilde{M} is either a 2 -group of order $2^{3(s-1)}, o(\widetilde{A} \cap \tilde{M})=2^{s-1}$ and $q=7$ or \tilde{M} is abelian of type $\left(t^{\prime}, t^{\prime}\right), 2 \nmid t^{\prime}$, $3 \nmid t^{\prime}, \mathrm{o}(\widetilde{A} \cap \tilde{M})=t^{\prime}$ and $q=3$. In the first case $\mathrm{o}(P)=8, M$ has order $2^{3 s}, \mathrm{o}(A \cap M)=2^{s}$. In the second case $\mathrm{o}(P)=p^{2}$ with $p \neq 2,3, \mathrm{o}(M)=t^{2}$, where $t=p t^{\prime}$ and o $(A \cap M)=t$. Furthermore, $[M, M]$ is cyclic, normal in G, and contained in P. But P is a minimal normal subgroup of G and is of type (p, p). Thus $[P, P]=1$ and M is abelian. To prove M is in fact of type (t, t), we need only show that the p-Sylow subgroup of M is of type (p^{c}, p^{c}), and this follows at once from the fact that A is cyclic.

It follows for the same reason that $\Omega_{1}(Z(M))=P$ in case (a). Thus (e) holds.
To prove (c) let k be the order of ϕ on T and set $t=2^{s}$ in case (a). Then in both cases (a) and (b), it follows from (d) that $k \mid m t$. On the other hand, we clearly have $m \mid k$ and $(m, t)=1$. Now $\mathrm{o}(A)=m t e$, for some integer e. If $k<m t$, it follows at once that $y=\phi^{k e}(y)=a^{k e} y a^{-k e}$, and hence that Q
centralizes $a^{k e}$. But clearly $a^{k e} \neq 1$ and lies in $A \cap M$, a contradiction. Thus $k=m t$. Since the final assertion of (c) has already been established, (c) holds.

The same argument shows that no q-Sylow subgroup of T is invariant under A, thus completing all parts of the theorem.

Theorems 3,4 , and 5 will serve to motivate the definitions of exceptional $A B A$-groups which we shall now make. In view of what is to follow, it will be necessary to include a slightly larger class of groups than those satisfying the conditions of these theorems.

Definition. Let $G=A B A=A T$, where $T \triangleleft G$. Then G will be called an exceptional $A B A$-group
(a) of type I if T is a 2 -group and G satisfies the hypotheses of Theorem 3 with $T=T_{1} \neq 1$;
(b) of type $I I$ if $T=M Q, M$ is a 2 -group normal in G, Q is a 7 -group, $A \cap T \subset M, C(M) \cap Q=Q_{0}$ is cyclic, $\widetilde{G}=G / Q_{0}=\widetilde{A} \widetilde{T}$ satisfies the hypotheses of Theorem 5 ;
(c) of type III if $T=M Q, M$ is abelian of type $(t, t),(t, 3)=1, Q$ is a 3 -group; if $Q_{0}=C(M) \cap Q$, then $\widetilde{G}=G / Q_{0}=\tilde{A} \tilde{T}$ satisfies the hypotheses of Theorem 5 ; either $A \cap T \subset M$ and Q_{0} is cyclic or $\bar{G}=G / M=\bar{A} \bar{Q}$, satisfies the hypotheses of Theorem 4 with $\bar{Q}=T_{1}$.

Furthermore if Q_{0} is cyclic and disjoint from A, we require the following additional conditions in (b) and (c): if $\bar{G}=G / M=\bar{A} \bar{Q}$, then $\bar{\phi}$ has order $m \cdot q^{s}$ on \bar{Q}, where $m=3$ if $q=7$ and $m=2$ if $q=3$, and \bar{Q} is not of $\bar{\phi}$-index 0 .

Remarks. For exceptional groups of type III, we shall also allow the possibility that $M=1$ and G satisfies the conditions of Theorem 4 with $Q=T_{1}$. The complexity of the definition of exceptional groups of types II and III arises from the need for T to be A-invariant. The problem is that the image \bar{Q}_{0} of Q_{0} does not possess an \bar{A}-invariant complement in \bar{Q}. If $\bar{Q}=\bar{H} \bar{K}$, where \bar{H}, \bar{K} satisfy the conditions of Lemma 1.3 , our requirements force $\bar{Q}=\bar{H}$ and $\bar{H} \supset \bar{F}$, where \bar{F} is the $\bar{\phi}$-nucleus of \bar{Q}. Lemma 6.3 will give further clarification of this point.

We shall also call an A-invariant subgroup T of an $A B A$-group G an exceptional subgroup of G (of type I, II, or III) if $G^{*}=A T=A B^{*} A$ is an exceptional $A B^{*} A$-group (of type I, II, or III).

We next prove
Lemma 6.2. Let $G=A B A=A T$, where $T \triangleleft G$. Assume that $T=M Q$, where M is nilpotent and normal in G, Q is a q-group for some prime q, $(o(M), q)$ $=1$, and $A \cap T \subset M$. Let Q_{1}, Q_{2} be two disjoint subgroups of Q such that $M Q_{i} \triangleleft G, i=1,2$. Then either Q_{1} or Q_{2} centralizes M.

Proof. Let S_{1} be a minimal subgroup of Q_{1} such that $M S_{1} \triangleleft G$. If S_{1} centralizes $M, M S_{1}=M \times S_{1}$ and since $o(M)$ is prime to $q, S_{1} \triangleleft G$. If $G^{\prime}=G / S_{1}=$ $A^{\prime} T^{\prime}=A^{\prime} M^{\prime} Q^{\prime}, N\left(A^{\prime}\right)=A^{\prime}$ since $A \cap S_{1}=1$, and the lemma follows at once by induction. We may thus suppose that S_{1} does not centralize M.

Let L be a maximal subgroup of M normal in G such that $L S_{1}=L \times S_{1}$ and set $\widetilde{G}=G / L=\widetilde{A} \widetilde{T}=\widetilde{A} \widetilde{M} \widetilde{Q}, \widetilde{S}_{1}$ denoting the image of S_{1} in \widetilde{Q}. If \widetilde{P} is a minimal subgroup of \tilde{M} normal in \widetilde{G}, it follows from the maximality of L and the nilpotency of \tilde{M}, that \widetilde{S}_{1} does not centralize \widetilde{P}. But then by the first part of the proof of Theorem $5, \mathrm{o}\left(\widetilde{S}_{1}\right)=q$, and if $\bar{G}=G / M=\bar{A} \bar{Q}, \bar{\phi}$ has order m on the image \bar{S}_{1} of S_{1} in \bar{Q}, where $m=3$ if $q=7$ and $m=2$ if $q=3$.

If S_{2} is a minimal subgroup of Q_{2} such that $M S_{2} \triangleleft G$ and \bar{S}_{2} its image in \bar{Q}, we may similarly assume that $\mathrm{o}\left(\bar{S}_{2}\right)=q$ and that $\bar{\phi}$ has order m on \bar{S}_{2}. But $\bar{S}_{1} \bar{S}_{2}=\bar{S}_{1} \times \bar{S}_{2}$ must be a regular $\bar{\phi}$-group, which is impossible by Lemma 1.2 since $\bar{\phi}$ has the same order on each factor. This contradiction establishes the lemma.

Lemma 6.3. Let $G=A B A=A T$, where $T \triangleleft G$. Assume that $T=M Q$ where M is nilpotent and normal in G, Q is a q-group for some prime $q, A \cap T \subset M$, and $M \cap Z(T)=1$. Then $T=T^{*} \times Q^{*}$, where T^{*} us an exceptional subgroup of type II or III, $Q^{*} \subset Q$, and $Q^{*} \triangleleft G$.

Proof. We may suppose $M \neq 1$ since otherwise the lemma holds trivially with $T^{*}=1$. Our conditions imply that M has order prime to q. Let now S be a minimal subgroup of $Z(Q)$ such that $M S \triangleleft G$. We distinguish two cases.

Case 1. For any minimal subgroup P of M, normal in $G, P \cap C(S)=1$, and only the identity element of Q centralizes M.

It follows as in the proof of Theorem 5 that $\mathrm{o}(P)=p^{m}$, where $m=3$, $q=7$ if $p=2$ and $m=2, q=3$ if $p \neq 2$, that $\mathrm{o}(A \cap P)=p$, and that $\mathrm{o}(S)=q$. Furthermore, as in the proof of (f) of Theorem $5, M \cap Z(M S)=1$. The minimality of S implies that $Z(M S)=1$. Hence $T^{*}=M S$ is an exceptional subgroup of type II or III.

If $S_{1} \subset Q$ is such that $S \cap S_{1}=1$ and $M S_{1} \triangleleft G$, then $M S_{1}=M \times S_{1}$ by Lemma 6.2. Our present assumption implies that the image \bar{S} of S in $\bar{G}=$ $G / M=\bar{A} \bar{Q}$ is the unique minimal subgroup of \bar{Q}, normal in \bar{G}.

Since \bar{Q} is represented faithfully on P and o $(P)=8$ or p^{2}, \bar{Q} must be abelian and hence cyclic. If T^{*} is of type II, o $(Q)=7$, or else $\Omega_{1}(Q)$ centralizes M. If T^{*} is of type III, the argument in Theorem 5 which showed that $q=3$ can be repeated to show that o $(Q)=3$. Thus $S=Q$, and the lemma follows with $T=T^{*}$.

Case 2. Either S centralizes some minimal subgroup of M normal in G or $C(M) \cap Q \neq 1$.

Now $C(M) \cap \mathrm{T} \triangleleft G$. Since $(\mathrm{o}(M), q)=1, Q_{0}=C(M) \cap Q$ is characteristic in $C(M) \cap T$ and hence is also normal in G. Thus if $Q_{0} \neq 1, Q$ contains a subgroup $\neq 1$ which centralizes M and is normal in G. We shall show that the same assertion holds if S centralizes P. We may clearly assume $C(M) \cap Q=1$.

Let L be a maximal subgroup of M normal in G which is centralized by S and assume $L \subset M$. Set $G^{\prime}=G / L=A^{\prime} T^{\prime}=A^{\prime} M^{\prime} Q^{\prime}, S^{\prime}$ denoting the image of
S in Q^{\prime}. If P^{\prime} is any minimal subgroup of M^{\prime} normal in G^{\prime}, then $C\left(P^{\prime}\right) \cap S^{\prime}=1$. If $Q_{0}{ }^{\prime}=C\left(M^{\prime}\right) \cap Q^{\prime}$ and Q_{0} denotes the inverse image of $Q_{0}{ }^{\prime}$ in $Q, S \cap Q_{0}{ }^{\prime}=1$ and it follows from Lemma 6.2 that Q_{0} centralizes M. Thus $Q_{0}=1$ and consequently $Q_{0}{ }^{\prime}=1$. It follows now by Case 1 applied to G^{\prime} that $Q^{\prime}=S^{\prime}$ and hence that $L \cap Z(T) \neq 1$, contrary to hypothesis. Thus $L=M$ and S centralizes M.

It remains therefore to prove the lemma under the assumption that S centralizes M. Let $\widetilde{G}=G / S=\widetilde{A} \widetilde{T}=\widetilde{A} \widetilde{M} \widetilde{Q}$. Since $A \cap S=1, N(\widetilde{A})=\widetilde{A}$. Since M has order prime to $q, \tilde{M} \cap Z(\widetilde{T}) \neq 1$ implies $M \cap Z(T) \neq 1$. Thus $\widetilde{M} \cap Z(\widetilde{T})=1$, and it follows by induction that $\widetilde{T}=\widetilde{T}^{*} \times \widetilde{Q}^{\prime \prime}$, where \widetilde{T}^{*} is an exceptional subgroup of type II or III, $\widetilde{Q}^{\prime \prime} \subset \widetilde{Q}$ and $\widetilde{Q}^{\prime \prime} \triangleleft \widetilde{G}$.

If $\widetilde{T}^{*}=\tilde{M} \widetilde{Q}^{\prime}$ with $\widetilde{Q}^{\prime} \subset \widetilde{Q}$, and if $Q^{\prime}, Q^{\prime \prime}$ are the inverse images of $\widetilde{Q}^{\prime}, \widetilde{Q}^{\prime \prime}$ in T, then $Q^{\prime} \cap Q^{\prime \prime}=S$ and $Q^{\prime \prime}$ centralizes M. To complete the proof, we must show that one of the following two possibilities necessarily holds:
(a) $Q^{\prime}=Q_{1} \times S$ and $M Q_{1} \triangleleft G$;
(b) $Q^{\prime \prime}=Q_{2} \times S, Q_{2} \triangleleft G$, and $M Q^{\prime}$ is an exceptional subgroup. In the first case the lemma will follow with $T^{*}=M Q_{1}$ and $Q^{*}=Q^{\prime \prime}$; and in the second case with $T^{*}=M Q^{\prime}$ and $Q^{*}=Q_{2}$.

Now \bar{Q} is a regular $\bar{\phi}$-group and hence has the form $\bar{Q}=\bar{H} \bar{K}$, where \bar{H}, \bar{K} satisfy the conditions of Lemma 1.3. Suppose first that $\bar{Q}^{\prime} \subseteq \bar{H}$. Since \bar{Q}^{\prime} does not have $\bar{\phi}$-index $0, \bar{Q}^{\prime} \not \subset \bar{F}$, where \bar{F} is the $\bar{\phi}$-nucleus of \bar{Q}. But then $\bar{Q}^{\prime}=$ $\bar{H} \supset \bar{F}$; and it follows from Lemma 1.3 that \bar{K} is abelian and hence that $\bar{Q}=\bar{Q}^{\prime} \times \bar{Q}_{2}$, where \bar{Q}_{2} is $\bar{\phi}$-invariant. Thus (b) holds.

Suppose then that $\bar{Q}^{\prime} \not \subset \bar{H}$. If $\bar{Q}^{\prime}=\bar{Q}^{\prime} / \bar{S}$ has order greater than q, it follows from the structure of \widetilde{Q}^{\prime} that $\bar{Q}^{\prime}=\bar{H} \times \bar{S}$ and that $\bar{H} \supset \bar{F}$. But then $\bar{Q}^{\prime \prime} \subset \bar{K}$ and $\bar{Q}=\bar{H} \times \bar{Q}^{\prime \prime}$; and (a) holds. Finally if $o\left(\widetilde{Q}^{\prime}\right)=q$, we must have $\overline{Q^{\prime}}=$ $\bar{S} \times \bar{Q}_{1}$, where \bar{Q}_{1} is $\bar{\phi}$-invariant; otherwise $\mathrm{o}(\bar{S})=q, \bar{\phi}$ has order $m q$ on \bar{Q}^{\prime}, where $m=3$ if $q=7$ and $m=2$ if $q=3$, and $\bar{Q}^{\prime}=\bar{H}$, contrary to assumption.
7. Some properties of exceptional $A B A$-groups. To help illuminate the discussion we shall give an example of an exceptional $A B A$-group G of type III and of order $6 p^{2}$. Thus $G=A T=A M Q$, where M is abelian of type $(p, p), o(Q)=3$, and $\mathrm{o}(A)=2 p$. If $\left(x_{1}, x_{2}\right)$ is a basis for $M,(y)=Q$, and (a) $=A$, we may assume, in view of Theorem 5 , that

$$
\begin{equation*}
x_{1}=a^{2}, \phi\left(x_{2}\right)=a x_{2} a^{-1}=x_{2}^{-1} \text { and } \phi(y)=x_{1}^{k} y^{-1} x_{1}^{-k} \tag{26}
\end{equation*}
$$

for some integer k. First of all, we must have $k=\frac{1}{2}(p+1)$ since otherwise y centralizes $A \cap M$.

Furthermore

$$
\begin{equation*}
y x_{1} y^{-1}=x_{1}^{\alpha} x_{2}^{\beta}, \quad y x_{2} y^{-1}=x_{1}^{\gamma} x_{2}^{\delta} \tag{27}
\end{equation*}
$$

for suitable integers $\alpha, \beta, \gamma, \delta$.
Applying ϕ to (27) gives

$$
\begin{equation*}
y^{-1} x_{1} y=x_{1}^{\alpha} x_{2}^{-\beta}, \quad y^{-1} x_{2}^{-1} y=x_{1}^{\gamma} x_{2}^{\delta} \tag{28}
\end{equation*}
$$

From (27) and (28) together we deduce that

$$
\begin{equation*}
\alpha=\delta \text { and } \alpha^{2}-\beta \gamma=1 \tag{29}
\end{equation*}
$$

The condition that y induce an automorphism of M of order 3 gives in addition

$$
\begin{equation*}
\alpha=\frac{1}{2}(p-1) . \tag{30}
\end{equation*}
$$

Conversely conditions (26)-(30) with $k=\frac{1}{2}(p+1)$ are sufficient to define a group G of the form $A T=A M Q$ such that $T \triangleleft G, Z(T)=1$, and $N(A)=$ A. Furthermore, the elements $[y]_{1}^{2 j}$ are in the coset $(A \cap M) x_{2}^{\beta k j}$ of $A \cap M$, while the elements $[y]_{1}^{2 j+1}$ are in the $\operatorname{coset}(A \cap M) x_{2}^{-\beta k j} y$. It follows that the elements $\phi^{i}\left([y]_{1}^{j}\right)$ include a set of coset representatives of $A \cap M$ in T. Thus G is in fact an $A B A$-group with $B=(y a)$. Exceptional $A B A$-groups of type II can be similarly constructed.

We shall now determine a few of the properties of $A B A$-groups which contain exceptional subgroups of types II or III.

Lemma 7.1. Let G be an $A B A$-group containing an exceptional subgroup $T \neq 1$ of type II or III. Then $2|\mathrm{o}(A), 2| \mathrm{o}(B), 6 \mid \mathrm{o}(G)$, and if B_{2} denotes the 2-Sylow subgroup of $B, B_{2} \not \subset A$.

Proof. By assumption $G^{*}=A T=A B^{*} A, B^{*} \subset B$, is an exceptional $A B^{*} A$-group. It clearly suffices to prove the lemma for G^{*}, and hence without loss of generality we may assume $G^{*}=G$. If $T=M Q$ with $M \neq 1$, we may also assume that $Q_{0}=1$, and that no proper subgroup of M is normal in G, for otherwise the lemma follows by induction on o (G).

Thus M is elementary abelian of order p^{m}, where $m=3$ if $p=2$ and $m=2$ if $p \neq 2$. Furthermore $\mathrm{o}(Q)=q$, where correspondingly $q=7$ or 3 . In either case $2|\mathrm{o}(A), 6| \mathrm{o}(G)$ by Theorem 5. If $p=2,\left(a^{6}\right) \triangleleft G$ and by induction we may assume o $(A)=6$. Thus o $(G)=168$. Since G is an $A B A$-group, there must exist an element y in T and an integer r such that the elements $\phi^{i}\left([y]_{r}^{j}\right)$ include a set of coset representatives of $A \cap M$ in T. By Theorem 5, we may take $r=1$, and hence the element $b=y a$ will be a generator of B. Now $b^{3}=$ $(y a)^{3}=y \phi(y) \phi^{2}(y) a^{3}$, so that by the structure of $T, b^{3} \in M$. If $b^{3} \in A \cap M$, the set $A B A$ will contain less than 168 distinct elements. Thus $\mathrm{o}(B)=6$ and $B_{2} \not \subset A$.

Similarly, if T is of type III and $M \neq 1$, we may assume $o(G)=6 p^{2}$, $\mathrm{o}(A)=2 p$. Again we have $B=(b)$, where $b=(y a)$ for some element y in T, and $b^{2}=(y a)^{2}=y \phi(y) a^{2} \in M$. Thus $b^{2 p}=1$. Since $b^{p}=\left(b^{p-1}\right) b$ and $b^{p-1} \in M$ since p is odd, $b^{p} \in A$ would imply that $b \in A M$ and the set $A B A$ would be contained in $A M$, which is not the case. Hence $\mathrm{o}(B)=2 p$ and $B_{2}=\left(b^{p}\right) \not \subset A$.

Suppose finally that $M=1$ and T is an exceptional 3 -group. Then by Theorem $4, \bar{G}=G / Z(T)=\bar{A} \widetilde{T}=\bar{A} \bar{B} \bar{A}$, where \bar{T} is an elementary abelian $\bar{\phi}$-group of order 9 on which $\bar{\phi}$ has order 6 . Again we may assume $\mathrm{o}(\bar{A})=6$. Now $\bar{B}=(\bar{b})$, where $\bar{b}=\bar{y} \bar{a}, y \in \bar{T}$. Thus $\bar{b}^{6}=1$. If $\bar{b}^{3} \in \bar{A}$, then $[\bar{y}]_{1}^{3} \in \bar{A} \cap \bar{T}=1$, which is not the case. Thus $2 \mid \mathrm{o}(B)$ and $B_{2} \not \subset A$, completing the proof.

Theorem 6. An ABA-group G cannot contain exceptional subgroups of both type II and III.

Proof. Suppose G contains an exceptional subgroup T_{1} of type II and an exceptional subgroup T_{2} of type III with $T_{i} \neq 1, i=1,2$. Then $G_{i}=A T_{i}=$ $A B_{i} A, B_{i} \subset B$, is an exceptional $A B_{i} A$-group of type II if $i=1$ and of type III of $i=2$. If B_{1}^{*} denotes the 2 -Sylow subgroup of B_{i}, it follows from the preceding lemma that $B_{1}^{*} \not \subset A, i=1,2$. Since B is cyclic, this implies $B_{1}^{*} \cap B_{2}^{*} \not \subset A$ and hence that $G_{1} \cap G_{2} \not \subset A$. We shall derive a contradiction by showing that, in fact, $G_{1} \cap G_{2}=A$.

By Theorem 5 and the definition of exceptional subgroups, ϕ has order $3.2^{s} 7^{k}$ on T_{1} for some s and k. Hence if $p \neq 2,3,7$, the p-Sylow subgroup A_{p} of A is normal in G_{1} and is the p-Sylow subgroup of G_{1}. Now M_{2} is abelian of type (t, t), where $2 \nmid t, 3 \nmid t$. Let S_{p} be the p-Sylow subgroup of M_{2} for some prime $p \mid t$. If $p \neq 7$, it follows at once that $S_{p} \cap G_{1} \subset A_{p}$.

Suppose that $p=7$ and $S_{p} \cap G_{1} \not \subset A_{p} . S_{p}=\left(A_{p} \cap M_{2}\right) \times L_{p}$, where L_{p} is cyclic, invariant under A, and the order of ϕ on L_{p} is 2 . Our assumptions imply that $L_{p} \cap G_{1} \neq 1$. On the other hand, if $H_{1}=C\left(M_{1}\right) \cap Q_{1}, A_{p} H_{1}$ is the unique maximal A-invariant p-group in G_{1}. Since $L_{p} \cap G_{1}$ is A-invariant we must have $L_{p} \cap G_{1} \subset A_{p} H_{1}$. But by the structure of G_{1}, ϕ has order 3.7^{c} on H_{1} and hence on $A_{p} H_{1}$, contrary to the fact that ϕ has order 2 on $L_{p} \cap G_{1}$. Thus $S_{p} \cap G_{1} \subset A_{p}$ if $p=7$, and we conclude that $M_{2} \cap G_{1} \subset A$.

If $M_{2} \neq 1$, set $H_{2}=\mathrm{C}\left(M_{2}\right) \cap Q_{2}$; while if $M_{2}=1$, set $H_{2}=\mathrm{Z}\left(Q_{2}\right)$. In either case H_{2} is A-invariant and hence so is $H_{2} \cap G_{1}$. But, by the structure of T_{1}, A_{3} is the only A-invariant 3-Sylow subgroup of T_{1}; and hence $H_{2} \cap G_{1} \subset A_{3}$. Thus $\quad M_{2} H_{2} \cap G_{1} \subset A$.

Suppose finally that $x \in T_{2} \cap G_{1}, x \notin M_{2} H_{2}$. Now $T_{2} \cap G_{1}$ is A-invariant and contains $A \cap M_{2} H_{2}$. But by the structure of T_{2}, any A-invariant subgroup of T_{2} which contains x and $A \cap M_{2} H_{2}$ necessarily contains a subgroup of $M_{2} H_{2}$ which properly contains $A \cap M_{2} H_{2}$. In particular, this must be true of $T_{2} \cap G_{1}$, contrary to the fact that $M_{2} H_{2} \cap G_{1}=A \cap M_{2} H_{2}$. Thus $T_{2} \cap G_{1} \subset A$. Since $G_{2}=A T_{2}, G_{2} \cap G_{1}=A$, and the theorem is proved.

We shall also need an analogous result for $A B A$-groups which contain exceptional subgroups of types I and III.

Lemma 7.2. If $G=A B A$ contains exceptional subgroups T_{1}, T_{2} of types I and III respectively, then $Z\left(T_{1}\right) \subset A$ and $a 3$-Sylow subgroup of T_{2} has order 3 .

Proof. If $G_{1}=A T_{1}=A B_{1} A$ and $G_{2}=A T_{2}=A B_{2} A$, it follows as in Theorem 6 that $G_{1} \cap G_{2}=A$. Furthermore, by Lemma 7.1 the 2 -Sylow subgroup B_{2}^{*} of B_{2} does not lie in A.

Now $T_{1}=Q Q^{\prime}$, where Q, Q^{\prime} satisfy condition (e) of Theorem 3. If $G_{0}=A Q$ $=A B_{0} A, B_{0}=\left(b_{0}\right)$, where $b_{0}=y a^{r}, y \in Q$. If k is the least integer such that $[y]_{\tau}^{k}=1$, then $b_{0}{ }^{k} \in A$. Furthermore, since ϕ has order $3 \cdot 2^{s}$ on $Q, k=3 \cdot 2^{m}$ or 2^{m} according as $3 \nmid r$ or $3 \mid r$. Now the 2 -Sylow subgroup B_{0}^{*} of B_{0} must lie in A; otherwise $B_{0}^{*} \cap B_{2}^{*} \not \subset A$ and $G_{1} \cap G_{2} \supset A$. It follows that $b_{0}{ }^{3} \in A$.

If K is a maximal A-invariant normal subgroup of Q, we may assume without loss that $A K \subset A Q$, for otherwise we can replace Q by K in Theorem 3. It follows that $A K=A\left(b_{0}{ }^{3}\right) A=A$, and hence that $K \subset A$. Since Q / K is elementary of order $4, \Omega_{1}(K)$ is a quaternion group and $Z(Q) \subset A$. Now $A \cap Q^{\prime}=1$ and if $Q^{\prime} \neq 1$, the proof of Theorem 3 shows that $Q \cap Q^{\prime}$ contains an abelian subgroup of type (2,2). Since Q contains no such A-invariant subgroup, $Q^{\prime}=1$ and $Z\left(T_{1}\right) \subset A$ as asserted.

The preceding argument shows that the 3 -Sylow subgroup of $B_{1}\left(=B_{0}\right)$ does not lie in A. This forces the 3 -Sylow subgroup of B_{2} to lie in A, otherwise $G_{1} \cap G_{2} \supset A$. If $T_{2}=M_{2} Q_{2}$, we consider $\bar{G}_{2}=G_{2} / M_{2}\left(A \cap Q_{2}\right)$ $=\bar{A} \bar{B}_{2} \bar{A}=\bar{A} \bar{Q}_{2} . \quad \bar{Q}_{2}$ is a regular $\bar{\phi}$-group and $\bar{\phi}$ has order 2.3^{s} on \bar{Q}_{2}. If $\bar{B}_{2}=\left(\bar{b}_{2}\right)$, where $\bar{b}_{2}=\bar{y}_{2} \bar{a}^{r_{2}}, \bar{y}_{2} \in \bar{Q}_{2}$, it follows as above that $\bar{b}_{2}{ }^{2} \in \bar{A}$. But then $[\bar{y}]_{T_{2}}^{2}=1$, and hence $\mathrm{o}\left(\bar{Q}_{2}\right)=3$, forcing $A \cap Q_{2}=1$ and $\mathrm{o}\left(Q_{2}\right)=3$.
8. Strongly factorizable $A B A$-groups. We shall call an $A B A$-group G strongly factorizable if $G=A T$, where $T=T_{1} \times T_{2} \times T_{3}$, each T_{i} is normal in G; and if $T_{1} \neq 1$, then T_{1} is an exceptional subgroup of type I, if $T_{2} \neq 1$, then T_{2} is an exceptional subgroup of type II or III, and $A \cap T_{3}=1$.

A number of consequences of this definition follow immediately from our previous results. First of all, T_{3} is a regular ϕ-group and hence is nilpotent of class $\leqq 2$. Furthermore since A is cyclic, $T_{1} \neq 1$ implies that either T_{2} is of type III or $T_{2}=1$.

The definition also implies that G is solvable and that $T=[G, G]$. Finally, if $G=A B A=A M$, where M is nilpotent and normal in G, it follows from Theorems 2,3 , and 4 that G is in fact strongly factorizable.

Theorem B is an immediate corollary of the following theorem, which has been our main objective in Part I.

Theorem B^{\prime}. If $G=A B A$ and G is solvable, then G is strongly factorizable
The proof will be broken up into a sequence of lemmas.
Lemma 8.1. If $G=A B A$ is strongly factorizable, then so is every subgroup of G containing A and every homomorphic image of G.

Proof. If G^{\prime} is a subgroup of G containing $A, G^{\prime}=A T^{\prime}$, where $T^{\prime}=G^{\prime} \cap T$, $T^{\prime} \triangleleft G^{\prime}$. Clearly $T^{\prime}=T_{1}{ }^{\prime} \times T_{2}{ }^{\prime} \times T_{3}{ }^{\prime}$, where $T_{i}{ }^{\prime} \subseteq T_{i}, i=1,2,3$, and $A \cap T_{3}{ }^{\prime}=1$. If $T_{2}=M Q, Q$ contains a maximal subgroup Q_{0} which is A-invariant such that $M Q_{0}$ is nilpotent and [$\left.T_{2}: M Q_{0}\right]=q$. It follows from Theorem 5 and the definition of exceptional subgroups of type II and III that either $T_{2}{ }^{\prime}=T_{2}$ or $T_{2}{ }^{\prime} \subseteq M Q_{0}$. In the latter case $A T_{2}{ }^{\prime}$ possesses a normal 2 -complement. Similarly either T_{1}^{\prime} is an exceptional subgroup of type I or $A 1_{1}{ }^{\prime}$ possesses a normal 2 -complement. It follows at once that G^{\prime} is strongly factorizable.

If $G^{\prime}=A^{\prime} B^{\prime} A^{\prime}$ is a homomorphic image of G, we need only show that $N\left(A^{\prime}\right)=A^{\prime}$, for the remaining parts of the definition of strong factorizability follow as above. Now $M^{*}=T_{1} \times M Q_{0} \times T_{3}$ is nilpotent and $\left[T: M^{*}\right]=q$.

If $\bar{G}=G / M^{*}=\bar{A} \bar{Q}, N(\bar{A})=\bar{A}$, so that the hypotheses of Lemma 6.1 are satisfied. Hence if $G^{\prime}=G / L$ and $L \subseteq M, N\left(A^{\prime}\right)=A^{\prime}$. If $L \subset T$, but $L \not \subset M^{*}$, then necessarily $T_{2} \subseteq L$.

Since $G^{\prime}=G / M / L / M$, it follows readily that $N\left(A^{\prime}\right)=A^{\prime}$. If $L \subset A$, this conclusion is obvious. Since $L=(A \cap L)(T \cap L), N\left(A^{\prime}\right)=A^{\prime}$ in all cases.

Lemma 8.2. Let $G=A B A=A T, T \triangleleft G, T=P Q, P$ a p-group normal in G, Q a q-group with $q \neq p$, and assume that G contains no normal subgroups which lie properly between P and T. Then G is strongly factorizable.

Proof. The proof is by induction on o (G). If $\bar{G}=G / P=\bar{A}, G=A P$ and G is strongly factorizable. The lemma also holds, as remarked above, if T is nilpotent; and it follows from Theorem 5 if $Z(T)=1$. Hence we may assume that none of these conditions prevail.

Let P_{1} be a minimal subgroup of $Z(T)$, normal in G. Since T is not nilpotent, $P_{1} \subset P$. If $\bar{G}=G / P_{1}, N(\bar{A})=\bar{A}$ by Lemma 6.1, and hence by induction $\bar{G}=\bar{A} \bar{T}$, where $\bar{T}=\bar{T}_{1} \times \bar{T}_{2} \times \bar{T}_{3}$ satisfies the required conditions.

If \bar{T} is nilpotent, then so is T. We must therefore have $\bar{T}_{2}=\bar{M} \bar{Q}$, with $\bar{M} \neq 1$. In particular, this implies $\bar{T}_{1}=1$; otherwise $p=2$ and \bar{T}_{2} if of type II, which is not possible for strongly factorizable groups, as pointed out above.

If $\bar{T}_{3} \neq 1$, it follows by induction that the inverse image H_{2} of \bar{T}_{2} is of the form $P_{1} \times T_{2}$, where T_{2} is an exceptional subgroup of type II or III. Furthermore if H_{3} is the inverse image of \bar{T}_{3} in $G, H_{3} \triangleleft G$ and $H_{3} Q=H_{3} \times Q$. If $T_{2}=M Q$, we have, for any x in M and any z in $H_{3},[x, z]=z^{\prime}, z^{\prime} \in P_{1}$. Conjugating this relation by y in Q, it follows that $[x, y]$ commutes with z. But y acts regularly on M if $y \neq 1$, and hence $M H_{3}=M \times H_{3}$. Thus $G=A\left(T_{2} \times H_{3}\right)$. Since $p \neq 3$, the lemma now follows from Theorems 2 and 3. We may thus assume that $\bar{T}_{3}=1$ and hence that $G=A H_{2}$.

Now by the minimality of P_{1} either $P_{1} \subset A$ or $P_{1} \cap A=1$. Assume first that $P_{1} \subset A$. Let $\bar{K}=\Omega_{1}(M)$ and let K be its inverse image in H_{2}. By Theorem 5 \bar{K} is elementary abelian of order 8 of p^{2} and $\bar{A} \cap \bar{K} \neq 1$. But this implies $P_{1} \subset L \subset K$, where L is Q-invariant, contrary to the fact that \bar{Q} leaves no proper subgroup $\neq 1$ of \bar{K} invariant. Thus $P_{1} \cap A=1$.

Suppose first that \bar{M} is a 2 -group. Since $o(A \cap K)=2$ we must have $K=\Omega_{1}(K)$, otherwise we reach a contradiction as above. A similar argument shows K is abelian, whence $K=(A \cap K) \times K_{1}$, where K_{1} is A-invariant. Suppose K_{1} were not of the form $P_{1} \times L$, where L is A-invariant. Then $\mathrm{o}\left(P_{1}\right)=4, \mathrm{o}\left(K_{1}\right)=16$ and ϕ has order 6 on K_{1}. But the image \bar{K}_{1} of K_{1} in M is a regular $\bar{\phi}$-group, and by the structure of \bar{T}_{2}, its $\bar{\phi}$-index is a multiple of 3 . Therefore K_{1} is of ϕ-index 0 and ϕ acts irreducibly on $\Omega_{1}\left(K_{1}\right)=K_{1}$, a contradiction. Thus $K_{1}=P_{1} \times L$, where L is A-invariant. Furthermore, by Lemma 1.2 P_{1} contains no A-invariant subgroups of type $(2,2)$. Hence if M^{\prime} denotes the inverse image of \bar{M} in G, Theorem 3 implies that $M^{\prime}=P_{1} \times M$,
where M is A-invariant. Now $\Omega_{1}(M)=(A \cap K) L$ and $\Omega_{1}(M)$ is clearly Q-invariant. Thus $\Omega_{1}(M) \triangleleft G$, and it follows at once by induction applied to $G / \Omega_{1}(M)$ that $H_{2}=P_{1} \times M Q$. Hence the lemma holds if \bar{T}_{2} is of type II.

Essentially the same argument applies if \bar{T}_{2} is of type III, provided we can prove that K is abelian. Since $[K, K]$ is cyclic and $\Omega_{1}(K)=K$, this will necessarily be the case unless $\mathrm{o}\left(P_{1}\right)=p$ and $K=(A \cap K) K_{1}$, where $A \cap K_{1}=1, K_{1}$ is elementary abelian of order p^{2}, and ϕ has order $2 p$ on K_{1}. But this leads to a contradiction since again K_{1} is of ϕ-index 0 .

Lemma 8.3. Let $G=A B A=A T, T \triangleleft G, T=P Q, P$ a p-group normal in G, Q a q-group with $q \neq p$ and $A \cap T \subset P$. Then G is strongly factorizable.

Proof. Let $\bar{G}=G / P=\bar{A} \bar{Q}$, let \bar{Q}_{1} be a minimal subgroup of the centre of \bar{Q} invariant under \bar{A}, and let Q_{1} be its inverse image in Q. We may assume $Q_{1} \subset Q$ since otherwise the lemma follows from the preceding lemma.

If $Q_{1} \triangleleft G$, we set $\widetilde{G}=G / Q_{1}=\widetilde{A} \widetilde{T}$. Since $A \cap Q_{1}=1, N(\widetilde{A})=\widetilde{A}$ by the corollary of Lemma 2.3. Hence by induction \tilde{G} is strongly factorizable, whence $\widetilde{G}=A\left(\widetilde{T}_{1} \times \widetilde{T}_{2} \times \widetilde{T}_{3}\right)$ where the subgroups \widetilde{T}_{i} satisfy the required conditions. Let H_{i} be the inverse image of $\tilde{T}_{i}, i=1,2,3$, and let P_{1} be the p-Sylow subgroup of $H_{1} H_{3}$. Since Q_{1} is normal in $P Q_{1}, Q_{1}$ is in the centre of $H_{2} H_{3}$, and it follows at once that $H_{1} H_{3}$ is nilpotent. Thus $H_{1} H_{3}=P_{1} \times S$, where S is the q-Sylow subgroup of $H_{1} H_{3}$.

We may assume $\widetilde{T}_{2} \neq 1$ since otherwise the lemma follows immediately. Now the group $H_{2} S$ satisfies the hypotheses of Lemma 6.3 and consequently $H_{2} S=T_{2} \times Q^{\prime}$, where T_{2} is an exceptional subgroup of type II or III, $Q^{\prime} \subset S$, and Q^{\prime} is A-invariant. Our conditions also imply that $P_{1} T_{2}=P_{1} \times T_{2}$, and it follows at once that G is strongly factorizable.

We may therefore assume that $Q_{1} \nless G$. By induction $G_{1}=A P Q_{1}$ is strongly factorizable, and hence $G_{1}=A\left(T_{1} \times T_{2} \times T_{3}\right)$ where the subgroups T_{i} have the appropriate properties. If $T_{2}=1, Q_{1}$ is in the centre of the nilpotent group $T_{1} T_{3}$. Since Q_{1} is a q-Sylow subgroup of $T_{1} T_{3}$, it is A-invariant and hence normal in G, contrary to assumption. Thus $T_{2} \neq 1$.

Now $T_{1} \neq 1$ implies $p=2$. But this is impossible since then T_{2} would be of type II. Thus $T_{1}=1$. Furthermore $T_{2}=M Q_{1}$, and $o\left(Q_{1}\right)=q$ by the minimality of \bar{Q}_{1}. Furthermore $P=(A \cap P) M T_{3}$. If $x \in T_{3}$ and $y \in Q$, the normality of P implies $y x y^{-1}=z x^{\prime}, z \in(A \cap P) M, x^{\prime} \in T_{3}$. Conjugating this relation by $y_{1} \neq 1$ in Q_{1} we conclude immediately that y_{1} and z commute. But M is A-invariant and $A \cap M \neq 1$. Since A is cyclic, it follows if $z \neq 1$ that $z^{i} \in M$ for some integer i, with $z^{i} \neq 1$. But this is a contradiction since T_{2} has a trivial centre. Thus $z=1$ and hence $T_{3} \triangleleft G$.

If $T_{3}=1, P=(A \cap P) M$. If $A \cap P \supset A \cap M$, it follows readily from the structure of M that Q_{1} normalizes $A \cap M$, which is not the case. Thus $A \cap P=A \cap M$. If $T_{3} \neq 1$, we can obtain the same conclusion by considering G / T_{3}, since $A \cap T_{3}=1$. Thus $P=M \times T_{3}$.

Finally, if $z \in M$, and $y \in Q$, we have $y z y^{-1}=z^{\prime} x, z^{\prime} \in M, x \in T_{3}$. Conjugating this relation by $y_{1} \neq 1$ in Q_{1}, we readily obtain $y\left[z, y_{1}\right] y^{-1}=\left[z^{\prime}, y_{1}\right]$. Since Q_{1} acts regularly on M, it follows that $M \triangleleft Q$, and hence by Lemma 6.3 $M Q=M Q_{2} \times Q^{\prime}$ where each factor is A-invariant. Thus $G=A\left(M Q_{2} \times Q^{\prime} T_{3}\right)$, and since $A \cap Q^{\prime} T_{3}=1, G$ is strongly factorizable.

Lemma 8.4. Let $G=A B A$ and assume that G contains a normal subgroup P of prime power order such that $\bar{G}=G / P=\bar{A} \bar{B} \bar{A}$, is an exceptional $\bar{A} \bar{B} \bar{A}-$ group. Then G is strongly factorizable.

Proof. The proof will be made by induction on $\mathrm{o}(G)$. Let $\mathrm{o}(P)=p^{m}$ and $\bar{G}=\bar{A} \bar{T}$, where \bar{T} is an exceptional subgroup. We first consider the case in which no proper subgroup of P is normal in G.

Assume $K \triangleleft G$, where K is a q-group. If $\widetilde{G}=G / K=\widetilde{A} \widetilde{B} \widetilde{A}$, we first show that $N(\widetilde{A})=\widetilde{A}$. By the minimality of P, either $K \supset P$ or $K \cap P=1$. If $K \supset P, \widetilde{G}$ is a homomorphic image of \bar{G}, whence $N(\widetilde{A})=\widetilde{A}$ by Lemma 8.1. If $K \cap P=1$ and \widetilde{P} denotes the image of P in $\widetilde{G}, \widetilde{G} / \widetilde{P}$ is a homomorphic image of \vec{G} and hence $N(\tilde{A}) \subset \widetilde{A} \tilde{P}$. But $K P$ is nilpotent and hence $G_{0}=A K P$ is strongly factorizable. If $\widetilde{G}_{0}=G_{0} / K$, it follows that $N_{\tilde{G}_{0}}(\widetilde{A})=\widetilde{A}$, whence $N(\widetilde{A})=\widetilde{A}$, as asserted.

Let H be the inverse image of \bar{T} in G. We distinguish three cases.
Case $1 . \bar{T}$ of type I. We may assume $p \neq 2$ since otherwise the lemma follows immediately from Theorem 3 . Thus $H=P Q$, where Q is a 2 -Sylow subgroup of H. We may assume Q contains the inverse image of $\bar{A} \cap \bar{T}$. (Since $A \cap H$ need not be contained in P, the lemma is not a consequence of the preceding lemma.) We may assume $C(P) \cap Q=1$, otherwise the lemma follows by induction or from the preceding lemma by considering $G / C(P) \cap Q$. Let \bar{K} be a maximal subgroup of \bar{T} normal in \bar{G}. Then $\bar{A} \bar{K}=\bar{A} \bar{K}_{1}$, where \bar{K}_{1} is \bar{A}-invariant and either $\bar{A} \cap \bar{K}_{1}=1$ or \bar{K}_{1} is an exceptional subgroup. If K_{1} denotes the inverse image of K_{1} in Q it follows either from the preceding lemma or by induction that $P K_{1}=P \times K_{1}$, whence $K_{1}=1$ and $\bar{K} \subset \bar{A}$. Thus $\bar{Q}=(\bar{A} \cap \bar{Q}) \bar{Q}_{1}$, where $\bar{A} \cap \bar{Q}=Z(\bar{Q})$ and \bar{Q}_{1} is a quaternion group. Without loss we may assume $\bar{Q}=\bar{Q}_{1}$. Since $A \cap Q$ centralizes $A \cap P$ and $A \cap Q \subseteq Z(Q)$, the minimal nature of P implies that $A \cap P=1$. But then the conditions of Lemma 5.4 are satisfied, and hence $P Q$ is nilpotent.

Case 2. $\bar{T}=\bar{M} \bar{Q}$ is of type II. We assume $p \neq 2$, otherwise the lemma follows from Lemma 6.3. If M denotes a 2-Sylow subgroup of the inverse image of \bar{M} in $G, G_{0}=A P M$ is strongly factorizable by induction. Hence $G_{0}=A\left(P \times M_{0}\right)$, where $M=(A \cap M) M_{0}$. Since $C(P) \cap M \triangleleft G$, it follows from the structure of \bar{T} that $M=M_{0}$. If $\widetilde{G}=G / M=\widetilde{A} \widetilde{P} \widetilde{Q}, \widetilde{P} \widetilde{Q}$ is nilpotent by Lemma 6.3, and the lemma follows at once.

Case 3. $\bar{T}=\bar{M} \bar{Q}$ is of type III. \bar{M} is abelian of type (t, t) with $(t, 6)=1$; and \bar{Q} is a 3 -group. Assume first that $\bar{M} \neq 1$. If $p \nmid t$, it follows as in case 2
that the inverse image of $\bar{A} \bar{M}$ in G has the form $G_{0}=A(P \times M)$, where $M \triangleleft G$, except possibly if $p=2$ and $7 \mid t$. In this case, it may happen that $G_{0}=A\left(T_{2} \times M\right)$, where T_{2} is an exceptional subgroup of type II. But then the 7 -Sylow subgroup S_{0} of $C(P) \cap G_{0}$ has index 7 in a 7 -Sylow subgroup S of G_{0} and is normal in G. It follows that $\left[\bar{S} \cap \bar{M}: \bar{S}_{0} \cap \bar{M}\right]=7$ and $\bar{S}_{0} \cap \bar{M} \triangleleft \bar{T}$, contrary to the structure of \bar{T}. Thus $G_{0}=A(P \times M)$, where $M \triangleleft G$. By induction $\widetilde{G}=G / M=\widetilde{A} \widetilde{P} \widetilde{Q}$ is strongly factorizable. By the minimal nature of P, either $\widetilde{P} \widetilde{Q}$ is nilpotent or $\widetilde{P} \widetilde{Q}$ is an exceptional subgroup of type III. In either case the lemma follows at once.

If $p \mid t, p \neq 2,3$. In this case $G_{0}=A\left(P_{0} \times M_{0}\right)$, where $P_{0}, M_{0} \triangleleft G$ and P_{0} is a p-group containing P. If $M_{0} \neq 1$, the lemma follows easily by induction; hence we may assume $M_{0}=1$ and hence that \bar{M} is a p-group. Furthermore we may assume that $\bar{A} \cap \bar{Q} \neq 1$; otherwise the lemma follows from the preceding one. Thus $G=A P_{0} Q$, where Q is a 3 -group of class 2 and $A \cap Q \neq 1$. We may also assume $Z(Q)$ does not centralize P_{0}; otherwise the lemma follows by induction. Now $\left[P_{0}, P_{0}\right]$ is cyclic, and hence either P_{0} is abelian or $\left[P_{0}, P_{0}\right]=$ P has order p. But in this case $Z(Q)$ centralizes P and consequently P_{0}. Thus P_{0} is abelian. It follows now exactly as in the proof of Lemma 8.2 that $P_{0}=$ $P \times P_{1}$, where P_{1} is normal in G and $A \cap P=1$. The lemma follows at once by induction by considering G / P_{1}.

There remains the case $\bar{M}=1$. Thus $G=A P Q, \operatorname{cl}(Q)=2$, and $A \cap Q \neq 1$. As in case 1 we may assume $C(P) \cap Q=1$. Since $A \cap Q \subseteq Z(Q)$ and $A \cap Q$ centralizes $A \cap P$, it follows from the minimality of P that $A \cap P=1$. Hence if \bar{K}, K, and K_{1} are as in case 1 , we must have $K_{1}=1$ and $\bar{K} \subseteq \bar{A}$. But by the structure of \bar{Q}, a maximal \bar{A}-invariant subgroup of \bar{Q} does not lie in \bar{A}.

This completes the induction when no proper subgroup of P is normal in G.

Case 4. P is not a minimal normal subgroup of G. Let P_{0} be a minimal subgroup of $Z(P)$ normal in G. If $\widetilde{G}=G / P_{0}=\widetilde{A} \widetilde{B} \widetilde{A}, \widetilde{G}$ is strongly factorizable by induction. Thus $\widetilde{G}=A\left(\widetilde{T}_{1} \times \widetilde{T}_{2} \times \widetilde{T}_{3}\right)$, the subgroups \widetilde{T}_{i} having the required properties. Let H_{i} be the inverse image of \widetilde{T}_{i} in $G, i=1,2,3$. Under the hypotheses of the lemma, if $\widetilde{T}_{1} \neq 1$ and $\widetilde{T}_{2} \neq 1$, then $p \neq 2$.

Assume first that $\widetilde{T}_{2} \neq 1$. Then $H_{1} H_{3}$ is a p-group and P_{0} is in its centre. P_{0} must therefore be a minimal normal subgroup of $A H_{2}$, and it follows from Case 2 or 3 that $A H_{2}$ is strongly factorizable.

If $A H_{2}=A\left(P_{0} \times T_{2}\right)$ where T_{2} is an exceptional subgroup, then $G=A\left(T_{2} H_{1} H_{3}\right)$ and $H_{1} H_{3}$ commutes elementwise with all elements of T_{2} of order prime to p. The lemma follows immediately if $p \nmid o\left(T_{2}\right)$. Let $T_{2}=M Q$, and suppose next that Q is a p-group, in which case $p=3$ or 7 and $H_{1} H_{3}=H_{3}$. If $M \neq 1$, the lemma follows by considering G / M; while if $M=1$, it follows from Theorem 4. Assume next that $p \mid o(M)$. If $p=2, M H_{1} H_{3}$ is a 2 -group, $A \cap Q=1$, and Lemma 6.3 applies. If $p \neq 2$, we may assume M is a p-group, or else the lemma follows by induction. Since $p \neq 2,3, A$ possesses a normal
complement P^{*} in $A H_{3}$, which is normal in G, and centralized by Q. Furthermore $M=(A \cap M) \times M^{*}$, where M^{*} is A-invariant. Thus $P^{*} M^{*}$ is a regular ϕ-group, whence by Lemma $1.6, P^{*} M^{*}=P^{*} \times M^{*}$. Since $C\left(P^{*}\right) \triangleleft G$, we must have $P^{*} M=P^{*} \times M$, and the lemma follows.

On the other hand, if $A H_{2} \neq A\left(P_{0} \times T_{2}\right), H_{2}$ is necessarily an exceptional subgroup and $H_{1} H_{3}=H_{3}$. Thus $G=A H_{2} H_{3}, H_{2} \cap H_{3}=P_{0}$, and H_{3} commutes with all elements of H_{2} of order prime to p.

If $H_{2}=M Q, P_{0} \subseteq M$. As above, we may assume M is a p-group and $p \neq 2$. If $A \cap Q=1$, the preceding lemma applies; so assume $A \cap Q \neq 1$. It follows now as in case 3 that $C\left(M H_{3}\right) \cap Q \neq 1$, and the lemma follows by induction.

Finally, if $\widetilde{T}_{2}=1, G=A H_{1} H_{3}$. If $p=2, H_{1} H_{3}$ is a 2 -group and G is strongly factorizable. If $p \neq 2$, it follows readily that $A H_{1}=A\left(P_{0} \times T_{1}\right)$, where T_{1} is an exceptional 2 -group and T_{1} centralizes H_{3}. Again G is strongly factorizable, and the lemma is proved.

With the aid of the preceding lemmas we shall now establish Theorem B^{\prime}. The proof will be by induction on o (G). Let P be a minimal normal subgroup of G. If $A_{0} \subset A$ and $G_{0}=N\left(A_{0}\right), G_{0} / A_{0}$ is strongly factorizable by induction. It follows at once from the corollary of Lemma 6.1 that $A_{0} \subseteq Z\left(G_{0}\right)$. Since P is an abelian p-group, Lemma 2.3 now yields $N(A)=A$, where $G=G / P=\bar{A} \bar{B} \bar{A}$. Thus by induction \bar{G} is strongly factorizable so that $\bar{G}=\bar{A}\left(\bar{T}_{1} \times \bar{T}_{2} \times \bar{T}_{3}\right)$, where the subgroups \bar{T}_{i} satisfy the required conditions. Let H_{i} be the inverse image of T_{i} in $G, i=1,2,3$.

We shall distinguish three cases.
Case 1. $P \subset A$. By Lemma 2.1, $P \subseteq Z\left(H_{3}\right)$, whence H_{3} is nilpotent. If $p \neq 2$, Lemma 8.4 implies H_{1} is nilpotent, while if $p=2, P \subseteq Z\left(H_{1}\right)$ since $o(P)=2$. Thus $H_{1} H_{3}$ is nilpotent and it follows from Theorems 2 and 3 that $A H_{1} H_{3}=A\left(T_{1} \times T_{2} \times T_{3}\right)$ is strongly factorizable. If $T_{2} \neq 1$, then $p=3$ and T_{2} is an exceptional 3-group of type III. Furthermore, by Lemma 8.4, either $H_{2}=P, H_{2}=P \times T_{2}^{*}$, where T_{2}^{*} is an exceptional subgroup of type II or III, or $p=3$ and $H_{2}=T_{2}^{*}$ is an exceptional subgroup of type III.

If $T_{2} \neq 1$, then by Theorem 6, either $H_{2}=P$ or T_{2}^{*} is of type III. But in the latter case, it follows that a homomorphic image \bar{G} of \bar{G} contains two $\tilde{\phi}$-invariant subgroups of order 3 , each disjoint from A; and this is impossible by Lemma 1.2. Thus $H_{2}=P$ and G is strongly factorizable. We may therefore assume $T_{2}=1$ and $H_{2} \neq P$.

Suppose $T_{1} T_{3}$ is not a p-group and let S be an r-Sylow subgroup of $T_{1} T_{3}$, $r \neq p$. If $x \in S, y \in H_{2}$, we have $[x, y]=z \in P$. Since P centralizes S and $H_{2},\left[x^{p}, y\right]=1$ and it follows that S centralizes H_{2}. But then we conclude that G is strongly factorizable by considering G / S and applying induction. Hence we may assume $T_{1} T_{3}$ is a p-group, in which case the theorem follows from Lemma 8.4.

Case 2. $A \cap P=1$. This time Lemma 8.4 gives $H_{2}=P$ or $H_{2}=P \times T_{2}$, where T_{2} is an exceptional subgroup of types II or III. Furthermore $H_{1} H_{3}$ is
nilpotent and $A H_{1} H_{3}=A\left(T_{1} \times T_{3}\right)$ is strongly factorizable. It follows as in the preceding paragraph that G is strongly factorizable.

Case 3. $P \not \subset A, A \cap P \neq 1$. We may suppose that no minimal normal subgroup of G lies in A or is disjoint from A.

Assume first that $\bar{T}_{2} \neq 1$. Then $G^{\prime}=A H_{1} H_{3}$ is strongly factorizable by induction. Suppose G^{\prime} contained a normal subgroup L of order prime to p such that $A \cap L=1$. Then L centralizes P and the image \bar{L} of L in \bar{G} centralizes \bar{T}_{2}, whence L centralizes H_{2}. Thus $L \triangleleft G$, contrary to assumption. Suppose next that G^{\prime} contains an exceptional subgroup T^{\prime} of type II or III. By Lemma 8.4 and Theorem 6, H_{2} also contains an exceptional subgroup of the same type; and this leads to a contradiction as in case 1 . We conclude that G^{\prime} has the form $A\left(T_{1} \times T_{3}\right)$, where T_{3} is a p-group. If $p=2$ or $T_{1}=1$, $P T_{1} T_{3}$ is a p-group and the theorem follows from Lemma 8.4. In the remaining case $\mathrm{AH}_{2} \mathrm{~T}_{3}$ is strongly factorizable by induction, and the theorem follows at once.

Assume finally that $\bar{T}_{2}=1$. If $p \neq 2$, then Lemma 8.4 implies that H_{1} $=P \times T_{1}$, where either $T_{1}=1$ or T_{1} is exceptional of type I. Furthermore, it follows as in case 1 that H_{3} centralizes T_{1}. This forces $T_{1}=1$, otherwise G contains a minimal normal subgroup which lies in A or is disjoint from A. Let \bar{Q} be a q-Sylow subgroup of \bar{T}_{3} with $q \neq 3$ or p and suppose $\bar{Q} \neq 1$. By Lemma 8.4 the inverse image of \bar{Q} in G is nilpotent and again G contains a minimal normal subgroup which lies in A or is disjoint from A. Thus $o\left(\bar{T}_{3}\right)$ $=p^{c} 3^{d}$ and the theorem follows from Lemma 8.3 if $p \neq 3$ and from Theorem 4 if $p=3$.

On the other hand, if $p=2$, it follows as in the preceding paragraph that $\mathrm{o}\left(\bar{T}_{3}\right)=2^{c} 7^{d}$. In this case Lemma 8.3 and Theorem 3 show that G is strongly factorizable. This completes the proof of Theorem B^{\prime}.

Theorem B^{\prime} has the following corollary.
Corollary. Let $G=A B A$ be a non-strongly factorizable ABA-group of lowest possible order. Then G does not possess a non-trivial normal subgroup of prime power order.

PART II

The Solvability of $A B A$-groups

Having determined the structure of solvable $A B A$-groups, we turn now to the proof of Theorem A. In view of Theorem B^{\prime}, this is equivalent to showing that every $A B A$-group is strongly factorizable. Throughout Part II G will denote an $A B A$-group of least order which is not strongly factorizable. Hence all proper subgroups and homomorphic images of G which are themselves $A B A$-groups will be strongly factorizable. Furthermore, by the corollary of Theorem B^{\prime}, G contains no non-trivial normal subgroups of prime power order.
9. $A B A$-groups which possess a normal A-complement. Let $G=A B A$ and let p be a prime dividing o (A). We shall call p non-exceptional if
(a) G contains an A-invariant p-Sylow subgroup P^{*};
(b) If A_{p} is a p-Sylow subgroup of A, then $P^{*}=A_{p} P$, where $P \triangleleft P^{*}$ and $A_{p} \cap P^{*}=1$;
(c) $N(X)$ possesses a normal A_{p}-complement for every A-invariant normal subgroup $X \neq 1$ of P^{*}.

Otherwise we call p exceptional.
Theorem 7. If p is non-exceptional, then G contains a normal subgroup K_{p} such that $G=A_{p} K_{p}, A_{p} \cap K_{p}=1$.

Proof. Let P^{*}, P be as above. If p is odd, it will suffice by the Hall-Wielandt theorem (6, Theorem 14.4.2) to find a weakly closed subgroup P_{0} of P^{*} such that either $P_{0} \subseteq Z_{p-1}\left(P^{*}\right)$ or P_{0} is abelian, since $N\left(P_{0}\right)$ possesses a normal A_{p}-complement.

Now P is a regular ϕ-group. Let F be its ϕ-nucleus and set $\bar{A} \bar{P}=A P / F$. We know that \bar{P} is elementary abelian and $\bar{\phi}$ has order prime to p on \bar{P}. Hence \bar{A}_{p} centralizes \bar{P} and $\bar{P}^{*}=P^{*} / F$ is abelian. In particular, P^{*} is abelian if $F=1$, and we may take $P_{0}=P^{*}$. If F is elementary abelian, $\mathrm{cl}\left(P^{*}\right) \leqq 2$ and we again may take $P_{0}=P^{*}$. If F is cyclic or abelian on two generators, we write $P=H K$, where H, K satisfy the conditions of Lemma 1.3. It follows readily that K and $\Omega_{1}(H)$ lie in $Z_{2}\left(P^{*}\right)$ and hence $\Omega_{1}(P) \subseteq Z_{2}\left(P^{*}\right)$. Furthermore by the structure of $H, \Omega_{1}\left(A_{p}\right) \subseteq Z_{2}\left(P^{*}\right)$; thus $\Omega_{1}\left(P^{*}\right) \subseteq Z_{2}\left(P^{*}\right)$ and we may take $P_{0}=\Omega_{1}\left(P^{*}\right)$.

This argument breaks down for $p=2$. In this case we can apply the HallWielandt theorem only if P_{0} is a weakly closed subgroup of $Z\left(P^{*}\right)$. We shall show in fact that either F_{1} is a weakly closed subbroup of P^{*} or $\Omega_{1}\left(P^{*}\right) \subseteq Z\left(P^{*}\right)$.

Suppose $F_{1}{ }^{x} \subset P^{*}$. Since $x=a^{i} b^{s} a^{j}$ for suitable i, s, j and P^{*} is A-invariant, $F_{1}{ }^{b s} \subset P^{*}$. Since F_{1} is A-invariant, it suffices to prove that $F_{1}{ }^{b s}=F_{1}$. Suppose first that for some z in F_{1},

$$
\begin{equation*}
b^{s} z b^{-s}=a_{1} z^{\prime}, \tag{31}
\end{equation*}
$$

where $\left(a_{1}\right)=\Omega_{1}\left(A_{p}\right)$ and $z^{\prime} \in P$.
Now $A P=A B_{p} A$ with $B_{p}=\left(b_{p}\right) \subseteq B$. Thus $b_{p}=y a^{r}$, for some y in P and some integer r, so that P is of ϕ-index r and y is a ϕ-generator of P. Consider first the case that ϕ^{r} leaves only the identity element of F_{1} fixed and let k be the order of ϕ^{r} on F_{1}. Conjugating (31) by $b_{p}{ }^{i}$ for $i=0,1, \ldots, k-1$, we obtain

$$
\begin{equation*}
b^{s} \phi^{r i}(z) b^{-s}=a_{1} z_{i}^{\prime}, \tag{32}
\end{equation*}
$$

where $z_{i}{ }^{\prime} \in P, i=0,1, \ldots, k-1$.
Multiplying these relations together for $i=0,1, \ldots, k-1$, we obtain $1=a_{1}{ }^{k} z^{*}$, where $z^{*} \in P$. But this is impossible since k is prime to p and $A \cap P=1$.

On the other hand, if ϕ^{r} is the identity on $F_{1}, b_{p}=y a^{r}$ centralizes z and consequently also $a_{1} z^{\prime}$. Since $\bar{\phi}^{r}$ leaves only the identity element of $\bar{P}=P / F$ fixed, $z^{\prime} \in F$, and hence $a_{1} z^{\prime} \in Z\left(A_{2} F\right)$ by Lemma 4.2. Thus b_{p} centralizes z^{\prime} and consequently also a_{1}. We conclude that a_{1} centralizes the ϕ-generator y of P and hence lies in $Z\left(P^{*}\right)$. Now $P=H K$. If $H \supset F, \bar{\phi}$ has order k on $\bar{H}=H / F$ and $\bar{\phi}^{r}$ leaves only the identity element of \bar{H} fixed. But since ϕ^{r} acts trivially on $F_{1}, k \mid r$ and $\bar{\phi}^{r}$ acts trivially on \bar{H}, a contradiction. Thus $H=F$. But then it follows that $\Omega_{1}\left(P^{*}\right)=\left(a_{1}\right) \Omega_{1}(K) \subseteq Z\left(P^{*}\right)$ and we may take $P_{0}=\Omega_{1}\left(P^{*}\right)$.

Therefore we may assume that $F_{1}{ }^{b s} \subset P$. Hence for any z in F_{1}, we have

$$
\begin{equation*}
b^{s} z b^{-s}=z^{\prime}, \tag{33}
\end{equation*}
$$

where $z^{\prime} \in \Omega_{1}(P)$.
If ϕ^{r} leaves only the identity element of F_{1} fixed, then it follows as in the preceding case that $\left[z^{\prime}\right]_{r}^{k}=1$, where k is the order of ϕ on F_{1}. If $\widetilde{P}=P / H$ $=\widetilde{K}$, it follows from (d) of Lemma 1.3 that $\tilde{\phi}^{k}$ leaves only the identity element of \widetilde{K} fixed and hence the same is true of $\tilde{\phi}^{k r}$. But $\left[\tilde{z}^{\prime}\right]_{r}^{k}=1$, and this implies that $\tilde{\phi}^{k r}\left(\tilde{z}^{\prime}\right)=\tilde{z}^{\prime}$. Thus $\tilde{z}^{\prime}=1$ and $z^{\prime} \in \Omega_{1}(H)$.

We may assume that $Z^{\prime} \notin F_{1}$ since otherwise $F_{1}{ }^{{ }^{8}}=F_{1}$ and F_{1} is weakly closed in P^{*}. But then $\Omega_{1}(H)$ is elementary abelian and ϕ has order $2 k$ on $\Omega_{1}(H)$. Let k^{\prime} be the order of $\tilde{\phi}^{r}$ on $\widetilde{K}=K / F_{1}$ and set $y^{\prime}=[y]_{r}^{k^{\prime}}$. Then y^{\prime} is a ϕ-generator of H of ϕ-index $r^{\prime}=r k^{\prime}$. Furthermore, k^{\prime} is not a multiple of k and hence $\phi^{r^{\prime}}$ leaves only the identity element of F_{1} and consequently of F fixed. We first prove that r^{\prime} is odd.

If we set $k_{1}=k /\left(r^{\prime}, k\right)$, then $y_{1}=\left[y^{\prime}\right]_{r^{\prime}}^{k_{1}}$ is a ϕ-generator of F. Suppose $2 \mid r^{\prime}$, and assume first that $F=F_{1}$. Then H is abelian and ϕ has order $2 k$ on H. Thus $\phi^{\tau^{\prime}}\left(y_{1}\right)=\phi^{r^{\prime}}\left(\left[y^{\prime}\right]_{r^{\prime}}^{k_{1}}\right)=\phi^{r^{\prime}}\left(y^{\prime} \phi^{\tau^{\prime}}\left(y^{\prime}\right) \ldots \phi^{r^{\prime}\left(k_{1}-1\right)}\left(y^{\prime}\right)\right)=y_{1}$, contrary to the fact that $\phi^{r^{\prime}}$ leaves only the identity element of F_{1} fixed. If $F \subset F_{1}$, we obtain the same contradiction by considering $H / \mho_{1}(F)$. Thus r^{\prime} is odd, as asserted.

Now $b_{p}{ }^{k^{\prime}}=y^{\prime} a^{r^{\prime}}$. Hence if we conjugate (33) by $b_{p}{ }^{\prime}=b_{p}{ }^{k^{\prime} k_{1}}$, we see that $b_{p}{ }^{\prime}$ centralizes $b^{s} z b^{-s}$ and hence centralizes z^{\prime}. Suppose first that $F=F_{1}$. Since $b_{p}{ }^{\prime}=y_{1} a^{r^{\prime} k_{1}}$, we conclude that $\phi_{1}\left(z^{\prime}\right)=z^{\prime}$, where $\phi_{1}=\phi^{\gamma^{\prime} k_{1}}$. Since $k \mid r^{\prime} k_{1}, \phi_{1}$ acts trivially on F_{1}. Since the subgroup of H left elementwise fixed by ϕ_{1} is invariant under ϕ, it follows, if $z^{\prime} \notin F_{1}$, that ϕ_{1} acts trivially on H. Since $r^{\prime} k_{1}$ is odd, we conclude that ϕ has order k on H, contrary to the fact that ϕ has order $2 k$ on H. On the other hand, if $F \supset F_{1}$, we obtain the same contradiction by considering $H / \mho^{1}(F)$.

Suppose finally that ϕ^{r} is the identity on F_{1}. Then as above $H=F$ and $\Omega_{1}(P)=\Omega_{1}(K) \subseteq Z(P)$. But then conjugating (33) by b_{p}, we conclude that $\phi^{r}\left(z^{\prime}\right)=z^{\prime}$. Since $z^{\prime} \in K$ and $\tilde{\phi}^{r}$ leaves only the identity element of \widetilde{K} fixed, $z^{\prime} \in F_{1}$; and it follows that F_{1} is weakly closed in P^{*}.

Lemma 9.1. If $p \mid \mathrm{o}(A)$, but $p \nmid \mathrm{o}(T)$ for any exceptional subgroup T of G, then p is non-exceptional.

Proof. Let P^{*} be a maximal A-invariant p-subgroup of G containing A_{p}. Since G contains no normal p-subgroups, $N\left(P^{*}\right) \subset G$ and hence $N\left(P^{*}\right)$ is strongly factorizable. Thus $N\left(P^{*}\right)=A T^{*}=A\left(T_{1}^{*} \times T_{2}^{*} \times T_{3}^{*}\right)$. By our hypothesis a p-Sylow subgroup P of T^{*} necessarily lies in the nilpotent group T_{3}^{*}, which is disjoint from A. By the maximality of P^{*}, we must have P^{*} $=A_{p} P$. Thus P^{*} is a p-Sylow subgroup of $N\left(P^{*}\right)$ and hence of G. Furthermore, P is A-invariant, normal in P^{*}, and $A_{p} \cap P=1$.

Finally if $X \neq 1$ is any A-invariant normal subgroup of P^{*}, then $V(X)$ is strongly factorizable and hence $N(X)=A T^{\prime}, T^{\prime} \triangleleft N(X)$ and $A_{p} \cap T^{\prime}=1$. Since A is abelian, $N(X)$ possesses a normal A_{p}-complement. Thus P is nonexceptional, as asserted.

Theorem 8. Let $G=A B A$, and assume that every prime dividing o(.1) is non-exceptional. Then $[G, G]$ is a normal complement of A in G and is nilpotent of class 1 or 2. In particular, G is solvable. Furthermore the hypotheses are satisfied if $2 \nmid \mathrm{o}(A)$ or $6 \nmid \mathrm{o}(G)$.

Proof. It follows readily from the preceding lemma that the assumptions of the theorem are satisfied if and only if G contains no exceptional subgroups. In particular, Theorem 3 and Lemma 7.1 show that this is the case if $2 \nmid o(.1)$ or $6 \nsucc \mathrm{o}(G)$.

If G is solvable, Theorem B^{\prime} implies that $G=A T, T \triangleleft G$, and $A \cap T^{\prime}=1$. Since $N(A)=A$, we must have $T=[G, G]$; and since T is a regular ϕ-group, it is nilpotent of class 1 or 2 .

Let then G be a non-solvable $A B A$-group of least order satisfying the conditions of the theorem. By Theorem 7, $G=A_{p} K_{p}$, where $K_{p} \triangleleft G$ and $A_{p} \cap K_{p}=1$. If

$$
T=\bigcap_{p \mid 0(A)}^{\cap} K_{p},
$$

then $T \triangleleft G, G=A T$, and $A \cap T=1$. Thus T is a regular ϕ-group, whence T and G are solvable, a contradiction.
10. Proof of Theorem A. In view of Theorem $8, G$ must contain an exceptional subgroup T. Suppose $T=M Q$ if of type II or III with $M \neq 1$. Let M_{1} be a minimal normal subgroup of $A T$ and set $G^{*}=N\left(M_{1}\right)$. Then we have

Lemma 10.1. G^{*} contains a q-Sylow subgroup Q^{*} such that $N\left(Q^{*}\right) \subset G^{*}$. In particular, Q^{*} is a q-Sylow subgroup of G.

Proof. By Theorem 5 we may assume $\phi(Q)=u Q u^{-1}$, where $u \in A \cap M$. Thus if $o(A \cap M)=t, \phi^{t}(Q)=Q$ and since $(t, q)=1, Q$ is invariant under the q-Sylow subgroup A_{q} of A. Since G^{*} is strongly factorizable, $G^{*}=A T^{*}$, where $T^{*} \triangleleft G^{*}$ and $T^{*}=T_{1}^{*} \times T_{2}^{*} \times T_{3}^{*}$. Clearly $T \subseteq T_{2}^{*}$, and without loss we may assume $T=T_{2}^{*}$. If Q^{\prime} denotes a q-Sylow subgroup of T_{3}, Q^{\prime} is
A-invariant and $Q^{*}=A_{q} Q Q^{\prime}$ is a q-Sylow subgroup of G^{*}. Let $Q_{0}=C(M) \cap Q$. Then if $y \in Q \tilde{M} Q_{0}$, we have

$$
\begin{equation*}
\phi(y)=y^{c} z^{\prime}, z^{\prime} \in M Q_{0} \tag{34}
\end{equation*}
$$

and $c=2$ if $q=7, c=1$ if $q=3$.
If now $x \in N\left(Q^{*}\right)$, we can write $x=a^{i} b^{s} a^{j}$. Since $\phi\left(Q^{*}\right) \subset M Q^{*}$ $b^{s} a^{j} Q^{*} a^{-j} b^{-s} \subset M Q^{*}$. In particular, $b^{s} \phi^{j}\left(y^{d}\right) b^{-s} \in M Q^{*}$ for all d. By (34) we can choose d so that $\phi^{j}\left(y^{d}\right)=y z, z \in M Q_{0}$, and hence

$$
\begin{equation*}
b^{s} y z b^{-s} \in M Q^{*} . \tag{35}
\end{equation*}
$$

Now $A M_{1}=A B_{1} A$, where $B_{1}=\left(b_{1}\right) \subset B, b_{1}=v a^{r}$ for some v in M_{1} and some integer r. By the structure of T, m divides r, where $m=3$ if $q=7$ and $m=2$ if $q=3$. Furthermore, ϕ has order m on M_{1} and $M_{1} \subseteq Z(M)$. By our minimal choice of M_{1}, M_{1} is an elementary abelian p-group for some prime p and hence $b_{1}{ }^{p}=\left(v a^{r}\right)^{p}=v^{p} a^{r p}=a^{r p}$. Since G contains no normal subgroups of prime power order, $A \cap B=1$ and consequently $a^{\tau p}=1$. We conclude that $a^{r} \in A \cap M_{1}$ and hence that $b_{1} \in M_{1} \subseteq Z(M)$.

It follows now from (35) that $\left[b_{1}, b^{s}(y z)^{i} b^{-s}\right]=b^{s}\left[b_{1}, y^{i}\right] b^{-s} \in M Q^{*}$ for all i. But Q acts irreducibly on M_{1} and hence $b^{s} M_{1} b^{-s} \subseteq M Q^{*}$. Thus $x M_{1} x^{-1}$ $\subset M Q^{*}$. But M_{1} contains all elements of order p in $M Q^{*}$; therefore $x M_{1} x^{-1}$ $=M_{1}$ and $x \in G^{*}$. Thus $N\left(Q^{*}\right) \subset G^{*}$, as asserted. Since Q^{*} is a q-Sylow subgroup of $N\left(Q^{*}\right), Q^{*}$ is a q-Sylow subgroup of G.

From this lemma we can derive the following extension of Theorem 7.
Lemma 10.2. If G contains an exceptional subgroup $T=M Q$ of types $I I$ or III such that $A \cap T \subset M$, then G contains a normal subgroup K_{q} such that $G=A_{q} K_{q}$ and $A_{q} \cap K_{q}=1$.

Proof. Let Q^{*} be as in Lemma 10.1 and let $\bar{A} \bar{Q}^{*}=A M Q^{*} / M$. Then \bar{Q}^{*} $=\bar{A}_{q} \bar{Q} \bar{Q}^{\prime}$ and $\bar{Q} \bar{Q}^{\prime}$ is a regular $\bar{\phi}$-group. If $\operatorname{cl}\left(\bar{Q}^{*}\right) \leqq 2$, then $\mathrm{cl}\left(Q^{*}\right) \leqq 2$. Since $N\left(Q^{*}\right) \subset G^{*}$ and q is prime to o $(M), N\left(Q^{*}\right)$ contains a normal A_{q}-complement, and hence by the Hall-Wielandt theorem, so does G.

But now by the proof of Theorem 7, either $\mathrm{cl}\left(Q^{*}\right) \leqq 2$ or $\Omega_{1}\left(Q^{*}\right) \subseteq Z_{2}\left(Q^{*}\right)$; and hence we may assume that $\Omega_{1}\left(Q^{*}\right) \subseteq Z_{2}\left(Q^{*}\right)$. If $\Omega_{1}\left(Q^{*}\right)$ centralizes M, then $\Omega_{1}\left(Q^{*}\right)$ is A-invariant and it follows that $G^{\prime}=N\left(\Omega_{1}\left(Q^{*}\right)\right)$ is strongly factorizable and contains T. If $G^{\prime}=A T^{\prime}$, where $T^{\prime}=T_{1}{ }^{\prime} \times T_{2}{ }^{\prime} \times T_{3}{ }^{\prime}$, we must have $T \subseteq T_{2}{ }^{\prime}$ and hence G^{\prime} possesses a normal A_{q}-complement. Again the lemma follows from the Hall-Wielandt theorem.

On the other hand, the proof of Lemma 10.1 applies equally well to any subgroup of Q^{*} which does not centralize M. Hence in the remaining case, $N\left(\Omega_{1}\left(Q^{*}\right)\right) \subset G^{*}$ and the lemma follows as above.

Lemma 10.3. G does not contain an exceptional subgroup of type II.
Proof. Suppose G contains an exceptional subgroup $T=M Q$ of type II.

Then by Theorem $6, G$ does not contain an exceptional subgroup of type III, and hence no exceptional subgroup of G has order divisible by 3 . But $3 \mid o(A)$ by Theorem 5 and hence 3 is non-exceptional by Lemma 9.1. Thus by Theorem 7 , we have $G=A_{3} K_{3}$, where $K_{3} \triangleleft G$ and $A_{3} \cap K_{3}=1$. Since $A \cap T \subset M$, the preceding lemma implies that $G=A_{7} K_{7}$, where $K_{7} \triangleleft G$ and $A_{7} \cap K_{7}=1$. If $L=K_{3} \cap K_{7}$, then $L \triangleleft G$ and $A_{3} A_{7} \cap L=1$.

Let M_{1}, G^{*}, and Q^{*} be as in Lemma 10.1, and let A^{*} be the subgroup of A generated by the elements of order prime to 3 and 7 . Then $G^{*}=A T^{*}$, where $T^{*}=\left[G^{*}, G^{*}\right]$, and $Q^{*}=A_{7}\left(Q \times Q^{\prime}\right)$. Now $Q Q^{\prime}$ is a 7 -Sylow subgroup of L and since $N\left(Q Q^{\prime}\right) \subset \mathrm{G}^{*}, N\left(Q Q^{\prime}\right) \cap L \subset A^{*} T^{*}$. But $\bar{\phi}$ has order 3.7^{s} on $\bar{Q}=M Q / M$; hence A^{*} centralizes Q and $A^{*} T^{*}$ possesses a normal Q-complement. Since $\mathrm{cl}\left(Q Q^{\prime}\right) \leqq 2$, we conclude that $L=Q H$, where $H \triangleleft L$ and $Q \cap H=1$.

Now clearly $\phi(x) \in H$ for any element x of H of order prime to 7 . Since Q^{\prime} is a 7 -Sylow subgroup of $H, \phi(x) \in H$ if $x \in Q^{\prime}$. If x is any 7 -element of H, then $x=u x^{\prime} u^{-1}, x^{\prime} \in Q^{\prime}$ and $u \in H$. But then $\phi(x)=\phi(u) \phi\left(x^{\prime}\right) \phi\left(u^{-1}\right)$, where $\phi\left(x^{\prime}\right) \in Q^{\prime}$. Since $\phi(u) \in L$ and $H \triangleleft L$, it follows that $\phi(x) \in I$. We conclude that H is A-invariant. Since $A_{7} Q^{\prime}$ is a 7 -Sylow subgroup of $A H$ and $A_{7} Q^{\prime} \subset Q^{*}, A H \subset G$, and consequently H is solvable by induction. Thus L and consequently G is solvable, a contradiction.

Lemma 10.4. G does not contain an exceptional subgroup of type III.
Proof. Suppose G contains an exceptional subgroup $T=M Q$ of type III. Assume first that 2 is exceptional. Since G does not contain an exceptional subgroup of type II, it must then contain an exceptional subgroup T_{1} of type I. We may therefore apply Lemma 7.2. First of all, this yields $A \cap T=A \cap M$, and hence by Lemma $10.2, G=A_{3} K_{3}$, where $K_{3} \triangleleft G$ and $A_{3} \cap K_{3}=1$. Secondly we have $\Omega_{1}\left(T_{1}\right) \subseteq A$. Now it is easy to see that G possesses an A-invariant 2-Sylow subgroup R containing T_{1}, and hence by Theorem 3 $\Omega_{1}\left(A_{2}\right) \subseteq Z(R)$. In the next lemma we shall show that this forces $\Omega_{1}\left(A_{2}\right)$ to be weakly closed in R, so assume this. Now $G^{\prime}=N\left(\Omega_{1}(R)\right)$ is strongly factorizable. It follows at once that $G^{\prime} \cap K_{3}$ possesses a normal $A_{2} T_{1}$-complement. But then by the Hall-Wielandt theorem applied to K_{3}, we have $K_{3}=\left(\Lambda_{2} T_{1}\right) H$, where $H \triangleleft K_{3}$ and $A_{2} T_{1} \cap H=1$. As in the preceding lemma, H is A-invariant and $A H \subset G$. Thus H and hence G is solvable, a contradiction.

Hence 2 is non-exceptional. Therefore by Theorem $7, G=A_{2} K_{2}$, where $K_{2} \triangleleft G$ and $A_{2} \cap K_{2}=1$. Suppose next that $M \neq 1$. If $Q^{*}=A_{3}\left(Q \times Q^{\prime}\right)$ and G^{*} are as in Lemma 10.1, Q^{*} is a 3 -Sylow subgroup of G. If $A \cap T$ $=A \cap M$, Lemma 10.2 yields $G=A_{3} K_{3}, K_{3} \triangleleft G$ and $A_{3} \cap K_{3}=1$. Let $L=K_{2} \cap K_{3}$. Since $\bar{\phi}$ has order $2 \cdot 3^{s}$ on $\bar{Q}=M Q / Q$, it follows as in the preceding lemma that $L=Q H$, where $H \triangleleft L, H$ is A-invariant, and $A H \subset G$; again we reach a contradiction.

On the other hand, if $A \cap Q \neq 1$, it follows from Theorem 4 that $\Omega_{1}\left(Q^{*}\right) \subseteq Z_{2}\left(Q^{*}\right)$. But then the Hall-Wielandt theorem gives $K_{2}=\left(A_{3} Q\right) H$,
where $H \triangleleft K_{2}$. Once again H is A-invariant and $A H \subset G$, which leads to a contradiction.

Finally, if $M=1, G$ contains an A-invariant 3 -Sylow subgroup Q^{*} containing Q, which by Theorem 4 has the form $A_{3}\left(Q \times Q^{\prime}\right)$, where Q^{\prime} is abelian and A-invariant. Since $N\left(\Omega_{1}\left(Q^{*}\right)\right)$ is strongly factorizable, we reach a contradiction as in the preceding case.

Finally we prove
Lemma 10.5. G does not contain an exceptional subgroup of type I.
Proof. Suppose G contains an exceptional subgroup T_{1} of type I. We may assume that a 2 -Sylow subgroup R of G has the form $A_{2}\left(T_{1} \times T_{2}\right)$, where T_{1}, T_{2} satisfy the conditions of Theorem 3 . By the preceding lemma, 3 is non-exceptional and hence $G=A_{3} K_{3}, K_{3} \triangleleft G, A_{3} \cap K_{3}=1$. It will suffice to show that $Z(R)$ contains a weakly closed subgroup, for then we shall reach a contradiction as in the first part of the proof of Lemma 10.4.

Now $A R=A B_{p} A$ with $B_{p}=\left(b_{p}\right) \subseteq B$. Thus $b_{p}=y a^{r}$ with y in R. Let $T_{1}=Q Q^{\prime}$, where Q, Q^{\prime} satisfy the conditions of Theorem 3 and let $Z_{1}=\Omega_{1}(Z(Q))$. Then $Z_{1} \subseteq Z(R)$ and $Z_{1}=\left(A \cap Z_{1}\right) \times F_{1}$, where F_{1} is A-invariant of order 1 or 4 . Suppose first that $F_{1} \neq 1$ and ϕ^{r} is the identity on F_{1}. If $Z_{1}{ }^{\prime}=Z_{1}^{b^{s}} \subset R$ for some s, it follows as in Theorem 7 that $Z_{1}{ }^{\prime} \subset Q$ and $\left[Z_{1}{ }^{\prime}, B_{p}\right]=1$. But then $Z_{1}{ }^{\prime}=Z_{1}$ by Lemma 4.2 , and this implies that Z_{1} is weakly closed in R.

Suppose next that $F_{1} \neq 1, \phi^{r}$ leaves only the identity element of F_{1} fixed, and $F_{1}{ }^{\prime}=F_{1}^{b^{s}} \subset R$. Again as in Theorem 7 we have $F_{1}{ }^{\prime} \subseteq Q$ and

$$
\begin{equation*}
z^{\prime} \phi^{r}\left(z^{\prime}\right) \phi^{2 r}\left(z^{\prime}\right)=1, z^{\prime} \in F_{1}^{\prime} \tag{36}
\end{equation*}
$$

We shall prove by induction on $o(Q)$ that (36) forces $F_{1}{ }^{\prime}=F_{1}$, from which it will follow that F_{1} is weakly closed in R. By induction we may assume that $F_{1}{ }^{\prime} \subseteq Q_{1}$, where $Q_{1} \triangleleft A Q$, and $\left(A \cap Q_{1}\right) F_{1}$ is normal and of index 4 in Q_{3}. Set $A Q_{1} / F_{1}=\bar{A} \bar{Q}_{1}$. If \bar{Q}_{1} is the central product of $\bar{A} \cap \bar{Q}_{1}$ and a quaternion group, it is easy to see that (36) forces $\bar{F}_{1}{ }^{\prime}=1$. Hence we may assume $\bar{Q}_{1}=\left(\bar{A} \cap \bar{Q}_{1}\right) \times \bar{F}$ is elementary, where \bar{F} is \bar{A}-invariant and $\mathrm{o}(\bar{F})=4$. Let F be the inverse image of \bar{F} in $Q \cdot{ }_{1}$ Since Q does not possess a normal A-complement, F is of ϕ-index 0 and hence abelian of type (4,4). But clearly (36) implies $F_{1}^{\prime} \subseteq F$, whence $F_{1}^{\prime}=F_{1}$.

Suppose finally that $Z_{1} \subset A$ and Z is not weakly closed in R. Then for some $s, Z_{1}{ }^{\prime}=Z_{1}^{b^{s}} \subset R$ and $Z_{1}{ }^{\prime} \neq Z_{1}$. As in the first case, $Z_{1}{ }^{\prime} \subseteq Q$ and $\left[Z_{1}{ }^{\prime}, B_{p}\right]=1$. Lemma 4.2 now implies that $Z_{1}{ }^{\prime} \subset Z_{1} B^{\prime}$, where $B^{\prime} \subseteq B \cap Q$ and $\mathrm{o}\left(B^{\prime}\right)=2$. Since B is abelian, it follows that b^{s} normalizes $H=Z_{1} B^{\prime}$ and that $b^{2 s}$ centralizes H. Thus $b^{s} \in C^{*}(H)$, where $C^{*}(H)$ denotes the extended centralizer of H in G. But $C^{*}(H) \subseteq C\left(Z_{1}\right)$ and hence $Z_{1}{ }^{\prime}=Z_{1}$, a contradiction. The lemma is proved.

Lemmas $10.3,10.4$, and 10.5 show that G contains no exceptional subgroups. But then every prime dividing o (A) is non-exceptional, and Theorem 8 shows that G must be solvable. This completes the proof of Theorem A.

References

1. D. Gorenstein, A class of Frobenius groups, Can. J. Math., 11 (1959), 39-47.
2. —_ Finite groups which admit an automorphism with few orbits, Can. J. Math., 12 (1960), 73-100.
3. D. Gorenstein and I. N. Herstein, A class of solvable groups, Can. J. Math., 11 (1959), 311-320.
4. - On the structure of certain factorizable groups I, Proc. Amer. Math. Soc., 10 (1959), 940-945.
5. ——On the structure of certain factorizable groups II, Proc. Amer. Math. Soc., 11 (1960), 214-219.
6. M. Hall, Theory of groups (New York: Macmillan Co., 1959).
7. P. Hall and G. Higman, On the p-length of a p-soluble group, Proc. London Math. Soc., 7 (1956), 1-42.
8. B. H. Neumann, Groups with automorphisms that leave only the neutral element fixed, Archiv der Mathematik, 7 (1956), 1-5.

Clark University

[^0]: Received April 12, 1960; in revised form January 16, 1962. This research was supported in part by the National Science Foundation, grant G-14007.

[^1]: *In (2) we have used the terms index and generator of P under $\phi ; \phi$-index and ϕ-generator seem preferable, since they avoid possible confusion with the customary use of these terms in the theory of groups.

[^2]: *Theorem 8 of (2) asserts actually that F is in the centre of P. There is, however, an error in the proof. A correct proof, when p is an odd prime, will be given below in Lemma 1.5. It will also be shown that P is of class $\leqslant 2$ even when $p=2$, although in this case F need not be in the centre of P. This will complete the proof of Theorem 9 of (2).

