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Abstract

A class (called c-radicals) is defined such that, given a c-radical P, there is in any class M' a
certain internal criterion that its upper radical UM' = P. For P a non-c-radical (called a q-radical)
there exists no smallest class M such that UM = P, and P is a q-radical if and only if for some M
with P = UM there exists 0 ̂  R e M such that when an image R of R has a non-zero image in M
there exists an infinite chain of epimorphisms R —> /?,—> R2—* • • • with all R, £ M and no R, the
image of any R, with / > i. Several examples of such rings are constructed including a ring all of
whose images are primitive. Thus all radicals contained in the Jacobson radical are q- radicals.

1. Introduction

All rings to be considered are associative and it will be assumed that a class
of rings always contains all rings isomorphic to any member of the class. For a
ring R write / < R to mean / is an ideal of R and let R always designate some
non-zero homomorphic image of R. For a class M of rings let

UM ={R\every Rg M},

SM = {R | for every 0 ^ I < R we have J£ M).

It is known by Theorem 1 of Enersen and Leavitt (1973) that UM is radical (in
the Kurosh-Amitsur sense; see Divinsky (1965), page 4) if and only if every
0/ R e. M has some R £ SUM, and when this is the case UM is the "upper
radical" defined by M. Note that in defining UM it makes no difference
whether 0 G M or not. For convenience we will assume that 0 is a member of all
classes. An upper radical UM is said to have "property (Int) relative to M" if
for R an arbitrary ring, UM(R) is the intersection of a set {/J of ideals of R for
which RjIi&M (equivalently, if every R £ SUM is a subdirect sum of
members of M). A class M which is closed under taking ideals is called
"hereditary".

It is well-known that classes M' ^ M can exist for which UM = UM'. For
example, the prime radical (Lower Baer radical) is equal to both UM and UM'
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[2] Upper radicals 265

when M is the class of all prime rings and M' is the class of all semiprime rings.
One of the unsolved problems of radical theory is to find, for a given class Af,
internal criteria on a class M' so that UM' = UM. We do have criteria in certain
special cases. For example, it was shown in Enersen and Leavitt (1973) that

PROPOSITION 1. A sufficient condition that UM = UM' is that every
O ^ R E M U M ' has a non-zero homomorphic image in Af n M' and if either M
or M' is homomorphically closed or contains nothing but Noetherian rings then the
condition is also necessary.

LEMMA 2. // every 0 ^ R £ M has a non-zero image in M' then UM' C
UM.

PROOF. If R gz UM then R has a non-zero image in M and so a non-zero
image in M'. Thus R£ UM' and we conclude that UM' C UM.

This implies an easy criterion in the special case M' C M, namely:

PROPOSITION 3. For a given class M, ifM'CM then UM' = UM if and only
if every 0 ̂  RGM has some R £ M'.

PROOF. The necessity is clear and the sufficiency follows from Proposition
1 (or Lemma 2).

Remark that neither of the criteria of Propositions 1 or 3 can be properly
called "internal" criteria on M' since reference needs to be made to conditions
on rings outside M'.

The author wishes to express his thanks to the referee who pointed out a
serious gap in the first version of this paper (namely, that the "cycles" of the
next section cannot be ruled out).

2. c-Radicals and s-radicals

A pair {/?, K) of rings is called a cycle if there exist epimorphisms R —> K
and K —* R, and when this is the case we will say R and K are equivalent
(written R ~ K). Note that a set {R,, • • •, /?„} of rings is a "general cycle", that
is there exist epimorphisms R,—>R2-*---—>Rn—*R,if and only if all /?, ~ Rt.
Also note that the relation ~ is an equivalence relation. Two classes M, N of
rings will be called equivalent (written Af ~ TV) if every R £ Af is equivalent to
some K £ N and conversely. For a class M of rings we define the cycle closure
M = {K | K ~ R for some R E M}. Clearly M is cycle-closed (that is, M = Af)
and also M ~ M. Then we have:

PROPOSITION 4. For M, N arbitrary classes, M ~ N implies UM = UN.
Thus UM = UM for any class M.
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PROOF. Since every non-zero R G M has some R G N it follows from
Lemma 2 that UN C UM, and symmetrically [/Af C UN.

A ring R in a class Af will be said to have property (c) relative to M if
R ~ R whenever an image R E M.

REMARK 1. If R has property (c) relative to M then:
(i) R has property (c) relative to any M' C M, and
(ii) R has property (c) relative to M.
A class M will be called a c-class if every R E M has property (c) relative

to M and a radical P is called a c-radical if P = t/Af for some c-class M. By
Remark 1 every c-class Af is contained in a (cycle-closed) c-class Af.

THEOREM 5. / /M is a c-class and M' an arbitrary class, then UM' = UM if
and only if (i) every 0 ^ R E M' has some R E M D AT, and (ii) Af n Af' ~
M.

PROOF. The sufficiency is clear since Propositions 3 and 4 imply UM' =
U(M n AT) = C/M = C/M. On the other hand suppose that UM' = UM. If
0 ̂  R G Af' then R<£ UM' = UM so there is some R G A?. But then R has an
image 0/ K E M' which in turn has an image 0 ^ H E M. Then property (c)
implies R ~ H and so R ~ K. Since M is cycle-closed K E M n AT. Also for
any R G M the same argument produces some K EM' such that R ~ K and
so K G M n M', that is M ~ M D A/'.

COROLLARY 6. Lef Af, be a class of rings such that l/Af, = Pfora c-radical
P, then there exists a c-class N, C Af, such that UN, = UM,. For any other
class M2 of rings containing a c-class N2 such that UN2 = UM2 we have
UM2 = P if and only if N2= N,.

PROOF. If P = UM for a c-class M then from Theorem 5 we can take
JV, = Af, n M ~ M whence N, = Af. Then if P = (7M2 = (7N2 where N2 is a
c-class we have N2 n Af ~ Af and N2 n Af ~ N2, and so N2 = M = N,. Also if
JV2 = N, then LW2 = [/N2 = UN, = UN, = P.

We now consider a special case of property (c). We will say a ring R E M
has property (s) relative to M if R = R whenever an image R G Af. A class Af
is an s-class if every R G Af has property (s) relative to Af and a radical P is an
s-radical if P = UM for some s-class Af.

COROLLARY 7. 7/ Af is a class of simple rings then P = UM is an s-radical.
For this case, M = M so UM' = P for a class M' if and only if Af C Af' and
every 0 ̂  R G Af' has some REM.
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REMARK 2. From Corollary 7 many well-known radicals (such as the
Brown-McCoy radical) are s-radicals (hence c-radicals). There are also many
s-radicals which are not upper radicals of classes of simple rings, such as UM for
a hereditary class M containing none of the proper (i.e. non-isomorphic) images
of any of its members. For example, M = {I \ I < Z} where Z = the integers.

REMARK 3. There are s-classes M for which UM is not radical. For
example M = {/?} for any ring R is (trivially) an s-class but UM would rarely be
radical. One can also construct c-classes which are not s-classes but whether or
not there exists a c-radical which is not an s-radical is open.

PROPOSITION 8. Let M' C M and UM' = UM. Then M' is an s-class if and
only if no proper subclass M"CM' has the property UM" = UM.

PROOF. Let M' be an .s-class. If M" is a proper subclass of M' then
UM' C UM" and there is some REM', R£ M". If any R E M" then R would
have a proper image in M' contradicting M' being an .s-class. Thus R E UM"
whereas. R £ UM'. On the other hand, if M' is not an .s-class then some R E M'
has a proper image REM'. Let M"=M'\R then Proposition 3 implies
UM"= UM'.

REMARK 4. If M is any cycle-closed c -class then M can be partitioned into
equivalence classes relative to the relation ~ . Each equivalence class is a set,
and it may happen that there exists a class M, containing exactly one representa-
tive from each of these equivalence sets. (For example, if M is itself a set then
the axiom of choice can be used.) When this is the case M, is an .s-class for which
UM, = UM. Even when M is too big to be a set, one might only be concerned
with the radicals in a certain set of rings. In this case one could take a universal
class V containing the rings in question but small enough to be a set, and
consider the upper radical relative to V, namely UV(M (1 V) = (UM) D V,
whose radical would coincide with UM(R) in all REV. Again there would exist
a smallest class (that is, an s-class) M,CMC\V such that UV(M,) =
uv(M n V).

3. q -Radicals

A radical will be called a q-radical if it is not a c-radical, and in this section
we will consider the problem of characterizing such radicals. For a class M of
rings a sequence {/?,, R2, • • •} will be called a chain in M if: (1) all R, E M, (2) for
all n g 1 there exists an epimorphism Rn —* /?„+,, and (3) for all m , n g l there
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exists no epimorphism Rm+n—>Rn. We will say that a chain R,—>R2—>- •• is
initiated by a ring R if there exists an epimorphism R —» Rt.

A ring R G M will be said to have property (q) relative to M if for every R
which has an image 0 ^ K £ M there exists an infinite chain in M initiated by
R.

PROPOSITION 9. If R G M does not have property (q) relative to M then R
has an image 0 / K E M with property (c) relative to M.

PROOF. Let R G M with R an image which has a non-zero image in M but
does not initiate any infinite chain in M. Now if every chain R, —* R2 —* • • • —> Rn

of length n initiated by R were extendable to a longer chain in M then one
could define a sequence {RJ C{Ri, R2} C • • • • whose union would be an infinite
chain in M initiated by R. Thus there must exist some Rn G M such that when
Rn G M there exists an epimorphism Rn —> R, for some ; S n. But then
Rn ~ Rn, that is Rn has property (c) relative to M.

THEOREM 10. A radical P is a q-radical if and only if P = UM for some
class M containing a ring with property (q) relative to M.

PROOF. Let P be a c-radical, that is P = UN for some c-class N. Let M be
any class for which P = UM. If R G M then there exists some REN where R
has some image 0 / K E M . Suppose R —> /?, —» R2 where K l , R 2 e M . Then i?2

has an image O^HGN so property (c) in AT implies R ~ H. Therefore,
R,~ R2 and so R cannot initiate any chain in M. Thus M contains no elements
with property (q) relative to M.

On the other hand suppose P = UM where M contains no ring with
property (q) relative to M. Let M, = {K G M \ K has property (c) relative to
M}. Then C/M C t/M, and by Proposition 9 if R G M then R has a non-zero
image in M,. Thus UM = UMX and so P is a c- radical.

Note that the last part of this proof shows, in fact, that if there exists any
M with P = UM and M q-free then P is a c-radical. Thus we have:

COROLLARY 11. A radical P is a q-radical if and only if every class M for
which P = UM contains a ring with property (q) relative to M.

We can say even more, namely that for any q-radical there is a ring which
is "universal" for the (q) property:

THEOREM 12. A radical P is a q-radical if and only if there exists a ring R
such that, for any class M, // P = UM then there is some R G M with property
(q) relative to M.
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PROOF. The sufficiency is obvious, so suppose P is a q-radical then by
Theorem 10 there exists a class N such that P = UN containing a ring R with
property (q) relative to N. Let M be any class for which UM = P. Then there is
some RGM and if R does not have property (q) relative to M then by
Proposition 9 it has an image 0 / K G M with property (,c) relative to M. But K
has an image in N so since R has property (q) relative to N, there is in N an
infinite chain /?, -> /?2-» • • • initiated by K. But R2e N implies R2 has an image
0 / H e M and since K has property (c) relative to M, we have K ~ H so
Ri~ R2. From this contradiction we conclude that indeed R has property (q)
relative to M.

Note, in fact, that if P is a q -radical there must be such a ring "universal"
for the (q) property residing in every class M such that P = UM.

4. Some constructions of q -radicals

EXAMPLE 1. Let {Ku K2, • • •} be a sequence of simple rings without unit of
increasing infinite (=£ No) cardinality c, < c2 < • • • and each ring of characteristic

0. Let {B,} be the set of all ideals of the direct sum B = © K, and let {F,} be the

set of all such ideals which are finite direct sums. We will write K, C B, to mean
Ki is one of the summands appearing in B,. Now B is an algebra over the
rationals Q and so we may construct the split direct sum R = B + Q, and we
will write Rt = R/Fj. Note that an arbitrary R has form RIB, = B, + Q, where
any Kr C B, if and only if Kr g) B;. Also notice that this way of representing
R/Bf is unique for if K, C B, and say, Kr£ Bs, then B, + Q^BS + Q since the
first has an ideal of cardinality cr whereas all ideals of B, + Q have cardinality
greater than or less than cr.

LEMMA 13. If there exists an epimorphism R/Bj—* R/Bk then B, C Bk.

PROOF. We have /?/B, = B, + Q where any Kf C Bs if and only if K,£ B,,
Thus if RIBj has an image R/Bk = (Bs + Q)/Bu = B, + Q then any K, C B, if
and only if K, C Bs but K, £ Bu, that is B, C Bs. But this implies B, C Bt.

We now proceed with our construction of a q-radical, defining the class
N = {R, Rh Bj}. Since the only proper ideals of R or Rt are members of {B,} the
class N is hereditary and so UN is radical. Then we have:

THEOREM 14. The ring R of Example 1 has property (q) relative to the
class N so UN is a q-radical.

PROOF. If R = RIB, has an image R, = R/Fj G N then from Lemma 13 it
follows that B, C Fh that is B, is a finite direct sum. Thus B, = Fh and there
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exists an infinite properly ascending chain Fh CFhC- • • of members of {FJ.
Thus R initiates an infinite chain R,,—»/?fe—» • • • in N.

Since P = UN is a q- radical we know from Proposition 8 that there cannot
exist a minimal class M such that P = UM. We can say even more, namely:

THEOREM 15. For the radical P = UN of Example 1 if N' is a class such
that P = UN' has property (Int) relative to N' then there is a class N" properly
contained in N' such that P = UN" has property (Int) relative to N".

PROOF. If UN = UN' then some R E. N' and since R has an image in N,
we have as above that R = R/Fj for some finite direct sum Fh We can therefore
find Kr, Ks with Kr/ Ks and neither a summand of F,. We can regard Kr and Ks

as ideals of R with Krf\Ks= 0. Thus R is a subdirect sum of R/Kr and R~IK,
each a proper image of R. Each of these is in N C SP and since P = UN' has
property (Int) relative to N' each of them is a subdirect sum of members of N'
none of which, by Lemma 13, could be isomorphic with R. Therefore any
subdirect sum of members of N' is also a subdirect sum of members of
N"- = N'\R. Thus P = UN" also has property (Int) relative to N".

REMARK 5. Any radical P has (trivially) property (Int) relative to SP. Thus
starting with SUN, this theorem provides an infinite properly descending
sequence of classes {Nf} such that UN = UN has property (Int) relative to N,.

REMARK 6. Notice that every ring in the hereditary class N has a simple
image. Thus N C SUM where M is the class of all simple rings. We therefore
have an s-radical whose semisimple class contains a class not containing an
s -class (in fact, a class N such that UN is a q -radical).

REMARK 7. In Example 1 if Br0.{F,} then RIB, has no images in N so
R IB, G UN. But any such ring has some B, G N as an ideal so UN is not a
hereditary radical. Note that if the {K,} are constructed by the method of
Heyman and Leavitt (using algebras over fields of increasing cardinality) then
each Kt contains an idempotent so is primitive. Thus the Jacobson radical
/ C UN and since all R / B,£ J the inclusion is proper. On the other hand, the
{K,} could be constructed by the Sasiada method; see Sasiada and Cohn (1967)
(using formal power series over fields of increasing cardinality) and in this case,
UN would be incomparable with /.

We now show that / is a q-radical by constructing a ring with property q
relative to the class of all primitive rings.

EXAMPLE 2. Let {r0, r, • • •} be a sequence of ordinals defined as follows:
r0 = 0 and for all n S 1, rn = sn + 1 where sn is defined by Hu = 2"-, where u = sn
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and v = rn-i. Let h = lim rn and let V be the vector space over Z2 with basis a
set W of cardinality Hh. Our ring R will be the set of all linear transformations
of V of rank < N*. It is easy to show (and well-known) that the ideals of R are
precisely the sets Im = {all linear transformations of rank < Nm} for all 0 S m S
h. Note that for all m < h, R/Im is subdirectly irreducible with simple heart

LEMMA 16. For all integers n ^ 1 there does not exist an epimorphism
RIIm -+RILn for any m S rn+l.

PROOF. If such an epimorphism did exist then for some k g m s rn+1 we
would have an isomorphism Rjh = RILn- For notational simplicity let us write
rn = r, K, = a and Hk = b. Such an isomorphism would imply isomorphic hearts,
namely h+Jh = h+\llr. Let S be a subset of the basis W of cardinality a. Let
a e R be the identity on S and zero on the complement S' = W\S. Then
a G /r+1, a ^ / r and if d is the image of a in Ir+,llr there would be some
corresponding /3 e Ik+JIk. Let j8 be any preimage of /3 in /„+, so /3 has rank b.
Thus if T is a basis for Vj8 then T has cardinality b and we may extend to a
basis r u T ' o f V. Since /3 is idempotent, p2 - /3 = y £ Ik. Thus the matrix of /3
relative to T U T has form

Hi
where G is a matrix of rank < b and B is some submatrix in the columns
corresponding to T. We now rearrange T as the union of a set {T} of b
(disjoint) sets each of cardinality b. Then relative to the basis (U Tl) U T the
matrix becomes

0

0 J

where /, is the identity on T{ and 5, is formed from the columns of B
corresponding to the T:. Also G' (similar to G) has rank< b. If we let
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0

0 I 0

0

0 B, 0

[9]

we obtain a set {/3,} of b orthogonal idempotents with the property that
/3j8i/3 - /3i £ Jk. There would then exist a set {d,} of orthogonal idempotents in
Ir+,Ur satisfying the relations ddid = df. Let {a,} be any set of preimages in Ir+,
of the {d,}. Since a is the identity on S and zero on S' it follows that the matrix
of «; relative to S U S' has form

! ] • *
where A-, has non-zero elements only in the rows and columns relative to S and
H has rank < a. Now the matrix At has a elements so the number of possible
choices of such a matrix rs 2" = KSn+l. But k^m g rn+, = $„+, + 1 so b = Hk > 2".
Thus for some i/ j we would have A, = Aj whence a, - a, would be of
rank < a contradicting d, ̂  d,.

REMARK 8. It has come to our attention that Divinsky (1975) has given a
proof that the images of the ring of all linear transformations of rank < HM of an
Km -dimensional space are non-isomorphic. However, the construction is differ-
ent from that given here and also the author assumes the generalized continuum
hypothesis.

REMARK 9. The field F over which the space V of Example 2 is defined is
immaterial provided V has sufficiently high dimension. That is, if F has
cardinality Hh then one can begin with r0 = h and proceed exactly as in the
example.

THEOREM 17. / is a q-radical.

PROOF. It suffices to show that the ring R of Example 2 has property (q)
relative to the class of all primitive rings. Note that every image £ of £ is
subdirectly irreducible and every ideal contains an idempotent, so every R is
primitive. Now R = Ih and if R = R/I is non-zero then 1 = 1, for some t < h.
But h = lim rn so f ^ rn for some n. Then by Lemma 16 there is an infinite chain
R//rn -* RIL^,^ • • • initiated by R.

COROLLARY 18. All radicals contained in J are q-radicals.
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PROOF. If P is a radical such that PQJ then SJ C SP. Since SJ contains all
primitive rings, the ring R of Example 2 is in SP and has property (q) relative
to SP.

Note that we can construct (q)-radicals larger than / by restricting the
class of primitive rings as follows:

PROPOSITION 19. Let M be the class of all homomorphic images of all ideals
of the ring R of Example 2. Then UM is a q-radical properly containing J.

PROOF. M is a hereditary class so UM is a radical such that R has property
(q) relative to M. All rings in M are primitive so M C SJ and thus J C UM.
However, there are many non-Jacobson radical rings (such as any ring with
unit) having no image in M. Thus the inclusion is proper.
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