# Products of Conjugacy Classes in $S U(2)$ 

Lisa C. Jeffrey and Augustin-Liviu Mare

Abstract. We obtain a complete description of the conjugacy classes $C_{1}, \ldots, C_{n}$ in $S U(2)$ with the property that $C_{1} \cdots C_{n}=S U(2)$. The basic instrument is a characterization of the conjugacy classes $C_{1}, \ldots, C_{n+1}$ in $S U(2)$ with $C_{1} \cdots C_{n+1} \ni I$, which generalizes a result of [Je-We].

## 1 Introduction

The following problem was posed by D. Burago:

Problem Let $G$ be a group. For which conjugacy classes $C_{1}, \ldots, C_{n}$ of $G$ is it true that the multiplication map

$$
C_{1} \times \cdots \times C_{n} \rightarrow G
$$

is surjective?
We give a solution to this problem in the case $G=S U(2)$. In this case the conjugacy classes are parametrized by their eigenvalues

$$
\operatorname{diag}\left(e^{i \lambda}, e^{-i \lambda}\right)
$$

so they are determined by one number $\lambda \in[0, \pi]$.
Burago's interest was primarily in discrete groups. The purpose of this note is to point out that the problem he posed is also of interest for Lie groups such as $S U(2)$, and to exhibit a solution in that case.

For more general Lie groups $G=S U(n)$ the problem could be studied by adapting results on the quantum cohomology of Grassmannians: see [Ag-Wo]. The problem is related to recent results described in the article [KLM].

## 2 Eigenvalues of a Multiple Product

For any $\lambda \in[0, \pi]$ we denote by $C(\lambda)$ the conjugacy class of the matrix

$$
\operatorname{diag}\left(e^{i \lambda}, e^{-i \lambda}\right)
$$

in $S U(2)$. Note that any conjugacy class in $S U(2)$ is of the form $C(\lambda)$ for a unique $\lambda \in[0, \pi]$. The following result was proved in [Je-We, Proposition 3.1]:

[^0]Proposition 2.1 For $\lambda_{1}, \lambda_{2}, \lambda_{3} \in[0, \pi]$ we have

$$
C\left(\lambda_{1}\right) C\left(\lambda_{2}\right) C\left(\lambda_{3}\right) \ni I
$$

iff

$$
\begin{equation*}
\left|\lambda_{1}-\lambda_{2}\right| \leq \lambda_{3} \leq \min \left\{\lambda_{1}+\lambda_{2}, 2 \pi-\left(\lambda_{1}+\lambda_{2}\right)\right\} \tag{1}
\end{equation*}
$$

Note that (1) is equivalent to

$$
\begin{aligned}
\lambda_{1}+\lambda_{2}+\lambda_{3} & \leq 2 \pi \\
-\lambda_{1}-\lambda_{2}+\lambda_{3} & \leq 0 \\
-\lambda_{1}+\lambda_{2}-\lambda_{3} & \leq 0 \\
\lambda_{1}-\lambda_{2}-\lambda_{3} & \leq 0
\end{aligned}
$$

The goal of this section is to prove the more general result:
Theorem 2.2 For $n \geq 2$ an integer and $\lambda_{1}, \ldots, \lambda_{n+1} \in[0, \pi]$ we have

$$
\begin{equation*}
C\left(\lambda_{1}\right) \cdots C\left(\lambda_{n+1}\right) \ni I \tag{2}
\end{equation*}
$$

iff the following system of inequalities holds:
(a) If $n+1=2 k$ is an even number:
(3) $S_{n+1}^{1}\left(\left\{\lambda_{i}\right\}\right) \leq(n-1) \pi, \quad S_{n+1}^{3}\left(\left\{\lambda_{i}\right\}\right) \leq(n-3) \pi, \quad \ldots \quad S_{n+1}^{2 k-1}\left(\left\{\lambda_{i}\right\}\right) \leq 0$
where $S_{n+1}^{j}\left(\left\{\lambda_{i}\right\}\right)$ is any sum of the type $\sum_{i=1}^{n+1} \pm \lambda_{i}$ which contains exactly $j$ minus signs.
(b) If $n+1=2 k+1$ is an odd number:

$$
\begin{equation*}
S_{n+1}^{0}\left(\left\{\lambda_{i}\right\}\right) \leq n \pi, \quad S_{n+1}^{2}\left(\left\{\lambda_{i}\right\}\right) \leq(n-2) \pi, \quad \ldots \quad S_{n+1}^{2 k}\left(\left\{\lambda_{i}\right\}\right) \leq 0 \tag{4}
\end{equation*}
$$

where $S_{n+1}^{j}\left(\left\{\lambda_{i}\right\}\right)$ has the same meaning as before.
Remarks 1. A more concise way to express both (3) and (4) is

$$
S_{n+1}^{n-2 j}\left(\left\{\lambda_{i}\right\}\right) \leq 2 j \pi
$$

for any $0 \leq j \leq n / 2$ and any sum of the type $S_{n+1}^{n-2 j}$.
2. An elementary computation involving the binomial formula shows that the number of inequalities in both (3) and (4) is

$$
\binom{n+1}{0}+\binom{n+1}{2}+\cdots=\binom{n+1}{1}+\binom{n+1}{3}+\cdots=2^{n}
$$

3. The result stated in Theorem 2.2 was obtained in the Ph.D. thesis by A. Galitzer. Her proof is described in [KM].

We will use induction on $n$ to prove this theorem. In order to make the induction step we will need the following result:

Lemma 2.3 The condition (2) holds iff there exists $\lambda \in[0, \pi]$ such that

$$
\begin{equation*}
C\left(\lambda_{1}\right) \cdots C\left(\lambda_{n-1}\right) C(\lambda) \ni I \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
C(\lambda) C\left(\lambda_{n}\right) C\left(\lambda_{n+1}\right) \ni I . \tag{6}
\end{equation*}
$$

Proof The fundamental group of the $(n+1)$-punctured sphere $\Sigma_{n+1}$ in two dimensions is the free group on $n$ generators, or the group

$$
\Pi_{n}=\left\langle x_{1}, \ldots, x_{n+1} \mid x_{1} \cdots x_{n+1}=1\right\rangle
$$

with $n+1$ generators and one relation. We can form the $(n+1)$-punctured sphere by gluing an $n$-punctured sphere and a 3-punctured sphere along one of the boundary components of each. Call $S$ the common boundary resulting from this construction and consider the fundamental groups of the two components as follows:

$$
\Pi_{n-1}=\left\langle x_{1}, \ldots, x_{n-1}, x \mid x_{1} \cdots x_{n-1} x=1\right\rangle
$$

and

$$
\Pi_{2}=\left\langle x^{\prime}, x_{n}, x_{n+1} \mid x^{\prime} x_{n} x_{n+1}=1\right\rangle
$$

where $x$ and $x^{\prime}$ represent the loop $S$ in each of the two components. From the theorem of Seifert-van Kampen, we have that

$$
\begin{equation*}
\Pi_{n}=\left(\Pi_{n-1} \times \Pi_{2}\right) /\left\langle x x^{\prime}=1\right\rangle \tag{7}
\end{equation*}
$$

Now we consider representations of these groups into $G=S U(2)$. The condition (2) is equivalent to the existence of a representation $\rho$ of $\Pi_{n+1}$ such that

$$
\rho\left(x_{i}\right) \in C\left(\lambda_{i}\right)
$$

for any $1 \leq i \leq n+1$. From (7), this is equivalent to the existence of a representation $\rho_{n-1}$ of $\Pi_{n-1}$ which coincides with $\rho$ on $x_{1}, \ldots, x_{n-1}$, and a representation $\rho_{2}$ of $\Pi_{2}$ which coincides with $\rho$ on $x_{n}$ and $x_{n+1}$, and such that $\rho_{n-1}$ and $\rho_{2}$ satisfy

$$
\rho_{n-1}(x) \rho_{2}\left(x^{\prime}\right)=I
$$

The latter equality implies that the conjugacy classes of $\rho_{n-1}(x)$ and $\rho_{2}\left(x^{\prime}\right)$ are equal, call them $C(\lambda)$. (Note that in $S U(2)$ every element is conjugate to its inverse). The conditions (5) and (6) correspond respectively to the representations $\rho_{n-1}$ and $\rho_{2}$.

Proof of Theorem 2.2 Just the induction step has to be performed. We want to prove that

$$
C\left(\lambda_{1}\right) \cdots C\left(\lambda_{n+1}\right) \ni I
$$

iff equation (3) or (4) holds. Suppose that $n=2 k$ is an even number. Condition (5) of Lemma 2.3 is equivalent to

$$
\begin{align*}
S_{n}^{1}\left(\lambda_{1}, \ldots, \lambda_{n-1}, \lambda\right) & \leq(n-2) \pi,  \tag{8}\\
S_{n}^{3}\left(\lambda_{1}, \ldots, \lambda_{n-1}, \lambda\right) & \leq(n-4) \pi, \ldots, \\
S_{n}^{2 k-1}\left(\lambda_{1}, \ldots, \lambda_{n-1}, \lambda\right) & \leq 0
\end{align*}
$$

where we have used the induction hypothesis, and condition (6) is equivalent to

$$
\begin{equation*}
\left|\lambda_{n}-\lambda_{n+1}\right| \leq \lambda \leq \min \left\{\lambda_{n}+\lambda_{n+1}, 2 \pi-\left(\lambda_{n}+\lambda_{n+1}\right)\right\} \tag{9}
\end{equation*}
$$

where we have used Proposition 2.1. By Lemma 2.3, condition (2) is equivalent to the system of inequalities obtained by considering each of the $2^{n-1}$ inequalities from (8) and deriving from it two inequalities, as follows:
(i) if $\lambda$ occurs with a plus sign in that sum, replace it by $\lambda_{n}-\lambda_{n+1}$ and $-\lambda_{n}+\lambda_{n+1}$;
(ii) if $\lambda$ occurs with a minus sign in that sum, replace it by $\lambda_{n}+\lambda_{n+1}$ and $-\lambda_{n}-\lambda_{n+1}$, but in the latter situation add $2 \pi$ to the right hand side of the original inequality.

One sees that in the case (i) we replace an inequality of the type

$$
\begin{equation*}
S_{n}^{j} \leq(n-j-1) \pi \tag{10}
\end{equation*}
$$

by two different inequalities, both of the type

$$
\begin{equation*}
S_{n+1}^{j+1} \leq(n-j-1) \pi \tag{11}
\end{equation*}
$$

In the case (ii) one again replaces an inequality of the type (10) by an inequality of the type (11) and an inequality of the type

$$
S_{n+1}^{j-1} \leq(n-j+1) \pi
$$

One obtains $2^{n}$ distinct inequalities of type (4), which means that (2) is really equivalent to (4).

A similar argument can be used when $n=2 k-1$ is an odd number.
Remark The result stated in Theorem 1.2 can also be obtained from [Ag-Wo, Theorem 3.1] by using the structure of the quantum cohomology ring of $\left(\mathbb{C} P^{1}\right.$. More precisely, let us consider the two Schubert classes in $H^{*}\left(\mathbb{C} P^{1}\right)$ :

$$
\left[\sigma_{1}\right] \in H^{2}\left(\mathbb{C} P^{1}\right) \text { and }\left[\sigma_{2}\right]=1 \in H^{0}\left(\mathbb{C} P^{1}\right)
$$

The quantum cohomology ring of $\mathbb{C} P^{1}$ is

$$
Q H^{*}\left(\mathbb{C} P^{1}\right)=\left(H^{*}\left(\mathbb{C} P^{1}\right) \otimes \mathbb{R}[q], \star\right)
$$

where $q$ is a formal variable of degree 4 and $\star$ is an $\mathbb{R}[q]$-linear, commutative and associative product which satisfies

$$
\begin{equation*}
\left[\sigma_{1}\right] \star\left[\sigma_{1}\right]=q \tag{12}
\end{equation*}
$$

Each of the $2^{n}$ inequalities indicated in Theorem 2.2 can be obtained by choosing $i_{1}, \ldots, i_{n} \in\{1,2\}$ and evaluating the product

$$
\left[\sigma_{i_{1}}\right] \star \cdots \star\left[\sigma_{i_{n}}\right]
$$

in $Q H^{*}\left(\mathbb{C} P^{1}\right)$. By the equation (12), this product is of the form $q^{d} \sigma_{k}$, where $d$ is a positive integer and $k \in\{1,2\}$. The inequality of the type (3) or (4) which corresponds to $i_{1}, \ldots, i_{n}$ is

$$
\sum_{j=1}^{n}(-1)^{i_{j}-1} \lambda_{j}+(-1)^{k} \lambda_{n+1} \leq 2 d \pi
$$

## 3 Surjectivity of a Multiple Product

Our main result is

Theorem 3.1 We have

$$
\begin{equation*}
C\left(\lambda_{1}\right) \cdots C\left(\lambda_{n}\right)=S U(2) \tag{13}
\end{equation*}
$$

iff for any integer $j$ with $0 \leq j \leq n / 2$ and for any sum of the type $S_{n}^{j}=S_{n}^{j}\left(\left\{\lambda_{i}\right\}\right)$ (see Theorem 1.2) we have

$$
\begin{equation*}
-(j-1) \pi \leq S_{n}^{j} \leq(n-j-1) \pi \tag{14}
\end{equation*}
$$

Proof The idea of the proof is that (13) holds iff (2) holds for any $\lambda_{n+1} \in[0, \pi]$. In turn, (2) is equivalent to (3) and (4). We just have to take each inequality from (3) (respectively (4) ) and make the following formal replacements in its left-hand side:
(i) $\lambda_{n+1}$ by $\pi$;
(ii) $-\lambda_{n+1}$ by 0 .

Let us consider the case $n=2 k-1$. We have to show that if we perform (i) and (ii) for each inequality contained in (2), we obtain exactly one of the following inequalities:

$$
\begin{align*}
& \pi \leq S_{n}^{0} \leq(n-1) \pi  \tag{15}\\
& 0 \leq S_{n}^{1} \leq(n-2) \pi \tag{16}
\end{align*}
$$

$$
\begin{align*}
-\pi & \leq S_{n}^{2} \leq(n-3) \pi  \tag{17}\\
-2 \pi & \leq S_{n}^{3} \leq(n-4) \pi \tag{18}
\end{align*}
$$

We claim that if we label the inequalities given by (2) as [1], [3], .., [2k-3], [2k-1] then each of [1] and [ $2 k-1$ ] gives exactly one of (15) and (16), each of [3] and [2k-3] gives exactly one of (17) and (18), $\ldots$ and finally

- if $k=2 p$ is even, then each of $[2 p-1]$ and $[2 p+1]$ gives exactly one of

$$
\begin{aligned}
& -(k-1) \pi \leq S_{n}^{k-2} \leq(k-2) \pi \\
& -(k-2) \pi \leq S_{n}^{k-1} \leq(k-1) \pi
\end{aligned}
$$

- if $k=2 p+1$ is odd, then each of [ $2 p+1]$ gives exactly one of

$$
-(k-2) \pi \leq S_{n}^{k-1} \leq(k-1) \pi
$$

Consider first [1] together with [ $2 k-1$ ]: the only $S_{n+1}^{1}$ which contains $-\lambda_{n+1}$ leads to

$$
\lambda_{1}+\cdots+\lambda_{n} \leq(n-1) \pi
$$

whereas the only $S_{n+1}^{2 k-1}$ which contains $\lambda_{n+1}$ leads to

$$
\lambda_{1}+\cdots+\lambda_{n} \geq \pi
$$

The remaining inequalities of type $S_{n+1}^{1} \leq(n-1) \pi$ lead to all possible inequalities of the type

$$
S_{n}^{1} \leq(n-2) \pi
$$

and the remaining inequalities of the type $S_{n+1}^{2 k-1} \leq 0$ lead to all possible inequalities of the type

$$
S_{n}^{1} \geq 0
$$

The same idea applies ${ }^{1}$ to each pair $[2 j+1]$, $[2(k-j)-1], 0 \leq j<k / 2$ (if $k=2 p+1$ is an odd number, then for $j=p$ we have $2 j+1=2(k-j)-1$ and the corresponding pair reduces to just one type of inequalities).

Similar ideas can be used in the case when $n=2 k$ is an even number.
Remark The system of inequalities (14) admit solutions for any $n \geq 2$. For $n=2$ the unique solution is

$$
\begin{equation*}
\lambda_{1}=\lambda_{2}=\frac{\pi}{2} \tag{19}
\end{equation*}
$$

For $n \geq 3$ there are several solutions, one of them consisting of $\lambda_{1}, \lambda_{2}$ given by (19) and

$$
\lambda_{3}=\cdots=\lambda_{n}=0
$$

Acknowledgement The authors would like to thank Sébastien Racanière for suggesting improvements to an early version of the paper.

[^1]
## References

[Ag-Wo] S. Agnihotri and C. T. Woodward, Eigenvalues of products of unitary matrices and quantum Schubert calculus. Math. Res. Lett. 5(1998), 817-836.
[Je-We] L. C. Jeffrey and J. Weitsman, Bohr-Sommerfeld orbits in the moduli space of flat connections and the Verlinde dimension formula. Comm. Math. Phys. 150(1992), 593-630.
[KLM] M. Kapovich, B. Leeb and J. Millson, The generalized triangle inequalities in symmetric spaces and buildings with applications to algebra. preprint math.RT/0210256.
[KM] M. Kapovich and J. Millson, On the moduli space of a spherical polygonal linkage, Canad. Math. Bull. 42(1999), 307-320.

Department of Mathematics
University of Toronto
Toronto, ON
M5S 3G3
e-mail: jeffrey@math.toronto.edu

Department of Mathematics
University of Toronto
Toronto, ON
M5S 3G3
e-mail: amare@math.toronto.edu


[^0]:    Received by the editors January 9, 2003.
    AMS subject classification: Primary: 14D20; secondary: 14P05.
    (C)Canadian Mathematical Society 2005.

[^1]:    ${ }^{1}$ If we compare the total number of inequalities we start with to the number of inequalities obtained via (i) and (ii), we "deduce" that $\binom{n+1}{2 j+1}+\binom{n+1}{n+1-(2 j+1)}=2\left(\binom{n}{2 j+1}+\binom{n}{2 j}\right)$. The latter equation is obviously true, by properties of Pascal's triangle.

