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Products of Conjugacy Classes in SU (2)

Lisa C. Jeffrey and Augustin-Liviu Mare

Abstract. We obtain a complete description of the conjugacy classes C1, . . . ,Cn in SU (2) with the

property that C1 · · ·Cn = SU (2). The basic instrument is a characterization of the conjugacy classes

C1, . . . ,Cn+1 in SU (2) with C1 · · ·Cn+1 ∋ I, which generalizes a result of [Je-We].

1 Introduction

The following problem was posed by D. Burago:

Problem Let G be a group. For which conjugacy classes C1, . . . ,Cn of G is it true

that the multiplication map

C1 × · · · ×Cn → G

is surjective?

We give a solution to this problem in the case G = SU (2). In this case the conju-

gacy classes are parametrized by their eigenvalues

diag(eiλ, e−iλ)

so they are determined by one number λ ∈ [0, π].

Burago’s interest was primarily in discrete groups. The purpose of this note is to

point out that the problem he posed is also of interest for Lie groups such as SU (2),

and to exhibit a solution in that case.

For more general Lie groups G = SU (n) the problem could be studied by adapting

results on the quantum cohomology of Grassmannians: see [Ag-Wo]. The problem

is related to recent results described in the article [KLM].

2 Eigenvalues of a Multiple Product

For any λ ∈ [0, π] we denote by C(λ) the conjugacy class of the matrix

diag(eiλ, e−iλ)

in SU (2). Note that any conjugacy class in SU (2) is of the form C(λ) for a unique

λ ∈ [0, π]. The following result was proved in [Je-We, Proposition 3.1]:
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Proposition 2.1 For λ1, λ2, λ3 ∈ [0, π] we have

C(λ1)C(λ2)C(λ3) ∋ I

iff

(1) |λ1 − λ2| ≤ λ3 ≤ min{λ1 + λ2, 2π − (λ1 + λ2)}.

Note that (1) is equivalent to

λ1 + λ2 + λ3 ≤ 2π

−λ1 − λ2 + λ3 ≤ 0

−λ1 + λ2 − λ3 ≤ 0

λ1 − λ2 − λ3 ≤ 0.

The goal of this section is to prove the more general result:

Theorem 2.2 For n ≥ 2 an integer and λ1, . . . , λn+1 ∈ [0, π] we have

(2) C(λ1) · · ·C(λn+1) ∋ I

iff the following system of inequalities holds:

(a) If n + 1 = 2k is an even number:

(3) S1

n+1

(

{λi}
)

≤ (n − 1)π, S3

n+1

(

{λi}
)

≤ (n − 3)π, . . . S2k−1

n+1

(

{λi}
)

≤ 0

where S
j
n+1

(

{λi}
)

is any sum of the type
∑n+1

i=1
±λi which contains exactly j minus

signs.

(b) If n + 1 = 2k + 1 is an odd number:

(4) S0

n+1

(

{λi}
)

≤ nπ, S2

n+1

(

{λi}
)

≤ (n − 2)π, . . . S2k
n+1

({λi}) ≤ 0

where S
j
n+1

(

{λi}
)

has the same meaning as before.

Remarks 1. A more concise way to express both (3) and (4) is

S
n−2 j
n+1

(

{λi}
)

≤ 2 jπ

for any 0 ≤ j ≤ n/2 and any sum of the type S
n−2 j
n+1

.

2. An elementary computation involving the binomial formula shows that the

number of inequalities in both (3) and (4) is
(

n + 1

0

)

+

(

n + 1

2

)

+ · · · =

(

n + 1

1

)

+

(

n + 1

3

)

+ · · · = 2n.

3. The result stated in Theorem 2.2 was obtained in the Ph.D. thesis by A. Galitzer.

Her proof is described in [KM].
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We will use induction on n to prove this theorem. In order to make the induction

step we will need the following result:

Lemma 2.3 The condition (2) holds iff there exists λ ∈ [0, π] such that

(5) C(λ1) · · ·C(λn−1)C(λ) ∋ I

and

(6) C(λ)C(λn)C(λn+1) ∋ I.

Proof The fundamental group of the (n + 1)-punctured sphere Σn+1 in two dimen-

sions is the free group on n generators, or the group

Πn = 〈x1, . . . , xn+1 | x1 · · · xn+1 = 1〉

with n + 1 generators and one relation. We can form the (n + 1)-punctured sphere by

gluing an n-punctured sphere and a 3-punctured sphere along one of the boundary

components of each. Call S the common boundary resulting from this construction

and consider the fundamental groups of the two components as follows:

Πn−1 = 〈x1, . . . , xn−1, x | x1 · · · xn−1x = 1〉

and

Π2 = 〈x ′, xn, xn+1 | x ′xnxn+1 = 1〉,

where x and x ′ represent the loop S in each of the two components. From the theorem

of Seifert-van Kampen, we have that

(7) Πn = (Πn−1 × Π2)/〈xx ′
= 1〉

Now we consider representations of these groups into G = SU (2). The condition

(2) is equivalent to the existence of a representation ρ of Πn+1 such that

ρ(xi) ∈ C(λi)

for any 1 ≤ i ≤ n + 1. From (7), this is equivalent to the existence of a representation

ρn−1 of Πn−1 which coincides with ρ on x1, . . . , xn−1, and a representation ρ2 of Π2

which coincides with ρ on xn and xn+1, and such that ρn−1 and ρ2 satisfy

ρn−1(x)ρ2(x ′) = I.

The latter equality implies that the conjugacy classes of ρn−1(x) and ρ2(x ′) are equal,

call them C(λ). (Note that in SU (2) every element is conjugate to its inverse). The

conditions (5) and (6) correspond respectively to the representations ρn−1 and ρ2.
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Proof of Theorem 2.2 Just the induction step has to be performed. We want to

prove that

C(λ1) · · ·C(λn+1) ∋ I

iff equation (3) or (4) holds. Suppose that n = 2k is an even number. Condition (5)

of Lemma 2.3 is equivalent to

(8) S1

n(λ1, . . . , λn−1, λ) ≤ (n − 2)π,

S3

n(λ1, . . . , λn−1, λ) ≤ (n − 4)π, . . . ,

S2k−1

n (λ1, . . . , λn−1, λ) ≤ 0

where we have used the induction hypothesis, and condition (6) is equivalent to

(9) |λn − λn+1| ≤ λ ≤ min{λn + λn+1, 2π − (λn + λn+1)}

where we have used Proposition 2.1. By Lemma 2.3, condition (2) is equivalent to

the system of inequalities obtained by considering each of the 2n−1 inequalities from

(8) and deriving from it two inequalities, as follows:

(i) if λ occurs with a plus sign in that sum, replace it by λn − λn+1 and −λn + λn+1;

(ii) if λ occurs with a minus sign in that sum, replace it by λn +λn+1 and −λn−λn+1,

but in the latter situation add 2π to the right hand side of the original inequality.

One sees that in the case (i) we replace an inequality of the type

(10) S j
n ≤ (n − j − 1)π

by two different inequalities, both of the type

(11) S
j+1

n+1
≤ (n − j − 1)π.

In the case (ii) one again replaces an inequality of the type (10) by an inequality of

the type (11) and an inequality of the type

S
j−1

n+1
≤ (n − j + 1)π.

One obtains 2n distinct inequalities of type (4), which means that (2) is really equiv-

alent to (4).

A similar argument can be used when n = 2k − 1 is an odd number.

Remark The result stated in Theorem 1.2 can also be obtained from [Ag-Wo, The-

orem 3.1] by using the structure of the quantum cohomology ring of CP1. More

precisely, let us consider the two Schubert classes in H∗(CP1):

[σ1] ∈ H2(CP1) and [σ2] = 1 ∈ H0(CP1).
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The quantum cohomology ring of CP1 is

QH∗(CP1) = (H∗(CP1) ⊗ R[q], ⋆),

where q is a formal variable of degree 4 and ⋆ is an R[q]-linear, commutative and

associative product which satisfies

(12) [σ1] ⋆ [σ1] = q.

Each of the 2n inequalities indicated in Theorem 2.2 can be obtained by choosing

i1, . . . , in ∈ {1, 2} and evaluating the product

[σi1
] ⋆ · · · ⋆ [σin

]

in QH∗(CP1). By the equation (12), this product is of the form qdσk, where d is a pos-

itive integer and k ∈ {1, 2}. The inequality of the type (3) or (4) which corresponds

to i1, . . . , in is
n

∑

j=1

(−1)i j−1λ j + (−1)kλn+1 ≤ 2dπ.

3 Surjectivity of a Multiple Product

Our main result is

Theorem 3.1 We have

(13) C(λ1) · · ·C(λn) = SU (2)

iff for any integer j with 0 ≤ j ≤ n/2 and for any sum of the type S
j
n = S

j
n

(

{λi}
)

(see

Theorem 1.2) we have

(14) −( j − 1)π ≤ S j
n ≤ (n − j − 1)π.

Proof The idea of the proof is that (13) holds iff (2) holds for any λn+1 ∈ [0, π]. In

turn, (2) is equivalent to (3) and (4). We just have to take each inequality from (3)

(respectively (4) ) and make the following formal replacements in its left-hand side:

(i) λn+1 by π;

(ii) −λn+1 by 0.

Let us consider the case n = 2k − 1. We have to show that if we perform (i)

and (ii) for each inequality contained in (2), we obtain exactly one of the following

inequalities:

π ≤ S0

n ≤ (n − 1)π(15)

0 ≤ S1

n ≤ (n − 2)π(16)
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−π ≤ S2

n ≤ (n − 3)π(17)

−2π ≤ S3

n ≤ (n − 4)π(18)

We claim that if we label the inequalities given by (2) as [1], [3], . . . , [2k−3], [2k−1]

then each of [1] and [2k−1] gives exactly one of (15) and (16), each of [3] and [2k−3]

gives exactly one of (17) and (18), . . . and finally

• if k = 2p is even, then each of [2p − 1] and [2p + 1] gives exactly one of

−(k − 1)π ≤ Sk−2

n ≤ (k − 2)π

−(k − 2)π ≤ Sk−1

n ≤ (k − 1)π.

• if k = 2p + 1 is odd, then each of [2p + 1] gives exactly one of

−(k − 2)π ≤ Sk−1

n ≤ (k − 1)π.

Consider first [1] together with [2k−1]: the only S1

n+1
which contains −λn+1 leads

to

λ1 + · · · + λn ≤ (n − 1)π

whereas the only S2k−1

n+1
which contains λn+1 leads to

λ1 + · · · + λn ≥ π.

The remaining inequalities of type S1

n+1
≤ (n− 1)π lead to all possible inequalities of

the type

S1

n ≤ (n − 2)π

and the remaining inequalities of the type S2k−1

n+1
≤ 0 lead to all possible inequalities

of the type

S1

n ≥ 0.

The same idea applies1 to each pair [2 j + 1], [2(k − j) − 1], 0 ≤ j < k/2 (if

k = 2p + 1 is an odd number, then for j = p we have 2 j + 1 = 2(k − j) − 1 and the

corresponding pair reduces to just one type of inequalities).

Similar ideas can be used in the case when n = 2k is an even number.

Remark The system of inequalities (14) admit solutions for any n ≥ 2. For n = 2

the unique solution is

(19) λ1 = λ2 =
π

2
.

For n ≥ 3 there are several solutions, one of them consisting of λ1, λ2 given by (19)

and

λ3 = · · · = λn = 0.

Acknowledgement The authors would like to thank Sébastien Racanière for sug-

gesting improvements to an early version of the paper.
1If we compare the total number of inequalities we start with to the number of inequalities obtained via

(i) and (ii), we “deduce” that
( n+1

2 j+1

)

+
( n+1

n+1−(2 j+1)

)

= 2
( ( n

2 j+1

)

+
( n

2 j

))

. The latter equation is obviously

true, by properties of Pascal’s triangle.
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