
ON THE ASYMPTOTIC BEHAVIOUR OF NONLINEAR
SYSTEMS OF ORDINARY DIFFERENTIAL EQUATIONS

by ZHIVKO S. ATHANASSOV

(Received 16 May, 1984)

1. Introduction. In this paper we study the asymptotic behaviour of the following
systems of ordinary differential equations:

X = f(t, X),
x = /(t,x)^

X=/(f,x)H

-g(r,x),

-git,x) + h(t,

(N)

(P)

x), (P,)

where the identically zero function is a solution of (N), i.e. f(t, 0) = 0 for all time t.
Suppose one knows that all the solutions of (N) which start near zero remain near zero for
all future time, or even that they approach zero as time increases. For the perturbed
systems (P) and (Pj) the above property concerning the solutions near zero may or may
not remain true. A more precise formulation of this problem is as follows: if zero is stable
or asymptotically stable for (N), and if the functions g(t, x) and h(t, x) are small in some
sense, give conditions on f(t, x) so that zero is (eventually) stable or asymptotically stable
for (P) and (P,).

A great deal of work has been done in an attempt to provide positive answers to this
problem. Historically, there have been two approaches. One approach is to set conditions
on /, such as being uniformly Lipschitz, and find out what kind of perturbations g(t, x) and
h(t, x) preserve stability (e.g., [5, Chap. 13], [14]). The second approach is to set the kind
of perturbations g(r, x) and h(t, x) that will be allowed and find out which differential
equations (N) will have their asymptotic behaviour preserved by all such perturbations

([9], [15]). Most of the classical results usually assume that the perturbations g(t, x) and
h(t, x) are either small as compared to x for sufficiently small x, or small for sufficiently
large t and all |x|<°°. One of the best standard results is Theorem 24.1 in Yoshizawa's
book [15].

An indispensable tool for the study of perturbations is Liapunov's second method.
The type of results obtained by using Liapunov functions is necessarily qualitative in
nature. Quantitative estimates for solutions of perturbed systems can be obtained using
other methods. For example, the practice of approximating nonlinear differential systems
by a linear system which can be explicitly solved leads to the theory of perturbations of
linear equations. For results of this type see Brauer and Wong [4] and Coddington and
Levinson [5].

Brauer ([2], [3]) has obtained results on the asymptotic behaviour of solutions of
nonlinear systems and their perturbations by means of an analogue of the variation of
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constants formula for nonlinear systems due to Alekseev. Also see [1] for other results of
this type and recent references.

The purpose of this paper is to give sufficient conditions for asymptotic stability of
solutions of (P) and (Px) in terms of a concept known as total stability [11], or
alternatively, stability under the constantly acting disturbances of the Soviet mathemati-
cians [9]. We use Liapunov theory to obtain admissible classes of perturbations for which
the solutions of (P) and (Pj) are asymptotically stable. More precisely, we prove: if the
zero solution of (N) is totally stable, g(t, x) tends to zero as (-><» uniformly on any
compact subset of Rn and h(t, x) is integrable for any bounded x, then the solutions of (P)
and (Pt) tend to zero as f—»°°. Furthermore, we give a sufficient condition which will
guarantee, in addition to total stability, that the zero solution of (N) be uniformly
asymptotically stable. As a consequence of this result two corollaries follow: one concern-
ing the reciprocity between the total and uniform asymptotic stability of perturbed linear
systems, and another concerning this phenomenon of linear systems (Theorem 28 of
Massera's famous paper [11]).

2. Notations and preliminaries. Let R" denote Euclidean n-space and let |-| denote
any rt-dimensional norm. In (N), x and / are elements of R", t is a real scalar and
f(t, 0) = 0 for all £ s 0. The following convention is adopted in the paper: every differential
equation which we consider shall have a right-hand side which is continuous and
sufficiently smooth on the semi-cylinder

Dr = {(t,x):t>0, xeR", \x\<r, r>0}

for local existence and uniqueness of all solutions. For (t0, xo)eDr let x(t, t0, x0) be that
solution (of the equation being considered) for which x(t0, t0, x0) = x0. It is interesting to
note that the mere existence of a Liapunov function for (N) actually implies that the zero
function must be a solution and that it is unique in the following sense: if a solution
becomes zero at some point, it remains zero thereafter. See [15, Chap. 1]. We assume the
following conditions throughout this paper:

(HI) f(t, x), g(t, x) and h(t, x) are defined and continuous on Dr and /((, 0) = 0 for
all t>0.

(H2) \f(t, x)\ is bounded for all f^O and x in any compact subset of the set
{xeK":|x|<r, r>0}.

(H3) g(t, x) -»0 as t -* oo uniformly for x in any compact subset of the set
{xeRn:\x\<r,r>Q}.

(H4) |h(r,x)|<0(t) for all (l,x)eDr where 0eL,[O,oo).
In order for this paper to be self-contained, a few necessary definitions shall be stated

here.

DEFINITION 2.1. The zero solution of (N) is
(a) stable if for every e > 0 and every f o-0 there exists 8(e, to)>0 such that

\x(t, t0, xo)\<e for all t>(0 whenever |xo|<S(e, f0),
(b) uniformly stable if (a) holds with 8 = 8(e),
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(c) asymptotically stable if (a) holds and for every to> 0 there exists Tj(to)>0 such
that lim x(r, t0, x0) = 0 as t—> °° whenever |xo| < 17,

(d) uniformly asymptotically stable if (b) holds and there is So > 0 such that for every
e > 0 and every to>0, there exists T(e)>0, independent of t0, such that \x(t,to,xo)\<e
for all 1 S / 0 + T ( E ) whenever |xo|<8o,

(e) totally stable if for every e > 0 and every to>0 two positive numbers S^(e) and
82(e) can be found such that for every solution x(t, t0, x0) of (P) the inequality
|x(r, t0, xo)|<e holds for all t>t0 whenever ta^Si and |g(t, x)|<82.

DEFINITION 2.2. A continuous function <p defined on [0, r) is said to belong to class K
if <p(0) = 0 and if cp is strictly increasing.

DEFINITION 2.3. A real function V(t, x) defined on Dr is positive definite if there
exists <peK such that V(t, x)scp(|x|) on Dr. V is negative definite if —V is positive
definite.

DEFINITION 2.4. V(t, x) has an infinitely small upper bound (is decrescent) if there
exists ifreX such that V(t, x)<t|/(|x|) on Dr.

DEFINITION 2.5. V(t, x) is a Liapunov function for (N) on Dr if and only if

(1) V(t, x) is positive definite and C1 on Dr,
(2) V(f,0) = 0 for all t>0 ,
(3) V(N)(f, x) = (d/dt)V(t, x) + grad V(t, x).f(t, x) is negative definite on Dr,
(4) |grad V(t, x)| is bounded on Dr.

Notice that from (2), (4), and by the mean value theorem it follows that V(t, x) is
decrescent on Dr.

In order to illustrate and motivate the nature of results obtained as well as for later
use we reproduce some known results. Markus [10] considered the differential systems

x=/(x), (2.1)
x=/(x) + g(f,x), (2.2)

where / is continuous and has continuous first partial derivatives in the domain {xe
J?":|x|<r, r>0}, and g is continuous on Dr and satisfies (H3). He introduced the
concepts of "limiting equations" and "asymptotically autonomous equations" and proved,
among other results, the following theorem.

THEOREM 2.6. Let x* be a critical point of (2.1) and assume that the variational
equations of (2.1) based on x* have their eigenvalues all with negative real parts. Then there
exist positive numbers TJ and T such that for any solution x(t, t0, x0) of (2.2) for which
\x0-x*\< T) for to>T, one has x(t, t0, x0) -» x* as t -* 00.

The total stability problem of the zero solution of (JV) was first examined in a paper
of Duboshin [6] and in subsequent works of Malkin [8], [9] and Gorshin [7]. The
following theorem is due to Malkin [8], [9].
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THEOREM 2.7. Let f(t, x) satisfy (HI) and assume there exists a Liapunov function
V(t, x) for (N) on Dr. Then the zero solution of (N) is totally stable.

3. Main results. It is well known that the techniques which are used for the study of
the behaviour of solutions of ordinary differential equations in the vicinity of a given
solution fall roughly into three categories: the method of linearization, Liapunov func-
tions, and the method of isolating blocks. It is the second of these methods which is of
interest here. In this section we first generalize the aforesaid result of Markus to the
system (P) and then prove an analogous result for the system (P,) which has an additional
integrable perturbation.

Let us analyze the result of Markus to see how it might be generalized. Let x* be a
critical point of (2.1) satisfying the hypothesis of Theorem 2.6. The variational equation of
(2.1) based on x* has the form y = Ay, A = /X(x*), where fx(x*) is the constant matrix
whose element in the ith row and yth column is d/;/3x,(x*). Since all eigenvalues of A have
negative real parts then the zero solution of y = Ay is asymptotically stable and by
Liapunov theory [11] there exists a positive definite Liapunov function V(x) whose
derivative V(2.i)(*) is negative definite; V may be taken as an algebraic form of any given
even degree. Clearly, if y = 0 is a stable or asymptotically stable solution of y = Ay, then
the same will be true of the critical point x* of (2.1), as can be seen by applying the
definition of stability or asymptotic stability to the solution x = x* of (2.1). Since y = Ay is
autonomous, stability implies uniform stability and asymptotic stability implies uniform
asymptotic stability [11].

THEOREM 3.1. Letf(t, x) and g(t, x) satisfy hypotheses (HI) and (H3). Let V(t, x) be a
Liapunov function for (N) on Dr. Then there exist To>0 and do>0 such that the solution
x(t,to,xo) of (P) satisfies \x(t, t0, xo)| -> 0 as (-»•<» whenever to>To and |xo|<8o.

Proof. Define

M = max sup] — (r, x) , (t, x) e Dr \.

For e = r/2 choose numbers S ^ O and S2>0 by Theorem 2.7. Using (H3) we may pick a
number To > 0 so large that \g(t, x)\ < 82 for all t > To and |x| < r/2. We assert that with this
To and So = 8X the conclusion of the theorem is true.

Let x(f, (0, x0) be a local solution of (P) such that |xo|<So for some r0 — To- From the
definition of To and 80 it follows that this solution exists and \x(t, t0, xo)\ < r/2 for all t> t0.
We now show that lim inf |x(f, t0, xo)| = 0 as t —* °°. Let us assume that this is false. Then
there is ee(0, r/2) and T > 0 such that |x(r, to, xo)|>e for all t>T. Since ViN)(t, x) is
negative definite we have

m = inf{- V(N)(r, x): e < |x| < r/2}> 0.

The number T may be taken so large that |g(t, x)|<m/(2nM) for all t>T and |x|<r/2.

https://doi.org/10.1017/S0017089500005942 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500005942


ASYMPTOTIC BEHAVIOUR OF NONLINEAR SYSTEMS 165

Then, for t>T, we get

V(P)(r, x(0) = Vm(t, x(f)) + grad V(t, x(t)). g(t, x(t))

s -m + nmM/(2nM) = - y .

Hence, if t > T and t is sufficiently large, we would have after integrating

(

This yields a contradiction to the assumed positive definiteness of V(t, x) and proves the
assertion.

We now show that \x(t, t0, xo)\ -» 0 as t-><». Let e be any positive number and pick
the positive numbers S^e) and S2(e) by Malkin's theorem. Since lim inf \x(t, t0, xo)\ = 0 as
t—» oo we may pick a positive number tx = ̂ (e) such that Ix^)! < Sj(e) and |g(r, x)| < 82(e)
for all t >tj and |x|<e. From the definition of S^e) and 82(e) we see that \x(t, t0, xo)|<e
for all t > rv Since e is arbitrarary we obtain that |x(t, t0, xo)\ —> 0 as t —> oo, and the proof
is complete.

We shall now prove an analogous result for systems of the form (P^.

THEOREM 3.2. Let f(t, x), g(t, x) and h(t, x) satisfy hypotheses (HI) through (H4). Let
V(t, x) be a Liapunov function for (N) on Dr. Then there exist To>0 and 80>0 such that if
to^To and |xo|<8o, the solution x(t,to,xo) of (Pj) satisfies \x(t, t0, xo)\->0 as t-»oo.

Proof. For 0 < r0 < r/2 we define

2k = inf{V0,x):t>0, ro^|x|<r/2}.

Since V(t, x) is positive definite on Dr it follows that fc>0. On the other hand, V(t, x)
admits an infinitely small upper bound on Dr (see the sentence after Definition 2.5) and
then we may choose a positive number p<r0 such that V(t, x)<k on the semi-cylinder
Dp = {(t, x) : t > 0, |x| < p}. Further we define

m = inf{- V(N)(t, x): t > 0, p < |x| < r0}

and

M = max sup] — (t, x) : (t, x) e Dr \.

Choose T>0 so large that |g(t, x)\<m/(nM) for all ( > T and |x|<r0. By hypothesis (H4)
there is a function ^(OeLjO, oo) such that \h(t, x)|<0(() on Dro. The number T can be
chosen so large that nM & 6(t) dt < k. We claim that if x(t, t0, x0) is a local solution of (Px)
with |xo| < p for t0 > T then this solution exists for all (> t0 and, moreover, |x(f t0, xo)| —> 0
as t-»oo.

We shall show that x(t, t0, x0) exists and \x(t, t0, xo)| < r0 for all (> f0. Suppose that this
is not true. Then there are positive numbers ^ and t2, to<t1< t2, such that \x(tx, t0, xo)| =
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p, |x(f2, t0, xo)\ = r0, and p<|x(t, f0, xo)|<ro for te{tu t^. We have

V(Pi)(t, x(t)) = V(N)(t, x(0) + grad V(t, x(t)). (g(t, x(t)) + h(t,

from which it follows that

V(Pi)(t, x(t)) < - m + nM(\g(t, x(t))\ + 0(t)) < nM6(t).

By integration over the interval [tu t] we get

V(t, x(r)) < V(f1; x(t1))+ nM\' 0(T) dr

which by the continuity of V((, x(()) at t = t2 implies

k<V(t2,xa2))-V(t1,x(t1))<k,

a contradiction. Therefore \x(t, to,xo)\<ro for f^(0-
We shall now show that \x(t, to, xo)\ —» 0 as ( —» oo. If the assertion is false then there is

E >0 and a sequence {t,}—*°° as /—»« such that |x(f;, t0, xo)|s2e. Define

i? = sup{|/0,x)| + |g((,x)|:(t,x)6Dro}.

From (

X(() = x(fi)+ I {f(T,x(T))+g(T,x(T))+h(T,x(T))}dT

we obtain f
\x(t)-x(ti)\<R(t-ti)+ 0(r)dT.

Let t] = tj + el(2R), and assume that t\ < tj+1, for 7 = 1, 2 , . . . , and Ĵ  0(T) dr < e/2. Then, if
tj<t<t'i, from the above inequality it follows that |x(()-x(t,)|<e and |x(t)|^e. Define

m1 = int{-V(N)(t, x):t>0, |x|>e},

and suppose t, large enough so that |g(t, x)|<m1/(2nM) for all (>( , and |x|^r0.
Therefore, for (, < t < fJ, we obtain

y(Pi)O,x(O)^-Y+nM0(O.

Integrating both sides over the interval [tj, t\] we get

V(t'j, xit])) = V(tu *((,))+ f ' V(N)(T, X(T)) dr

< V(t]; x((v))+ I f ' ( - ^

< V(tu x(tl))-jm,el(4R)+ nM\
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for y sufficiently large. We have contradicted V(t, x) positive definite and the proof of the
theorem is complete.

EXAMPLE. AS an example of an application of Theorem 3.2 we consider the following
scalar differential equation

x = -x2k+*l + g(t,x) + h(t,x) (3.1)

where k = 0,1, 2 , . . . , g(f, x)-*0asl-><» uniformly on compact subsets of Rx and h(t, x)
satisfies (H4). The function V(x) = x2 is a Liapunov function for the equation

x = -x2 k + 1 . (3.2)

From Theorem 3.2 it follows that there exist positive numbers 80 and To such that any
solution x(r, t0, x0) of (3.1) with |xo|<5o and to>To must tend to zero as t —»°°. In fact,
from the proof of this theorem we see that for each l>0 there exists a number t(l)>0
such that for any solution x(t,to,x0) of (3.1) with |xo|<i for any to> t(l) one has
x(t, t0, x0)-* 0 as t^«>.

Some remarks concerning the above theorems are in order here.

REMARK 1. The hypotheses of Theorem 2.7 do not imply that any solution x(t, t0, x0)
of (N) tends to zero as t—* °°. In fact, g(t, x) does not vanish, nor does it diminish as t —*• °°
(see Definition 2.1(e)). However, some kind of asymptotic property can be proved.
Namely, Malkin [9, Chap. 6] has showed that in the hypotheses of Theorem 2.7 if |xo| and
\g(t, x)| are sufficiently small then the solutions of (P) remain inside an arbitrarily small
neighbourhood of the origin although they do not tend to zero asymptotically. Under
stronger hypotheses (H3) (Theorem 3.1) and (H4) (Theorem 3.2) we were able to prove
that the solutions of (P) and (Pi), respectively, tend to zero as t—»<».

REMARK 2. Theorems 3.1 and 3.2 should be compared with Theorem 24.1 of
Yoshizawa [15] which requires exponential asymptotic stability of the zero solution of (N)
and with Theorem 4.1 of Strauss and Yorke [14] which requires uniform asymptotic
stability of the zero solution of (N). Each of their results requires a stronger condition on
the function f(t, x) of (N) than do Theorems 3.1 and 3.2. Our hypotheses on f(t, x) are
rather weak conditions, and the hypotheses of Theorems 3.1 and 3.2 require the total
stability of the zero solution of (N) but not exponentially or uniform asymptotic stability.
However, the results of Yoshizawa, Strauss and Yorke allow a slightly larger class of
perturbation terms than is permitted by Theorems 3.1 and 3.2.

REMARK 3. The most significant theorem on total stability, found independently by
Malkin [8] and Gorshin [7], states that, if f(t, x) in (N) is Lipschitzian in x uniformly with
respect to t on Dr and if the zero solution of (N) is uniformly asymptotically stable, then it
is totally stable. Unfortunately, this theorem does not admit a reciprocal. For example,
consider the scalar differential equation

x = f(x),
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where /(0) = 0, and /(x) = -x2sin(l/x) for x^O. The zero solution of this equation is
totally stable but not uniformly asymptotically stable. For another example, see Massera
[11, Erratum]. It is worth noting that Seibert [13] proved that in the autonomous case,
total stability occurs if and only if the origin of R" has a fundamental system of compact
contracting neighbourhoods. This result was extended to periodic equations and to
equations that possess a periodic limiting equation by Salvadori and Schiaffino [12].

If the zero solution of the system

x = A{t)x, (3.4)

where A(t) is n x n continuous matrix for (>0, is uniformly asymptotically stable, that is,
exponentially asymptotically stable, then there exists a Liapunov function V(t, x) satisfy-
ing the conditions in Definition 2.5 [11]. Therefore, by Theorem 2.7, the zero solution is
totally stable.

Finally in this paper, under some additional mild condition on f(t, x) in (N), we are
able to obtain a partially converse theorem to the theorem of Malkin and Gorshin. More
precisely, we have the following.

THEOREM 3.3. Let f(t, x) satisfy (HI) and let

lim eai'-'Jf(t, e-all-<>x) = f(t, x) (3.5)
a-*0+

uniformly for to>0, t>t0 and |x|<r. Then the zero solution of (N) is uniformly asymptoti-
cally stable if it is totally stable.

Proof. Let the zero solution of (N) be totally stable. Then, for every e >0 and to>0,
we can pick 8l(e)>0 and S2(e)>0 such that every solution x(t, t0, xo) of (P) satisfies
\x(t,to,xo)\<e for t>t0, whenever ta^St and |g(f, x)|<S2. Let a = a(e) be such that
0<a<S2/(2e) and

\eal-'Jf(t, e-"<'-->x)-/(», x ) | < ^ (3.6)

for r> r o >0 and |x|<r. This is possible because of (3.5). Define

gO, x) = e't'-Vfit, e-"l'-^x)-f{.t, x) + ax. (3.7)

Then, from (3.6) and by the definition of a, it follows that |g((, x) |<82 for (2( 0 and
|x|<e. Further, for fo> 0, we consider the system

°>f(t, e-^'-'^x) + ax (Pa)= eaU-'x = e

which because of (3.7) can be written in the form

x = /(r,x) + g(r,x). (P)

But the solutions x(t,to,xo) of (N) and xa(t, t0, x0) of (Pa) are related by xa(t, t0, xo) =
ea^'-'o>x(t,t0,x0), where |xa(fo)| = |xol<8i. Thus we have \x(t,to,xo)\<ee~a('~'"\ which
proves the uniform asymptotic stability of the zero solution of (N), completing the proof.
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As a consequence of the above theorem, we infer a useful corollary, whose proof is
straightforward.

COROLLARY 3.4. Assume f(t,x) = A{t)x + p(t,x), in (N) where A(t) is as in (3.4),
p(t, x) is defined and continuous on Dr and, moreover, there exists a continuous and
nonnegative function A(r) defined for f > 0 , such that A(f) —*0 as t—»<», and \p(t, x ) | s
\(t) \x\ on DT. Then the zero solution of

x = A(t)x + p(t, x)

is uniformly asymptotically stable if it is totally stable.

From this corollary we obtain a well known result [11, Theorem 28]; namely, we
have

COROLLARY 3.5. If the zero solution of (3.4) is totally stable, then it is uniformly
asymptotically stable.
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