THE DYADIC TRACE AND ODD WEIGHT COMPUTATIONS FOR SIEGEL MODULAR CUSP FORMS

Cris Poor and David S. Yuen

We define the concept of a special positive matrix. We use the dyadic trace to prove the result that $\operatorname{dim} S_{4}^{k}=0$ for odd $k \leqslant 13$ and that $\operatorname{dim} S_{4}^{15} \leqslant 4$.

The computation of $\operatorname{dim} S_{n}^{k}$, the dimension of the space of Siegel modular cusp forms of degree n and weight k, may be facilitated by the use of the dyadic trace [5]. Recall the definition of the dyadic trace: for a positive definite $n \times n$ matrix T, we define the dyadic trace by $w(T)=\sup \sum_{i} \alpha_{i}$, where the súpremum is taken over all dyadic representations $T=\sum_{i} \alpha_{i} \mu_{i}{ }^{t} \mu_{i}$ with $\mu_{i} \in \mathbb{Z}^{n} \backslash\{0\}$ and positive $\alpha_{i} \in \mathbb{R}$.

The following result from [5] gives an explicit finite set of Fourier coefficients that uniquely determine cusp forms of a given weight. Let $f \in S_{n}^{k}$ have Fourier series $f(\Omega)=\sum_{T} a_{T} e(\langle T, \Omega\rangle)$, where the summation is over semi-integral positive definite matrices T (this means T has half integer entries but with integer diagonal entries); the notation is standard, see [1] or [5]. The result is that $f \equiv 0$ if and only if

$$
\begin{equation*}
a_{T}=0 \text { whenever } w(T) \leqslant n \frac{2}{\sqrt{3}} \frac{k}{4 \pi} . \tag{*}
\end{equation*}
$$

The paper [5] discusses examples for even weights, and this paper addresses the case of odd weights k in S_{4}^{k}; namely, we prove the following theorem.

ThEOREM. $\quad S_{4}^{k}=0$ for odd $k \leqslant 13$ and $\operatorname{dim} S_{4}^{15} \leqslant 4$.
Proof: Define a positive definite symmetric $n \times n$ matrix T to be special positive if each element of its automorphism group $\operatorname{Aut}_{\mathcal{Z}}(T)$ has determinant 1. This is a class property. The Fourier coefficients of f satisfy

$$
\begin{equation*}
a_{t_{v T v}}=\operatorname{det}(v)^{k} a_{T} \tag{}
\end{equation*}
$$

for all $v \in \mathrm{GL}_{n}(\mathbb{Z})$ [2, p.45]. Note that if $\mathrm{Aut}_{\mathbb{Z}}(T)$ has an element v with determinant -1 , then k odd and $\left({ }^{* *}\right)$ would imply that $a_{T}=0$. Thus for k odd, the support of f consists entirely of special positive T.

Received 31st May, 2000
Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/01. \$A2.00+0.00.

If T has a 1 on its diagonal, then the lattice corresponding to T has an element of norm 2, and so the reflection in this element's orthogonal hyperplane would stabilise the lattice. Thus such a T would have a reflection in $\operatorname{Aut}_{\mathbf{Z}}(T)$, and so such a T would not be special positive. Table 1 gives an initial list of representatives for all classes of special positive semi-integral T ordered by their dyadic traces. In particular, Table 1 contains all T with $w(T)<6$. Table 1 was constructed using a computer program with Nipp's tables [3] as a database.

$w(T)$	$16 \operatorname{det} T$	\# Aut (T)	T_{11}	T_{22}	T_{33}	T_{44}	$2 T_{12}$	$2 T_{13}$	$2 T_{23}$	$2 T_{14}$	$2 T_{24}$	$2 T_{34}$
5	105	8	2	2	2	2	2	1	0	0	1	2
5	121	24	2	2	2	2	2	1	0	1	1	2
5.5	145	4	2	2	2	2	2	1	0	-1	-1	1
5.5	153	4	2	2	2	2	1	1	0	1	1	2
6	161	4	2	2	2	2	2	1	0	0	1	0

Table 1.

Notice that there are no special positive matrices of dyadic trace less than 5. By use of $\left(^{*}\right.$), any cusp form $f \in S_{4}^{k}$ of odd weight k would vanish if $4(2 / \sqrt{3})(k / 4 \pi)<5$, which happens if $k<13.61$. This implies that $S_{4}^{k}=0$ for odd $k \leqslant 13$.

For $f \in S_{4}^{15}, f$ is determined by the Fourier coefficients a_{T} for the special positive semi-integral classes $[T]$ with $w(T) \leqslant 4(2 / \sqrt{3})(15 / 4 \pi)$, which implies $w(T) \leqslant 5.52$. Table 1 shows that there are four such classes, which implies that $\operatorname{dim} S_{4}^{15} \leqslant 4$. This completes the proof of the theorem.

The result for $k=11$ is new. The results with $k=13$ and $k=9$ were previously proven in [4] using the techniques of theta series with pluri-harmonics. For $k=17$, the dyadic trace bound turns out to imply $w(T) \leqslant 6.25$. The number of classes of special positive matrices with $w(T) \leqslant 6$ is 15 . This implies $\operatorname{dim} S_{4}^{17} \leqslant 15$; but one might suspect the actual dimension is lower.

References

[1] E. Freitag, Siegelsche modulfunktionen, Grundlehren der Mathematische Wissenschaften 254 (Springer-Verlag, Berlin, Heidelberg, New York, 1983).
[2] H. Klingen, Introductory lectures on Siegel modular forms, Cambridge Studies in Advanced Mathematics 20 (Cambridge University Press, Cambridge, 1990).
[3] G. Nipp, Quaternary quadratic forms, computer generated tables (Springer-Verlag, Berlin, Heidelbrg, New York).
[4] C. Poor and D. Yuen, 'Dimensions of spaces of Siegel modular forms of low weight in degree four', Bull. Austral. Math. Soc. 54 (1996), 309-315.
[5] C. Poor and D. Yuen, 'Linear dependence among Siegel modular forms', Math. Ann. 318 (2000), 205-234.

Department of Mathematics
Fordham University
Bronx, NY 10458
e-mail: poor@fordham.edu

Math. and Computer Science Department Lake Forest College
555 N . Sheridan Rd.
Lake Forest, IL 60045
e-mail: yuen@lfc.edu

