AN INTEGRAL CHARACTERIZATION OF EUCLIDEAN SPACE

J.M. Borwein

We show that recent integral versions of the classic Jordan-Von Neumann characterization of Euclidean space may be viewed as special cases of a general averaging principle over sets of isometries.
1.

Recently Stanojevic and Suchanek [6] showed that a complex normed space X is an inner product space if and only if, given a compact group G with normalized Haar measure m and some non-trivial group character γ (that is a continuous homomorphism into the circle group),

$$
\begin{equation*}
\int_{G}\|x+\gamma(g) y\|^{2} d m=\|x\|^{2}+\|y\|^{2} \tag{1}
\end{equation*}
$$

for all x and y in X. Day [3] observed that it suffices for (1) to hold with X replaced by its unit sphere $S(X)$ and with "=" replaced by " \sim " where \sim is one of \leq, \geq or $=$. This then gives a broad generalization of the classic Schoenberg-Day characterizations of inner product spaces [2]. In this paper we show that (1) can be viewed as a special instance of an averaging condition involving sets of isometries.

Received 5 December 1983. Research partially supported by an NSERC Grant. Thanks are due to S. Swaminathan and D. Tingley for several stimulating discussions on this subject.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/84 $\$ 42.00$ + 0.00.
2.

Let X be a (real or complex) normed space and let H be a non-empty set of linear isometries. This is to say that $\|T x\|=\|x\|$ for all T in H and all x in X. Let m be a Borel probability measure on H (in the induced strong operator topology). We say that H is m-balanced if the barycentre of H with respect to m, denoted m_{H}, exists and satisfies

$$
\begin{equation*}
m_{H}:=\int_{T \in H} T d m=0 \tag{2}
\end{equation*}
$$

The integral in (2) is interpreted as a weak integral [5] and will exist whenever H is relatively compact and so whenever H is finite dimensional or compact. The next proposition motivates the definition.

PROPOSITION 1. Let H be a non-empty subset of the isometries of an inner product space X. Let m be a Borel probability measure on H with respect to which H has a barycentre. Then for x and y in X,

$$
\begin{equation*}
\int_{T \in H}\|x+T y\|^{2} d m=\|x\|^{2}+\|y\|^{2}+2 \operatorname{Re}\left\langle m_{H} y, x\right\rangle \tag{3}
\end{equation*}
$$

In particular,

$$
\begin{equation*}
\int_{T \in H}\left\|x+T_{y}\right\|^{2} d m \sim 2 \text { for } x, y \text { in } S(X) \tag{4}
\end{equation*}
$$

if and only if H is m-balanced.
Proof. First observe that $\|x+T y\|^{2}$ is continuous and is bounded by 4 . The integral in (3) is thus well defined. Equation (3) is now a consequence of the fact that X is an inner product space, that H contains only isometries, and that $m_{H}:=\int_{T \in H} T d m$. If $m_{H}=0$, (4) follows easily. Conversely, if m_{H} is non-zero one can find a unit vector y with $m_{H} y \neq 0$. If we let $x:= \pm m_{H} y /\left\|m_{H} y\right\|$, (3) shows that (4) is violated.

It is standard and easily observed that $m_{H} \in \overline{\operatorname{conv}} H$. Thus when H is finite dimensional and closed, H is m-balanced with respect to some m if and only if $0 \in \operatorname{conv} H$. It follows that certain groups of
isometries can never be used to obtain expressions like (4). For example, the isometry T of $1_{2}^{n}(R)$ which is given by

$$
T\left(x_{1}, x_{2}, \ldots, x_{n}\right):=\left(x_{2}, x_{3}, \ldots, x_{n}, x_{1}\right)
$$

generates a cyclic group of order n whose convex hull does not contain zero. Recall that a Borel measure on H is strictly positive if its support is H. Our main result is:

THEOREM 2. Let H be a subset of the isometries of a finite dimensional normed space X. Suppose that H is m-balanced with respect to a strictly positive measure m. If

$$
\begin{equation*}
\int_{T \in H}\|x+T y\|^{2} d m \sim 2 \text { for } x, y \text { in } S(X) \tag{5}
\end{equation*}
$$

then X is a Euclidean space.
Proof. A complex normed space of dimension n may be viewed (real isometrically) as a real normed space of dimension $2 n$. The complex isometries remain real isometries, and since (5) is a real isometric invariant, it suffices to establish the real case of the theorem. We consider the " \geq " case and let E be the unique (Loewner) ellipsoid of maximal volume inside $C:=\{x \mid\|x\|=1\}$. Let $\|\cdot\|_{E}$ denote the associated Euclidean norm. The argument in [1, p. 90] shows that E inherits the isometries of X; and [2, p. 80] shows that $M:=S(E) \cap S(X)$ spans X. Let x and y lie in M and choose T_{0} in H. Then $z:=T_{0} x$ also lies in M and (5) shows that

$$
\begin{equation*}
\int_{T \in H}\|z+T y\|^{2} d m \geq 2 \tag{6}
\end{equation*}
$$

Since H is m-balanced and lies inside of the isometries of E, (3) shows that

$$
\begin{equation*}
\int_{T \in H}\|z+T y\|_{E}^{2} d m=2 \tag{7}
\end{equation*}
$$

Let $f(T):=\|z+T y\|^{2}-\|z+T y\|_{E}^{2}$. Then f is a non-positive continuous function on H such that $\int_{T \in H} f(T) d m \geq 0$. Since m is strictly
positive we must have $f\left(T_{0}\right)=0$. But this says that

$$
\begin{equation*}
\|x+y\|=\left\|T_{0} x+T_{0} y\right\|=\left\|T_{0} x+T_{0} y\right\|_{E}=\|x+y\|_{E}, \tag{8}
\end{equation*}
$$

because T_{0} is an isometry of C and of E. It follows that the set of directions D in which the two norms coincide is midpoint-convex. Being closed and homogeneous, D must actually be a subspace. Since D contains M, D is the entire space and $\|\cdot\|$ coincides with $\|\cdot\|_{E}$. The " \leq " case follows similarly from a minimality argument.

We can replace the finite dimensionality hypothesis by the condition that, for some fixed n, H leaves n-dimensional subspaces of X invariant. This still allows us to show that every n-dimensional subspace of X is Euclidean; and so is X.

We also observe that the previous argument fails for any skew-norm.
The classical criterion uses $H:=\{I,-I\}$ and the uniform two-point measure. More generally we have:

COROLLARY 3. Let X be a finite dimensional normed space and let H be a closed subgroup of isometries which contains a non-trivial multiplication. Let m be normalized (left) Haar measure on H. Then H is m-balanced and (5) characterizes Euclidean space.

Proof. Let S be a multiplication by $\alpha(\alpha \neq 1)$ which lies in H. Then H is compact, whence m_{H} exists and

$$
\begin{equation*}
m_{H}=\int_{T \in H} T d m=\int_{T \in H} S T d m=\alpha m_{H} \tag{9}
\end{equation*}
$$

Since $\alpha \neq 1, m_{H}=0$ and H is m-balanced. Also, since H is compact and m is translation invariant, m is strictly positive. The result now follows from Theorem 2.

A simple way of guaranteeing that a group H is balanced is to require that $H=-H$. Note that the full group of isometries is balanced. Our next corollary recaptures Day's version [3] of Stanojević and Suchanek's result [6] given in the introduction. Applications can be found in [6]. Observe that only abelian compact groups really appear in the corollary.

COROLLARY 4. Let X be a complex normed space and let G be a compact group endowed with normalized Haar measure. Let γ be a nontrivial group character on G. Then

$$
\begin{equation*}
\int_{g \in G}\|x+\gamma(g) y\|^{2} d m \sim 2 \text { for all } x, y \in S(x) \tag{10}
\end{equation*}
$$

if and only if X is an inner product space.
Proof. For each g in G multiplication by $\gamma(g)$ is an isometry of X. Since G is compact the character γ induces a compact subgroup H of isometries of X. Since γ is non-trivial, H contains a non-trivial multiplication and, as in the previous corollary, is m-balanced.

Proposition 1 now shows (10) to be necessary; and Theorem 2, which applies since H has one dimensional orbits, shows (10) to be sufficient.

If one defines characters with respect to the underlying scalar field, Corollary 4 remains valid - if uninteresting - over the real field. Similarly, we have:

COROLLARY 5. Let X be a normed space. Suppose that unit length scalars $w_{1}, w_{2}, \ldots, w_{m}$ and strictly positive real numbers $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{m}$ are given such that

$$
\begin{equation*}
\sum_{i=0}^{m} \lambda_{i} \omega_{i}=0, \quad \sum_{i=1}^{m} \lambda_{i}=1 . \tag{ll}
\end{equation*}
$$

Then X is an inner product space if and only if

$$
\begin{equation*}
\sum_{i=1}^{m} \lambda_{i}\left\|x+w_{i} y\right\|^{2} \sim 2 \text { for } x, y \text { in } s(X) \tag{12}
\end{equation*}
$$

Proof. Let H be the finite set of isometries T_{i} with $T_{i} x:=w_{i} x$. Condition (11) shows that the discrete measure m with mass λ_{i} at T_{i} balances H, and is strictly positive. The result now follows as in Corollary 4.

The proof is unchanged if $m=\infty$.
A special case of Corollary 5 (and of Corollary 4) is worth singling
out. If $w \neq 1$ is any m th root of unity then $\sum_{i=1}^{m} \frac{1}{m} w^{i}=0$, and

$$
\begin{equation*}
\frac{1}{m} \sum_{i=1}^{m}\left\|x+w^{i} y\right\|^{2} \sim 2 \text { for } x, y \in S(X) \tag{13}
\end{equation*}
$$

characterizes inner-product spaces as in [3].
Similar extensions can be made to the integral inequalities given in [4] and extended to group characters in [3]. They do not, however, have the same completeness or simplicity as Theorem 2. Also, it seems worth observing that integration over a Haar measure gives a concise proof of the following classical result.

THEOREM 6 ([1]). Let C be a convex body in finite dimensional normed space X. If any two points on the boundary of C are connected by a linear isometry then C is an ellipsoid.

Proof. Let $\|\cdot\|_{E}$ be any Euclidean norm on X. Let H be the compact group of isometries on C and let $\|\cdot\|_{F}$ be defined by

$$
\begin{equation*}
\|x\|_{F}^{2}=\int_{T \in H}\|T x\|_{E}^{2} d m \tag{14}
\end{equation*}
$$

where m is Haar measure on H. Then $\|\cdot\|_{F}$ is Euclidean and $\|T x\|_{F}=\|x\|_{F}$ for each x in X and each T in H. Since H is transitive, all points on the boundary of C have the same value under $\|\cdot\|_{F}$. Thus C is an ellipsoid.

In the symmetric case the corollary follows easily from our results. Let H be the full group of isometries of X and let m be Haar measure on H. Define Φ by

$$
\begin{equation*}
\Phi(x, y):=\int_{T \in H}\|x+T y\|^{2} d m \text { for } x, y \in S(X) \tag{15}
\end{equation*}
$$

If S_{1} and S_{2} are isometries in H then

$$
\begin{equation*}
\Phi\left(S_{1} x, S_{2} y\right)=\Phi\left(x, S_{2} y\right)=\Phi(x, y) \tag{16}
\end{equation*}
$$

Since H is presumed transitive it follows that Φ is constant. Corollary 3 now applies since the constant, mutatis mutandi, is either no
larger or no smaller than two.
The mapping implicit in (14) has many pleasant properties when viewed as a mapping from the space of all n-dimensional norms into itself.

To apply Theorem 2 in other situations it is necessary to possess appropriate sets of isometries. We now give one such example. Recall that a norm on \mathbb{R}^{n} is absolute if $\|x\|=\|\mid x\| \|$ for each x in \mathbb{R}^{n}. Here $|\cdot|$ is computed component-wise. It is a simple consequence of Caratheodory's theorem that such a norm is actually a lattice norm. Moreover, in this case the mappings $\pi_{k}\left(k=1, \ldots, 2^{n}\right)$,

$$
\begin{equation*}
\pi_{k} y:=\left(\pm y_{1}, \ldots, \pm y_{n}\right) \tag{17}
\end{equation*}
$$

where the signs range over all permutations of ± 1, are linear isometries. This leads to

COROLLARY 8. An absolute norm on \mathbb{R}^{n} is Euclidean if and only if

$$
\begin{equation*}
\frac{1}{2^{n}} \sum_{k=1}^{2^{n}}\left\|x+\pi_{k} y\right\|^{2} \sim 2 \text { for } x, y \in S(X) \tag{18}
\end{equation*}
$$

Proof. Since $\frac{1}{2^{n}} \sum_{k=1}^{2^{n}} \pi_{k}=0$, the set P of such isometries is balanced with respect to the uniform measure and so Theorem 2 applies.

Obviously the corollary remains true for all balanced subsets of P.
Finally we observe, that as in [3], certain extensions may be made to replace measures by invariant means.

References

[1] H. Busemann, The geometry of geodisics (Academic Press, New York, 1955).
[2] M.M. Day, Normed Zinear spaces, Third Edition (Springer-Verlag, Berlin, Heidelberg, New York, 1973).
[3] M.M. Day, "Comments on notes of Stanojević et al", Proc. Amer. Math. Soc. 81 (1981), 554-555.
[4] A.J. Penico and C.V. Stanojević, "An integral analogue to parallelogram law", Proc. Amer. Math. Soc. 79 (1980), 427-430.
[5] W. Rudin, Fronctional analysis (McGraw-Hill, New York, 1973).
[6] X.V. Stanojević and A.M. Suchanek, "Integral identities of norms and characterization of inner product spaces", Proc. Amer. Math. Soc. 81 (1981), 101-103.

Department of Mathematics,
Dalhousie University,
Halifax,
Nova Scotia,
Canada B3H 4H8.

