14C PROFILES IN THE CENTRAL WEDDELL SEA

PETER SCHLOSSER*, BERND KROMER, REINHOLD BAYER and K O MÜNNICH

Institut für Umweltphysik der Universität Heidelberg
Im Neuenheimer Feld 366, D-69 Heidelberg, FRG

ABSTRACT. 14C data from stations in the central Weddell Sea are presented and discussed using additional parameters (potential temperature, salinity and 3He). The low 14C concentrations of the surface water (≈90%) are explained by suppressed gas exchange due to ice cover during the winter and rapid turnover of the surface layer caused by entrainment of Warm Deep Water (WDW) with low 14C concentrations. A simple time-dependent balance calculated for the Surface Water (SW) and the underlying Winter Water (WW) can reproduce the 14C concentrations observed in these layers for 1985. The pre-bomb 14C concentrations are estimated at ≈−130‰ for SW and −140‰ for WW. A strong deviation of the SW 14C concentration observed in 1973 from the calculated value suggests a change in surface circulation and/or air/sea exchange during the period before the Weddell Polynya in 1974. The observed 14C concentrations of the Weddell Sea Bottom Water (WSBW; −135 to −150‰) are only slightly higher than those of the WDW showing that the uptake of bomb 14C in the Weddell Sea is limited. The 14C profiles show a minimum at intermediate depths (≈1500m) which is caused by radioactive decay and/or penetration of bomb 14C from shallow and deep layers (WDW and WSBW) into intermediate layers.

INTRODUCTION.

Bottom water formation in the ocean is restricted to the northern North Atlantic and the area around Antarctica (e.g., Warren, 1981). Thus, the polar oceans play an important role in the deep-water circulation of the ocean, and, as deep-water formation leads to an interaction between the cold-water sphere of the ocean and the atmosphere, it also has considerable impact on global climate. In the Southern Ocean, Weddell Sea Bottom Water (WSBW), formed on the southwestern shelves of the Weddell Sea, is an important source of Antarctic Bottom Water (AABW), the southern component of deep water found in the ocean (Brennecke, 1921; Mosby, 1934; Deacon, 1937; Carmack & Foster, 1975a; Foster & Carmack, 1976a). The contribution of other sources like the Ross Sea or the area off Adélie Coast are of minor importance (Gordon, 1974).

Despite the importance of the Weddell Sea for deep circulation, few data exist from this region compared to other parts of the ocean due to the fact that the ice-covered polar oceans are inaccessible. The lack of data holds especially for tracers which, in some cases, require special equipment for sampling large amounts of water only available on a few special research vessels. However, tracers can provide useful information on the time scale of deep-water circulation and on the deep-water formation process and thus have become an important tool in oceanographic studies during the last decades (e.g., Broecker & Peng, 1982). Most information on the time scale of deep-water circulation has been derived from 14C measurements of the GEOSECS program (Stuiver & Östlund, 1980, 1983; Östlund & Stuiver, 1980; Broecker, 1981). However, until recently, only near-surface 14C data (depth ≤600m) existed from the Weddell Sea and the 14C concentration of Weddell Sea Bottom Water (WSBW) and Antarctic Bottom Water

* Present address: Lamont-Doherty Geological Observatory of Columbia University, Palisades, New York 10964

https://doi.org/10.1017/S0033822200012133 Published online by Cambridge University Press
(AABW) was estimated based on mixing considerations (Weiss, Östlund & Craig, 1979). The first profile covering the whole water column was obtained on a cruise of the German research icebreaker, *Polarstern*, to the central Weddell Sea (ANT III/3, Jan–March 1985) using small volume samples measured by accelerator mass spectrometry (AMS) (Schlosser et al., 1987). These data showed that in the deep water of the Weddell Sea only small 14C gradients exist and that the 14C concentrations of the waters forming the WSBW are not much changed in the deep-water formation process.

We present here the first large set of high-precision 14C data from three stations in the northern, central and southern Weddell Sea covering the whole water column. Beside determining the 14C concentration of WSBW, the potential of 14C data for studies of the deep-water formation process and ocean/atmosphere exchange is discussed. The data fill the gap in 14C measurements of the southern component of bottom water in the world oceans.

SAMPLING PROCEDURES AND MEASUREMENT

Water samples for 14C measurement by low-level counting were collected on leg two of the fifth cruise of the *Polarstern* to Antarctica (ANT V/2, Winter Weddell Sea Project 86, June–Sept 1986) using stainless steel Gerard-Ewing samplers (volume: 270L; for description of the WWSP program, see Schnack-Schiel, 1987).

Total inorganic carbon and dissolved gases were extracted on board using a vacuum extraction system as follows: The sea water was acidified to pH 2 by addition of hydrochloric acid and sprayed into a vacuum chamber at a flow rate of $\approx 6-8$L min$^{-1}$. The pressure in the vacuum chamber was held at water vapor pressure by removing both water and the released gases with pumps. The extracted gases were bubbled through purified NaOH to absorb CO$_2$ for 14C measurement and, at some stations, the remainder of the gases was collected for 39Ar and 85Kr measurement. Extraction efficiency was $\approx 80-90\%$ for CO$_2$. Kuntz (1980) described details of the extraction systems.

14C was measured by gas counting on the CO$_2$ set free in the laboratory by addition of acid to the NaOH solution (Schoch et al., 1980; Schoch & Münich, 1981). The 14C blank arising from the NaOH solution was negligible (on the order of 0.2% in Δ^{14}C). The samples were usually measured in two counters for 1/2 week each, leading to a statistical error of $\approx \pm 1.4\%$. Additional errors of counter background and efficiency leads to an overall 1σ error of the Δ^{14}C values of $\pm 2\%$. The 14C data are reported as age corrected Δ^{14}C, following Stuiver and Polach (1977). The data refer to the 1983 recalibration of the Heidelberg sodium carbonate substandard to NBS oxalic acid (Kromer, 1984).

The AMS 14C data are taken from Schlosser et al (1987) and have a precision of $\approx \pm 8\%$ (these are the result of our first attempt to measure 14C on small volume oceanic water samples; the main emphasis was not on ultimate precision. The Zürich AMS facility can reach a precision of $\approx \pm 5\%$ (≈ 30 min counting time, Kromer et al., 1987) or better (increased counting time, Bonani et al., 1987)). 3He was measured with a precision of $\approx \pm 0.2\%$ using a 3He/4He mass spectrometer (Lynch & Kay, 1981) and is reported as δ^3He, *ie*, the per cent deviation of the 3He/4He ratio of the sample from an air standard.
The basic water mass from which all other waters of the Weddell Sea are derived is the Warm Deep Water (WDW; $0^\circ\mathrm{C} < \theta < 0.8^\circ\mathrm{C}$, Foster & Carmack, 1976b). It is advected from the circumpolar flow into the Weddell Sea and is centered at depths of $\approx 200-500\text{m}$. Above the WDW is a two-layer hydrographic system. During winter a mixed layer consisting of cold water with temperatures near freezing (Winter Water, WW) and a mean depth of $\approx 100\text{m}$ (Gordon, Chen & Metcalf, 1984) is formed. This water is separated from the underlying WDW by a weak pycnocline (Gordon & Huber, 1984). During the ice-free period in summer, a layer of Surface Water (SW) overlying the remnant WW is seasonally warmed and slightly fresher. The remnant WW has potential temperatures of -1.6 to $-1.8^\circ\mathrm{C}$ (Foster & Carmack, 1976b), which can be detected throughout the summer by a distinct temperature minimum.

Below the WDW, potential temperature and salinity decrease steadily to reach values below $-0.7^\circ\mathrm{C}$ and 34.65% near the bottom. Water with a potential temperature below $-0.7^\circ\mathrm{C}$ is called Weddell Sea Bottom Water (WSBW) and the waters with potential temperatures below $0^\circ\mathrm{C}$ Antarctic Bottom Water (AABW, Carmack & Foster, 1975a). The WSBW is a mixture of waters on the broad shelves of the southwestern Weddell Sea and WDW. AABW is formed by further mixing of the WSBW with warmer and more saline water.

It is not yet clear which specific shelf-water masses are contained in the WSBW and by which processes WSBW is formed. A process directly observed by current meter measurements is the flow of Ice Shelf Water (ISW) across the sill separating the Filchner Trench from the deep Weddell Sea down the continental slope (Foldvik, Gammelsrød & Tørresen, 1985a,b). ISW is a water mass formed by modification of Western Shelf Water (WSW) due to water/ice interaction under the Filchner Ice Shelf with temperatures below the surface freezing point of sea water and salinities of $34.60-34.70\%$ (Carmack & Foster, 1975b). WSW on the shelf west of the Filchner/Ronne Ice Shelves is marked by relatively high salinities ($>34.70\%$, Carmack & Foster, 1975b) resulting from brine release during sea ice formation. Other processes of WSBW formation may be modification of WDW which flows onto the southwestern shelves and subsequent mixing with cold and relative saline shelf water and some WW (Foster & Carmack, 1976a; Foster, Foldvik & Middleton, 1987). Geochemical data presented by Weiss, Östlund and Craig (1979) agree with the hypothesis that WSBW is a mixture of WW, WSW and WDW.

RESULTS

The $^{14}\mathrm{C}$ profiles obtained during ANT V (stations 234, 266, 317; Fig 1) are plotted in Fig 2A. These data represent the first measurements from a section across the ice-covered Weddell Sea under winter conditions.

One main feature of the profiles that was already observed (Weiss, Östlund & Craig, 1979; Schlosser et al, 1987) is the remarkably low $^{14}\mathrm{C}$ concentration of the surface layer, which for ANT V at the time of sampling was already homogenized due to the convective processes of ice formation and
consisted of WW (for a description of ice conditions during the cruise, see Casarini & Massom, 1987). The ANT V 14C concentrations of the surface layer vary between $\approx -80\%$ (stations 234 and 266) and $\approx -125\%$ (station 317) and span the full range of 14C concentrations of SW and WW at station 243 (Fig 2B) which was occupied on leg 3 of the third cruise of Polarstern to Antarctica in austral summer (ANT III/3, Jan–March 1985; for geographic position, see Fig 1).
Below the WW, the 14C concentrations decrease to reach an intermediate minimum at depths of ≈ 1500 m (Fig 2A; the ANT III data in Fig 2B agree with this picture but the precision and depth resolution are not high enough to resolve the effect). The difference in 14C concentration between the WDW ($\approx 400-500$ m) and this minimum is $\approx 12\%$. Below 1500 m, 14C concentrations increase steadily to values of $\approx -150\%$ in the bottom water (max: -149% at station 234; min: -156% at station 317). At station 243, closer to the source region, 14C concentration of bottom water is $\approx -135\%$.

The low 14C concentration of WSBW is the second remarkable feature of the 14C distribution in the Weddell Sea. There is a distinct modification of most of the parameters of the shelf-water masses if compared to WDW caused by the ocean/atmosphere exchange and water/ice interaction on the shelves of the southwestern Weddell Sea; this signal is clearly reflected in the WSBW which, to a considerable degree, consists of shelf water. For 14C, concentrations of WSBW fall into a range $\approx -135\%$ to -150% (potential temperature of bottom water at station 317 is above $-0.7^\circ C$ and so it is, by definition, AABW), i.e., concentrations of WSBW are higher by only $3-18\%$ compared to WDW (-153% at ≈ 300 m depth), and lower than the value estimated by Weiss, Östlund and Craig (1979) from mixing considerations (-119% for WSBW with a potential temperature of $-0.9^\circ C$).

DISCUSSION

14C distributions will be discussed mainly with respect to the processes leading to the low concentrations in the Weddell Sea. As these data are the first measurements from a large sample set, we will concentrate on qualitative aspects; quantitative treatment will follow once the complete data set is available.

14C in the Surface Layer

The difference in 14C concentration between SW and WW (Fig 2B) is related to the entrainment of WDW into the winter mixed layer due to convective processes caused by brine release during sea ice formation. The entrainment rate is on order of $15-35$ m year$^{-1}$ (Gordon, Chen & Metcalf, 1984; Schlosser, Roether & Rohardt, 1987) which leads to a turnover time of the mixed layer due to entrainment of WDW of $\approx 3-7$ yr. During entrainment, the 14C concentration is decreased due to the low 14C content of WDW. Only after the ice is melted in summer does the 14C concentration of the newly formed SW increase by exchange with the atmosphere, leading to a difference in Δ^{14}C between SW and WW on the order of $\approx 30\%$ (see below). Variations of the 14C concentrations of the WW at the ANT V stations might be due to the different duration of ice cover at the time of sampling and related variable entrainment rates.

To check if the observed 14C concentrations can be reconstructed based on atmospheric 14C concentrations and present oceanographic knowledge on the dynamics of near-surface water layers, a simple time-dependent balance is calculated. We treat the upper water layer from the surface down to the mean depth of the WW (≈ 100 m) as a reservoir containing ≈ 215 mols total inorganic carbon (TIC)/m2. The 14C concentration of this reservoir is changed by
exchange with the atmosphere in summer (assuming a 6 month ice-free period) and by entrainment of WDW in winter under ice cover. For the exchange process in summer, we assume partial re-equilibration of a 50m thick layer of SW with the atmosphere by exchange at \(\approx 25 \text{mols CO}_2 \text{ m}^{-2} \text{ year}^{-1} \) (Weiss, Östlund & Craig, 1979; Broecker et al, 1985) leading to a TIC renewal time in the water layer by atmospheric CO\(_2\) of \(\approx 4 \text{yr} \). The entrainment rate of WDW is chosen as \(33 \text{m yr}^{-1} \) (Gordon, Chen & Metcalf, 1984; Schlosser, Roether & Rohardt, 1987), and the \(^{14}\text{C}\) content of the WDW is assumed constant (\(-158\%\)). The atmospheric \(^{14}\text{C}\) concentration as a function of time for the period 1959–1979 is taken from Levin, Münich and Weiss (1980). The 1985 value of 200\%\(_{\text{o}}\) is taken from Levin et al (1987) and 1979–1985 data are obtained by linear interpolation. For the period before 1959 a linear interpolation between \(-20\%\(_{\text{o}}\)\) (1949) and 150\%\(_{\text{o}}\) (1959) is applied (Fig 3A). As the calculation is a rough estimate, a constant value for TIC in different water masses is assumed (the same holds for mixing, discussed below).

![Fig 3A](https://doi.org/10.1017/S0033822200012133) Atmospheric \(^{14}\text{C}\) data used in calculating the \(^{14}\text{C}\) concentration of SW and WW as a function of time. For explanation, see text.

![Fig 3B](https://doi.org/10.1017/S0033822200012133) Calculated \(^{14}\text{C}\) concentration of SW and WW as a function of time. The time constant for carbon exchange of the SW is set to 4 yr and the entrainment rate of WDW into the winter mixed layer to 33m yr\(^{-1}\).

![Fig 3C](https://doi.org/10.1017/S0033822200012133) Same calculation as for Fig 3B using a carbon exchange time constant of 5 yr and an entrainment rate of 50m yr\(^{-1}\).
Calculation results show the influence of bomb 14C on both SW and WW (Fig 3). Calculations with a time constant for carbon exchange of 4 yr and an entrainment rate of 33 m yr$^{-1}$ (Fig 3B) yield 14C values for 1985 that are too high compared to the measurements (-39% for SW compared to -90% observed at station 243; -69% for WW compared to -120%; see Fig 2B). The calculated values can be adjusted by varying both the atmospheric 14C input and the entrainment rate of WDW. The time constant for CO$_2$ exchange is sensitive on the absolute 14C concentration of the SW and the entrainment rate adjusts the difference in 14C concentration between WW and SW. Taking values of 5 yr for the CO$_2$ exchange time constant and increasing the entrainment rate to 50 m yr$^{-1}$ leads to calculated 14C concentrations of SW and WW which fit the 1985 data reasonably well (-88% for SW and -116% for WW; Fig 3C). The required increase of the entrainment rate is interpreted as consequent to the fact that parts of the Weddell Sea are perennially ice covered resulting in lower 14C concentrations of SW due to suppressed gas exchange. Lateral mixing with such water would result in an addition of water with low 14C concentration, for which we have compensated by an increased WDW entrainment rate.

The calculated data cannot fit 14C data from SW samples collected in 1973 (Weiss, Ostlund & Craig, 1979). The calculated value for WW ($-88\%)$ reasonably agrees with the data ($-79\%)$ but the calculated value for SW ($-40\%)$ is higher by 52\% compared to the experimental data ($-92\%)$. As atmospheric 14C concentrations are well known and 14C content of WDW has not changed (-158% in 1973; Weiss, Ostlund & Craig, 1979; -153% (300 m depth) to -158% (500 m depth) in 1986), the explanation might be a change in circulation pattern of upper water layers and/or air/sea exchange rate. This change may be related to the appearance of the Weddell Polynya (1974–1976) which was accompanied by a cooling of the WDW (Gordon, 1982) indicating changes in the circulation pattern of upper water layers.

The 14C balance can be used to estimate the pre-bomb 14C concentrations of SW and WW. Assuming the parameters of the calculations in Fig 3C, $\Delta ^{14}$C values of -131% for SW and -142% for WW are obtained. These values are calculated for a constant atmospheric $\Delta ^{14}$C concentration of -20%, and for steady-state conditions of the circulation pattern which are an oversimplification of the system. The real ocean is much more complicated, but the calculations give a rough first-order estimate of 14C concentrations found in the upper water layers of the Weddell Sea in the pre-bomb era. Although a comparison of the estimated values with the measurements of Rafter and O’Brien (1973) is difficult due to the different hydrography, there is reasonable agreement with the pre-bomb values measured in the South Pacific ($\approx 60^\circ S$) and those estimated here for the Weddell Sea. This shows that in the Southern Hemisphere the high latitude surface 14C concentrations are relatively low due to oceanic circulation patterns.

14C in the Deep and Bottom Water

The intermediate 14C minimum (Fig 2A) has not been observed in the profiles of the ‘stable tracers’ potential temperature (Fig 4), salinity (Fig 5) and 3He (Fig 6). All these tracers have maxima in WDW. Therefore, the
14C Profiles in the Central Weddell Sea

Fig 4A. Potential temperature profiles – ANT V stations

Fig 4B. Potential temperature profiles – ANT III stations

Fig 5A. Salinity profiles – ANT V stations

Fig 5B. Salinity profiles – ANT III stations

Fig 6. 3He profiles of the ANT V stations 234 and 317

https://doi.org/10.1017/S0033822200012133 Published online by Cambridge University Press
Fig 7A. Potential temperature vs salinity plots for ANT V stations. The mixing line between WDW and WSBW is extrapolated to a temperature of -2.05°C. WSW marks the θ/S characteristic of WSW. The θ/S characteristic of ISW is indicated.

Fig 7B. Same as Fig 7A for ANT III stations.

Fig 8. Δ³He vs potential temperature plot for ANT V stations 234 and 317. The values for ISW are taken from Schlosser (1986). A indicates the shelf water necessary to produce WSBW by mixing with WDW.

Higher ¹⁴C concentrations observed in the WDW, if compared to the depth range centered at ≈1500m, must be caused by downward penetration of bomb ¹⁴C or by radioactive decay. The two processes cannot be separated without using tritium as indicator for the bomb ¹⁴C component. Our first tritium measurements show similar depth profiles indicating that at least part of the structure of the ¹⁴C profiles is caused by the bomb component. A final evaluation of the ¹⁴C distribution with respect to its potential to derive mean residence times for the intermediate waters has to wait until the final tritium data are available.
From property vs property plots of the stable tracers, it is evident that the deep waters found in the depth range between WDW and WSBW are a mixture of WDW and a second end member which was not sampled for 14C but which is known to be a cold water mass originating in the southwestern shelf region (θ/S plot: Fig 7; θ/3He plot: Fig 8). This end member is a mixture of different water masses formed and/or modified on the shelf, and this relatively complicated and poorly understood process seems to produce waters with similar θ/S and θ/3He characteristics near those of ISW (Fig 7,8).

The θ/14C plots (Fig 9) do not show a linear mixing line between WDW and WSBW but a deviation to lower 14C concentration for the intermediate depth range with lowest values for potential temperatures of $\approx -0.2^\circ$C (Fig 9A). This deviation is caused by the transient bomb 14C component or by radioactive decay, as all the intermediate waters below WDW are formed in the Weddell Sea (the potential temperatures observed in Drake Passage, the source region for the water advected into the Weddell Sea are above 0°C throughout the water column; Nowlin & Clifford, 1982). To evaluate this signal the 14C concentrations of the end members involved in the formation of WSBW and the bomb contribution to the observed 14C distribution have to be known. As almost no 14C data from the southwestern shelf are available, the following is more a discussion of ideas than facts.

![Fig 9A](https://doi.org/10.1017/S0033822200012133)
Fig 9A. Δ^{14}C vs potential temperature plots – ANT V stations. The data point for ISW is taken from ANT III station 309 located at the front of the Filchner Ice Shelf (see Fig 1). A indicates the 14C concentration of the WSBW found at ANT III station 244.

![Fig 9B](https://doi.org/10.1017/S0033822200012133)
Fig 9B. Same as Fig 9A for ANT III data

We assumed that the bottom water is renewed on a short time scale of some years and that the admixed WDW is relatively cold (0.2°C) as observed at stations 243 and 244 in the northwestern Weddell Sea (Fig 4), ie, closer to the source region than the ANT V stations (234, 266, 317; Fig 1). In this way, the extrapolated mixing line in the θ/14C plot (Fig 9B) drawn between WDW and the WSBW found at station 244 (indicated by A) leads to a 14C concentration of the required shelf water component of $\approx -120\%$, which is lower than the ISW concentration observed so far (Fig 9A). This indicates that ISW...
is not the only shelf water mass involved in the formation of WSBW, as could be derived from θ/S considerations (Fig 7). This view is consistent with the 3He data. The θ/3He plot suggests that the shelf water component should have somewhat higher 3He concentrations as those observed in ISW (Fig 8).

The 14C concentrations of the WSBW at stations 234 and 266, ie, further east in the Weddell Sea are even lower than those at station 244. This could be caused by different shelf water masses involved in the WSBW formation with relatively low 14C concentrations due to formation/modification of water under partial ice cover which allows helium loss and modification of temperature and salinity but almost no re-equilibration of 14C. An alternative process could be aging or admixture of bottom water from regions outside the Weddell Sea. A definite answer to this question cannot be reached with the present data set.

CONCLUSIONS

Our 14C data show that characteristic effects of the Weddell Sea (low concentrations in the surface layer and WSBW) can be related to oceanographic processes and ice conditions. At present, a rough picture of 14C distribution can be drawn but many features are still unresolved and need further specific sampling, especially in shelf regions where WSBW is formed. We must interpret 14C data together with classical (T/S) and/or geochemical parameters (beside tritium and 3He a suite of other tracers could be applied). 39Ar measurements, which are presently made at the University of Bern (Loosli & Weppernig, pers commun, 1989), should be a most valuable parameter in a more detailed discussion of measured 14C distribution. On the basis of adequate data sets, 14C is a valuable tracer for studies of oceanographic processes and air/sea exchange processes.

ACKNOWLEDGMENTS

The contribution of the following individuals is gratefully acknowledged: Wolfgang Roether was responsible for the coordination of the ANT V/2 tracer program; the crew of RV Polarstern gave technical assistance during ANT III and ANT V; the Alfred-Wegener-Institut für Polar- und Meeresforschung, Bremerhaven, provided logistical support for the Ant III and Ant V cruises; Hans Georg Junghans was in charge of the CO$_2$ extraction on ANT V; Reiner Fletterer and the members of the institute’s workshop prepared the equipment for water sampling and gas extraction; Gerd Rohardt provided the ANT III hydrographic data, and Hannelore Witte and Raul Guerrero measured the ANT V salinity samples. Stan Jacobs gave helpful comments on the manuscript. The major part of this work was funded by the Deutsche Forschungsgemeinschaft.

REFERENCES

——— 1976b, Temperature and salinity structure in the Weddell Sea: Jour Phys Oceanog, v 6, p 36–44.
Kromer, B, 1984, Recalibration of Heidelberg 14C laboratory data: Radiocarbon, v 26, no. 1, p 148.

